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A Fractional Inpainting Model Based on the Vector-Valued Cahn–Hilliard
Equation∗
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Abstract. The Cahn–Hilliard equation provides a simple and fast tool for binary image inpainting. By now,
two generalizations to gray value images exist: bitwise binary inpainting and TV-H−1 inpainting.
This paper outlines a model based on the vector-valued Cahn–Hilliard equation. Additionally, we
generalize our approach to a fractional-in-space version. Fourier spectral methods provide efficient
solvers since they yield a fully diagonal scheme. Furthermore, their application to three spatial
dimensions is straightforward. Numerical examples show the superiority of the proposed fractional
Cahn–Hilliard inpainting approach over its nonfractional version. It improves the peak signal-to-
noise ratio and structural similarity index. Likewise, the experiments confirm that the proposed
model competes with previous inpainting methods, such as the total variation inpainting approach
and its fourth-order variant.
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1. Introduction. Three-dimensional visualizations of medical images help professionals
make more accurate diagnoses. Parts of the human body are given in the form of a sequence
of slices. Often, the distance between these slices is significantly larger than the image pixel
size. Hence, it is necessary to interpolate additional slices in order to obtain an accurate three-
dimensional description. This can be achieved by the image inpainting process [57, 11, 38].

Inpainting is the art of modifying parts of an image such that the resulting changes
are not easily detectable by an ordinary observer. Applications include the restoration of
damaged paintings and photographs [3], the replacement of selected objects, and the reduction
of artifacts in medical images [39]. Due to the large number of applications, much effort has
gone into the development of digital inpainting techniques—starting with classical integer-
order models through to generalized fractional-order approaches. This section presents a brief
survey of such methods.

1.1. Classical inpainting models. Bertalmı́o et al. [6] introduced the image inpainting
technique into digital image processing. Their third-order nonlinear PDE propagates the
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FRACTIONAL CAHN–HILLIARD INPAINTING 2353

image information along the lines of equal gray values into the areas to be modified. Consecu-
tively, a number of variational- and PDE-based approaches have been considered, including the
total variation (TV) inpainting model [21, 19], inpainting based on curvature-driven diffusions
[20], Euler’s elastica inpainting model [18], the Mumford–Shah inpainting model [62, 21], and
the Mumford–Shah–Euler inpainting model [32]. We refer the reader to [22] for an overview
of existing inpainting methods. In summary, Schönlieb and Bertozzi [61] pointed out that
higher order inpainting methods have certain advantages over second-order ones. These in-
clude, for example, the preservation of curvatures or the connection of contours across very
large distances.

1.2. Fractional inpainting models. In recent years, fractional-order PDEs have been stud-
ied in image processing [67, 4]. Fractional differential equations replace a standard differen-
tial operator by a corresponding fractional differential operator. Generalizations to integrals
and derivatives of arbitrary order have a long history in mathematics [55]. They are used
to describe many real-world phenomena, e.g., the anomalous diffusion process [53], disper-
sion in heterogeneous aquifers [1], cardiac electrical propagation [15], filtration of solutes in
porous soils [5], and receptor-mediated transport of morphogens in developing tissues [45].
In general, fractional differential equations characterize nonlocal and spatial heterogeneous
properties where classical models provide rather inadequate results. For inpainting problems,
they improve the image quality and peak signal-to-noise ratio (PSNR) [4, 69, 46, 68]. The
new fractional schemes can be treated as regularizations of the classical inpainting models
and overcome the well-known effect of oversmoothing. Similar effects have been studied in
regularization methods for ill-posed problems [44, 41], which are applied among other things
in denoising.

1.3. Basic model. Bertozzi, Esedoḡlu, and Gillette [8, 7] introduced the fourth-order
Cahn–Hilliard inpainting approach for binary images. They benefit from the use of the fast
Fourier transform (FFT) to achieve fast inpainting. Compared to previous classical models,
their approach is based on a simplified PDE and reduces the computational time.

To our knowledge, two generalizations to gray value images have been studied: Schönlieb
and Bertozzi’s [61] bitwise binary inpainting and Burger, He, and Schönlieb’s [16] TV-H−1

inpainting. First, the bitwise binary inpainting method splits the image bitwise into channels.
The Cahn–Hilliard inpainting approach applies then to each binary channel separately. Sec-
ond, the TV-H−1 inpainting model adds subgradients of the TV functional. This fourth-order
variant of the TV inpainting model is shown to be superior to the original second-order TV
model.

In this paper, we present a vector-valued Cahn–Hilliard inpainting model for gray value
images. Not only does this model consist of a number of scalar Cahn–Hilliard equations,
but it also connects all of them via a coupling term. In fact, this term arises during the
derivation of the system of PDEs via a projected gradient flow. This projection ensures
that the solution stays an element of the Gibbs simplex. We refer the reader to section 3
for more details regarding the derivation. Further, section 6.5 demonstrates numerically the
fulfillment of the Gibbs simplex condition. The second target of the present paper is the
generalization of our proposed model to a fractional-in-space version, called fractional Cahn–
Hilliard inpainting. Numerical examples emphasize the superiority of the proposed fractionalD
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2354 JESSICA BOSCH AND MARTIN STOLL

Cahn–Hilliard inpainting approach over its nonfractional version. This generalized approach
shows a sharpness effect and improves the image quality. In particular, we observe an increase
of the PSNR and the structural similarity (SSIM) values. Likewise, comparisons to previous
models including TV and TV-H−1 inpainting as well as bitwise binary inpainting support our
model.

The paper is organized as follows. Section 2 briefly summarizes Bertozzi, Esedoḡlu, and
Gillette’s [8, 7] binary Cahn–Hilliard inpainting model. It motivates the use of the Cahn–
Hilliard equation by describing its main features. A vector-valued formulation based on the
multicomponent Cahn–Hilliard equation is presented in section 3. In particular, we highlight
the differences to the scalar version. A common feature is that both models do not follow
a variational principle. However, Schönlieb and Bertozzi [61] pointed out that the idea of
convexity splitting [31, 34] can be applied to evolution equations that do not follow a varia-
tional principle. Hence, we apply this technique to the vector-valued formulation in section 4.
As a result, we get an unconditionally gradient stable time-discrete scheme. Before deriving
the fully discrete system, we generalize it to a fractional-in-space version. In section 5, we
exploit the spectral decomposition of the occurring (fractional) Laplace operator as proposed
by Bueno-Orovio, Kay, and Burrage [14]. Hence, we can take advantage of the FFT similar to
the binary inpainting approach [8]. Simulation results are shown in section 6. The test images
include, besides simple sharp stripe images, a fingerprint and a landscape. Moreover, we show
the performance of Cahn–Hilliard inpainting for the metal artifact reduction in computed
tomography (CT) images. Finally, we perform three-dimensional visualizations of magnetic
resonance imaging (MRI) images that comprise a scan of a human cranium. Section 7 summa-
rizes our findings. At last, we study the numerical analysis of the nonfractional Cahn–Hilliard
inpainting approach. These appendices are provided as supplementary material with this
paper (see M101405 01.pdf [local/web 98.8KB]). We derive the convexity conditions for the
application of the convexity splitting method in Appendix A. Finally, in Appendix B we prove
the consistency, unconditional stability, and convergence of the time-discrete scheme.

2. Binary Cahn–Hilliard inpainting. We start by reflecting on Bertozzi, Esedoḡlu, and
Gillette’s [8, 7] black-and-white Cahn–Hilliard inpainting model. Let f be the given binary
image which is defined on the image domain Ω ⊂ R

d (d = 2, 3). Let T > 0 be a fixed time.
The parts of f that are going to be modified are denoted by the inpainting domain D ⊂ Ω.
The target is to reconstruct the image in this region D in an undetectable way. The inpainted
version u : Ω× (0, T ) → R of f is constructed by following the evolution of

∂tu = −Δ

(
εΔu− 1

ε
ψ′(u)

)
+ ω(f − u),(2.1)

∇u · n = ∇(Δu) · n = 0 on ∂Ω,(2.2)

where

(2.3) ω = ω(x) =

{
0 if x ∈ D,
ω0 if x ∈ Ω \D

is the fidelity parameter. Bertozzi, Esedoḡlu, and Gillette [8, 7] named this model the modified
Cahn–Hilliard equation. The choice ω ≡ 0 leads to the original Cahn–Hilliard equation, whichD
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is a well-known model for coarsening and phase separation processes [40, 17]. Before we
discuss the characteristics of the inpainting model (2.1)–(2.2) we briefly present its derivation.
It basically arises from a superposition of two gradient flows: an H−1-gradient flow for the
Cahn–Hilliard part and an L2-gradient flow for the fidelity term.1

2.1. Cahn–Hilliard equation. The Cahn–Hilliard equation models the motion of inter-
faces between two phases where the total concentration is assumed to be conserved [40, 17].
The underlying energy functional is based on the Ginzburg–Landau energy E1 : H1(Ω) → R:

(2.4) E1(u) =
∫
Ω

{
ε

2
|∇u|2 + 1

ε
ψ(u)

}
dx.

