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Time-periodic driving provides a promising route to engineer non-trivial states in quantum many-
body systems. However, while it has been shown that the dynamics of integrable systems can
synchronize with the driving into a non-trivial periodic motion, generic non-integrable systems are
expected to heat up until they display a trivial infinite-temperature behavior. In this paper we
show that a quasi-periodic time evolution over many periods can also emerge in systems with weak
integrability breaking, with a clear separation of the timescales for synchronization and the eventual
approach of the infinite-temperature state. This behavior is the analogue of prethermalization
in quenched systems. The synchronized state can be described using a macroscopic number of
approximate constants of motion. We corroborate these findings with numerical simulations for the
driven Hubbard model.
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In the last decade, the dynamics of quantum many-
particle systems out of equilibrium has become experi-
mentally accessible in a variety of contexts, ranging from
ultra-cold atomic gases in optical lattices to the manip-
ulation of solid state systems with femtosecond time-
resolved spectroscopy. A particularly important role in
this context is played by periodically driven systems.
Periodic driving can stabilize novel states both in cold
atoms and in condensed matter, including topologically
nontrivial states [1, 2, 3, 4, 5, 6] or complex phases such
as superconductivity [7, 8]. It can be used to engineer ar-
tificial gauge fields in cold atoms [9] and emergent many-
body interactions such as magnetic exchange interactions
in solids [10, 11, 12], or to transiently modify lattice struc-
tures through anharmonic couplings [13].

An important question is thus the theoretical under-
standing of the long-time dynamics of periodically driven
systems. The approach to a steady state has been in-
vestigated intensively for the relaxation of isolated sys-
tems after a sudden perturbation, both experimentally
and theoretically [14, 15, 16]. When a generic non-
integrable many-body system is left to evolve with a
time-independent Hamiltonian, it is believed to eventu-
ally relax to a thermal equilibrium state. If the system is
integrable, on the other hand, the steady state is often de-
scribed by a generalized Gibbs ensemble (GGE) [17, 18],
which keeps track of a macroscopic number of constants
of motion. When integrability is only slightly broken,
the system can display dynamics on separate timescales,
such that observables rapidly prethermalize to a quasi-
steady nonequilibrium state which can be understood by
a GGE based on perturbatively constructed constants
of motion [19], before thermalizing on much longer time
scales [20, 21, 22].

Integrability turns out to be a crucial factor also for
periodically driven systems. Their dynamics can syn-

chronize with the driving [23] and display a non-trivial
periodic time evolution at long times. A way to under-
stand this is to show that the time evolution over one
period T commutes with an infinite number of opera-
tors Iλ, which are thus conserved at stroboscopic times
(i.e. integer multiples of the period). Having a fixed ex-
pectation value of all Iλ at stroboscopic times, one can
construct a statistical ensemble to describe the long-time
behavior of the system (the periodic Gibbs ensemble),
which has been analytically and numerically shown to
give correct predictions for hard-core bosons [24].

In contrast to integrable systems (and many-body lo-
calized states [25, 26, 27, 28]), it has been proposed that
generic non-integrable systems “heat up” under the ef-
fect of driving and display rather trivial infinite temper-
ature properties as soon as they settle into a periodic
motion [29, 30, 31]. One can formulate this statement
in terms of the Floquet eigenstates (the exact solutions
of the Schrödinger equation with a periodic evolution of
all observables [32, 33]), stating that each individual Flo-
quet state displays infinite temperature properties. This
conjecture relies on a breakdown of the perturbative ex-
pansion of Floquet eigenstates at some order because of
unavoidable resonances between transitions in the many-
body spectrum with multiples of the driving frequency.
A common approach to avoid this problem is to construct
effective Floquet Hamiltonians from a high-frequency ex-
pansion [25, 9]. In this work we show that quasi-periodic
state can also emerge as a consequence of a system be-
ing close to integrability, provided that linear absorption
can be avoided: the stroboscopic time evolution is con-
strained by approximately conserved constants of motion
Ĩλ. Analogous to prethermalization in weakly interacting
systems after a sudden perturbation [20, 21, 19], the sys-
tem rapidly synchronizes with the driving and remains
periodic over a large number of periods m such that
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g−1 � mT � J−1, where g controls the strength of the
integrability-breaking terms in the Hamiltonian, T is the
period of the driving and J is coupling of the integrable
Hamiltonian, e.g., the bandwidth of the kinetic energy
term; we set ~ = 1 throughout. The quasi-periodic state
can be described as a periodic Gibbs ensemble based on
the Ĩλ, i.e., stroboscopic prethermalization gives access
to quasi-periodic states which are entirely different from
the infinite temperature final states.

