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Abstract

Let E be a compact subset of C with connected, regular complement Ω = C \ E and let G(z) denote
Green’s function of Ω with pole at ∞. For a sequence (pn)n∈Λ of polynomials with deg pn = n, we
investigate the value-distribution of pn in a neighbourhood U of a boundary point z0 of E if G(z) is an
exact harmonic majorant of the subharmonic functions

1
n

log |pn(z)|, n ∈ Λ

in C \ E . The result holds for partial sums of power series, best polynomial approximations, maximally
convergent polynomials and can be extended to rational functions with a bounded number of poles.
c© 2008 Elsevier Inc. All rights reserved.

1. Introduction

The classical theorem of Jentzsch [1] concerns the limiting behaviour of the zeros of the
partial sums of a power series. More precisely, if

sn(z) =
n∑
ν=0

aνzν, n ∈ N0,
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are the partial sums of a power series
∑
∞

ν=0 aνzν with radius of convergence 1, then Jentzsch has
proved that each point on the circle of convergence C1 := {z ∈ C : |z| = 1} is a limit point of
zeros of the polynomials sn(z), n = 0, 1, 2, . . .. Moreover, substituting the series

∑
∞

ν=0 aνzν by

∞∑
ν=0

aνzν − α, α ∈ C.

Jentzsch’s theorem immediately yields that any point of C1 is also a limit point of α-points.
Luh [2] has given a new interpretation of Jentzsch’s result: If z0 ∈ C1 and δ > 0, then there

exist infinitely many n ∈ N such that the image domains sn(Bδ(z0)), where Bδ(z0) := {z :
|z − z0| < δ}, contain the origin and rather big disks Bρn (0).

Theorem A ([2]). Let f (z) =
∑
∞

v=0 aνzν be a power series with radius of convergence 1.
Suppose that (ρn)n∈N is a sequence of positive numbers with

lim sup
n→∞

ρ
1/n
n ≤ 1

and let z0 ∈ C1, δ > 0 arbitrary. Then there exist infinitely many n ∈ N such that the image
domains sn(Bδ(z0)) contain the disks Bρn (0).

Since the partial sums are best least-square approximants to the power series f (z) =∑
∞

ν=0 aνzν on any circle Cr := {z ∈ C : |z| = r}, r < 1, it is natural to ask if other sequences
of approximating polynomials possess the Jentzsch property. Walsh [3] studied this question
for polynomials converging maximally to a function f (z) analytic on a compact set E ⊂ C.
Blatt and Saff [4] considered the case of best approximating polynomials with respect to the
maximum norm. Moreover, in recent years the focus of investigations turned to the limiting
distribution of the zeros in the sense of Szegő [5] (cf. [6]). In this context, Lorentz [7] was
interested in sharpening discrepancy results of Kadec [8] for the distribution of alternation points
in polynomial Chebyshev approximation.

In this paper, we present a result of the type described in Theorem A that includes polynomials
of best approximation, maximally convergent polynomials or Faber expansions and rational best
approximations.

2. Main result

Let E be a compact set in C that has positive logarithmic capacity cap E . Moreover, we
assume that the complement Ω = C \ E is connected and regular in the sense that Ω has a
Green’s function with pole at∞, i. e.

(a) G(z) is harmonic in Ω \ {∞},
(b) limz→∞(G(z)− log |z|) = − log capE ,
(c) G(z)→ 0 as z→ ξ ∈ ∂E = ∂Ω (z ∈ Ω).

Hence, G(z) can be continuously extended to Ω with G(ξ) = 0 for ξ ∈ ∂E = ∂Ω .
We denote by Pn the set of algebraic polynomials of degree at most n and by

‖ f ‖E = max
z∈E
| f (z)|

the uniform norm for continuous f on E .
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Let Λ be a subsequence of N and let (pn)n∈Λ be a sequence of polynomials with pn ∈

Pn \ Pn−1. Then Bernstein–Walsh’s lemma implies

1
n

log |pn(z)| − G(z) ≤
1
n

log ‖pn‖E (2.1)

for z ∈ Ω (cf. [9], lemma in Section 4.6). The inequality (2.1) also holds for z ∈ ∂E .
Let E◦ denote the interior of E . If (pn)n∈Λ is bounded on E , then Montel’s theorem tells us

that for any connected component E ′ of E◦ there exists a subsequence (pn)n∈Λ′(Λ′ = Λ′(E ′) ⊂
Λ) that converges uniformly on any compact set of E ′. In the following theorem we assume that
(pn)n∈Λ converges locally uniformly on any connected component of E◦ to a function f which
is consequently analytic on E◦.

