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ABSTRACT

Knowledge of the spin of the black hole resulting from the merger of a generic black-hole binary is of great
importance for studying the cosmological evolution of supermassive black holes. Several attempts have been
made to model the spin via simple expressions exploiting the results of numerical-relativity simulations. While
these expressions are in reasonable agreement with the simulations, they neglect the precession of the binary’s
orbital plane, and cannot therefore be applied directly—i.e., without evolving the system to small separations using
post-Newtonian theory—to binaries with separations larger than a few hundred gravitational radii. While not a
problem in principle, this may be impractical if the formulas are employed in cosmological merger trees or N-body
simulations, which provide the spins and angular momentum of the two black holes when their separation is of
hundreds or thousands of gravitational radii. The formula that we propose is instead built on improved assumptions
and gives, for any separation, a very accurate prediction both for the norm of the final spin and for its direction. By
comparing with the numerical data, we also show that the final-spin direction is very accurately aligned with the
binary’s total angular momentum at large separation. Hence, observations of the final-spin direction (e.g., via a jet)
can provide information on the binary’s orbital plane at large separations and could be relevant, for instance, for
studying X-shaped radio sources.
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1. INTRODUCTION

While analytic solutions for isolated black holes (BHs)
have a long history, the dynamics of BH binaries has been
solved only recently and through computationally expensive
numerical-relativity (NR) calculations (see Pretorius 2007 for
a review). Despite the mathematical complexity of the prob-
lem, many results of the NR simulations can be reproduced ac-
curately using semianalytical prescriptions (Damour & Nagar
2009; Buonanno et al. 2009) based on post-Newtonian (PN)
and BH perturbation theory. It is therefore not entirely sur-
prising that the dimensionless spin of the remnant from a
BH–binary merger, afin = Sfin/M

2
fin, can be described, with

increasing accuracy, via simple prescriptions based on point
particles (Hughes & Blandford 2003; Buonanno et al. 2008;
Kesden 2008), on fits to the NR data (Rezzolla et al. 2008b,
2008c; Tichy & Marronetti 2008; Boyle et al. 2008; Boyle
& Kesden 2008), or on a combination of the two approaches
(Rezzolla et al. 2008a; see Rezzolla 2009 for a review). These
formulas are useful because they provide information over the
entire seven-dimensional parameter space for BH binaries in
quasi-circular orbits, namely, the mass ratio q ≡ M2/M1 and
the six components of the initial dimensionless spin vectors
a1,2 = S1,2/M

2
1,2. Such parameter space could in principle be in-

vestigated entirely via NR calculations; in practice, however, the
simulations are still very expensive and restricted to q = 0.1–1.
Also, these formulas have many applications: in astrophysics,
where they could provide information on massive-star binaries
(Miller et al. 2009); in cosmology, where supermassive BHs
(SMBHs) are believed to assemble through accretion and merg-
ers (Berti & Volonteri 2008); in gravitational-wave astronomy,
where a priori knowledge of the final spin can help the detection
(Berti et al. 2007a).

While the different expressions for the spin norm, |afin|, are in
good agreement among themselves and with the numerical data,
the predictions for the final-spin direction, âfin ≡ afin/|afin|,

do not agree well with one another. Moreover, all expressions
are built from and model the typical “NR binaries” and hence
the dynamics of the last few orbits before the merger, and
do not account systematically for the precession of the orbital
angular momentum L, thus becoming imprecise when the binary
is widely separated (Tichy & Marronetti 2008). Of course,
it is possible to use the PN equations and evolve a widely
separated binary to small separations, read off the relevant
information and apply the presently available formulas (this was
suggested by Tichy & Marronetti 2008, who correctly remark
that their expression is valid only at small separations). While
not a problem in principle, this procedure can be impractical
in applications, such as cosmological merger trees or N-body
simulations, that provide the spins of the two BHs at separations
of hundreds or thousands of gravitational radii.

We follow here a different approach, and using assumptions
slightly different from those made in Rezzolla et al. (2008a), we
present a new expression for afin which is applicable to binaries
with arbitrary separations and which also provides better results
for the final-spin direction at small separations.

