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ABSTRACT

Experimental and numerical evidence is reviewed for the existence of a Stewartson layer in spherical Couette
flow at small Ekman and Rossby numbers (E � 10−3, Ro � 10−2), the relevant hydrodynamic regime in the
superfluid outer core of a neutron star. Numerical simulations of a superfluid Stewartson layer are presented for
the first time, showing how the layer is disrupted by nonaxisymmetric instabilities. The unstable ranges of E and
Ro are compared with estimates of these quantities in radio pulsars that exhibit glitches. It is found that glitching
pulsars lie on the stable side of the instability boundary, allowing differential rotation to build up before a glitch.
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1. INTRODUCTION

Meridional circulation, driven by Ekman pumping, occurs
routinely in the atmospheres, oceans, and fluid interiors of
rapidly rotating astrophysical objects. Indeed, it is a generic
feature of Navier–Stokes flow in any spherical Couette geom-
etry (i.e., a differentially rotating, spherical shell); see Junk &
Egbers (2000) for a review. As the Ekman number E decreases
and the differential rotation increases, spherical Couette flow be-
comes nonaxisymmetric and eventually turbulent (Nakabayashi
et al. 2002). In the limit of rapid overall rotation, a detached
shear layer, known as the Stewartson layer, forms along the
tangent cylinder to the inner sphere (Stewartson 1957, 1966;
Busse 1968). It can be disrupted by nonaxisymmetric insta-
bilities. Numerical simulations indicate that a multiplicity of
transition states are thereby excited (Hollerbach 1994, 2003;
Dormy et al. 1998; Schaeffer & Cardin 2005; Hollerbach et al.
2006).

The possible existence of an unstable Stewartson layer in a
differentially rotating neutron star has important astrophysical
consequences. This is true especially if the inner core rotates
faster than the rest of the star, like in the Earth, a real possibility
in models where the inner core makes a transition to a crystalline
color-superconducting phase (Alford & Reddy 2003; Alford
et al. 2005, 2008). Recently, the importance of the global flow
pattern inside a neutron star to the phenomenon of pulsar
glitches has been highlighted by simulations on the vortex
(Warszawski & Melatos 2008) and hydrodynamic (Peralta et al.
2005) levels. Observational data suggest that glitches result from
scale-invariant vortex avalanches driven by differential rotation
(Melatos et al. 2008). If the meridional circulation is fast enough,
a vortex tangle is alternately created and destroyed, producing
impulsive and oscillatory torque variations (Peralta et al. 2006;
Andersson et al. 2007; Melatos & Peralta 2007). The presence of
a Stewartson layer modifies these conclusions and those of other
studies (e.g., of stellar oscillations), where a multicomponent
superfluid is perturbed starting from a nontrivial equilibrium
state (Peralta et al. 2006, 2008; Glampedakis et al. 2009;
Passamonti et al. 2009).

To date, no studies have been published of the formation and
stability of a Stewartson layer in superfluid spherical Couette
flow. In this Letter, we present the first numerical simulation of
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such a system as an idealized model of the superfluid outer
core of a neutron star. We calculate stability curves for a
range of unstable nonaxisymmetric modes and compare the
conditions for instability with observational glitch data, finding
an upper limit on the velocity shear and hence the glitch sizes
observed. This Letter is organized as follows. In Section 2, we
briefly review the analytic and numerical theory of Stewartson
layers in viscous fluids, before calculating the structure of a
steady Stewartson layer in a 1S0-paired neutron superfluid. In
Section 3, we study the stability of the layer to nonaxisymmetric
perturbations as a function of Ekman number E and Rossby
number Ro. In Section 4, we compare the stability basin in
the E–Ro plane with available glitch data. The astrophysical
implications are discussed in Section 5.

2. STEWARTSON LAYERS IN NEUTRON STARS

Consider a viscous fluid flowing inside a differentially
rotating spherical container, with inner radius (angular fre-
quency) R1 (Ω1), outer radius (angular frequency) R2
(Ω2), Rossby number Ro = (Ω2 − Ω1)/Ω2 � 1, and
Ekman number E = νn/(R2 − R1)2Ω2, where νn denotes the
kinematic viscosity. In a frame corotating with the outer sphere,
the fluid outside the cylinder tangential to the inner sphere is
at rest, while the fluid inside the tangent cylinder moves in a
columnar fashion (Proudman 1956). Fluid is expelled (sucked
in) by Ekman layers at r = R2 (R1), while a triple-deck
Stewartson layer buffers the jump in angular velocity across
the tangent cylinder. It consists of an inner layer of thickness
E1/3 sandwiched between layers of thicknesses E2/7 (E1/4) just
inside (outside) the tangent cylinder (Stewartson 1966). The Ek-
man layers scale as E1/2, except near the equator of the inner
sphere, where they scale as E2/5.

