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Nonequilibrium dynamical mean-field theory (DMFT) solves correlated lattice models by obtaining their local
correlation functions from an effective model consisting of a single impurity in a self-consistently determined bath.
The recently developed mapping of this impurity problem from the Keldysh time contour onto a time-dependent
single-impurity Anderson model (SIAM) [C. Gramsch et al., Phys. Rev. B 88, 235106 (2013)] allows one to
use wave-function-based methods in the context of nonequilibrium DMFT. Within this mapping, long times
in the DMFT simulation become accessible by an increasing number of bath orbitals, which requires efficient
representations of the time-dependent SIAM wave function. These can be achieved by the multiconfiguration
time-dependent Hartree (MCTDH) method and its multilayer extensions. We find that MCTDH outperforms exact
diagonalization for large baths in which the latter approach is still within reach and allows for the calculation of
SIAMs beyond the system size accessible by exact diagonalization. Moreover, we illustrate the computation of
the self-consistent two-time impurity Green’s function within the MCTDH second quantization representation.
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I. INTRODUCTION

Pump-probe experiments with femtosecond time resolution
can access the real-time dynamics in materials with strong
correlation effects on the time scale of the electronic motion
[1,2] and reveal striking phenomena such as photoinduced
insulator-to-metal transitions in correlated Mott and charge-
transfer insulators [3,4] and pump-induced melting and recov-
ery of charge density waves [5]. In order to understand the
underlying physical scenario revealed by those experiments,
growing theoretical effort has been devoted to establishing a
microscopic description of strongly correlated lattice models
out of equilibrium. Yet the numerical simulation of nonequi-
librium quantum many-body systems beyond weak-coupling
perturbation theory remains a challenge, in particular, for
extended systems in dimensions greater than one, where the
time-dependent density matrix renormalization-group method
[6] or an exact solution of the Schrodinger equation is no
longer feasible.

A promising framework to capture both ultrafast dynam-
ics and strong electronic correlations is the nonequilibrium
formulation of dynamical mean-field theory (DMFT) [7-9],
which generalizes DMFT [10] to the Keldysh formalism. In
the framework of DMFT, a lattice model such as the Hubbard
model is mapped onto an effective impurity model, which
consists of a single site of the lattice (impurity) coupled
to a noninteracting medium, where electrons are exchanged
between the impurity site and the medium. One of the key
developments for advancing DMFT to the nonequilibrium
regime is to establish methods to solve the real-time dynamics
of this impurity model far from equilibrium. Impurity solvers
that have been used so far include real-time continuous-time
quantum Monte Carlo [11], which is numerically exact but
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restricted to short times, as well as strong-coupling [12] and
weak-coupling [13] expansions, which have been employed in
many studies (see Ref. [9] for an overview) but are restricted to
certain parameter regimes. Recently, a Hamiltonian-based im-
purity solver scheme has been developed, which further maps
the DMFT impurity model onto a single-impurity Anderson
model (STAM) with a finite number of bath orbitals [14]. The
latter is then solved to self-consistency by an exact diagonal-
ization (ED) method being equivalent to the time-dependent
full configuration interaction [15], and one is thus not restricted
to either weak or strong on-site Coulomb interactions.

The mapping of the DMFT impurity model to a SIAM
is similar to the related ED approach to DMFT in equilib-
rium [10], but nevertheless there are important conceptual
differences: Apart from the description of the initial state,
the representation of the DMFT bath can be made exact
for small times, while it requires an increasing number of
bath orbitals to reach longer times [14,16] (note that other
representation schemes might be useful to obtain qualitatively
correct descriptions with few bath orbitals [17] or to describe
the steady state [18]). Intuitively, increasing the number of
bath orbitals allows the discrete model to develop the finite
memory time that is inherent in the original infinite DMFT
bath; i.e., the state can explore a larger Hilbert space without
ever returning close to its initial state. Despite the accuracy of
the ED method, the exponential scaling of the Hilbert-space
dimension as a function of the number of bath orbitals therefore
prohibits us from acquiring the dynamics at long time scales.

Various approaches in different areas of physics have been
developed to overcome this course of dimensionality by find-
ing efficient representations of the wave function. In condensed
matter physics, this includes the (time-dependent) density
matrix renormalization group [6], which is based on a matrix
product state representation and tensor-network representa-
tions of many-fermion states [19-21]. In the present work,
we introduce the multiconfiguration time-dependent Hartree
(MCTDH) method, which was originally developed for the
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time propagation of nuclear wave packets in molecular quan-
tum dynamics [22,23], to treat the real-time dynamics of the
SIAM. The MCTDH method provides a route to represent the
wave function with a minimal set of time-dependent basis func-
tions that comove with the evolving state. This feature can lead
to a tremendous reduction in the configuration space. More-
over, the more powerful extension of the MCTDH method, the
multilayer multiconfiguration time-dependent Hartree (ML-
MCTDH) method [24-26], allows for well-adapted tree-tensor
network decompositions of the many-body wave function.