Now, the process evolves such that E1 decreases in time. Before we describe the way of
minimizing the energy E1, we explain the underlying system and the terms in E1. The phase
variable u ∈ H1(Ω) describes the concentration of two phases, e.g., two components of an
alloy. Let us denote these two phases by A and B. If u(x, t) = 0, then only phase A is present
at point x at time t. The case u(x, t) = 1 means only phase B exists at (x, t). Values of
u between zero and one represent mixed regions. These areas form the interface, which acts
as a diffuse phase transition. We can control its thickness via the model parameter ε > 0.
Usually, the aim is to keep it as small as possible. The evolution of the interface is driven by
the interfacial energy ε

2 |∇u|2 (see (2.4)), whose minimization penalizes interfaces with high
curvatures.

The potential function ψ in (2.4) gives rise to phase separation. It has two minima at
zero and one. Since ψ is a function of u it becomes minimal at those points where either
only phase A or only phase B is present. Hence, its minimization penalizes mixed regions.
Well-known potential functions are logarithmic potentials [17, 27, 26], smooth double-well
potentials [29, 8, 50, 25], and double-obstacle potentials [56, 13]. Bertozzi, Esedoḡlu, and
Gillette [8, 7] used the smooth double-well potential

(2.5) ψ(u) = u2(u− 1)2.

In this work, we concentrate on this type of potential as well.2

Now, we come back to the minimization of the energy functional E1 in time. A standard
way of doing this is the gradient flow approach. This lets u evolve in the opposite direction
to the gradient of E1 at u with respect to an inner product corresponding to a vector space
Z. The gradient flow of E1 with respect to the inner product (·, ·)Z is given as

∂tu(t) = −gradZE1(u(t)).
The use of the mass conserving H−1-inner product

(v1, v2)H−1(Ω) :=

∫
Ω
∇(−Δ)−1v1 · ∇(−Δ)−1v2 dx,

1Hence, the modified Cahn–Hilliard equation as a whole is not strictly a gradient flow.
2Note that we have recently developed fast iterative solvers for the use of a nonsmooth double-obstacle

potential [13]. This was done for the black-and-white Cahn–Hilliard inpainting model. The generalization of
the developed solver to the proposed vector-valued inpainting model is also recently done by the same authors.
A discussion of this topic would go beyond the scope of the present paper. We refer the reader to [12], which
discusses fast iterative solvers for smooth and nonsmooth vector-valued Cahn–Hilliard equations.D
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2356 JESSICA BOSCH AND MARTIN STOLL

where

(2.6) H−1(Ω) =
{
u∗ ∈ H1(Ω)∗

∣∣ 〈u∗, 1〉H1(Ω)∗,H1(Ω) = 0
}
,

leads us to the original Cahn–Hilliard equation, i.e., (2.1)–(2.2) with ω ≡ 0. Here, H1(Ω)∗ is
the dual space of H1(Ω) with the dual pairing 〈·, ·〉H1(Ω)∗,H1(Ω). The operator Δ−1 denotes
the inverse of Δ with Neumann boundary conditions. Finally, the Cahn–Hilliard equation is
imposed with the natural zero Neumann boundary condition as well as the mass-conserving
boundary condition (see (2.2)). Here, n is the unit normal vector to ∂Ω pointing outward
from Ω. We refer the reader to Blank, Butz, and Garcke [10] and the references therein for
more details about the derivation.

As mentioned in the previous section, Bertozzi, Esedoḡlu, and Gillette’s [8, 7] black-and-
white Cahn–Hilliard inpainting model arises from a superposition of two gradient flows: an
H−1-gradient flow for the Cahn–Hilliard part and an L2-gradient flow for the fidelity term.
We have finished the discussion of the first part. Now, we want to briefly look into the second
part.

2.2. Modification of the Cahn–Hilliard equation. In the previous section, we have ex-
plained the underlying system in general terms of phases. Remember that we have called u
the phase variable which describes the concentration of two phases A and B. Now, we want to
explain the underlying system in terms of image processing. In this setting, the two phases A
and B represent the colors black and white. Their interface consists of gray values and forms
a smooth transition. Basically, we can imagine u as a black-and-white image that evolves in
time. The initial image is set to be u(x, 0) = f . Note that f was a given black-and-white im-
age which contains some damaged regions. These regions are collected in the set D ⊂ Ω. The
task is to reconstruct the image f in this region D in an undetectable way. The reconstructed
image is represented by u. Without any modification of the original Cahn–Hilliard equation,
the image u would change drastically. In other words, it would have nothing in common with
the original image f anymore. This means we have to include information about D and f in
the model. Bertozzi, Esedoḡlu, and Gillette [8, 7] considered a second energy functional

(2.7) E2(u) =
∫
Ω

ω

2
(f − u)2dx =

∫
Ω\D

ω0

2
(f − u)2dx.

It keeps the solution u close to the given image f in the undamaged parts. The gradient flow
of E2 with respect to the L2-inner product results in the fidelity term in (2.1).

Finally, Bertozzi, Esedoḡlu, and Gillette’s [8, 7] black-and-white Cahn–Hilliard inpainting
model (2.1)–(2.2) is given as a superposition of the H−1-gradient flow for E1 and the L2-
gradient flow for E2. The evolution of u can be described as follows: Outside of the damaged
regions, u stays close to the given image f . We can control this closeness via the fidelity
parameter ω0. Based on this known image information, the damaged areas are filled in. The
different gray level lines ending at the boundaries of the damaged parts smoothly continue
inward. Inside these regions, the original Cahn–Hilliard equation acts. It maximizes the
occurrence of black and white while simultaneously minimizing the curvature of their interface.
Finally, the inpainted image is constructed by following this evolution to steady state.

Remark 2.1. The gradient flow of E1 with respect to the L2-inner product yields the Allen–
Cahn equation [2]. Regarding the application of the Allen–Cahn model to inpainting we referD
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the reader to Sarbu [60]. Moreover, Li et al. [50] recently proposed a local Allen–Cahn
inpainting approach which acts only on the inpainting domain.

The effective application of the modified Cahn–Hilliard equation to binary images moti-
vates us to study its natural generalization based on the vector-valued Cahn–Hilliard equation.

3. Gray value Cahn–Hilliard inpainting. We now formulate the gray value inpainting
model based on the vector-valued Cahn–Hilliard equation [33, 30]. Let f be a given gray value
image defined on Ω, let N be the number of desired gray values, and let g = (g1, . . . , gN )

T

be the vector of desired gray values. Note that 2 ≤ N ≤ 256. A vector-valued phase variable
u = (u1, . . . , uN )

T : Ω × (0, T ) is introduced. The component ui describes the evolution of
gray value gi for i = 1, . . . , N . This means that if ui(x, t) = 0, then gray value gi is absent in
x, and if ui(x, t) = 1, only gray value gi is present in there. Hence

(3.1)

N∑
i=1

ui = 1

and ui ≥ 0, i = 1, . . . , N, is required, so that admissible states belong to the Gibbs simplex

(3.2) GN :=

{
v ∈ R

N

∣∣∣∣∣
N∑
i=1

vi = 1, vi ≥ 0 for i = 1, . . . , N

}
.

As with Bertozzi, Esedoḡlu, and Gillette’s [8, 7] black-and-white Cahn–Hilliard inpainting
model, our proposed model arises as a superposition of two gradient flows: a projected H−1-
gradient flow for the Cahn–Hilliard part and an L2-gradient flow for the fidelity term. The
use of a projected gradient flow accounts for the additional constraint (3.1), which has to
hold everywhere at any time. The generalization of the Ginzburg–Landau energy (2.4) to
multicomponent systems is given as

(3.3) E1(u) =
∫
Ω

{
ε

2

N∑
i=1

|∇ui|2 + 1

ε
ψ(u)

}
dx.

As already mentioned in section 2.1, the present work concentrates on a smooth potential
function ψ, and the well-known potential function (2.5) generalizes to

(3.4) ψ(u) =
1

4

N∑
i=1

u2i (1− ui)
2.

The vector-valued Cahn–Hilliard equation is the projected H−1-gradient flow of the energy E1
in (3.3). By this we mean the H−1-gradient flow of E1 under the additional constraint (3.1).
In order to obtain the governing equations, we need to calculate the variational derivative of
E1, i.e., (

δE1(u)
δu

)
(v) := lim

η→0

E1(u+ ηv)− E1(u)
ηD
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for all sufficiently smooth functions u : Ω× (0, T ) → U and v : Ω× (0, T ) → V, where

U =

{
w ∈ R

N

∣∣∣∣∣
N∑
i=1

wi = 1

}
,(3.5)

V =

{
w ∈ R

N

∣∣∣∣∣
N∑
i=1

wi = 0

}
.(3.6)

In doing so, we choose a general smooth function ξ : Ω × (0, T ) → R
N and set v = Pξ. The

orthogonal projection Pξ = ξ − 1
N (1 · ξ)1 maps RN onto the linear subspace V in (3.6). As

mentioned above, it accounts for the fact that admissible variations of u ∈ U must be in U .
In doing so, we finally obtain the vector-valued Cahn–Hilliard equation

∂tu = −Δ

(
εΔu− 1

ε
Pψ′(u)

)
,(3.7)

∇ui · n = ∇(Δui) · n = 0 on ∂Ω, i = 1, . . . , N.(3.8)

Here and in the following, we use the notation Δu = (Δu1, . . . ,ΔuN )
T , 1 = (1, . . . , 1)T ∈ R

N ,
and ψ′(u) =

( δψ
δu1

(u), . . . , δψ
δuN

(u)
)
. For more details, we refer the reader to [37, 30, 48, 25, 47].