In polynomial best approximation, the generalization of Jentzsch’s theorem is only proved for
boundary points z0 ∈ ∂E \ ∂S where

S := {x ∈ E◦ : f (z) ≡ 0 in a neighbourhood of x}

(cf. [4], Theorem 2.2). Such exceptional points may also occur if Theorem A is extended. This
possible exceptional point set can be described by the limit function f of (pn)n∈Λ on E◦. For
this reason, we set T as the union of all connected components of E◦ on which the function f is
constant, i. e.

T := {z ∈ E◦ : f is constant in some neighbourhood of z}. (2.2)

Then we can formulate our main result in the following theorem.

Theorem 1. Let E be compact in C with connected, regular complement, Λ ⊂ N and let
(pn)n∈Λ be a sequence of polynomials with n = deg pn that converges locally uniformly to the
analytic function f in E◦. Moreover, we assume that the sequence (pn)n∈Λ satisfies the following
conditions:

(1) lim supn∈Λ,n→∞
1
n log ‖pn‖E ≤ 0,

(2) there exists a compact set S ⊂ Ω with

lim inf
n∈Λ,n→∞

max
z∈S

[
1
n

log |pn(z)| − G(z)

]
≥ 0.

If (ρn)n∈Λ is a sequence of positive numbers with

lim sup
n∈Λ,n→∞

ρ
1/n
n ≤ 1, (2.3)

then for any point z0 in the closure of ∂E \ ∂T and any neighbourhood U of z0 there exists
n0 = n0(U ) such that for all n ≥ n0, n ∈ Λ,

pn(U ) ⊃ Bρn (0).

We remark that by Bernstein–Walsh’s lemma, (1) and (2) are equivalent to:

(1′) limn∈Λ,n→∞
1
n log ‖pn‖E = 0

and

(2′) limn∈Λ,n→∞ maxz∈S

[
1
n log |pn(z)| − G(z)

]
= 0.
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Moreover, in the notation of Walsh [10] the condition (2′) is referred to as: “The sequence
(1/n) log |pn(z)|, n ∈ Λ, has Green’s function G(z) as exact harmonic majorant”.

It follows from the Bernstein–Walsh inequality (2.1) that in Theorem 1 the condition
lim supn∈Λ,n→∞ ρ

1/n
n ≤ 1 cannot be replaced by lim supn∈Λ,n→∞ ρ

1/n
n > 1.

For the proof of Theorem 1 we use the following modification of condition (2).

Lemma 1. If the conditions (1) and (2) of Theorem 1 hold then the inequality (2) is true for any
continuum S̃ ⊂ Ω .

For a proof of this lemma we refer to Remark 1.3 in section 2.1 of [6], resp. Grothmann [11].

Proof of Theorem 1. Let z0 ∈ ∂E \ ∂T and assume, to the contrary, that there exist a bounded
neighbourhood U of z0, a subsequence Λ1 ⊂ Λ and a sequence (wn)n∈Λ1 with |wn| < ρn such
that

wn 6∈ pn(U ) for n ∈ Λ1.

Since T ⊂ E◦ and z0 ∈ ∂E \ ∂T , we can choose U such that

U ∩ T = ∅. (2.4)

For z ∈ U and n ∈ Λ1 we define the single-valued analytic function

gn(z) := (pn(z)− wn)
1/n
= exp

(
1
n

log(pn(z)− wn)

)
(2.5)

by taking the branch of log(pn(z)− wn) for which

−π < Im log(pn(z0)− wn) ≤ π.