2. DERIVATION OF THE FORMULA

We recall that when the BHs have spins that are aligned with
L, the NR results are accurately described by (Rezzolla et al.
2008a)

afin = ã + ãν(s4ã + s5ν + t0) + ν
(
2
√

3 + t2ν + t3ν
2) , (1)

where ν ≡ M1M2/(M1 + M2)2 is the symmetric mass ratio and
ã ≡ (a1 +a2q

2)/(1+q2). The five coefficients t0, t2, t3, s4, and s5
in Equation (1) can be determined straightforwardly by fitting
the results of the NR calculations. However, an additional
condition can be employed by using the results obtained by
Scheel et al. (2009) for equal-mass non-spinning BHs and thus
enforce that for a1 = a2 = 0, ν = 1/4 and to the claimed
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precision

afin =
√

3

2
+

t2

16
+

t3

64
= 0.68646 ± 0.00004 . (2)

This leaves only four unconstrained coefficients, so that by
using the NR results for the 72 aligned binaries published so
far (Rezzolla et al. 2008b, 2008c; Buonanno et al. 2007; Berti
et al. 2007b, 2008; Gonzalez et al. 2009; Scheel et al. 2009) we
obtain

s4 = −0.1229 ± 0.0075, s5 = 0.4537 ± 0.1463,

t0 = −2.8904 ± 0.0359, t3 = 2.5763 ± 0.4833, (3)

with an agreement |aNR
fin − afit

fin| � 0.0085 with the data4; using
the constraint (2) we then also obtain t2 = −3.5171 ± 0.1208.
Because of the larger data set used, the values in Equation (3)
are slightly different from those in Rezzolla et al. (2008a).

Because Equation (1) provides information over only three of
the seven dimensions of the parameter space, we will next show
how to cover the remaining four dimensions and thus derive
an expression for afin for generic BH binaries in quasi-circular
orbits. Following the spirit of Rezzolla et al. (2008a), we make
the following assumptions.

I. The mass Mrad radiated to gravitational waves can be
neglected, i.e., Mfin = M ≡ M1 + M2. The radiated mass
could be accounted for by using the NR data for Mfin (Tichy
& Marronetti 2008) or extrapolating the test-particle behavior
(Kesden 2008). The reason why assumption (I) is reasonable
is that Mrad is largest for aligned binaries, but these are also
the ones employed to fit the free coefficients in Equation (3).
Therefore, Mrad is approximately accounted for by the values of
the coefficients.

II. The norms |S1|, |S2|, |�̃| do not depend on the binary’s
separation r, with �̃ being defined as

�̃(r) ≡ Sfin − [S1(r) + S2(r)] = L(r) − J rad(r) , (4)

where S1(r), S2(r), and L(r) are the spins and the orbital angular
momentum at separation r and J rad(r) is the angular momentum
radiated from r to the merger. Clearly, S1, S2, and �̃ can still
depend on r through their directions. While the constancy of
|S1| and |S2| is a very good assumption for BHs, which do
not have an internal structure, the constancy of |�̃| is more
heuristic and based on the idea that the merger takes place
at an “effective” innermost stable circular orbit (ISCO), so that
|�̃| can be interpreted as the residual orbital angular momentum
contributing to Sfin.

III. The final spin Sfin is parallel to the initial total angular
momentum J(rin) ≡ S1(rin) + S2(rin) + L(rin). This amounts
to assuming that J rad(rin) ‖ J(rin). It replaces the assumption,
made in Rezzolla et al. (2008a), that J rad(rin) ‖ L(rin), which
is only valid for a smaller set of configurations. We note
that this assumption is motivated by PN theory: within the
adiabatic approximation, the secular angular-momentum losses
via gravitational radiation are along J (Apostolatos et al. 1994).
This is because as L rotates around J the emission orthogonal
to J averages out.

4 Recently, a new formula for the final spin has been proposed by Lousto et
al. (2009). While that formula cannot be easily applied to generic
configurations (because it depends on the final-plunge direction, which can
only be determined via simulations), it reduces to a fit for aligned binaries. For
the binaries considered above, it gives a much larger maximum error
|aNR

fin − afit
fin| ≈ 0.05.

Figure 1. Accuracy of assumption (III) for all the generic binaries published
so far, as a function of the spin–spin coupling “magnitude” |a1 × a2| for the
binaries with |a1 ×a2| �= 0 (lower panel), and of the mass ratio q for the binaries
with |a1 × a2| = 0 (upper panel).

IV. The angle between L and S ≡ S1 + S2 and the angle
between S1 and S1 are constant during the inspiral, although L
and S precess around J .