The generalization of the energy (2.7) for the fidelity term to multicomponent systems is
given as

(3.9) E2(u) =
∫
Ω

{
ω

2

N∑
i=1

(fi − ui)
2

}
dx.

Here, f = (f1, . . . , fN )
T ∈ GN is the vector of given gray value distributions from the original

image f . That means that fi ∈ {0, 1} describes the intensity of the gray value gi in f for
i = 1, . . . , N .

Finally, our proposed generalization of the black-and-white Cahn–Hilliard inpainting model
(2.1)–(2.2) to gray value images is given as a superposition of the projected H−1-gradient flow
for E1 in (3.3) and the L2-gradient flow for E2 in (3.9), i.e.,

∂tu = −∇proj
H−1E1(u)−∇L2E2(u).

Here, ∇L2 represents the gradient descent with respect to the L2-inner product. The term
∇proj
H−1 represents the projected gradient descent with respect to the H−1-inner product. This

reads componentwise as

∂tui = −Δ

(
εΔui − 1

ε

∂ψ

∂ui
(u) +

1

εN

N∑
i=1

∂ψ

∂ui
(u)

)
+ ω(fi − ui),(3.10)

∇ui · n = ∇(Δui) · n = 0 on ∂Ω(3.11)

for i = 1, . . . , N .
Remark 3.1. Note that (3.10)–(3.11) is still a simplified vector-valued model. In fact, for

many applications with a focus on phase separation and coarsening processes, a concentration-
dependent mobility matrix L = L(u) = (Lij(u))i,j=1,...,N is required in the correspondingD
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model. This is the case, for example, if the mobility in the interface is larger than in the pure
phases. Nevertheless, Lee, Choi, and Kim [47] show reasonable results with the simplified
choice L = I, where I is the identity matrix. For this reason, and because the task of inpainting
is to get a final result as fast as possible (and not to accurately develop the evolution of the
phases), we omit the mobility matrix in our model.

Remark 3.2. Recently, Cherfils, Fakih, and Miranville [25] considered and analyzed a sim-
ilar model. More precisely, they proved the existence and uniqueness of solutions, as well as
the existence of the global attractor. Moreover, they constructed finite-dimensional attrac-
tors and proved that that their model is algebraically consistent with the two-phase model.
In contrast, our work focuses on the numerical analysis of an unconditionally time-stepping
scheme as well as its efficient numerical solution. Further, we generalize our approach to a
fractional-in-space version.

Remark 3.3. Note that a generalized Ginzburg–Landau energy functional as in (3.3) has
been used in other contexts in phase field methods. In particular, in [36, 51, 52, 9] the au-
thors studied problems in the classification of high-dimensional data. Merkurjev, Kostić, and
Bertozzi [52] and Bertozzi and Flenner [9] started with binary data classification based on the
Ginzburg–Landau energy functional in (2.4). Especially, Merkurjev et al. applied their semi-
supervised image classification algorithm to inpainting. Recently, Garcia-Cardona et al. [36]
and Merkurjev et al. [51] extended the binary classification algorithm to a multiclass method
using the idea of the Gibbs simplex (3.2). All the works above used a generalized modified
Allen–Cahn equation which is defined for functions on graphs. In particular, their approaches
involve extensions of the classical Laplace operator to a more general graph Laplacian. This
is in the same spirit as [28], in which the authors generalized the Ginzburg–Landau functional
to wavelets. In this sense, our proposed extension of the classical Laplace operator to the
fractional Laplacian (see section 5) can also be categorized as a similar approach. In contrast
to our method, the approach in [36, 51] is not based on a projected gradient flow. Instead,
the authors use the procedure in [24] to project the phase field back to the Gibbs simplex.

4. Convexity splitting. In the case of black-and-white Cahn–Hilliard inpainting, Bertozzi,
Esedoḡlu, and Gillette [8] proposed a semi-implicit scheme, the convexity splitting scheme.
The authors conjectured unconditionally stability in the sense that solutions of the numerical
scheme are bounded within a finite time interval, independent of the time step size. Indeed,
Schönlieb and Bertozzi [61] proved consistency, unconditional stability, and convergence of
this scheme.

The convexity splitting method was originally introduced by Elliott and Stuart [31] and
is often attributed to Eyre [34]. Actually, it was designed to solve gradient systems. But it
can also be applied in a modified form to evolution equations that do not follow a variational
principle. In particular, such equations include the Cahn–Hilliard inpainting models (2.1)–
(2.2) and (3.10)–(3.11), as described further on.

In the following, we extend the numerical analysis of the convexity splitting scheme for
the scalar inpainting model (2.1)–(2.2) studied in [61] to the vector-valued inpainting model
(3.10)–(3.11).

The original idea of convexity splitting applied to gradient systems is to write the con-
sidered energy functional as the sum of a convex plus a concave energy functional. TheD
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convex part is then treated implicitly, while the concave part is treated explicitly. Under the
right conditions, this approach leads to an unconditionally gradient stable time-discretization
scheme.

As pointed out in the previous sections, the modified Cahn–Hilliard equation as a whole
is not given by a gradient flow. Especially, our proposed model arises as a superposition of
the projected H−1-gradient flow for E1 in (3.9) and the L2-gradient flow for E2 in (3.9). In
this case, convexity splitting is applied to each of these energies. To be more precise, we split
E1 as E1 = E1c − E1e, where

E1c(u) =
∫
Ω

{
ε

2

N∑
i=1

|∇ui|2 + C1

2

N∑
i=1

u2i

}
dx,

E1e(u) =
∫
Ω

{
−1

ε
ψ(u) +

C1

2

N∑
i=1

u2i

}
dx,

as well as E2 = E2c − E2e, where

E2c(u) =
∫
Ω

{
C2

2

N∑
i=1

u2i

}
dx,

E2e(u) =
∫
Ω

{
−ω
2

N∑
i=1

(fi − ui)
2 +

C2

2

N∑
i=1

u2i

}
dx.

The constants C1 and C2 are positive and need to be chosen large enough such that the
energies E1c, E1e, E2c, and E2e are strictly convex. That means that C1 has to be comparable
to 1

ε and C2 has to be comparable to ω0. These convexity requirements are the same as for
the black-and-white inpainting model. Also, the proof is similar, and we refer the reader to
Appendix A in the supplementary materials (see M101405 01.pdf [local/web 98.8KB]).

The resulting discrete time-stepping scheme is given by

U(n) −U(n−1)

τ
= −∇proj

H−1

(
E1c(U(n))− E1e(U(n−1))

)
−∇L2

(
E2c(U(n))− E2e(U(n−1))

)
.

Here, τ > 0 denotes the time step size and n ∈ N the time step. This translates to a numerical
scheme of the form

(4.1)
U

(n)
i − U

(n−1)
i

τ
+ εΔ2U

(n)
i − C1ΔU

(n)
i + C2U

(n)
i

=
1

ε
Δ

(
∂ψ

∂ui
(U(n−1))

)
− 1

εN
Δ

⎛
⎝ N∑
j=1

∂ψ

∂uj
(U(n−1))

⎞
⎠+ω(fi−U (n−1)

i )−C1ΔU
(n−1)
i +C2U

(n−1)
i ,

(4.2) ∇Ui · n = ∇(ΔUi) · n = 0 on ∂Ω

for i = 1, . . . , N . Following [61, pp. 425–434], we have proved consistency, unconditional
stability, and convergence of the scheme (4.1)–(4.2). For the proof, we refer the reader to
Appendix B in the supplementary materials (see M101405 01.pdf [local/web 98.8KB]).D
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5. Fourier spectral methods. Bertozzi, Esedoḡlu, and Gillette [8] benefited from the use
of the FFT to achieve fast inpainting based on the scalar Cahn–Hilliard equation. They
proposed a two-dimensional FFT method to compute the finite differences for the derivatives.
We adopt a slightly different approach and exploit the spectral decomposition of the occurring
Laplace operator. That means we can still make use of the FFT but not of the finite differences.
We emphasize the well-known symmetry-preservation properties of spectral methods for the
Laplacian operator. Lower order methods, such as finite difference methods, have a tendency
to form squares from axisymmetric initial conditions. The idea of our approach comes from
the work of Bueno-Orovio, Kay, and Burrage [14], who introduced Fourier spectral methods
for fractional-in-space reaction-diffusion equations. Thus, we will present this approach for
a fractional version of the Cahn–Hilliard inpainting model in the following. In doing so, we
reformulate (4.1)–(4.2) to a more general form by replacing the standard Laplace operator,

Δ, by its fractional counterpart, −(−Δ)
ζ
2 :

(5.1)
U

(n)
i − U

(n−1)
i

τ
+ εΔζU

(n)
i + C1(−Δ)

ζ
2U

(n)
i + C2U

(n)
i

= −1

ε
(−Δ)

ζ
2

(
∂ψ

∂ui
(U(n−1))

)
+

1

εN
(−Δ)

ζ
2

⎛
⎝ N∑
j=1

∂ψ

∂uj
(U(n−1))

⎞
⎠

+ ω(fi − U
(n−1)
i ) + C1(−Δ)

ζ
2U

(n−1)
i + C2U

(n−1)
i ,

(5.2) ∇Ui · n = ∇(ΔUi) · n = 0 on ∂Ω.