By the lemma of Bernstein–Walsh we obtain

|gn(z)| ≤ (‖pn‖E + |wn|)
1/neG(z)

for z ∈ U ∩Ω . Then we get with (1) and (2.3) that the functions (gn)n∈Λ1 are uniformly bounded
in U . Hence, there exists a subsequence of (gn)n∈Λ1 , say (gn)n∈Λ2 , Λ2 ⊂ Λ1, that converges
locally uniformly to an analytic function g(z) in U .

Let us fix z̃ ∈ U ∩ Ω . Then

κ :=
1
4

G (̃z) > 0. (2.6)

We choose a continuum S in U ∩ Ω with z̃ ∈ S, minz∈S G(z) ≥ 2κ and

|g(z)− g( z̃)| ≤ (eκ − 1)/2 for all z ∈ S. (2.7)

Because of Lemma 1, there exists n1 ∈ N such that

max
z∈S

[
1
n

log |pn(z)| − G(z)

]
≥ −κ

for n ∈ Λ2, n ≥ n1, and therefore

max
z∈S

1
n

log |pn(z)| ≥ min
z∈S

G(z)− κ ≥ κ (2.8)

for all n ∈ Λ2, n ≥ n1. Fix ξn ∈ S with

log |pn(ξn)| = max
z∈S

log |pn(z)|.
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Then by (2.8)

|pn(ξn)| ≥ enκ for n ∈ Λ2, n ≥ n1 (2.9)

and (2.3) implies

lim
n∈Λ2,n→∞

∣∣∣∣ wn

pn(ξn)

∣∣∣∣ = 0. (2.10)

Since S is compact, we can choose a subsequence Λ3 ⊂ Λ2 such that

lim
n∈Λ3,n→∞

ξn = ξ ∈ S.

The functions (gn)n∈Λ3 are equicontinuous on S, hence

|g(ξ)| = lim
n∈Λ3,n→∞

|gn(ξn)| = lim
n∈Λ3,n→∞

|pn(ξn)|
1/n

∣∣∣∣1− wn

pn(ξn)

∣∣∣∣1/n

= lim
n∈Λ3,n→∞

|pn(ξn)|
1/n
≥ eκ > 1.

Because of (2.7), we obtain

|g( z̃)| ≥ |g(ξ)| − |g(ξ)− g( z̃)|

≥ eκ −
eκ − 1

2
=

1
2
(eκ + 1) > 1.

Hence, for all z ∈ U ∩ Ω we have

|g(z)| > 1. (2.11)

On the other hand, by (1) and (2.3) we obtain for all z ∈ E ∩U

|g(z)| = lim
n∈Λ2,n→∞

|gn(z)|

≤ lim sup
n∈Λ2,n→∞

[|pn(z)| + |wn|]
1/n
≤ 1. (2.12)

Since E ∩U 6= ∅, it follows that the function g(z) is not constant in U and so the open set

V := {z ∈ U : |g(z)| < 1}

is nonempty. Because of (2.11), V ⊂ E◦.
Fix z ∈ V . Then there exist ε > 0 and n2 ∈ N such that

|gn(z)| < 1− ε for all n ∈ Λ2, n ≥ n2.

For such n we have

|gn(z)|
n
= |pn(z)− wn| < (1− ε)n

and consequently

0 = lim
n∈Λ2,n→∞

|pn(z)− wn| = lim
n∈Λ2,n→∞

| f (z)− wn|

or for all z ∈ V ,

f (z) = lim
n∈Λ2,n→∞

wn,



H.-P. Blatt et al. / Journal of Approximation Theory 159 (2009) 26–38 31

i. e. f is constant on V . Since V ⊂ E◦, we have V ⊂ T , which contradicts (2.4). The theorem
is proved for all z ∈ ∂E \ ∂T , and consequently for all points z belonging to the closure of
∂E \ ∂T . �

Remark. If we introduce the subharmonic function

hn(z) :=
1
n

log |pn(z)| − G(z) (2.13)

for z ∈ Ω , where hn(∞) := limz→∞ hn(z), then the lemma of Bernstein–Walsh is just the
maximum principle:

hn(z) ≤ max
z∈∂E

hn(z).