A superfluid Stewartson layer in a spherical shell exhibits a
similar structure. Figure 1(a) graphs the angular velocity in the
rotating frame as a function of the cylindrical radius s = r sin θ ,
for E = 1 × 10−3 (upper curve), 1 × 10−4 (middle curve),
and 2 × 10−5 (lower curve), with Ro = 10−4. The layer starts
at cylindrical radius s ≈ 1.8 and its thickness decreases with
decreasing E, extending out to s ≈ 2.7 for E = 1 × 10−3 and
s ≈ 2.1 for E = 2×10−5. In viscous flows, the thickness of the
layer changes by less than 1% for 0 � Ro � 0.5 (Hollerbach
2003); similar behavior is observed here. The inner Ekman
layers are thicker at the equator.
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Figure 1. (a) Angular velocity ω as a function of cylindrical radius r sin θ , at z = 1.2, for the normal fluid component in superfluid spherical Couette flow, for
E = 1 × 10−3 (upper curve), 1 × 10−4 (middle curve), and 2 × 10−5 (lower curve). (b) Meridional streamlines of the normal component for E = 1 × 10−3 (left),
1 × 10−4 (center), and 2 × 10−5 (right). Ro equals 10−4 in all plots.

Figure 1(b) displays meridional streamlines for E = 1×10−3

(left), 1 × 10−4 (center), and 2 × 10−5 (right), with Ro = 10−4.
The Stewartson layer is visible along the tangent cylinder,
narrowing from left to right. The streamlines are drawn in
the rotating frame of the outer sphere; the blank region to the
right of the tangent cylinder indicates that the fluid there is at
rest. The characteristic meridional speed in the layer scales as
E0.1(R2 − R1)Ω2.

To obtain the results in Figure 1, we solve the two-component
Hall–Vinen–Bekarevich–Khalatnikov (HVBK) equations for a
superfluid inside a spherical differentially rotating shell, with
R1/R2 = 0.67, using a pseudospectral collocation and time-
split method (Peralta et al. 2005, 2008). The details of the
calculation will be set out in a longer paper. Boundary conditions
assume the presence of an inner core or a transition between
a 1S0 and 3P2 superfluid (Yakovlev et al. 1999; Mastrano &
Melatos 2005). We ignore vortex pinning and proton–neutron
entrainment for simplicity, although recent work shows it to
be important (Sedrakian & Sedrakian 1995; Andersson &
Comer 2001). We adopt no-slip and no-penetration boundary
conditions for the normal fluid component (velocity vn) and no-
penetration for the superfluid component (velocity vs), ignoring
the small tension force to reduce the order of the equation
for vs by one (see Henderson et al. (1995) and Peralta et al.
(2008) for a discussion). The mutual friction force is taken to
have the anisotropic Hall–Vinen form (∝ ω̂s × ωs × vns, with
vns = vn − vs and ω = ∇ × vs ; Hall & Vinen 1956a, 1956b),
with B = 10−2, and B ′ = 10−4 (Andersson et al. 2007). We take
ρn/ρ = 0.01 and ρs/ρ = 0.99 for the normal and superfluid
mass density fractions, respectively, where ρ = ρn + ρs denotes
the total density (Peralta et al. 2005).

3. NONAXISYMMETRIC INSTABILITIES

The Stewartson layer is disrupted when Ro exceeds a thresh-
old Roc(E), which decreases as E increases, exciting a Kelvin–
Helmholtz-type instability. Hollerbach (2003) and Schaeffer &
Cardin (2005) investigated thoroughly the most unstable modes
of a viscous fluid Stewartson layer. They discovered nonax-
isymmetric instabilities for azimuthal modes 1 � m � 119,
with 0 � Roc � 0.6 and 10−10 � E � 10−3.5. The azimuthal
mode number of the most unstable mode increases with de-
creasing E. Hollerbach (2003) discovered empirically the scal-
ing Roc ∼ 0.6E0.65 for Ro > 0. For Ro < 0, the most unstable
mode is almost always m = 1, with m = 2 being excited in the

range 10−0.25 � Roc � 0.1. In this regime, Hollerbach (2003)
found Roc ∼ 0.8E0.45. The asymmetry with the sign of Ro is
still not understood physically (Hollerbach 2003).