While MCTDH propagation schemes have recently been
used to study transport in the Anderson and Anderson-Holstein
model [27,28], the requirements for a nonequilibrium DMFT
calculation are often quite demanding: The Hamiltonian
representation of the DMFT impurity model typically implies
strongly time-dependent parameters, the regime of interest
includes strong Coulomb interactions, and, in particular, a fast
calculation is required because one needs to perform a large
number of simulations to obtain the impurity Green’s function
as a function of two time variables. In order to judge the
usefulness of the MCTDH method for nonequilibrium DMFT
it is thus important to provide a comparison of the numerical
performance of the method, i.e., to analyze the ability of the
ansatz to compress the SIAM wave function in the typical
parameter regime relevant for DMFT and thus to improve
on the exponential increase in the numerical effort on the
simulation time which we have described above. This is one
main goal of this paper.

The article is organized as follows. In Sec. II, we give
a brief overview of the nonequilibrium DMFT and outline
the mapping to a SIAM underlying the Hamiltonian-based
impurity solver. We then introduce the MCTDH method in
Sec. II B and discuss its implementation using the Fock-space
formalism in Sec. IIC. Thereafter, in Sec. III, we present
numerical results to assess the performance of the MCTDH
method as an impurity solver in the context of DMFT. Finally,
Sec. IV provides a general conclusion.

II. THEORETICAL FRAMEWORK

In order to combine the nonequilibrium DMFT and the
MCTDH method, which we propose as impurity solver, we
first give a brief introduction to the DMFT framework. For a
comprehensive introduction to nonequilibrium DMFT and its
applications the reader is referred to Ref. [9].

From a general perspective, we are interested in the real-
time evolution of a lattice quantum many-body system like the
single-band Hubbard model,

1 1
H(t) =Y tj(t)clci +UD Y <n,~¢ — 5) (m - §>,
ijo i
(1)

which is initially in thermodynamic equilibrium at temperature
T =1/B and evolves unitarily under the time-dependent

Hamiltonian H(¢). In Eq. (1), the operator c}a (ciy) creates
(annihilates) an electron with spin o on site i of the crystal lat-
tice, n;, is the spin-resolved density, #;;(¢) is the hopping matrix
element between site i and site j, and U(¢) denotes the local
Coulomb repulsion. Below, we adopt a parametrized model

PHYSICAL REVIEW B 91, 045136 (2015)

ve v
O“\O-?i, \ Vo
VG % T
A Ve ©
@) 054
(b) Olxs0)

FIG. 1. (Color online) (a) DMFT impurity problem according
to the action of Eq. (3). Arrows illustrate the effect of the two-
time hybridization function A, (#,#"), which describes all possible
processes where a particle of spin o jumps at time ¢’ from the
interacting impurity site (red) to a lattice site i (green), propagates
forward or backward in time from site i to site j, and at a time ¢
jumps back to the impurity. (b) Representation of the DMFT bath by
a single-impurity Anderson model (STAM) with six bath orbitals and
hopping matrix elements Vi, I > 1. The variable Q, illustrates the
combination of physical degrees of freedom into combined modes
according to the MCTDH ansatz of Eq. (19).

where energies (times) are measured in terms of the hopping
(inverse hopping) amplitude (7 = 1). For practical material
simulations, #;; and U could in principle be determined in an
ab initio manner, which is standard for DMFT simulations at
equilibrium [29-31]. The unit of time //|¢;;| would be between
20 fs for narrow-band organic Mott insulators [2] and a few
femtoseconds for transition metal oxides with a bandwidth in
the electron volt range [32].