General formalism.— In the following we consider
an integrable (or noninteracting) system perturbed by
an integrability-breaking periodic driving. The general
Hamiltonian is given by

H(t) = H0 + gHint(t), (1)

where the integrable part

H0 =
∑
λ

ελÎλ , (2)

can be written as a sum of constants of motion (e.g.,
momentum occupations for independent particles on a
lattice), and the small parameter g controls the strength
of the interaction Hint(t) which is periodic with period
T and frequency Ω = 2π/T . To study the time evolu-
tion at stroboscopic times tm = mT (m integer), we ex-
tend the approach of Refs. 19, 21 to periodically driven
systems, and determine a time-periodic unitary trans-
formation R(t) such that the Hamiltonian Heff(t) in the
rotated frame commutes with the constants of motion
Îλ at any time up to corrections or order O(g3). If
|ψ̃(t)〉 = R(t)|ψ(t)〉 is the transformed wave function, the
Hamiltonian Heff which dictates the evolution in the ro-
tated frame via i∂t|ψ̃(t)〉 = Heff(t)|ψ̃(t)〉 is given by

Heff(t) = R(t)H(t)R(t)† − iR(t)Ṙ(t)† . (3)

We make the ansatz R(t) ≡ eS(t), with an anti-hermitian
operator S, and expand all periodic operators Heff(t),
S(t), Hint(t) in a Fourier series X(t) =

∑
nXne

−inΩt.
One can now construct S(t) = gS(1)(t) + 1

2g
2S(2)(t) +

O(g3) order by order in g, such that Heff(t) is diagonal
is in the eigenbasis {|α〉} of H0 (see Supplement),

Heff(t) = H0 +
∑
α

|α〉Ediag,α(t)〈α|+O(g3), (4)

and thus commutes with all Îλ. In particular, to first
order the perturbative corrections to the diagonal entries
are given by Ediag,α(t) = g〈α|Hint(t)|α〉+O(g2). Denot-
ing with {Eα} the eigenvalues of H0, we have

〈β|S(1)
n |α〉 = 〈β|Hint,n|α〉/(Eβ − Eα − nΩ), (5)

for α 6= β, and 〈α|S(1)
n |α〉 = 0. (The role of resonances

Eβ − Eα = nΩ will be discussed below.)

Under a general unitary transformation, the time prop-
agator U(t, 0) = T e−i

∫ t
0
dt′H(t′) is transformed into

U(t, 0) = e−S(t) Ũ(t, 0) eS(0), (6)

with Ũ(t, 0) = T e−i
∫ t
0
dt′Heff (t

′). Because S(t) is periodic,
the time evolution at stroboscopic times is thus unitar-
ily equivalent to the time evolution with the diagonal
Hamiltonian (4), U(tm, 0) = e−S(0)e−i

∫ tm
0

dtHeff (t)eS(0) +
tmO(g3). This implies that the quantities

Ĩλ = e−S(0)ÎλeS(0) (7)

are approximately conserved under the evolution over
multiple periods T , i.e., 〈Ĩλ(tm)〉 = 〈Ĩλ(0)〉 + tmO(g3).
For the example of a weakly interacting Hubbard model
studied below, the original constants of motion are mo-
mentum occupations nk of independent particles, while
the constants of motion of the stroboscopic time evolu-
tion correspond to quasiparticle modes.