Here, we generalize the numerical calculation of Roc to a
superfluid Stewartson layer. We follow a two-stage recipe. First,
for fixed Ro = 10−4, we calculate axisymmetric HVBK basic
states for E = 1 × 10−3, 1 × 10−4, 5 × 10−5, 2 × 10−5, and
1 × 10−6. Second, we linearize the HVBK equations around the
base state and test the stability of a given m 	= 0 perturbation
(typical amplitude ≈1%) by increasing Ro until the mode grows
exponentially. We obtain the scaling

Roc ≈ 4.1E0.40 (1)

for 10−6 � E � 10−3 and 0.02 � Roc � 0.33. We concentrate
our efforts on m = 6, the most unstable mode at E ≈ 10−3

for viscous fluids (and also for the superfluid). It is important to
note that m = 6 is not the most unstable mode at smaller Ekman
numbers (e.g., E = 1 × 10−6, where m = 10 is more unstable),
but the critical Rossby number is unaffected (Roc = 0.02). In
Section 3, we extrapolate the scaling Equation (1) to the regime
E � 10−12, Ro � 10−4, relevant to radio pulsars (Lyne et al.
2000; Melatos & Peralta 2007), where numerical simulations
are too hard to perform. A more thorough parameter survey will
be presented in a future paper.

Nonaxisymmetric instabilities can decrease the shear inside
a viscous Stewartson layer by 30% (Hollerbach et al. 2004). We
observe a similar but less pronounced effect in the superfluid,
e.g., when the mode m = 6 is excited at Roc = 0.3, with
E = 10−3.1. Figure 2 describes the topology of the flow in the
layer, before (Figure 2(a), Ro = 0.2) and after (Figure 2(b),
Ro = 0.3) the mode m = 6 is excited. The discriminant DA =
Q3

A + 27R2
A/4, with RA = det(Aij ), QA = (A2

ij − AijAji)/2,
and Aij = ∂vi/∂xj , distinguishes between regions that are focal
(DA > 0, blue) and strain-dominated (DA < 0, green) (Chong
et al. 1990). The maximum shear changes from dω/ds = 1.1
at t = 0 to dω/ds = 1.0 at t = 400 (compared to viscous fluid,
where the observed change is from dω/ds = 1.3 to 0.8). The
hexagonal flow structure also boosts the torque one must exert
on the inner sphere to maintain the shear, although the increase
is less dramatic (∼10%).

4. PULSAR GLITCHES

As E and Ro control the stability of the Stewartson layer, it is
interesting to test whether the amplitude and rate of incidence
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Figure 2. Isosurfaces of the velocity gradient discriminant (see the text):
DA = 10−3 Ω6

2 (blue) and −10−3 Ω6
2 (green) for E = 10−3.1 and the transition

Ro = 0.2 → 0.3, where m = 6 is the most unstable mode: (a) t = 0 (before
transition); (b) t = 400 (after transition).

of rotational irregularities like glitches are related to these two
dimensionless quantities. In order to calculate E, we need to
know how νn depends on the density ρ and temperature T in
the outer core. Using the neutron–neutron scattering viscosity
formula derived by Cutler & Lindblom (1987), we find

E = 2.6 × 10−12

(
T

108 K

)−2 (
Ω2

102 rad s−1

)−1

, (2)

with ρ = 2.8×1012 g cm−3. The core temperature T is related to
the surface temperature Ts, e.g., via the two-zone heat-blanket
model of Gudmundsson et al. (1982), which gives T/108 K =
1.29(Ts/106 K)1.8. We estimate Ts from the characteristic age
τc = Ω2/2|Ω̇2|, combined with theoretical cooling curves for
τc � 106 yr (Page 1998) and standard neutrino cooling; similar
E distributions are obtained with nonstandard cooling (Melatos
& Peralta 2007).

In Figure 3, we plot as points the maximum Ro in 55
glitching pulsars with τc � 106 yr, taken from Table 1 in
Melatos et al. (2008), assuming conservatively that Ro is less
than the fractional frequency jump of the largest glitch. For
each object, E is estimated by the method in the previous
paragraph. We also plot two Roc (E) curves: the HVBK scaling
computed in Section 2 (Roc ≈ 4.1E0.40, solid curve) and a
scaling extrapolated from the study by Schaeffer & Cardin
(2005) for Roc � 10−2 and E � 10−5 (Roc ≈ 9.4E0.57, dashed
curve). The viscous fluid scaling lies in the middle of the
cluster of points, while the HVBK superfluid scaling lies above
all the points. This suggests two possible conclusions: (1) a
glitching pulsar must have Ro < Roc(E), otherwise Stewartson
layer instabilities would erase the shear required for the glitch
phenomenon to occur and (2) it is important to include the
HVBK superfluid dynamics to ensure that all points in Figure 3
lie below the Roc(E) curve, given that no discernible difference
is observed in the glitch behavior of objects above and below
the viscous fluid scaling.