At 2.5 PN order, (III) and (IV) are approximately valid for
any mass ratio if only one of the BHs is spinning, and for
M1 = M2 if one neglects spin–spin couplings. In both cases,
in fact, S and L essentially precess around the direction Ĵ ,
which remains nearly constant (Apostolatos et al. 1994), and
the angle between the two spins remains constant as well. The
only case in which (III) and (IV) are not even approximately
valid is for binaries which, at some point in the evolution, have
L(r) ≈ −S(r). These orbits undergo the so-called “transitional
precession” (Apostolatos et al. 1994), as a result of which Ĵ
changes significantly. Because transitional precession happens
only if L and S are initially almost antialigned with |L| > |S|,
it affects only a very small region of the parameter space, which
is, moreover, poorly populated if the SMBHs are in a gas-rich
environment (Bogdanovic et al. 2007).

Because assumption (III) plays a major role in our analysis,
in Figure 1 we provide evidence of its (approximate) validity
by using all the generic BH-binary simulations (i.e., with spins
not parallel to L) published so far (Campanelli et al. 2007a,
2007b; Lousto & Zlochower 2009; Tichy & Marronetti 2008),
except two binaries in Campanelli et al. (2009), which, when
reproduced by us, seem affected by imprecisions (M. Jasiulek
2009, private communication). In particular, we plot the angle
between Sfin and J(rin) as a function of the spin–spin coupling
“magnitude” |a1 ×a2| for the binaries with |a1 ×a2| �= 0 (lower
panel), and of q for the binaries with |a1×a2| = 0 (upper panel).
Clearly, assumption (III) is valid to within 4–5 degrees, with
maximum errors of 7–8 degrees. These errors are compatible
with the accuracy with which the NR simulations can compute
the final-spin direction for strongly precessing binaries (note the
error’s noisy dependence on |a1 × a2|).

V. When the initial spin vectors are equal and opposite and
the masses are equal, the spin of the final BH is the same as for
non-spinning binaries. Besides being physically reasonable—
reflecting the expectation that if the spins are equal and
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opposite their contributions cancel out—this assumption is
confirmed by NR simulations (see discussion in Rezzolla
2009) and by the leading-order PN spin–spin and spin–orbit
couplings.

With these assumptions, we derive an expression for the final
spin. Let us write Equation (4), using (I), as

afin = 1

(1 + q)2
(a1(r) + a2(r)q2 + �(r)q), (5)

where afin = Sfin/M
2 and � ≡ �̃/(M1M2). Using (II), the final-

spin norm is

|afin| = 1

(1 + q)2
[|a1|2 + |a2|2q4 + 2|a2||a1|q2 cos α

+ 2(|a1| cos β(r) + |a2|q2 cos γ (r))|�|q + |�|2q2]1/2, (6)

where α, β, and γ are

cos α ≡ â1 · â2 , cos β ≡ â1 · �̂ , cos γ ≡ â2 · �̂ . (7)

Note that because of (IV), α does not depend on the separation
and is simply the angle between the spins at the initial separation
rin. The angles β and γ are instead functions of the binary’s sepa-
ration, but this dependence cancels out in the linear combination
in which they appear in Equation (6), which is indeed, within
the assumptions made, independent of the separation and which
can therefore be evaluated at r = rin. To see this, let us consider
Equation (6) at the effective ISCO. There, J rad (rISCO ) = 0 by
definition and therefore �(rISCO ) = L(rISCO ). As a result, β(rISCO )
[γ (rISCO )] are simply the angles between S1 [S2], and L at
the ISCO. Using now assumption (IV), we can write part of
Equation (6) as

|a1| cos β(rISCO ) + |a2|q2 cos γ (rISCO ) = (L̂ · S)ISCO/M2
1

= (L̂ · S)/M2
1 = |a1| cos β̃(r) + |a2|q2 cos γ̃ (r), (8)

where β̃ and γ̃ are the angles between the spins and L at any
separation r and thus also at r = rin

cos β̃ ≡ â1 · L̂ , cos γ̃ ≡ â2 · L̂ . (9)

This proves our previous statement: the dependence on r
that β and γ have in Equation (6) is canceled by the linear
combination in which they appear. Stated differently, the final-
spin norm is simply given by Equation (6) where β(r) → β̃(rin)
and γ (r) → γ̃ (rin). Thus, one does not need to worry about the
angles between â1,2 and �̂ but simply about the angles between
â1,2 and L̂ at r = rin, which are easy to compute.