We examine the synchronization of these modes in
terms of the time evolution

〈A〉t ≡ 〈ψ(0)|U†(t, 0)AU(t, 0)|ψ(0)〉 (8)

of an observable Â which is a function of the original con-
stants of motion Iλ (having in mind, e.g., a measurement
of momentum occupations nk or higher-order momentum
correlation functions nknk′), assuming that the system
is in an eigenstate |ψ(0)〉 ≡ |α〉 of H0 before the driv-
ing is switched on. Inserting Eq. (6) into (8), expanding
the operators eS(0) and eS(t) in powers of g, and using
the fact that [A, Ũ(t, 0)] = tO(g3) (because A commutes
with all Iλ), we obtain

〈A〉t = −2Re〈α|S(0)A[S(0)− S̄(t)]|α〉+ tO(g3), (9)

with S̄(t) ≡ Ũ†(t, 0)S(t)Ũ(t, 0) . For stroboscopic times,
with S(tm) = S(0) determined by Eq. (5), one finds the
final result for the perturbative time evolution

〈A〉tm =
∑
n,p

∞∫
−∞

dω
4g2 sin2(ωtm2 )ynp(ω)

(ω − nΩ)(ω − pΩ)
+ tmO(g3), (10)

where ynp(ω) denotes the spectral density

ynp(ω) =〈α|Hint,−nAδ(ω −H0 + Eα)Hint,−p|α〉 . (11)

The integral in Eq. (10) gives an accurate description
of 〈A〉tm for times tm � g−1, where relative correc-
tions tmO(g3) are small. (Note that for finite m the
term sin(tmω/2) regularizes the singularities at nω.) For
g → 0 there is thus a large time window g−1 � tm � T in
which the dynamics is governed by the long time asymp-
totics of the integral. To analyze this, we distinguish two
different behaviors depending on the frequency Ω:
(i) Fermi golden rule regime: If there is nonzero spec-

tral density ynn(nΩ) > 0 at an even pole 1/(ω − nΩ)2,
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the stroboscopic evolution for m � 1 develops a linear
asymptotics 〈A〉tm ∼ g2tm

∑
β 6=α〈β|A|β〉Γα→β , where

Γα→β is the Fermi golden rule excitation rate

Γα→β = 2π
∑
n

|〈β|Hint,n|α〉|2δ(nΩ− Eβ + Eα). (12)

To see this fact one can consider the contribution to the
integral (10) from a small interval |ω − nΩ| ≤ ε around
the pole, in which ynn(ω) can be approximated by a con-
stant ynn(nΩ). With a substitution x = tm(ω−nΩ), the

remaining integral is tm
∫ εtm
−εtm dx sin2(x/2)/x2 ∼ tmπ/2.

From a similar consideration for n 6= p one can obtain
the subleading terms.

(ii) Stroboscopic prethermalization: Assuming that the
perturbation involves only a limited number of Fourier
components, such as for a harmonic perturbation with
Hint,n = 0 for |n| > 1, then the spectral density ynm(ω)
is restricted to a finite band [−W,W ], depending on
the type of excitation, the bandwidth of the noninter-
acting single-particle spectrum, and phase space restric-
tions. If all poles ω = nΩ lie outside this band, the limit
m → ∞ integral of (10) is simply obtained by replacing
sin2(tmω/2) by its average 1/2, which corresponds to the
first term in Eq. (9),

〈A〉pre = −2Re〈α|S(0)AS(0)|α〉

= 2g2
∑
n,p

∫ ∞
−∞

dω
ynp(ω)

(ω − nΩ)(ω − pΩ)
. (13)

In this case the system synchronizes for tm � T (and
tm � g−1) into a periodic evolution with values 〈A〉tm =
〈A〉pre, before further heating takes place on longer
timescales. This is the analogue of prethermalization in
a quenched system.

Statistical description of the prethermalized state.—
The condition ynn(nΩ) = 0 for the absence of linear
absorption is equivalent to the absence of resonances in
Eq. (5). Outside the Fermi golden rule regime, the con-
stants of motion (7) are thus well-defined, and one can
ask whether the prethermalized state can be described by

a Gibbs ensemble ρG̃ =
∑
λ e
−µλĨλ/ZG̃ [34], where the

Lagrange multipliers µλ are determined by the constraint
from the initial state, 〈Ĩλ〉0 = tr

[
ρG̃Ĩλ],

〈A〉pre = tr
[
ρG̃A]. (14)

Using Eqs. (13) and (7), the proof for this statement
only relies on the time-independent matrix S(0) being
antihermitian and appearing only to order g in tr

[
ρG̃A],

and thus proceeds analogously to the argument showing
that prethermalized states for a sudden quench can be
described by a GGE [19].