A. Nonequilibrium DMFT and Hamiltonian-based
impurity solvers

The central task of nonequilibrium DMFT based on the
Keldysh formalism [33] is to compute the local contour-
ordered Green’s function,

Go(t,t') = —i(Teco ()el (1)) s 2)

of an effective single-site impurity model, which exactly
replaces the original translationally invariant lattice problem,
(1), in the limit of an infinite lattice coordination (and
represents an approximation for finite dimensions). We follow
Ref. [9] for the notation of contour-ordered functions, i.e.,
time arguments lie on the L-shaped Keldysh contour C, and
(Te .. ) s = Tr[TeeSe . . ] /Tr[TceS“‘C] denotes the contour-
ordered expectation value. The action Sj,. of the effective
model is illustrated in Fig. 1(a) and is given by

. 1 1
Sioe = —i /C dr [U(r)(nm) - 5) (nw) - 5) — ;nam}

—i / / dt dt’ZA”(t,t/)cf,(t)ca(l/), (3)
cJc e

where the first part contains the Hamiltonian of an isolated
site of the original lattice at a chemical potential y, and the
second part connects the site to a noninteracting continuous
bath which, at nonequilibrium, is defined by the hybridization
function A, (#,#'). In single-site DMFT, the bath must be
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determined self-consistently from the equations of motion of
A4, which depend on the impurity Green’s function G, (¢,t")
and the time-dependent hopping parameters f;;(f). In the
simplest case, for a Bethe lattice in the limit of an infinite
coordination number Z with nearest-neighbor hopping (i.e.,
semielliptical density of states), the bath is characterized by a
self-consistency relation of closed form [34],

Ay (1,1") = v()G, (1,1 (1), 4)

where the hopping matrix elements in Eq. (1) are rescaled
according to #;;(t) — v(t)/v/Z.

Unfortunately, the DMFT action of the form (3) does
not allow for a direct solution of the impurity problem
with Hamiltonian-based methods. However, an optimal rep-
resentation of Sy, in terms of a time-dependent impurity
Hamiltonian with finitely many bath orbitals can be obtained
by a suitable decomposition of the two-time hybridization
function. Formally, such a mapping requires that all impurity
correlation functions (O(t;) .. .) are the same when computed
with the action Sj,c or with the final impurity Hamiltonian
H'(1),ie.,

Tr (Te {exp (Sioe) O1) - - .}
Tr (Tc {exp (Sioc)})
1 Te(Tefexp(—i [, dtH'(0)O(1)...})
~ Te(Telexp(—i [ dtH'(1))

A particularly convenient mapping [14] becomes possible for
the SIAM where H' = Hgjam = Himp + Hpan + thb with

1 1
Hiyp = _MZnOO’ +U@) (noT - 5) (nw - 5) ,

L
Hpath = Z Z(Elo - M)Clt,czo, (6)
=1

a

&)

L
Hyo =Y Y (Vo (e +He).

=1 o

Here, the impurity site is coupled in a star pattern by hopping
processes of amplitude V5 (¢) to L individual noninteracting

bath orbitals of energy €;,, and the operator ¢;, (cli,) annihilates
(creates) an electron in a spin orbital |y;,) at bath site [ for
! > 0 and at the impurity site for / = 0 [see illustration in
Fig. 1(b)]. The hybridization function of the STAM is given by

L
A, =) Ve nglers 1,1V ), )
=1

where g(e,1,t') = —i[6c(t,t") — f(€)]e ") is the Green’s
function of an isolated bath orbital, f(e)=1/(ef¢ +1)
denotes the Fermi distribution, and 6 is the contour step
function. Since the exponential e ~'“~"" can be absorbed into
the time dependence of the parameters Vj (¢), the problem of
representing the DMFT action by the Hamiltonian, (6), has
thus been reduced to a factorization of a “two-time matrix”
A, (2,1") in terms of time-dependent functions.

If the bath is initially decoupled from the impurity (this
is commonly referred to as the atomic limit), the initial state
of the system is entirely described in terms of the impurity
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density matrix, and A, (¢,t) is only nonzero for times 7,t' > 0
on the real part of the contour. The parameters in the SIAM
can then be obtained by demanding that the greater and lesser
components of the original hybridization functions A, (z,7")
and A/ (t,t') of Eq. (7) are identical for all times ¢ and ¢'.
In practice, this leads to a matrix decomposition of A, (¢,t’),
where the matrix rank N, is defined by the discretization
of times ¢ and ¢ according to 0,8¢,25¢, ...,(N, — 1)ét. By
choosing the bath energies of the SIAM such that the
occupations f (€, — ) are either O or 1, the greater and lesser
components can be decomposed independently of one another:

L)2
—iAZ(tt) =Y Vao[vgah]'.
=1
L
iN(tt)= > Vao[Va@]

I=L/2+1

®)

where we have initially occupied the first half of the
spin-orbitals |x;,) and left the other half empty (note that
nonuniform partitions are also possible).