Moreover, we can summarize the conditions (1) and (2) (resp. (1′) and (2′)) of Theorem 1 as
follows:

There exists a compact set S ⊂ Ω with

0 = lim
n∈Λ,n→∞

max
z∈∂E

hn(z) = lim
n∈Λ,n→∞

max
z∈S

hn(z). (2.14)

3. Applications

3.1. Faber series

Let E be a continuum with connected complement Ω = C \ E and let Φ : Ω → ∆ be the
Riemann mapping function normalized by

Φ(∞) = ∞, Φ′(∞) = lim
z→∞

Φ(z)
z

> 0,

where ∆ := {z ∈ C : |z| > 1}. Then Green’s function of Ω with pole at∞ is given by

G(z) = log |Φ(z)|.

Suppose f is analytic on E , but not entire. Then there exists a maximal ρ > 1 such that f has
an analytic extension to

Eρ = {z ∈ Ω : G(z) < log ρ} ∪ E, (3.1)

and f can be expanded into a series of Faber polynomials

f (z) =
∞∑

n=0

anΦn(z), (3.2)

where the Faber polynomials Φn(z) are defined by the generating function

wΨ ′(w)
Ψ(w)− z

=

∞∑
n=0

Φn(z)

wn , z ∈ E,

and Ψ(w) = Φ−1(w), |w| > 1.
The Faber coefficients an are defined by

an =
1

2π i

∫
|w|=r

f (Ψ(w))w−n−1dw, 1 < r < ρ,
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and satisfy

lim sup
n→∞

|an|
1/n
=

1
ρ
.

The Faber polynomial Φn is of degree n,

Φn(z) = (cap E)−nzn
+ · · ·

and the expansion (3.2) converges locally uniformly in Eρ .
Let us consider the partial sums

pn(z) =
n∑
ν=0

aνΦν(z)

of the expansion (3.2) and define for z ∈ Ω \ Eρ

h̃n(z) :=
1
n

log |pn(z)| − G̃(z)

where G̃(z) = G(z) − log ρ is Green’s function of C \ Eρ with pole at ∞, and h̃n(∞) =

limz→∞ h̃n(z). If we choose the subsequence Λ ⊂ N such that

lim
n∈Λ,n→∞

|an|
1/n
= lim sup

n→∞
|an|

1/n
=

1
ρ

then

lim
n∈Λ,n→∞

h̃n(∞) = 0.

Hence, for (pn)n∈Λ, E replaced by Eρ and S = {∞} all conditions of Theorem 1 are satisfied
and we get

Corollary 1. Let f be analytic on the continuum E with connected complement and let the
maximal ρ, such that f is analytic in Eρ , be finite. Suppose (ρn)n∈N is a sequence of positive
numbers with

lim sup
n→∞

ρ
1/n
n ≤ 1 (3.3)

and let pn denote the nth partial sum in the Faber expansion (3.2). Then there exists a
subsequence Λ of N with the following property: For any boundary point z0 of Eρ and any
neighbourhood U of z0, there exists n0 = n0(U ) ∈ N such that

pn(U ) ⊃ Bρn (0) for n ∈ Λ, n ≥ n0.

If E is the unit disk, then the Faber polynomials are just Φn(z) = zn and we obtain the
theorem of Jentzsch and Luh [2] resp.

3.2. Polynomials of best approximation

Let E be compact in C with connected and regular complement Ω . Let f be analytic in the
interior E◦ of E and continuous on E . We denote by p∗n the polynomial in Pn of best uniform
approximation to f on E . On writing

p∗n(z) = a∗n zn
+ · · ·
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it is shown in [4] that

lim sup
n→∞

|a∗n |
1/n
=

1
cap E

if and only if f is not analytic on E . Then

lim sup
n→∞

hn(∞) = 0,

where

hn(z) =
1
n

log |p∗n(z)| − G(z).