Finally, we need to compute |�| and for this we proceed
like in Rezzolla et al. (2008a) and match Equation (6) at
r = rISCO with Equation (1) for parallel and aligned spins
(α = β(rISCO ) = γ (rISCO ) = 0), for parallel and antialigned
spins (α = 0, β(rISCO ) = γ (rISCO ) = π ), and for antiparallel spins
which are aligned or antialigned (α = β(rISCO ) = π , γ (rISCO ) = 0
or α = γ (rISCO ) = π , β(rISCO ) = 0). As noted in Rezzolla et al.
(2008a), this matching is not unique, but the degeneracy can
be broken by exploiting assumption (V) (i.e., by imposing that
|�| does not depend on a1,2 when a1 = −a2 and q = 1) and
by requiring for simplicity that |�| depends linearly on cos α,
cos β, and cos γ . Using these constraints and Equation (8), we

obtain again an expression valid for any separation and hence
for r = rin

|�| = 2
√

3 + t2ν + t3ν
2 +

s4

(1 + q2)2

× (|a1|2 + |a2|2q4 + 2|a1||a2|q2 cos α)) +

(
s5ν + t0 + 2

1 + q2

)
× (|a1| cos β̃(rin) + |a2|q2 cos γ̃ (rin)) . (10)

When comparing Equations (6), (8), and (10) with
Equations (8) and (11) of Rezzolla et al. (2008a), it is straightfor-
ward to realize that they are mathematically the same, although
derived under a different (and improved) set of assumptions.
This is simply because the new assumptions (II) and (IV) are
compatible, via Equation (8), with the old ones. However, the
new assumptions make a substantial difference in the prediction
of the final-spin direction. Since (III) states that afin ‖ J(rin), the
angle θfin between the final spin and the initial orbital angular
momentum L(rin) is given by

cos θfin = L̂(rin) · Ĵ(rin) . (11)

This expression replaces and improves Equation (10) of
Rezzolla et al. (2008a) and, as we will show, is verified both
for initial separations of a few gravitational radii, such as those
considered in NR, and for larger separations (e.g., ∼104 M),
which are relevant for cosmological applications.

3. COMPARISON WITH NUMERICAL-RELATIVITY
DATA

We now test our Equations (6), (8), and (10) for |afin| and our
Equation (11) for θfin against the NR simulations published so
far for generic binaries. Note that to test the expression for θfin
we use the same simulations as in Figure 1 (i.e., Campanelli et al.
2007a, 2007b; Lousto & Zlochower 2009; Tichy & Marronetti
2008), while to test the expression for |afin| we also use the data
of Tichy & Marronetti (2007) (which only reports the final-spin
norm). Also, we compare our predictions (AEI) with those of
similar formulas suggested by Buonanno et al. (2008) (BKL),
Rezzolla et al. (2008a) (AEIold), and Tichy & Marronetti (2008)
(FAU). The comparison consists of two steps. First, we use
as input the initial data of the NR simulations, in which the
binaries have small separations (i.e., rin � 10 M). Second, we
use binaries at large separations (i.e., rin � 2 × 104 M), for
which the dynamics starts being dominated by gravitational-
wave emission and which are therefore of direct relevance
for cosmological investigations. More precisely, we evolve the
NR initial configurations back in time up to a separation of
2 × 104 M using the 2.5 PN equations in the quasi-circular
limit (Buonanno et al. 2003), calculating the predictions of the
different formulas at each step and considering the maximum
error for each formula. (We stress, however, that the figures we
present do not change significantly if we integrate only up to a
separation of ∼200 M .)

The left panel of Figure 2 shows the predictions of the
various formulas for |afin|, when applied to the small-separation
configurations corresponding to the initial data of the NR
simulations. In particular, it reports the error in the final-spin
norm ||afin,NR| − |afin,∗||—where “*” stands for “AEI” (which,
as already stressed, gives the same predictions for |afin| as
“AEIold”), “FAU,” or “BKL”—as a function of q. The right panel
shows instead the maximum error when the configurations are
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Figure 2. Left panel: error in the final-spin norm ||afin,NR| − |afin,∗|| (“*” being either “AEI,” “FAU,” or “BKL”) as a function of the mass ratio, when the various
formulas are applied to the small-separation configurations corresponding to the initial data of the 45 simulations of Lousto & Zlochower (2009), Campanelli et al.
(2007a, 2007b) (blue stars), and to the 41 simulations of Tichy & Marronetti (2008, 2007) (red crosses). The numbers next to each label indicate the average error.
Right panel: the same as in the left one but for binaries at large separations of r = 2 × 104 M . Although the new AEI expression is slightly better, all formulas give
accurate predictions for |afin| both for small and large separations. The larger errors for small q are most likely due to the larger truncation errors affecting those
simulations (Lousto & Zlochower 2009).