It is obvious that Eq. (8) holds, in general, only in the
limit L — oo, ensuing from an infinite DMFT bath. However,
appropriate representations can usually be obtained already
for a rather small number of bath orbitals [16]. Furthermore,
by using a low-rank Cholesky approximation in Eq. (8) one
can guarantee that the representation of the hybridization
function is always correct at short times such that a gradual
increase in L allows us to successively approach longer
and longer simulation times [14]. Finally, we note that if
impurity and bath hybridize already in the initial state [i.e.,
for t < 0, where the Hamiltonian H(¢) is time independent],
the STAM representation of the DMFT action, (3), requires
additional bath sites which describe the time evolution of initial
correlations; for details see also [14].

B. Multiconfiguration time-dependent Hartree

Practical applications of DMFT require an efficient solver
for the time-dependent Schrodinger equation (TDSE) of the
impurity model, (6). The MCTDH method [22,23,35,36],
which has been applied to a variety of molecular quantum
dynamics problems since its inception more than 20 years
ago, is a general approach to efficiently solve the TDSE for
multidimensional systems that tries to alleviate the exponential
increase in computational effort with system size by a compact
representation of the time-dependent state vector of the system.
We first describe the original formulation of the MCTDH for
systems of distinguishable degrees of freedom. The extension
to indistinguishable particles (Sec. II C) is then very similar
and even uses essentially the same numerical implementation.

The standard wave function ansatz to solve the TDSE for a
system with f degrees of freedom reads

N, Ny f
(g1 grt) =Y oy Cig, O T 1% @0)
k=1

a=1 Jr=1

= C,018)), ©)
J
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which expands the wave function as a sum of D = ]_[,’::1 N,
Hartree products of one-dimensional primitive basis functions
| x j'(>(q,()). For convenience, these functions are chosen or-
thonormal without loss of generality. Once a primitive basis
has been selected, the time evolution of the system is fully
determined by the set of time-dependent expansion coefficients
Cj..j s (1), which constitute a multidimensional tensor of rank
f. Inserting Eq. (9) into the TDSE and multiplying from the
left by (&, | results in the linear matrix equation,

iCL =) (BLIH|E,)C,. (10)

J

If, for simplicity, N, = N for all «, the standard approach
has an exponential scaling N/ in the number of expansion
coefficients with the dimensionality and is therefore only
practicable for a few degrees of freedom.

The MCTDH ansatz for the wave function reads

ni

W@Grs g ) = ) ZA,I U(r)]‘[\w(”)(qk,r)
Jji=1 Jr=1
=Y A;0|D, (1)), (11
J

where Dy = ]—I,{zl n, is the dimensionality of the A vector
A , and the key difference from the standard ansatz is
the introduction of time-dependent single-particle functions
(SPFs) |<p;':)(q,(,t)), which are taken to be orthonormal for
all times. The MCTDH equations of motion for the time-
dependent coefficients and SPFs are derived from the Dirac-
Frenkel variation principle and read [22]

iA; = Z<q>J|H|<I>L)AL,
L

. _ (12)
l(p('() =(1-— p(K))(p(K)) I(H)(K)ga(K).
Here a vector notation ) = ( |§0§K)> SlelNT s used,

is the projector on the space spanned by the SPFs for the «th
degree of freedom, and (H)® and p®) are mean fields and

the density matrix. By defining single-hole functions |\111(K))
as linear combinations of Hartree products of (f — 1) SPFs
without the SPFs for the «th degree of freedom g,

\IJ(K) Z ZZ ZAJI Y

Ji Jie=1 J+1

). \wﬁfi”)}w;ff))

one can write (H)®) and p*) in compact forms as

x | i), a4

<H>§.§> = (W;K)|H|W;K)> (15)

and

() () (K)
Pji = "I" |III

ZZZZ

Jie=1 Jet1

*
XAJ[ ettt JfAJI---JK—ﬂhHmU'

(16)
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For a complete set of SPFs, n, = N, one has P*) =1
and hence i¢®) = 0, such that Eqgs. (12) correspond to the
standard method of Eq. (10). With variationally optimal SPFs,
the number of basis functions per degree of freedom can be
kept smaller than the number of time-independent primitive
functions. The number of coefficients in the A vector still
grows exponentially as n/, but now to a smaller base (assuming
equal N, and n, for all degrees of freedom, the number of
time-dependent coefficients representing the MCTDH wave
functionisn’/ + fNn).Inthe limitof all n, = 1, the evolution
is described by a single Hartree product of time-evolving SPFs,
which corresponds to the time-dependent Hartree method. The
advantage of the MCTDH method over the standard method
lies in the fact that a much smaller number of differential
equations has to be solved and the accuracy and cost of the
calculation can be controlled by choosing the number of SPFs
n, for each degree of freedom. However, both Egs. (12) are
nonlinear, and (®; |H| ®) as well as the mean fields (H)®
must be rebuilt at each time step, which is usually the largest
computational burden of MCTDH calculations.