Here, ζ denotes the fractional power which represents superdiffusion for 0 < ζ < 2 (fractional
Laplacian) and pure diffusion for ζ = 2 (standard Laplacian).

As pointed out in [54, 66], there is no unique way to define the fractional Laplacian in a
bounded domain. One possibility is based on the Fourier transform on an infinite domain [59].
It has a natural extension to include finite domains when the function is subject to homo-
geneous Dirichlet boundary conditions. Another definition uses the eigenfunction expansion
on a finite domain [42]. As already mentioned above, this is the interpretation we adopt.
Let us now summarize the main elements of the spectral approach according to [14] for the
two-dimensional case. Three spatial dimensions can be constructed straightforwardly.

It is known that the Laplacian (−Δ) has a complete set of orthonormal eigenfunctions
{ϕα,β} satisfying the Neumann boundary conditions on a bounded region Ω ⊂ R

d with corre-
sponding eigenvalues λα,β; see also [58, Theorem 8.6]. More precisely, we consider the following
eigenvalue problem in Ω = [0, a]× [0, b]:

(−Δ)ϕα,β = λα,βϕα,β,

∇ϕα,β · n = 0 on ∂Ω,
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α, β = 1, 2, . . . . Then we have

λα,β = π2
(
(α− 1)2

a2
+

(β − 1)2

b2

)
,

ϕα,β =
2√
ab

cos

(
(α− 1)πx

a

)
cos

(
(β − 1)πy

b

)
.

Following [14], we define

(5.3) Uζ :=
⎧⎨
⎩u =

∞∑
α=1

∞∑
β=1

û(α, β)ϕα,β ∈ L2(Ω), û(α, β) = (u, ϕα,β),

∞∑
α=1

∞∑
β=1

|û(α, β)|2|λα,β |
ζ
2 <∞, 0 < ζ ≤ 2

⎫⎬
⎭ ,

where (·, ·) stands for the L2(Ω)-inner product. Then, for any u ∈ Uζ , the fractional Laplace
operator can be defined via

(5.4) (−Δ)
ζ
2u =

∞∑
α=1

∞∑
β=1

û(α, β)λ
ζ
2
α,βϕα,β ,

where û(α, β) denote the Fourier coefficients of u. The basic idea of Fourier spectral methods is
that smooth functions have a rapidly decaying transform. Fourier spectral methods represent
the truncated series expansion when a finite number of orthonormal eigenfunction {ϕα,β} is
considered.

Remark 5.1. Note that we have proved the consistency, unconditional stability, and con-
vergence only for the nonfractional model (4.1)–(4.2). An extension of the numerical analysis
to the fractional-order scheme (5.1)–(5.2) is a topic of future research. However, in section 6
we numerically demonstrate the convergence of the fractional model.

We now present the mesh discretization. We denote by mx and my the number of internal
equispaced mesh points in the x- and y-directions, hence not including boundary nodes. The
mesh points are given by

xk,l =

(
(l − 1)hx +

hx
2
, (k − 1)hy +

hy
2

)
, l = 1, . . . ,mx, k = 1, . . . ,my,

where hx = 1
mx

and hy =
1
my

denote the mesh sizes in both dimensions. The discrete versions

of the unknown functions u
(n)
i , i = 1, . . . , N, in (4.1)–(4.2) are written in matrix form as

U
(n)
i =

⎡
⎢⎣

U
(n)
i (1, 1) · · · U

(n)
i (1,mx)

...
. . .

...

U
(n)
i (my, 1) · · · U

(n)
i (my,mx)

⎤
⎥⎦ ,
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where U
(n)
i (k, l) is the approximation of the function u

(n)
i at the mesh point xk,l for k =

1, . . . ,my, l = 1, . . . ,mx. We denote by Û
(n)
i the two-dimensional discrete cosine transform

(DCT) of U
(n)
i

Û
(n)
i =

⎡
⎢⎣

Û
(n)
i (1, 1) · · · Û

(n)
i (1,mx)

...
. . .

...

Û
(n)
i (my, 1) · · · Û

(n)
i (my,mx)

⎤
⎥⎦

for i = 1, . . . , N . In the same manner of capital letters, we define the discrete versions of fi.
Applying the Fourier transform to both sides of (5.1) and using the spectral decomposition of
the Laplacian (5.4), we get

(5.5)

Û
(n)
i (α, β) =

λ
ζ
2
α,β

[(
−1
ε
∂ψ
∂ui

(U(n−1)) + 1
εN

∑N
j=1

∂ψ
∂uj

(U(n−1))
)
(̂α, β) + C1Û

(n−1)
i (α, β)

]
1
τ + ελζα,β + C1λ

ζ
2
α,β + C2

+

[
ωFi + (C2 − ω)U

(n−1)
i

]̂
(α, β) + 1

τ Û
(n−1)
i (α, β)

1
τ + ελζα,β + C1λ

ζ
2
α,β + C2

for i = 1, . . . , N and α = 1, . . . ,my, β = 1, . . . ,mx. The system (5.5) is fully diagonal and the

two-dimensional DCT matrices Û
(n)
i , i = 1, . . . , N, can be computed rapidly and effectively.

All that remains is to compute the inverse two-dimensional DCT on each Û
(n)
i in order to get

the discrete solutions U
(n)
i . Note that the computational costs per time step are the same for

the standard and fractional Cahn–Hilliard inpainting model.

6. Numerical results. In this section, we present numerical results for the models. For all
simulations we use Bertozzi, Esedoḡlu, and Gillette’s [8] ε-two-step approach. This procedure
successfully connects edges across large inpainting regions. In the first step, we run the Cahn–
Hilliard inpainting approach close to steady state with a rather large value of ε. In the second
step, the approximate solution from the first step serves as the initial state for a second run
of Cahn–Hilliard inpainting. But this time we set ε to a small value. In summary, the first
step smooths the image information. Hence, level lines can merge over large damaged regions.
The second step sharpens the image contours. In both rounds, the stopping criterion is

(6.1)
‖U(n) −U(n−1)‖2

‖U(n−1)‖2
≤ ε

if not mentioned otherwise. We choose ε = 2 · 10−4 for the first step and ε = 2 · 10−5 for the
second. In section 6.3, we compare (6.1) with other different stopping criteria.

We set the convexity parameters to C1 = 3
ε , C2 = 3ω0 and the time step size to τ = 1.

Remember, ω0 defined in (2.3) is the fidelity parameter that keeps the inpainted image close
enough to the original picture. The initialization of the N phase variables is done in two
preprocessing steps. First, we segment N clusters using the standard k-means clusteringD
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method. The obtained cluster centroid locations serve as the gray values gi, i = 1, . . . , N .
Each phase variable represents one cluster and hence describes the evolution of one gray
value. That means every phase variable is set to be one in its corresponding cluster region,
and zero everywhere else. Second, we set every phase variable in the damaged regions to the
value 1

N . This assignment fulfills the conditions of the Gibbs simplex (3.2). The final image
uinpaint is obtained by

(6.2) uinpaint =

N∑
i=1

giU
(n)
i ,

where U(n) represents the final phase variable. In section 6.3, we compare the merging tech-
nique (6.2) with the thresholding technique used in [25].

We use the PSNR

PSNR = 20 log10

⎛
⎝ 1√

1
mxmy

∑my

i=1

∑mx
j=1 (uorig(i, j) − uinpaint(i, j))

2

⎞
⎠

as well as the SSIM [65] to measure the quality of reconstruction.3 Here, uorig denotes the
original image without damaged regions. Traditional quality measures like the PSNR are not
very well matched to perceived visual quality. In contrast, the SSIM takes advantage of known
characteristics of the human visual system.

All computations are executed in MATLAB R2012b on a 64-bit server with CPU type
Intel Xeon X5650 @2.67 GHz, with 2 CPUs, 12 cores (6 cores per CPU), and 48 GB main
memory available. Note that we use the MATLAB Image Processing Toolbox for combining
the phases into the final image and for visualizations.

We provide the MATLAB code to reproduce the numerical examples as supplementary
material with this paper (see M101405 02.zip [local/web 1.71MB]).

6.1. Comparison to previous inpainting methods. In this section, we show the per-
formance of various inpainting methods. Besides the proposed vector-valued Cahn–Hilliard
(vector CH) inpainting model we test the bitwise binary inpainting approach (bitwise CH) as
well as the MATLAB function inpaintn4 [35, 63].

Schönlieb provides three inpainting codes.5 These are inpainting methods using the heat
equation (heat), TV inpainting, and TV-H−1 inpainting. We fix the time step and mesh sizes
to τ = 0.1, hx = hy = 1 in the heat equation based model and to τ = 1, hx = hy = 1 in
both TV inpainting approaches. Finally, we test Zhou et al’s [70] nonparametric Bayesian
method, which they term the beta process factor analysis (BPFA).6 In all examples below, we
run BPFA with the default values.

3A code for calculating the SSIM index is available at http://www.mathworks.com/matlabcentral/
fileexchange/42238-an-edge-adaptive-directional-total-variation-model.