Hence, if we choose the subsequence Λ ⊂ N such that

lim
n∈Λ,n→∞

|a∗n |
1/n
=

1
cap E

, (3.4)

and apply Theorem 1 with S = {∞}, we get

Corollary 2. Let E be compact with connected and regular complement, f continuous on E and
analytic in E◦, but not analytic on E. Let (ρn)n∈N be as in (3.3) and z0 in the closure of ∂E \∂T ,
where T is the union of all connected components of E◦ on which f is constant. Then for any
neighbourhood U of z0, there exists n0 = n0(U ) ∈ N such that the polynomials p∗n of best uni-
form approximation to f satisfy p∗n(U ) ⊃ Bρn (0) for n ∈ Λ, n ≥ n0, where Λ is defined by (3.4).

3.3. Maximally convergent polynomials

Let E be as above in Section 3.2, f analytic on E , but not entire. As in Section 3.1 choose
ρ > 1 maximal such that f can be extended analytically to Eρ .

Then a sequence of polynomials pn ∈ Pn , n ∈ N, is said to converge maximally to f on E if

lim sup
n→∞

‖ f − pn‖
1/n
E =

1
ρ
. (3.5)

For example, polynomials p∗n of best uniform approximation on E are maximally convergent (cf.
Walsh [10]). Walsh [3] proved that a boundary point z0 of Eρ is a limit point of zeros of pn if z0
is a limit of points in Eρ on which f (z) is not zero.

Let (pn)n∈N be a sequence of polynomials converging maximally to f on E . We want to apply
Theorem 1 for (pn)n∈N with E replaced by Eρ . Therefore, we define analogously to (2.13) the
functions

h̃n(z) :=
1
n

log |pn(z)| − G̃(z) (3.6)

where G̃(z) is Green’s function of Ω̃ = C \ Eρ with pole at∞, i. e. G̃(z) = G(z)− log ρ. The
role of S will be played by some level line Γr of Green’s function G(z),

Γr := {z ∈ Ω : G(z) = log r}, r ≥ 1. (3.7)

Now, Bernstein–Walsh’s lemma implies together with (3.5) that

lim sup
n→∞

‖pn − pn+1‖
1/n
Γr
≤

r

ρ
for all r ≥ 1. (3.8)
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Hence, the sequence (pn)n∈N converges locally uniformly to f on Eρ . Moreover, using h̃n(z) of
(3.6) we have

0 = lim
n→∞

max
z∈∂E

h̃n(z) ≥ lim sup
n→∞

max
z∈Γσ

h̃n(z) for 1 < ρ < σ. (3.9)

Lemma 2. Let f be analytic on E and ρ maximal such that f is analytic on Eρ , ρ finite. Then
for any fixed σ with σ > ρ

lim sup
n→∞

max
z∈Γσ

h̃n(z) ≥ 0. (3.10)

Lemma 2 is essentially due to Walsh [3]. For completeness, we include a proof.

Proof. Let us assume, contrary to (3.10), that

lim sup
n→∞

max
z∈Γσ

h̃n(z) < 0 (3.11)

for some fixed σ with σ > ρ. Then,

lim sup
n→∞

1
n

log ‖pn‖Γσ < log
σ

ρ

and consequently

b := lim sup
n→∞

1
n

log ‖pn − pn+1‖Γσ < log
σ

ρ
.

Define a harmonic function g on Eσ \ E that tends to 0 on ∂E and to b− log(σ/ρ) < 0 on ∂Eσ .
By the maximum principle, we obtain

lim sup
n→∞

1
n

log |(pn − pn+1)(z)| ≤ g(z)+ G(z)− log ρ

for z ∈ Eρ \ E . Since g(z) is strictly negative on Eσ \ E , we obtain

lim sup
n→∞

‖pn − pn+1‖
1/n
Γρ

< 1.

It follows that (pn)n∈N converges in Er̃ for some r̃ > ρ, which is impossible because of the
maximality of ρ. Hence, our assumption (3.11) is false and the lemma is proved. �

Combining (3.9) with Lemma 2 and the fact that (pn)n∈N converges locally uniformly on Eρ ,
we obtain by Theorem 1.