In the superfluid Stewartson layer, there is an extra ingre-
dient that influences the instability curve: the mutual friction
between the normal and superfluid component, controlled by
the dimensionless parameters B and B ′. We have only consid-
ered the weak coupling regime in this investigation (B = 10−2,
B ′ = 10−4). In the strong coupling regime (B = 0, B ′ = 1;
Andersson et al. 2007), the instabilities are likely to be quite dif-
ferent. Preliminary results for axisymmetric steady states show
that the Stewartson layer is ∼10% thicker. A more detailed in-
vestigation of the effect of mutual friction and entrainment on
Roc(E) will be presented in a future paper.
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Figure 3. Critical Rossby number Roc vs. Ekman number E for 55 glitchers with
characteristic ages τc � 106 yr. The points indicate upper limits on Roc derived
from the largest observed glitch in each object. E is calculated using standard
neutrino cooling. The solid curve is a fit to the HVBK superfluid simulations
in Sections 2 and 3. The dashed curve is an extrapolated fit to the viscous fluid
calculations from Schaeffer & Cardin (2005).

5. DISCUSSION

The results in Sections 2 and 3 demonstrate that Stewartson
layers develop in rotating HVBK superfluids, like the 1S0-paired
neutron superfluid in the outer core of a neutron star. We present
the first numerical simulation of a HVBK Stewartson layer, for
Ekman and Rossby numbers in the ranges 10−6 � E � 10−3

and 10−4 � Ro � 10−2. Superfluid Stewartson layers are un-
stable to nonaxisymmetric perturbations. Transitions between
unstable Stewartson modes in the superfluid are different to
those found in a viscous fluid, and the critical Rossby number
Roc(E) is ∼10 times higher in the above parameter regime. In
glitching pulsars, one finds Ro < Roc(E) in the 55 pulsars for
which Ro and E can be estimated reliably from observations.
One possible interpretation of these data is that the Stewartson
layer remains stable in these objects, allowing rotational shear
to build up (as required for glitches) without triggering dis-
ruption of the Stewartson layer (which would nullify the shear
(Hollerbach et al. 2004) and hence shut down the glitching
behavior). The threshold Roc(E) can be compared against the
upper limit derived independently from the gravitational-wave
spin down caused by Kolmogorov-like superfluid turbulence
excited in the stellar interior (Melatos & Peralta 2009).

The conclusions drawn from the data in Figure 3 extend and
partially clarify the surprising empirical finding, that the E dis-
tribution is markedly different between glitchers and nonglitch-
ers (Melatos & Peralta 2007). It seems strange that stars with
E ∼ 10−10 (few glitches) and E ∼ 10−12 (many glitches) be-
have so differently, since in both regimes Kolmogorov turbu-
lence must be fully developed and scale-free. However, from
Figure 3 (and Figure 4 in Hollerbach 2003), one sees that small
differences in E and Ro lead to very different flow states and
stability properties (Hollerbach 2003; Hollerbach et al. 2004).
Moreover, if theoretical estimates of effective viscosity and
hence E are too low by a factor of ∼105, due to turbulent
Reynolds stresses (Melatos & Peralta 2007), glitching pulsars lie
in a range where (1) the most interesting flow transitions occur
before the flow becomes turbulent (i.e., at 10−4 � E � 10−2

for 1 � m � 6) and (2) numerical simulations are computa-
tionally tractable.



L78 PERALTA & MELATOS Vol. 701

The results of this Letter do not prove that Stewartson flow
transitions control glitch behavior. We merely find empirically
that all observed glitchers lie on the stable side of the Roc(E)
threshold for nonaxisymmetric instabilities of a Stewartson layer
in an HVBK superfluid. Recently, a hydrodynamic trigger for
pulsar glitches was proposed by Glampedakis & Andersson
(2009), associated with r-modes excited by differential rotation.
It would be interesting to see how meridionally circulating
Stewartson base states modify these calculations, especially in
the strong pinning scenario (for which B ′ = 1, B = 0). Price
et al. (2008) found empirical evidence of departures from solid-
body rotation in a radio pulsar.

We do not consider stratification or magnetic fields in this
investigation. In viscous fluids, strong stratification suppresses
the Stewartson layer, leaving a Taylor column parallel to the
rotation axis (Hollerbach 2009). Magnetic fields widen the
Stewartson layer, merging it with the interior flow (Hollerbach
1994). This difficult physics deserves investigation.

We acknowledge the support of the Max-Planck Society
(Albert-Einstein Institut) and the computer time sup-
plied by the Victorian Partnership for Advanced Com-
putation. We thank Rainer Hollerbach for indicating the
importance of the Stewartson layer and very illuminat-
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sar Catalogue (http://www.atnf.csiro.au/research/pulsar/psrcat;
Manchester et al. 2005).
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