4http://www.mathworks.com/matlabcentral/fileexchange/27994-inpaint-over-missing-data-in-1-d--2-d--3-
d--n-d-arrays.

5http://www.mathworks.com/matlabcentral/fileexchange/34356-higher-order-total-variation-inpainting.
6http://people.duke.edu/∼mz31/Results/BPFAImage/.D
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(a) Original image. (b) Damaged image. (c) MATLAB function
inpaintn.

(d) Nonparametric
Bayesian method
(BPFA).

(e) Heat equation in-
painting.

(f) TV inpainting. (g) TV-H−1 inpainting. (h) Vector Cahn–
Hilliard inpainting
(ζ = 2.0).

(i) Vector Cahn–
Hilliard inpainting
(ζ = 1.6).

(j) Vector Cahn–
Hilliard inpainting
(ζ = 1.4).

(k) Vector Cahn–
Hilliard inpainting
(ζ = 1.1).

(l) Bitwise Cahn–
Hilliard inpainting.

Figure 1. Inpainted black-and-white stripe image using different inpainting models.

In contrast to our proposed vector-valued model, the methods to which we compare it
represent scalar systems. Hence, we do not need to segment the image for their initialization.
By experience from those models, we set the pixel values in the damaged regions to 0 instead of
1
N . Note that the gray values range from 0 to 255 for bitwise CH. For the remaining methods,
the range is from 0 to 1.

The first test example is a simple 50 × 100 binary image containing a black stripe; see
Figure 1(a). Figure 1(b) shows the damaged version. Figures 1(c)–1(l) illustrates the inpainted
images using the different approaches mentioned above. Table 1 contains the total number of
iterations, the total computational times (in seconds), the average computational times per
time step (in seconds), the PSNR and SSIM values, the minimum and maximum pixel values
of the final image, as well as the numbers of grid points within the interface in Ω\D (in D) for
the phase field models. In all Cahn–Hilliard approaches, we set ω0 = 105, hx = hy =

1
100 and

apply the ε-two-step procedure with a switch after 100 iterations from ε = 1 to ε = hx. The
fractional Cahn–Hilliard model is applied with fractional powers of ζ = 1.6, 1.4, 1.1. We run
the heat equation–based approach with ω0 = 10 and both TV models with ω0 = 10, ε = 1

100 .
Except for the BPFA, we stop all methods at time step 105.

The best results are obtained by both TV models. However, the fractional Cahn–Hilliard
inpainting approach can compete with them in terms of image quality. We observe a significant
improvement of our proposed model, when we reduce the fractional power from 2 to 1.6. The
image contours are sharpened, and the PSNR and SSIM values are enhanced by a factor of
1.4 and 1.5. The transition from ζ = 2.0 to ζ = 1.4 is even better. The PSNR and SSIM
values are enhanced by a factor of 1.9 and 1.6. Going further down to a fractional power of
1.1 deteriorates the results. Spurious artifacts occur across the interface. This is due to theD
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Table 1
Results for the black-and-white stripe inpainting using different inpainting models: The total number of

iterations (Iter.), total computational times in seconds (CPU), average computational times per time step in
seconds (CPU), PSNR and SSIM values, minimum (min) and maximum (max) pixel values of the final image,
as well as the numbers of grid points within the interface in Ω \D (in D) for the phase field models.

Inpainting method Iter. CPU (s) CPU (s) PSNR SSIM min max Interface

inpaintn 100000 169.31 0.0017 27.37 0.9480 −4.23 · 10−2 1.0015 -
BPFA 1072 246.91 0.2303 26.67 0.9247 −1.28 · 10−1 1.0009 -
heat 1000000 110.91 0.0001 23.65 0.9010 2.46 · 10−9 1.0000 -
TV 100000 158.93 0.0016 59.76 0.9975 1.51 · 10−5 1.0000 -

TV-H−1 100000 162.43 0.0016 69.92 0.9999 −4.01 · 10−5 1.0000 -
vector CH (ζ = 2.0) 100000 743.16 0.0074 18.30 0.6220 −2.25 · 10−2 1.0187 6 (7)
vector CH (ζ = 1.6) 100000 830.96 0.0083 25.54 0.9499 −7.01 · 10−3 1.0069 2 (4)
vector CH (ζ = 1.4) 100000 1046.90 0.0105 34.60 0.9934 −1.07 · 10−2 1.0108 2 (2)
vector CH (ζ = 1.1) 100000 949.76 0.0095 23.58 0.9547 −9.16 · 10−4 1.0009 0 (−)

bitwise CH 100000 3612.57 0.0361 18.30 0.6220 −5.73 · 10+0 259.78 6 (7)

fact that the interface is no longer resolved fine enough. Table 1 shows that there is no mesh
point across the interface. We further elaborate on the influence of the fractional power in
section 6.2.

Comparing the computational times between the TV models and the vector-valued ap-
proach, we are at a disadvantage. The CPU time increases by a factor of five. Bitwise binary
inpainting further increases the computational time since this approach is in terms of costs
comparable to the 8-component Cahn–Hilliard inpainting method. Note that since we only
deal with a black-white image here, a vector-valued or bitwise approach is not the method of
choice. But this experiment shows that the results of these models are in accordance with the
corresponding scalar models.

The second test example consists of six stripes spanning different widths and is of size
64 × 64; see Figure 2(a). It is composed of five gray values. Figure 2(b) shows the damaged
version. The Figures 2(c)–2(l) illustrate the inpainted images using the different approaches
mentioned above. Table 2 lists the total number of iterations, the total computational times
(in seconds), the average computational times per time step (in seconds), the PSNR and SSIM
values, the minimum and maximum pixel values of the final image, as well as the numbers of
grid points within the interface in Ω\D (in D) for the phase field models. In all Cahn–Hilliard
approaches, we set ω0 = 105, hx = hy =

1
64 and apply the ε-two-step procedure with a switch

from ε = 1 to ε = hx. The fractional Cahn–Hilliard model is performed with fractional powers
of ζ = 1.6, 1.4, 1.1. We run the heat equation–based approach with ω0 = 10 and both TV
models with ω0 = 10, ε = 1

64 . We apply to these three methods the stopping criterion (6.1)
with ε = 2 · 10−5. We stop the MATLAB function inpaintn after 105 iterations.

Compared to the previous example in Figure 1(b), we have increased the inpainting gap.
The second-order TV inpainting approach is no longer able to connect the stripes. Also
BPFA fails using the standard parameter set. TV-H−1 inpainting results in a partly complete
connection. The two rightmost stripes have successfully joined. We observe the same after
bitwise binary Cahn–Hilliard inpainting. In both cases, the stopping criterion (6.1) might not
be the optimal choice. In general, the discussion about the stopping criterion should be a taskD
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(a) Original image. (b) Damaged im-
age.

(c) MATLAB func-
tion inpaintn.

(d) Heat equation in-
painting.

(e) TV inpainting. (f) TV-H−1 inpaint-
ing.

(g) Non-parametric
Bayesian method
(BPFA).

(h) Vector Cahn–
Hilliard inpainting
(ζ = 2.0).

(i) Vector Cahn–
Hilliard inpainting
(ζ = 1.6).

(j) Vector Cahn–
Hilliard inpainting
(ζ = 1.4).

(k) Vector Cahn–
Hilliard inpainting
(ζ = 1.1).

(l) Bitwise binary
Cahn–Hilliard
inpainting.

Figure 2. Inpainted gray value stripe image using different inpainting models.

for future work. In section 6.3, we compare different stopping criteria for our proposed model.

Both the nonfractional and fractional Cahn–Hilliard inpainting model provide a complete
connection of the stripes over the inpainting domain. Again, our proposed fractional Cahn–
Hilliard inpainting approach outperforms its nonfractional version. The PSNR and SSIM
values are improved by a factor of about 1.3 when the fractional power is decreased from 2 to
1.6. A decrease from 2 to 1.4 improves the PSNR and SSIM values by a factor of 1.6 and 1.4.
Again, spurious artifacts occur if the fractional model is no longer able to resolve the interface
well enough, as can be seen in Figure 2(k).

The third test example is a 512 × 512 fingerprint image;7 see Figure 3(a). Figure 3(b)
displays an extract of the image after k-means clustering with 10 gray values. It zooms in the
middle part of the fingerprint. This portion is taken for visual comparisons of the different
inpainting methods. The damaged version of the whole image is illustrated in Figure 3(c).

7The image is taken from http://people.duke.edu/∼mz31/Results/BPFAImage/.D
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Table 2
Results for the gray value stripe inpainting using different inpainting models: The total number of iterations

(Iter.), total computational times in seconds (CPU), average computational times per time step in seconds
(CPU), PSNR and SSIM values, minimum (min) and maximum (max) pixel values of the final image, as well
as the numbers of grid points within the interface in Ω \D (in D) for the phase field models.