Relation to the Floquet picture.— Finally, we explain
how the prethermalized state Eq. (13) can be related
to the Floquet spectrum of the Hamiltonian. Accord-
ing to the Floquet theorem, the exact solution of the

Schrödinger equation with a time-periodic Hamiltonian
(1) is given in the form |ψF,α(t)〉 = e−iEF,αt|ψα(t)〉,
where |ψα(t)〉 is periodic in time. If a system is in a
Floquet state, the time evolution of observables is peri-
odic. By expanding |ψα(t)〉 in a Fourier series |ψα(t)〉 =∑
m e
−iΩmt|ψα,m〉, the Floquet quasi-energy spectrum

can be obtained by diagonalizing the time-independent
block-matrix,

(EF,α +mΩ−H0)|ψα,m〉 = g
∑
l

Hint,l|ψα,m+l〉. (15)

In principle, one can now use standard first-order pertur-
bation theory to construct perturbative Floquet states

|ψα,n〉 = |ψ(0)
α,n〉 + g|ψ(1)

α,n〉 + · · · , where the zeroth order

is given by the unperturbed eigenstates |ψ(0)
α,m〉 = δm,0|α〉

(E
(0)
F,α = Eα). The perturbative expansion does not con-

verge to the true Floquet eigenstate if there are reso-
nances Eα − Eβ = nΩ in the many-body spectrum, but
low orders nevertheless can exist: in particular, the first

order is given by |ψ(1)
α,m〉 = S

(1)
m |α〉, and it is well-defined

outside the Fermi golden rule regime. This shows that
the prethermalized state Eq. (13) is related to the per-
turbative Floquet state by

〈A〉pre = 2〈ψ(1)
F,α|A|ψ

(1)
F,α〉. (16)

Here the appearance of a factor of two is reminiscent to a
similar relation between the prethermalized and ground
state expectation values in the quench case.
Application to the Hubbard model.— In order to illus-

trate the general results above, we now choose as specific
example the Hubbard model

H(t) = −J
∑
〈ij〉σ

c†iσcjσ+U(t)
∑
i

(ni↑− 1
2 )(ni↓− 1

2 ) , (17)

with nearest neighbor hopping J and periodically mod-
ulated interaction U(t) = U(1 − cos(Ωt)). With these
choices, the first and the second term of Eq. (17) repre-
sent the integrable part H0 and the periodic integrability-
breaking perturbation with g = U , respectively. Energy
and time are measured in units of J and J−1, respec-
tively. The constants of motion of H0 are momentum
occupation numbers n̂kσ = c†kσckσ. To allow for a com-
parison of the analytical results derived above and a nu-
merical solution, we consider the model in the limit of
infinite spatial dimensions with a semi-elliptic density of
states ρ(ε) =

√
4− ε2/(2π) at half-filling (density n =

1). In this limit, the dynamics can be computed using
nonequilibrium dynamical-mean-field theory [35], and it-
erative perturbation theory [36, 37] as impurity solver.
The system is assumed to be in a equilibrium state at
U = 0 and temperature 1/β before the driving is turned
on. Note that it is straightforward to extend our above
discussion from pure states to thermal states (see also
the Supplement).
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FIG. 1. Momentum occupation n(εk) for energy εk = −0.4 at
stroboscopic times 2πm/Ω for U = 0.1, 0.3, 0.5, 0.8, 1.2 from
top to bottom curves in each panel. Symbols with dashed
lines: DMFT data, continuous lines: perturbative predictions
from Eqs. (10) and (18). Inset of right panel: same as main
panel for U = 0.8, but showing complete time evolution (i.e.
also non stroboscopic times).

To investigate the prethermalization dynamics we use
the momentum occupations as observables, A ≡ nk−n0

k,
where n0

k = Θ(−εk) is the initial Fermi sea of the ground
state for a symmetric density of states. For harmonic
driving U(t) = U(1 − cos(Ωt)) we have Hint,n = hnHint

with Hint =
∑
i(ni↑ − 1

2 )(ni↓ − 1
2 ), and h0 = 1, h±1 =

− 1
2 . For the spectral density (11) we obtain yk,np(ω) =
−hnhpJk(ω), where Jk(ω) is given by

Jk(ω) =

∫
dε1dε2dε3 ρ(ε1)ρ(ε2)ρ(ε3)[n(ε3)n(ε)n̄(ε1)n̄(ε2)