Figure 3. Same as in Figure 2, but for the inclination-angle error |θfin,∗ − arccos [L̂(rin) · âfin,NR]| and without the eight binaries of Tichy & Marronetti (2007), for
which the final-spin direction was not published. Here too, the larger errors for small-separation binaries with small q are likely due to the larger truncation errors. The
new AEI expression is accurate both for small and large separations, while the other ones become imprecise for large separations.

evolved back in time up to rin = 2 × 104 M . Figure 2 clearly
shows that although the AEI expression is slightly better, one
can apply the old formulas to widely separated binaries if the
focus is on |afin| only. Note that the larger errors for small q
are most likely due to the larger truncation errors affecting those
simulations (see Lousto & Zlochower 2009, Section IIIA).

However, the situation is very different for the final-spin
direction. In particular, Figure 3 reports the inclination-angle
error |θfin,∗−arccos [L̂(rin) · âfin,NR]|, for all the data in Figure 2,
except those of Tichy & Marronetti (2007), for which the final-
spin direction was not published. When considering small-
separation binaries (left panel), our new formula performs

slightly better than the “BKL” and “AEIold” formulas, but it
is not better than the “FAU” one. Indeed, the latter is exact
by construction for the 32 binaries of Table II in Tichy &
Marronetti (2008), because for such data the final-spin direction
was not published and has been here reconstructed using the
FAU formula. When applied to large-separation binaries (right
panel), however, our new formula performs much better than
the other ones. This result is not surprising since all the previous
formulas predict the same value of θfin for all rin, as they neglect
the precession of the binary’s orbital plane. As suggested by
Tichy & Marronetti (2007), one can in principle use PN theory to
integrate the binary to small separations, and then apply the old
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formulas. As already mentioned, however, this is impractical,
compared to our simple and algebraic expressions for the final
spin. Also, note that the error in θfin made by the previous
formulas at large separations increases for small-q binaries. This
is again because the previous formulas predict the same θfin for
all rin. Therefore, because the correct θfin becomes small for large
rin (since cos(θfin,NR) ≈ L̂(rin) · Ĵ(rin) ≈ 1), the maximum error
of the previous formulas is roughly given by their prediction for
θfin at small separations, which can be large for small q if the
angle between Ŝ and L̂ at small separations is large (because
for q ≈ 0, Ĵ(rin) ≈ Ŝ(rin) and cos(θfin) ≈ L̂(rin) · Ŝ(rin)).

The very small errors in the predictions of the final-spin
direction also provide additional evidence, besides that in
Figure 1, of the validity of assumption (III), namely that
Ŝfin � Ĵ(rin). Also, they suggest a correlation between the final-
spin direction and the orbital plane when the binary was widely
separated. Stated differently, by observing âfin, e.g., via a jet if
this is assumed along âfin, one is virtually “observing” Ĵ(rin)
and can conclude that the orbital plane at large separations was
roughly orthogonal to the final spin. Our result could therefore
be applied to X-shaped radio sources, for which the origin of the
double pair of jets is under debate (Capetti et al. 2002; Merritt
& Ekers 2002).

4. CONCLUSIONS

We have derived a new formula predicting the spin of the BH
resulting from the merger of two BHs in quasi-circular orbits
and having arbitrary initial masses and spins. Our derivation is
based on a revised set of assumptions and exploits an additional
constraint to reduce to only four the number of undetermined
coefficients. The new formula is identical to that proposed in
Rezzolla et al. (2008a) in the prediction of the final-spin norm,
but is different in the prediction of its direction, showing a much
better agreement with the numerical data. The new formula
can be applied to binaries with separations larger than ∼200 M
without any preliminary integration of the PN equations, in
contrast with what would be needed by the other formulas
proposed in the literature. Thus, our formula is particularly
suitable for astrophysical and cosmological applications and
could provide clues about the relation between the spin of the
SMBH in the center of active galactic nuclei and the binary’s
orbital plane well before the merger.

We are grateful to M. Jasiulek, L. A. Gergely, and A.
Buonanno for helpful discussions. E.B. acknowledges support
from NSF grant PHY-0603762.

REFERENCES

Apostolatos, T. A., Cutler, C., Sussman, G. J., & Thorne, K. S. 1994, Phys. Rev.
D, 49, 6274

Berti, E., Cardoso, J., Cardoso, V., & Cavaglià, M. 2007a, Phys. Rev. D, 76,
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