Inpainting method Iter. CPU (s) CPU (s) PSNR SSIM min max Interface

inpaintn 100000 234.17 0.0023 22.39 0.7839 −1.05 · 10−3 1.0000 -
BPFA 1072 143.48 0.1338 12.16 0.6618 −1.14 · 10−1 1.0010 -
heat 7248 6.42 0.0009 18.89 0.7010 4.92 · 10−10 1.0000 -
TV 27041 50.90 0.0019 16.51 0.6427 5.54 · 10−5 0.9999 -

TV-H−1 85547 163.55 0.0019 26.97 0.8268 −1.78 · 10−3 1.0244 -
vector CH (ζ = 2.0) 1404 28.23 0.0201 21.30 0.6846 −2.34 · 10−2 1.0241 4 (8)
vector CH (ζ = 1.6) 1402 28.23 0.0201 27.24 0.9192 −2.15 · 10−2 1.0215 2 (4)
vector CH (ζ = 1.4) 2499 50.48 0.0202 33.62 0.9664 −1.08 · 10−2 1.0109 0 (2)
vector CH (ζ = 1.1) 18402 371.67 0.0202 17.29 0.8180 −6.57 · 10−4 1.0007 0 (−)

bitwise CH 1112 34.81 0.0313 20.54 0.6662 −5.98 · 10+0 261.15 4 (8)

(a) Original image. (b) Clustered extract of the
original image using 10 gray
values.

(c) Damaged image.

Figure 3. Fingerprint image.

We have removed 80% of the pixels at random.

Figure 4 illustrates the inpainted (extracted) images using the different approaches men-
tioned above. The middle column of Table 3 lists the total number of iterations, the total
computational times (in seconds), as well as the PSNR and SSIM values. In all Cahn–Hilliard
approaches, we set ω0 = 5 · 108, hx = hy = 1

512 and apply the ε-two-step procedure with a
switch from ε = 1 to ε = hx. The fractional Cahn–Hilliard model is performed with a frac-
tional power of ζ = 1.8. We run the heat equation–based model with ω0 = 10, TV inpainting
with ω0 = 102, ε = 1

512 , and TV-H−1 inpainting with ω0 = 103, ε = 1
512 . We apply to these

three methods the stopping criterion (6.1) with ε = 2 · 10−5. We stop the MATLAB function
inpaintn after 104 iterations.D
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(a) MATLAB function
inpaintn.

(b) Heat equation in-
painting.

(c) TV inpainting. (d) TV-H−1 inpainting.

(e) Nonparametric
Bayesian method
(BPFA).

(f) Vector Cahn–
Hilliard inpainting
(ζ = 2.0).

(g) Vector Cahn–
Hilliard inpainting
(ζ = 1.8).

(h) Bitwise binary
Cahn–Hilliard inpaint-
ing.

Figure 4. Inpainted fingerprint image using different inpainting models.

Table 3
Results for the fingerprint and hill inpainting: The total number of iterations (Iter.), computational times

in seconds (CPU), and PSNR/SSIM values using different inpainting models. The labeling ∗ denotes that the
corresponding method did not converge to the tolerance ε = 2 · 10−5 within the given number of iterations using
the stopping criterion (6.1).

Fingerprint image Hill image

Inpainting method Iter. CPU (s) PSNR SSIM Iter. CPU (s) PSNR SSIM

inpaintn 10000 483.63 26.30 0.8993 60000 2721.47 32.64 0.9583
BPFA 1072 9379.18 25.97 0.8850 1072 15941.66 21.75 0.9076
heat 787 121.00 21.82 0.7535 4300 644.65 32.35 0.9459
TV 10000∗ 2077.88 18.15 0.5720 60000∗ 12196.37 30.74 0.9473

TV-H−1 10000∗ 2103.79 25.22 0.8783 60000∗ 12400.40 25.46 0.9344
vector CH (ζ = 2.0) 503 1997.56 23.62 0.8162 2131 12402.95 29.94 0.8697
vector CH (ζ = 1.8) 1438 5768.40 24.65 0.8615 2175 12057.60 31.18 0.9097

bitwise CH 338 1079.57 24.20 0.8326 915 2686.43 30.21 0.8838

Note that TV and TV-H−1 did not converge to the tolerance ε = 2 · 10−5 within 104

iterations. Due to that, the inpainted fingerprints in Figure 4(c) and 4(d) look unsatisfactory.
If we had continued the inpainting process, the results would have been of better quality, but
at the expense of computational costs.D
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2370 JESSICA BOSCH AND MARTIN STOLL

(a) Original image. (b) Clustered extract
of the original image
using 15 gray values.

(c) Damaged image.

Figure 5. Hill image.

(a) MATLAB function
inpaintn.

(b) Heat equation in-
painting.

(c) TV inpainting. (d) TV-H−1 inpainting.

(e) Nonparametric
Bayesian method
(BPFA).

(f) Vector Cahn–
Hilliard inpainting
(ζ = 2.0).

(g) Vector Cahn–
Hilliard inpainting
(ζ = 1.8).

(h) Bitwise binary
Cahn–Hilliard inpaint-
ing.

Figure 6. Inpainted hill image using different inpainting models.

The last test example is a 512 × 512 hill image;8 see Figure 5(a). Figure 5(b) displays an
extract of the image after k-means clustering with 15 gray values. It zooms in the chimney

8The image is taken from http://people.duke.edu/∼mz31/Results/BPFAImage/.D
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of the third white house from the left. This portion is taken for visual comparisons of the
different inpainting methods. The damaged version of the whole image is illustrated in Figure
5(c). Figure 6 illustrates the inpainted (extracted) images using the different approaches
mentioned above. The right column of Table 3 lists the total number of iterations, the total
computational times (in seconds), as well as the PSNR and SSIM values. In all Cahn–Hilliard
approaches, we set ω0 = 109, hx = hy =

1
512 and apply the ε-two-step procedure with a switch

from ε = 1 to ε = hx. The fractional Cahn–Hilliard model is performed with a fractional
power of ζ = 1.8. We run the heat equation–based approach with ω0 = 10 and both TV
models with ω0 = 103, ε = 1

512 . We apply to all three methods the stopping criterion (6.1)
with ε = 2 · 10−5. We stop the MATLAB function inpaintn after 6 · 104 iterations. Again,
TV and TV-H−1 did not converge to the tolerance ε = 2 · 10−5 within 6 · 104 iterations.

In summary, all examples confirm that the vector-valued Cahn–Hilliard inpainting model
competes with existing inpainting methods. Moreover, the fractional Cahn–Hilliard inpainting
approach turns out to be superior to its nonfractional version. It sharpens the image contours
and improves the PSNR and SSIM values. To be more precise, by fixing all parameters and
just varying the fractional power, such an improvement occurs if the fractional power is not
too small. We observe that the interface might no longer be resolved fine enough for too small
values of ζ. Spurious artifacts have occurred in the case ζ = 1.1. In the next section, we
further study the influence of the fractional power.

6.2. Influence of the fractional power. In this section, we further examine the effect of
the fractional power with respect to the PSNR and SSIM values as well as the computational
time. We experiment with the gray value stripe example from the last section but this time
with a larger ε in the first run of the ε-two-step approach and a larger fidelity parameter ω0.
We fix τ = 1, ω0 = 106, hx = hy = 1

64 and apply the ε-two-step procedure with a switch
from ε = 10 to ε = hx. We consider the fractional powers 2.0, 1.9, 1.7, 1.5, 1.3, 1.1. Figure 7
shows extracted portions of the inpainted images obtained by Cahn–Hilliard inpainting with
the different fractional powers. Table 4 contains the total number of iterations, the total
computational times (in seconds), the average computational times per time step (in seconds),
the PSNR and SSIM values, the minimum and maximum pixel values of the final image, as
well as the numbers of grid points within the interface in Ω \D (in D).

Decreasing the fractional power increases the sharpness of the image. This effect improves
the inpainting result to a certain degree. Starting from the standard power 2.0 we reach the
optimum at the fractional power 1.5. The PSNR and SSIM values as well as the visual image
are at their highest level. A further decrease of the fractional power in turn worsens the
results. One possible reason might be the stopping criterion (6.1), as already pointed out in
the previous section. It seems that it aborts the iteration too early for small values of the
fractional power. Hence, we will compare different stopping criteria in the next section.

Another explanation might be a too strong influence of the regularization regarding the
fractional power ζ. Hence, it could prevent the successful connection of the stripes across the
large gap. Moreover, the size of the interfacial parameter plays an important role. In the
last section, we observed spurious artifacts when the interface was not resolved fine enough.
Therefore, a possible solution might be an increasing interfacial parameter during a decreasing
fractional power. Also, the influence of the fidelity parameter ω0 should match the fractionalD

ow
nl

oa
de

d 
10

/2
7/

15
 to

 1
93

.1
75

.5
3.

21
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2372 JESSICA BOSCH AND MARTIN STOLL

(a) ζ = 2.0. (b) ζ = 1.9. (c) ζ = 1.7. (d) ζ = 1.5. (e) ζ = 1.3. (f) ζ = 1.1.

Figure 7. Inpainted gray value stripe image using different fractional powers ζ.

Table 4
Cahn–Hilliard inpainting results for the gray value stripe inpainting using different fractional powers ζ. The

total number of iterations (Iter.), total computational times in seconds (CPU), average computational times
per time step in seconds (CPU), PSNR and SSIM values, minimum (min) and maximum (max) pixel values
of the final image, as well as the numbers of grid points within the interface in Ω \D (in D).