Corollary 3. Let E be compact with connected regular complement, f analytic on E but not
entire, ρ maximal such that f is analytic in Eρ , ρ > 1, and (pn)n∈Λ a sequence of polynomials
converging maximally to f . Then there exists a subsequence Λ ⊂ N with the property: If
z0 ∈ Γρ is a boundary point of a component of Eρ where f (z) is not constant, and if U is
a neighbourhood of z0, then there exists n0 = n0(U ) such that pn(U ) ⊃ Bρn (0) for n ∈ Λ,

n ≥ n0, where (ρn)n∈N is a sequence with limn→∞ ρ
1/n
n ≤ 1.

4. Jentzsch’s theorem for Rn,N (N fixed)

Let E be again compact with connected regular complement Ω = C\ E and Green’s function
G(z). We consider the classes of rational functions
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Rn,N =

{
rn(z) =

pn(z)

qn,N (z)
: pn ∈ Pn, qn,N ∈ P N

}
(4.1)

where N ∈ N is fixed and n = 0, 1, 2, . . ..

Theorem 2. Let Λ ⊂ N, c > 0 and (rn)n∈Λ be a sequence of rational functions with

rn =
pn

qn,N
∈ Rn,N \Rn−1,N and ‖qn,N‖E ≤ c

for n ∈ Λ. We assume that (rn)n∈Λ converges locally uniformly in E◦ to the analytic function f .
Moreover, the sequence (rn)n∈Λ satisfies the following conditions:

(1) limn∈Λ,n→∞
1
n log ‖rn‖E ≤ 0,

(2) there exists a compact set S ⊂ Ω with

lim inf
n∈Λ,n→∞

max
z∈S

[
1
n

log |pn(z)| − G(z)

]
≥ 0.

If (ρn)n∈Λ is a sequence of positive numbers with lim supn∈Λ,n→∞ ρ
1/n
n ≤ 1, then for any

point z0 in the closure of ∂E \ ∂T (T as in (2.2)) and any neighbourhood U of z0 there exists
n0 = n0(U ) such that

rn(U ) ⊃ Bρn (0) for n ∈ Λ, n ≥ n0.

Proof. Let z0 ∈ ∂E \ ∂T and assume that there exist a bounded neighbourhood of z0, a
subsequence Λ1 ⊂ Λ and a sequence (wn)n∈Λ1 with |wn| < ρn such that

wn 6∈ rn(U ) for n ∈ Λ1.

Since P N is finite-dimensional and ‖qn,N‖E ≤ c, we may assume that (qn,N )n∈Λ1 converges to
qN ∈ P N and ‖qN‖E ≤ c. Fix z0 with qN (z0) 6= 0. Because of T ⊂ E◦ and z0 ∈ ∂E \ ∂T , we
can choose U and Λ1 such that

U ∩ T = ∅ (4.2)

and

|qn,N (z)| ≥ α > 0 for n ∈ Λ1, z ∈ U. (4.3)

Next, we follow the lines in the proof of Theorem 1:
For z ∈ U and n ∈ Λ1 we define the single-valued analytic function

gn(z) := (rn(z)− wn)
1/n
= exp

(
1
n

log(rn(z)− wn)

)
by fixing a branch of log(rn(z)−wn) at the point z0. Using Bernstein–Walsh’s lemma we get for
z ∈ U ∩ Ω

|gn(z)| ≤ (|rn(z)| + |wn|)
1/n
=

(∣∣∣∣ pn(z)

qn,N (z)

∣∣∣∣+ |wn|

)1/n

≤

(
enG(z)

‖pn‖E

α
+ |wn|

)1/n

.
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Hence, the functions (gn)n∈Λ1 are uniformly bounded in U and we can choose a subsequence
Λ2 ⊂ Λ1 such that (gn)n∈Λ2 converges locally uniformly to an analytic function g in U .