− n(ε1)n(ε2)n̄(ε3)n̄(ε)]δ(ε1 + ε2 − ε3 − ω − εk), (18)

with Fermi function n(ε) (and n̄(ε) ≡ (1 − n(ε))), here
given by n(εk) = n0

k. Note that the result depends on k
only via the band energy εk ∈ [−2, 2] as a consequence
of the large-coordination limit. The function Jk(ω) has
already been obtained for the investigation of the sudden
quench [19] (which is contained in our results by setting
h±1 = 0). We thus shift further details of the calculation
to the Supplement. From Eq. (18), one can read off the
phase space condition for the Fermi golden rule: at zero
temperature, n(ε) = Θ(−ε) and ρ(ε) = 0 for |ε| > 2,
hence linear absorption (Jk(±Ω) 6= 0) should occur for
for |εk| < Ω < 6 + |εk|.

In Fig. 1 we show the single-particle occupation n(εk)
at stroboscopic times for a specific value of ε for Ω = 3.93
and Ω = 10.47, which lie in the Fermi golden-rule regime
and in the prethermalization regime, respectively. We
find that the perturbative predictions from Eqs. (10) and
(18) capture well the initial slope of the occupation in the
linear absorption regime, as well as the prethermaliza-
tion plateau for Ω = 10.47. For later times the numerical
results approach the infinite-temperature value nβ→0(ε)
= 0.5. As expected, the agreement between the DMFT
results and the perturbative predictions improves with
decreasing U , where the prethermalization plateau ex-
tends to longer times. In the inset of Fig. 1 we show
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FIG. 2. (a), (b), (c): single particle occupations for a driving
term with U = 0.5, computed with DMFT (red triangles, with
initial inverse temperature β = 20) and from perturbation
theory (blue dashed lines, initially in the ground state) at an
intermediate time, t11 = 11T , for Ω = 2π/T = 3.93, 6.28,
and 10.47, respectively; the initial state is prepared with U
= 0. The green continuous line shows the free initial thermal
state at β = 20. (d): Excitation over one period, measured as
αm(ε,Ω) (see main text) for U = 0.1 using DMFT. The black
dashed line corresponds to ε = −Ω + 6, which together with
ε = −Ω delimits the Fermi-golden-rule regime.

the time evolution of the occupation n(ε) at U = 0.8.
At t ∼ 2-4 the quasi-periodic prethermalization regime
begins where n(ε) is constant at stroboscopic times. In
Fig. 2 we plot n(ε, tm) as a function of ε after a given
number of periods (m = 11). Panel (a) corresponds to a
frequency such that every value of ε gives rise to linear
terms, which are on the contrary absent for Ω = 10.47,
see panel (c). Panel (b) refers to an intermediate case
(T = 1.0, Ω = 2π), where only the boundary values of
ε (i.e. ε & −2 and ε . 2) give linear contributions and
thus at tm � T differ from the DMFT data. Finally,
panel (d) shows the absorption of energy, measured by
the slope αm(ε,Ω) ≡ n(ε,m2π/Ω) − n(ε, (m − 1)2π/Ω),
which becomes small for Ω > 6 − ε, as predicted by the
perturbative calculation (shown with a dashed line for
m = 11). We point out that the regime of validity of
the DMFT calculation with iterative perturbation theory
does not allow to explore small values of the frequency
(Ω . 1) where the other boundary (ε = −Ω) lies.

Conclusions.— In conclusion, we discussed the ana-
logue of prethermalization in periodically driven systems.
A weakly interacting system can synchronize into a quasi-
steady state with nontrivial properties, before reaching
the infinite temperature state generic for the long-time
behavior of driven non-integrable systems. This stro-
boscopic prethermalization is a consequence of the ex-
istence of a macroscopic set of operators which are al-
most conserved by the time evolution over one period.
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Stroboscopic prethermalization thus provides a way to
engineer quantum states with a nontrivial effective dy-
namics, alternative to the a high frequency expansion.
These states reflect the properties of perturbative Flo-
quet states, which can be very different in nature from
the exact Floquet states.
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The transformation S(t)

We consider an Hamiltonian of the form:

H(t) = H0 + gHint(t) (19)

where H0 is constant and integrable and can therefore be
written as a sum of the constants of motion:

H0 =
∑
λ

ελÎλ , (20)

where the parameter g is the strength of the perturbation,
while Hint(t) is a periodic driving term with period T and
frequency Ω = 2π/T and is assumed to be nonintegrable.
We now show in detail how to rotate the Hamiltonian
Eq. (19) with a transformation R(t) = eS(t) such that

Heff = R(t)H(t)R(t)† − iR(t)Ṙ(t)† (21)

is (i) periodic and (ii) diagonal in the operators that diag-
onalize H0. To implement condition (i), we first expand
to second order in g and then write in Fourier series both
the effective Hamiltonian

Heff(t) = H
(0)
eff (t) + gH

(1)
eff (t) + g2H

(2)
eff (t)

=
∑
n

e−inΩt
[
H

(0)
eff,n + gH

(1)
eff,n + g2H

(2)
eff,n

]
(22)

and the anti-hermitian operator

S(t) = gS(1)(t) +
g2

2
S(2)(t) +O(g3)

=
∑
n

e−inΩt[gS(1)
n +

g2

2
S(2)
n ] +O(g3) ,

(23)

with Heff,n = H†eff,−n and Sn = −S†−n. Combining
Eqs. (21) and (22) we find:

Heff(t) = H0 + g

(
Hint(t) + [S(1)(t), H0] + i

d

dt
S(1)(t)

)
+ g2

(
1

2
[S(2)(t), H0] + [S(1)(t), Hint(t)]+

1

2
[S(1)(t), [S(1)(t), H0]] +

i

2

d

dt
S(2)(t)+

− i
2

(Ṡ(1)(t)S(1)(t)− S(1)(t)Ṡ(1)(t))

)
+O(g3)

(24)

To ensure condition (ii), we require that

[H
(X)
eff,n, Îλ] = 0, (25)

for any Fourier component, perturbative order and con-
stant of motion, labeled by n, X and λ respectively. As
in Ref. 19, we employ the basis Îλ|α〉 = αλ|α〉 and as-
sume that the energies ελ are incommensurate, so that
the eigenenergies of H0, i.e. Eα =

∑
λ ελαλ, are nonde-

generate. After some lengthy but otherwise straightfor-
ward algebra, we can find Heff(t) and S(t) by repeatedly
applying Eq. (25) to each perturbative order in Eq. (24).

In order g0 we have

H
(0)
eff,n =

{
H0 if n = 0
0 otherwise ,

(26)

so that H
(0)
eff,0 =

∑
α |α〉〈α|E

(0)
0,α, with E

(0)
0,α = Eα.

To first order in g the Fourier components of S(t) read:

〈β|S(1)
n |α〉 =

{
〈β|Hint,n|α〉
Eβ−Eα−nΩ if α 6= β

0 otherwise
(27)

The first-order perturbative correction to Heff is:

H
(1)
eff (t) =

∑
α

e−inΩt|α〉E(1)
n,α〈α| (28)

where

E(1)
n,α = 〈α|Hint,n|α〉 . (29)

At order g2 the Fourier components of S(2) are found
to be:

〈β|S(2)
n |α〉 =

∑
p

〈β|
[
S

(1)
p , Hint,n−p +H

(1)
diag,n−p

]
|α〉

Eβ − Eα − nΩ

(30)
if α 6= β and, as previously, we choose the diago-
nal elements to be zero. In Eq. (30) we have defined:

H
(1)
diag,n =

∑
α |α〉E

(1)
n,α〈α|. Finally, the second order term

of the effective Hamiltonian reads:

H
(2)
eff,n =

∑
α

|α〉E(2)
n,α〈α| , (31)

with:

E(2)
n,α =

1

2

∑
β 6=α

∑
p

[ 〈α|Hint,p|β〉〈β|Hint,n−p|α〉
Eα − Eβ − pΩ

− 〈α|Hint,n−p|β〉〈β|Hint,p|α〉
Eβ − Eα − pΩ

]
.