ζ Iter. CPU (s) CPU (s) PSNR SSIM min max Interface

2.0 2144 44.21 0.0206 22.92 0.7975 −3.13 · 10−2 1.0313 2 (8)
1.9 2576 52.71 0.0205 24.05 0.8336 −3.06 · 10−2 1.0307 2 (7)
1.7 3942 80.42 0.0204 26.70 0.8791 −2.76 · 10−2 1.0277 2 (6)
1.5 6287 128.46 0.0204 28.95 0.8999 −5.83 · 10−3 1.0059 0 (4)
1.3 9476 192.86 0.0204 21.21 0.8174 −7.38 · 10−4 1.0007 0 (−)
1.1 6186 126.51 0.0205 15.43 0.7069 −7.63 · 10−5 1.0001 0 (−)

power. Decreasing fractional powers strengthens a second sharpness effect besides the one
caused by the fidelity parameter. This results in a slowdown of the convergence. Hence,
a decreasing fidelity parameter during a decreasing fractional power should fix a too strong
sharpening effect. We discuss the issue of the parameter influences in section 6.4. A resulting
topic for future discussion might be a varying fractional power throughout the simulation
similar to the ε-two-step approach.

6.3. Stopping criteria. This section compares different stopping criteria. We experiment
with the gray value stripe image from the previous section. We choose the same parameters
as before and focus on Cahn–Hilliard inpainting with a fractional power of 1.3. Besides the
criterion in (6.1) we test five other stopping criteria:

⎛
⎝
√√√√ N∑

i=1

‖�U (n)
i − �U

(n−1)
i ‖22

⎞
⎠
ζ/2/⎛

⎝
√√√√ N∑

i=1

‖�U (n−1)
i ‖22

⎞
⎠
ζ/2

≤ ε,(6.3)

√√√√ N∑
i=1

‖vec(Λζ/2. ∗ (U (n)
i − U

(n−1)
i ).2)‖1

/√√√√ N∑
i=1

‖vec(Λζ/2. ∗ (U (n−1)
i ).2)‖1 ≤ ε,(6.4)
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√√√√ N∑
i=1

‖�U (n)
i − �U

(n−1)
i ‖22 ≤ ε,(6.5)

⎛
⎝
√√√√ N∑

i=1

‖�U (n)
i − �U

(n−1)
i ‖22

⎞
⎠
ζ/2

≤ ε,(6.6)

ζ

√√√√ N∑
i=1

‖�U (n)
i − �U

(n−1)
i ‖ζζ ≤ ε.(6.7)

Note we use the notation ‖U‖2 =
√∑N

i=1 ‖Ui‖22 for the 2-norm of the phases Ui in matrix

form (as presented in section 5). Then ‖Ui‖2 equals the largest singular value of Ui. We

denote by Λζ/2 = (λ
ζ/2
α,β) ∈ R

my×mx the matrix containing the eigenvalues of the fractional

Laplacian. In (6.4), we write .∗ and .2 for the pointwise multiplication and squaring. Further,
‖�Ui‖p denotes the p-norm of the phases Ui in vector form.

(a) (6.1) and
merge sum.

(b) (6.1) and
merge thresh-
old.

(c) (6.3) and
merge sum.

(d) (6.3) and
merge thresh-
old.

(e) (6.4) and
merge sum.

(f) (6.4) and
merge thresh-
old.

(g) (6.5) and
merge sum.

(h) (6.5) and
merge thresh-
old.

(i) (6.6) and
merge sum.

(j) (6.6) and
merge thresh-
old.

(k) (6.7) and
merge sum.

(l) (6.7) and
merge thresh-
old.

Figure 8. Inpainted gray value stripe image using different stopping and merging criteria.

Besides different stopping criteria, we also compare two different merging techniques to
obtain the final image. Our proposed approach (merge sum) is given in (6.2). The sec-
ond approach is based on thresholding (merge thresholding) and used in [25]: It replaces

U
(n)
K (α, β) = maxi=1,...,N U

(n)
i (α, β) by 1 and U

(n)
j (α, β) by 0 for all j �= K. Figure 8 shows

extracted portions of the inpainted images obtained by Cahn–Hilliard inpainting using the
different stopping and merging criteria. Table 5 lists the stopping tolerances ε1, ε2 for the first
and second runs (due to the ε-two-step approach), the total number of iterations, the total
computational times (in seconds), as well as the PSNR and SSIM values for the two merging
techniques.

We observe that none of the stopping criteria could produce a satisfying result. The
threshold merging technique results in almost every case in slightly better PSNR/SSIM values.D
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Table 5
Cahn–Hilliard inpainting results for the gray value stripe inpainting using different stopping and merging

criteria. The stopping tolerances ε1, ε2, total number of iterations (Iter.), total computational times in seconds
(CPU), average computational times per time step in seconds (CPU), as well as the PSNR and SSIM values
for two merging techniques.

Merge sum Merge threshold

Stopping criterion ε1 ε2 Iter. CPU (s) CPU (s) PSNR SSIM PSNR SSIM

(6.1) 2 · 10−4 2 · 10−5 9476 192.51 0.0204 21.21 0.8174 24.80 0.9066
(6.3) 2 · 10−4 2 · 10−5 54857 936.05 0.0171 30.81 0.9490 30.24 0.9455
(6.4) 2 · 10−4 2 · 10−5 10500 178.77 0.0170 21.32 0.8228 23.93 0.9033
(6.5) 1 · 10−2 1 · 10−3 17570 280.04 0.0159 24.90 0.8759 26.34 0.9327
(6.6) 1 · 10−2 1 · 10−3 28020 450.21 0.0161 31.45 0.9543 30.91 0.9537
(6.7) 1 · 10−2 1 · 10−3 20032 387.01 0.0193 31.69 0.9465 30.91 0.9537

However, this is only due to the fact that it removes the interface. Visually, this approach is
also not able to merge the stripe ends across the damaged region in the expected natural way.
Our observations suggest that the parameter choice plays a crucial role. As already noticed
in section 6.2, the parameter setting should be matched to the fractional power. This will be
discussed in the next section.

6.4. Influence of the fractional power, the interfacial parameter, and the fidelity pa-
rameter. In the following, we study the influence of the fractional power ζ, the interfacial
parameter ε, and the fidelity parameter ω0. We experiment with the gray value stripe image
from section 6.2. This time we will not use the same parameter values for different fractional
powers. Instead, we try to adapt ε and ω0 to the fractional setting. As seen in sections 6.2
and 6.1, the smaller the fractional power, the smaller the interfacial width. We have observed
spurious artifacts when the interface was not resolved fine enough. Hence, we aim to increase
ε while decreasing the fractional power. In this experiment, we will only vary ε in the second
run of the ε-two-step approach. For the first run, we will fix ε = 0.1 for all fractional powers.
Varying the parameter ε in both runs is a topic of future research.

Further, the influence of the fidelity parameter ω0 should match the fractional power.
Decreasing fractional powers strengthens a second sharpness effect besides the one caused by
the fidelity parameter. Hence, we aim to decrease the fidelity parameter while decreasing the
fractional power.

Table 6 lists the parameter settings, total number of iterations, the total computational
times (in seconds), the average computational times per time step (in seconds), the PSNR and
SSIM values, as well as the minimum and maximum pixel values of the final image. We have
numerically worked out the optimal parameter setting for each fractional power. In all cases,
the final image shows a perfect straight conjunction of all stripe ends. Note that there might
be better choices of parameter settings in the sense of larger PSNR/SSIM values. However, the
table confirms our assumption regarding the influence between ζ, ε, ω0. Further, note that the
interface size in all examples is zero. We suggest, that the chosen parameter settings provide
a limit case of optimal outputs. A slight change of ε or ω0 can lead to spurious effects. Hence,
reaching a zero interface width is always an intricate experiment. In practice, one wouldD
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Table 6
Cahn–Hilliard inpainting results for the gray value stripe inpainting using different parameters. The frac-

tional powers ζ, interfacial parameters ε, fidelity parameters ω0, total number of iterations (Iter.), total com-
putational times in seconds (CPU), average computational times per time step in seconds (CPU), PSNR and
SSIM values, as well as minimum (min) and maximum (max) pixel values of the final image.

ζ ε ω0 Iter. CPU (s) CPU (s) PSNR SSIM min max

2.0 0.04 hx 2 · 105 640 13.13 0.0205 58.97 0.9999 −1.14 · 10−3 1.0011
1.9 0.07 hx 1 · 105 627 13.07 0.0208 53.75 0.9998 −1.81 · 10−3 1.0018
1.7 0.09 hx 5 · 104 720 14.72 0.0204 58.07 0.9999 −8.32 · 10−4 1.0008
1.5 0.30 hx 2 · 104 871 17.35 0.0199 46.38 0.9991 −2.27 · 10−3 1.0023
1.3 0.20 hx 9 · 103 1025 21.16 0.0206 61.69 1.0000 −1.16 · 10−4 1.0001
1.1 1.00 hx 5 · 103 1610 33.06 0.0205 44.21 0.9962 −1.54 · 10−3 1.0016

start with the nonfractional (ζ = 2) model and choose the parameters such that at least a
few grid points lie within the interface. The interfacial profile of the original Cahn–Hilliard
equation (ω0 ≡ 0) can be described by means of a tanh term: Following [48], the authors
define the interface thickness to be the distance from 0.05 to 0.95, so that the equilibrium

interface thickness is given by 4
√
2ε

tanh (0.9) . If we want to have at least eight grid points across
the interface, we get the condition ε ≈ h, where h denotes the mesh size. Regarding the
initial value of ε (i.e., the first run of the ε-two-step approach), the authors of [7] propose to
choose it nearly equal to the numerical maximum gap spacing. The value of ω0 depends on,
among others, ε. For small values of ε, ω0 must be chosen very large to guarantee continuity
of edges; see [7] for a detailed discussion on this topic. Having such a parameter setting for
the nonfractional model, one can reduce the fractional power up to a certain degree such that
the PSNR/SSIM values are improved.