Let us fix z̃ ∈ U ∩Ω . Following the proof of Theorem 1, we choose a continuum S ⊂ U ∩Ω
with z̃ ∈ S, and a constant κ > 0 such that

|g(z)− g( z̃)| ≤ (eκ − 1)/2 for z ∈ S (4.4)

and

max
z∈S

1
n

log |pn(z)| ≥ κ for n ∈ Λ2. (4.5)

Fix ξn ∈ S with

log |pn(ξn)| = max
z∈S

log |pn(z)|,

then

|pn(ξn)| ≥ enκ (4.6)

and

lim
n∈Λ2,n→∞

∣∣∣∣ wn

rn(ξn)

∣∣∣∣ ≤ lim
n∈Λ2,n→∞

∣∣∣∣ρn
qn,N (ξn)

pn(ξn)

∣∣∣∣ = 0. (4.7)

Since S is compact, we can choose a subsequence Λ3 ⊂ Λ2 such that limn∈Λ3,n→∞ ξn = ξ ∈ S.
The functions gn , n ∈ Λ3, are equicontinuous on S, hence

g(ξ) = lim
n∈Λ3,n→∞

gn(ξn) = lim
n∈Λ3,n→∞

|rn(ξn)|
1/n

∣∣∣∣1− wn

rn(ξn)

∣∣∣∣1/n

= lim
n∈Λ3,n→∞

|rn(ξn)|
1/n
≥ eκ > 1.

Because of (4.4),

|g( z̃)| ≥ |g(ξ)| − |g(ξ)− g( z̃)| > 1.

Hence, we have got

|g(z)| > 1 for z ∈ U ∩ Ω . (4.8)

On the other hand, the condition (1) implies

|g(z)| = lim
n∈Λ2,n→∞

gn(z)

≤ lim sup
n∈Λ2,n→∞

[|rn(z)| + |wn|]
1/n
≤ 1

for z ∈ E ∩ U . Since E ∩ U 6= ∅, it follows that the function g is not constant in U and so the
open set

V := {z ∈ U : |g(z)| < 1}

is not empty. Because of (4.8), V ⊂ E◦.
Fix z ∈ V . Then there exists ε > 0 and n2 ∈ N such that

|gn(z)| < 1− ε for n ∈ Λ2, n ≥ n2,
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and for such n

|gn(z)|
n
= |rn(z)− wn| < (1− ε)n

and therefore

0 = lim
n∈Λ2,n→∞

|rn(z)− wn| = lim
n∈Λ2,n→∞

| f (z)− wn|

or

f (z) = lim
n∈Λ2,n→∞

wn,

i. e. f is constant in V . Since V ⊂ E◦, we have V ⊂ T which contradicts (4.2). Hence, the
theorem is proved for all z ∈ ∂E \ ∂T where qN (z) 6= 0, and consequently for all points in the
closure of ∂E \ ∂T . �

Finally, we want to apply Theorem 2 to the approximation of f by rational functions.

Corollary 4. Let E and f be as in Corollary 2, (ρn)n∈N a sequence with lim supn→∞ ρ
1/n
n ≤ 1.

For fixed N ∈ N and n = 0, 1, . . ., let r∗n,N (z) denote a rational function in Rn,N of best uniform
approximation to f . Then there exists a subsequence Λ ⊂ N with the following property: For
any point z0 in the closure of ∂E \ ∂T , where T is the union of all components of E◦ on which
f is constant, there exists n0 = n0(U ) such that

r∗n,N (U ) ⊃ Bρn (0) for n ∈ Λ, n ≥ n0.

Proof. Choose 1 < σ <∞ such that the region Eσ (defined as in (3.1)) contains the origin. Let
s(n)j , j = 1, 2, . . . , kn , denote the poles of r∗n,N (z) in Eσ and let t (n)j , j = 1, 2, . . . , ln denote the
poles in the complement of Eσ . We write

r∗n,N (z) =
pn(z)

qn,N (z)
=

anzn
+ · · ·

qn,N (z)

where

qn,N (z) =
kn∏

j=1

(z − s(n)j )

ln∏
j=1

(1− z/t (n)j )

and the product is 1 if the number of factors is empty. Then Blatt, Saff, Simkani [12] (Proof of
Theorem 4.1) have shown that there exists a subsequence Λ = Λ( f ) ⊂ N such that

lim
n∈Λ,n→∞

|an|
1/n
=

1
cap E

.

Hence, the sequence (r∗n,N )n∈Λ with r∗n,N = pn/qn,N satisfies the conditions (1) and (2) of
Theorem 2, where we choose S = {∞}. Then the statement of Corollary 4 follows from
Theorem 2. �
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