(32)
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Unitary perturbation theory predictions for the
Hubbard model in infinite dimensions

To evaluate the momentum occupation for a period-
ically driven Hubbard model in infinite dimensions we
proceed as in Refs. 36 and 19, noting that in that in those
derivations also initial free thermal states are allowed by
virtue of the finite-temperature version of Wick’s the-
orem. Using the results in the main text the time-
dependent occupation of a state with single-particle en-
ergy ε at time tm = mT is given by:

npert(ε, tm) = n(ε)− 4U2F (ε, tm) , (33)

where n(εk) = 〈c†kσckσ〉t=0 is the momentum distribution
in the initial free thermal state, and

F (ε, tm) ≡
∑
n,p

∞∫
−∞

dω
sin2(ωtm/2)

(ω − nΩ)(ω − pΩ)
hnh−pJε(ω)

≡
∑
n,p

hnh−pFn,p(ε, tm) , (34)

where n̄(ε) ≡ 1 − n(ε) (which equals n(−ε) in the case
of particle-hole symmetry, which we consider here). Be-
cause momentum conservation can be omitted in the
limit of infinite dimensions, one has Jk(ω) = Jεk(ω),

Jε(ω) =

∫
dε1dε2dε3 ρ(ε1)ρ(ε2)ρ(ε3)[n(ε3)n(ε)n̄(ε1)n̄(ε2)

− n(ε1)n(ε2)n̄(ε3)n̄(ε)]δ(ε1 + ε2 − ε3 − ω − ε) . (35)

For the time-dependent interaction U(t) = (1−cos(Ωt))U
we have h0 = 1, h1 = h−1 = −1/2.

As discussed in the main text, the single-particle occu-
pations Eq. (33) at long times (i.e. tm � T ) display two
regimes, namely the Fermi-golden rule absorption regime
and the stroboscopic prethermalization regime, depend-
ing on the value of Ω and ε. Here we discuss these regimes
for the specific case of the driven Hubbard interaction by
rewriting Eq. (34) and applying a phase-space argument.

As a first step, we express Jε(ω) in terms of

R(s) ≡
∞∫
−∞

dε n(ε) ρ(ε) eisε , (36)

using a Fourier representation of the delta function:

Jε(ω) =

∞∫
−∞

ds

2π

[
n(ε)ei(ε+ω)s − n̄(ε)e−i(ε+ω)s

]
R(s)3 .

(37)

We also note that for an initial zero-temperature state
(with n(ε) = Θ(−ε)), Jε(ω) is zero unless ε ≤ |ω| ≤ 3D+
|ε|, where D is the half-bandwidth.

A partial fraction decomposition of the functions in
Eq. (34) and a shift of the integration variable yield

Fn,p(ε, tm) =
F (1)(ε, tm, nΩ)− F (1)(ε, tm, pΩ)

(n− p)Ω , (n 6= p)

Fn,n(ε, tm) = F (2)(ε, tm, nΩ) , (38)

where we defined

F (N)(ε, tm, E) ≡
∞∫
−∞

dω
sin2(ωtm/2)

ωN
Jε(ω + E) . (39)

Consider first the case of zero (or sufficiently low) tem-
perature of the initial state and |ε| ≤ |Ω| ≤ 3D+|ε|. Then
a term linear in tm contributes to F (ε, tm), namely (E =
|nΩ|, N = 1,2, x = (ω − E)tm)

F (N)(ε, tm, E) = tN−1
m

∞∫
−∞

dx
sin2(x/2)

xN
Jε(

x
tm

+ E)

∼ δN2
πtm

2
Jε(E) (tm →∞) (40)

This corresponds to the Fermi golden rule regime with
a linear-in-time growth of n(ε, tm). On the other hand,
if Ω is outside the indicated interval, the denominators
are never zero (for zero temperature) and a stroboscopic
prethermalization plateau is attained.

In all cases we can rewrite the integrals more compactly
by using the identities

sin2(ωt/2)

ω
=

1

2

t∫
0

du sin(ωu) , (41)

∞∫
0

dω
sin2(ωt/2)

ω2
cos(ωs) =

π

4
(t− s)Θ(t− s) , (42)

and taking the symmetries of the ω and s integrals into
account. We obtain

F (1)(ε, tm, E) = −1

2

tm∫
0

ds Im

[
R(s)3 × (43)

(
n(ε)ei(ε+E)s + n̄(ε)e−i(ε+E)s

)]
,

F (2)(ε, tm, E) =
1

2

tm∫
0

dsRe

[
R(s)3 × (44)

(
n(ε)ei(ε+E)s − n̄(ε)e−i(ε+E)s

)]
.

These expressions are suitable for numerical evaluation;
they can be further simplified for the zero-temperature
case.
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