6.5. Demonstration of the Gibbs simplex condition. This section demonstrates numeri-
cally the fulfillment of the Gibbs simplex condition. We consider the gray value stripe examples
from section 6.2. For each of them, we sum up the final phase variables and note the minimum
and maximum values. These are shown in Table 7 together with the minimum and maximum
value among all single final phase variables.

Table 7
Cahn–Hilliard inpainting results for the gray value stripe inpainting using different fractional powers; see

section 6.2. The minimum (Sum min) and maximum (Sum max) values of the sum of all final phase variables,
as well as minimum (Phase min) and maximum (Phase max) values among all single final phase variables.

Example Sum min Sum max Phase min Phase max

Figure 7(a) 0.999999999999181 1.00000000000000 −0.0315 1.0462
Figure 7(b) 0.999999999998986 1.00000000000001 −0.0307 1.0308
Figure 7(c) 0.999999999998522 1.00000000000000 −0.0277 1.0279
Figure 7(d) 0.999999999997705 1.00000000000000 −0.0059 1.0059
Figure 7(e) 0.999999999996501 1.00000000000000 −0.0023 1.0008
Figure 7(f) 0.999999999997809 1.00000000000000 −0.0001 1.0001

D
ow

nl
oa

de
d 

10
/2

7/
15

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2376 JESSICA BOSCH AND MARTIN STOLL

6.6. Metal artifact reduction. One major challenge in X-ray CT is metal artifact re-
duction; see, e.g., [43]. Metallic objects implanted in the human body cause severe streak
artifacts in CT images. These in turn significantly deteriorate the image quality. Projection
interpolation methods [49, 23] correct metal artifacts directly in sinogram space. The main
steps of those algorithms are as follows:

1. Given is the original projection data (sinogram).
2. Reconstruct the CT image using filtered back projection (FBP).
3. Segment the metal regions.
4. Reproject the metal regions to determine the missing data in the sinogram.
5. Correct the missing projection data.
6. Reconstruct the image from the inpainted sinogram using the FBP.
7. Insert the previously segmented metallic objects.

Our aim is to apply Cahn–Hilliard inpainting in step 5. The following experiment uses a
variant of the Shepp–Logan (S-L) phantom. Five metal regions with much higher attenuation
were added into the S-L phantom (256 × 256); see Figure 9(a). The parameters for the
modified phantom are taken from [68, p. 5]. Figure 9(b) shows the sinogram of the phantom.
The reconstructed phantom image using the FBP suffers from streak artifacts caused by
the metal objects; see Figure 9(c). Using a simple thresholding method we can extract the
metal regions. Note that because this paper focuses on the inpainting problem we do not
study this segmentation problem. Next, we locate the metal regions in the projection data set
(sinogram). These parts form the missing data. We employ Cahn–Hilliard inpainting to create
an inpainted sinogram. Figures 9(d), 9(e), and 9(f) illustrate the inpainted sinograms for the
standard and two fractional Cahn–Hilliard inpainting approaches. Finally, we reconstruct the
phantom image from the inpainted sinogram using the FBP; see Figures 9(g), 9(h), and 9(i).

Compared to the reconstructed image in Figure 9(c), the metal artifacts were significantly
reduced after inpainting. In this example, the passage from nonfractional to fractional inpaint-
ing does not significantly improve the image quality. Based on the experience of the former ex-
periments, we suggest that a more suitable parameter setting could improve the results. How-
ever, finding the optimal parameters still remains a topic of future work. The PSNR value is
28.187 after standard Cahn–Hilliard inpainting, 28.199 after fractional Cahn–Hilliard inpaint-
ing with a fractional power of ζ = 1.8, and 28.203 after fractional Cahn–Hilliard inpainting
with a fractional power of ζ = 1.6. The used model parameters are ω0 = 108, hx = hy =

1
367 .

For the initialization, we have segmented the sinogram (367 × 180) into 40 gray values using
k-means clustering. The ε-two-step procedure was applied with a switch from ε = 1000 to
ε = 10hx. Using the stopping criterion (6.1), the standard model converged after 869 itera-
tions and a CPU time of 3280.47s, the fractional model with ζ = 1.8 after 2008 iterations and
7445.06s, and the fractional model with ζ = 1.6 after 3205 iterations and 12124.30s.

6.7. Three-dimensional visualization of medical images. The use of Fourier spectral
methods allows a straightforward extension to higher spatial dimensions. As an example, we
consider the three-dimensional visualization of MRI images; see [57, 64, 38, 11]. Parts of the
human body are given in the form of a sequence of slices. Often, the distance between these
slices is significantly larger than the image pixel size. Hence, it is necessary to interpolate
additional slices in order to obtain an accurate three-dimensional description. This in turnD
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(a) Original phantom with
five metal regions.

 

 

(b) Sinogram of the original
phantom.

(c) Filtered back projection
(FBP) of the sinogram.

 

 

(d) Inpainted sinogram us-
ing Cahn–Hilliard inpaint-
ing with ζ = 2.0.

 

 

(e) Inpainted sinogram us-
ing Cahn–Hilliard inpaint-
ing with ζ = 1.8.

 

 

(f) Inpainted sinogram us-
ing Cahn–Hilliard inpaint-
ing with ζ = 1.6.

(g) FBP after Cahn–Hilliard
inpainting with ζ = 2.0.

(h) FBP after Cahn–Hilliard
inpainting with ζ = 1.8.

(i) FBP after Cahn–Hilliard
inpainting with ζ = 1.6.

Figure 9. Metal artifact reduction using Cahn–Hilliard inpainting.

helps medical professionals make more accurate diagnoses.

The following example uses the MRI data set that comes with MATLAB. It comprises a
scan of a human cranium (128× 128× 27) in the form of 27 horizontal slices of size 128× 128
each. For this experiment, we work with the first ten slices, which are illustrated in Figure 10.

Our aim is to create four virtual slices between every two slices. This results in a total
number of 46 horizontal slices. The inpainting method acts now in a three-dimensional cube.
Ten horizontal planes provide us with image information. The remaining 26 horizontal planes
form the damaged region. We work with 20 gray values such that the resulting problem size isD

ow
nl

oa
de

d 
10

/2
7/

15
 to

 1
93

.1
75

.5
3.

21
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2378 JESSICA BOSCH AND MARTIN STOLL

Figure 10. Ten magnetic resonance imaging slices of a human cranium.

(a) Original slice 1. (b) Original slice 2.

(c) Virtual slice 1.2. (d) Virtual slice 1.4. (e) Virtual slice 1.6. (f) Virtual slice 1.8.

Figure 11. Construction of virtual magnetic resonance imaging slices using Cahn–Hilliard inpainting.

20×128×128×46. Figures 11(a) and 11(b) show two consecutive slices from the original MRI
data set. Between them, four virtual slices were reconstructed using fractional Cahn–Hilliard
inpainting; see Figures 11(c)–11(f). We set ω0 = 109, hx = hy =

1
128 , hz =

2.5hx
4 , ζ = 1.8 and

apply the ε-two-step procedure with a switch from ε = 1000 to ε = hx.

Using the stopping criterion (6.1), Cahn–Hilliard inpainting converged after 1100 iterations
and a CPU time of 16840.13s. The PSNR and SSIM value regarding the first slice are 36.98
and 0.9971.

7. Conclusions. In this paper, we have developed an inpainting model based on the vector-
valued Cahn–Hilliard equation. This approach generalizes Bertozzi, Esedoḡlu, and Gillette’s
[8] binary Cahn–Hilliard inpainting model to gray value images. In addition, we have fur-D
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ther generalized our approach to a fractional-in-space version. This is done by replacing the
standard differential operator by its fractional counterpart. We have adopted the definition
of the fractional Laplace operator via the spectral decomposition of the Neumann Laplace
operator, as motivated by [14]. Fourier spectral methods provide efficient solvers since they
yield a fully diagonal scheme. Furthermore, their application to three spatial dimensions is
straightforward.

The numerical results have shown the superiority of the fractional Cahn–Hilliard approach
over its nonfractional version. This generalized version can be treated as a regularization
of the standard model. It is characterized by a sharpness effect and improves the image
quality. In particular, we observe an increase of the peak signal-to-noise ratio and structural
similarity index. Likewise, the experiments confirm that the proposed model is competitive
with previous inpainting methods, such as the total variation inpainting approach and its
fourth-order variant.

Acknowledgment. The authors would like to thank Luise Blank as well as the anonymous
referees for their helpful comments and suggestions.
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