Although other choices may be possible, the SPFs are
often expanded on a set of time-independent orthogonal basis
functions as in the standard approach, i.e.,

(ge.t)) = x(q0)). (17)

The MCTDH ansatz can then be regarded as a way to
compactify the C;, ;. tensor introduced in Eq. (9) as

ny

f
Ci..y Z ZAII o ]85 (18)

k=1

This decomposition, which is graphically represented in
Fig. 2(b), is known as the Tucker tensor decomposition
[37] and has the same form as a matrix singular-value

il gl T T 11y

FIG. 2. From top to bottom, tensor networks representing the
coefficients of the MCTDH ansatze of Eqs. (9), (18), and (20),
respectively. Each box represents a tensor with as many indices
as outgoing lines. A sum is performed over all indices at a line
connecting two tensors.
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decomposition generalized to the multidimensional case [38].
The dimensionality of the A vector can be further reduced by
combining physical coordinates ¢ in fewer combined modes
or logical coordinates Q. In this case the ansatz reads

W (g1, ---qp0) = [W(Q1, ..., 0p.1))
- Z ZAA Jp(t)l_[ |¢§K)(QK7I)
Jp
=:§:Aja»¢10», (19)
J

where p is the number of MCTDH combined modes and the
SPFs are now multidimensional functions. In terms of a more
general tensorial decomposition similar to Eq. (18), the mode
combination ansatz becomes [cf. Fig. 2(c)]

n,,

Z ZAZI lp]_[B,(“,K, (20)

I

c

Jredpr =

where J, refers to a multi-index collecting the d, degrees
of freedom, which are combined into one combined mode
k,ie, 1 =0 da)s 2= Uasts - sddivd)s o0 Jp =
(Jay+..4dp_y+15 - - - - jr)- The use of mode combination allows
one to distribute the cost of the calculation in an optimal way
between the propagation of the A and B coefficients (i.e.,
between the A vector and the SPFs). Large combined modes
lead to a small A vector that can be efficiently propagated but
result in the costly propagation of multidimensional SPFs. Pro-
viding a scheme for efficiently propagating multidimensional
wave functions is what the MCTDH method does in the first
place by introducing a multiconfigurational ansatz. A natural
extension consists in expanding the multidimensional SPFs as
sums of products of time-dependent basis functions of lower
dimensionality, which is known as the ML-MCTDH [24-26].
In terms of the tensorial argument, it consists in decomposing
the Bl( .j, tensors in the same form as Eq. (18) or Eq. (20).

Computatlonally, MCTDH is most efficient when the
system Hamiltonian is given by a sum of products of low-
dimensional operators, as this immediately factorizes the ma-
trix elements in Eqgs. (12) into products of lower-dimensional
integrals (note that the Hamiltonian and mean-field matrix
elements need to be re-evaluated at every time step because
they depend on the wave function via the time-dependent
SPFs). For model Hamiltonians fulfilling this product form
the (ML-)MCTDH method has been applied to thousands of
degrees of freedom (e.g., [39]).

C. MCTDH in second quantization representation

Using Hartree products as the elementary configurations,
the MCTDH framework introduced above describes the time
evolution of distinguishable particles rather than the dynamics
of fermionic or bosonic many-body states. Approaches which
explicitly account for the exchange symmetry of the wave
function are the MCTDH for fermions (MCTDHF) [40-44],
which is based on a multiconfiguration expansion of the
wave function in terms of Slater determinants built from
time-dependent spin orbitals, and the bosonic version of the
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MCTDH, in which the many-body configurations are taken to
be permanents [45—47].

In order to solve the dynamics of indistinguishable spin-1/2
fermions in the SIAM one may use an MCTDHF expansion
of the wave function or one can work in a second quantization
representation (SQR), in which case the normal MCTDH
machinery as introduced above for distinguishable degrees
of freedom is applicable. We briefly introduce the MCTDHF
alternative before discussing in more depth the SQR treatment
used in this work. The MCTDHF scheme is readily obtained
as a special case of Eq. (11) by using the same set of SPFs,

M
=Y Bioa®lxio), @n

=1

l@jo (1))

for all electronic coordinates and requiring that A; is is
antisymmetric with respect to exchange of any two indices
at all times [40]. For efficiency reasons, in actual implemen-
tations one primarily works with Slater determinants and uses
the Slater-Condon rules to evaluate the one- and two-body
matrix elements of the Hamiltonian. For the Hubbard model
in the limit U — 0, where all two-body matrix elements
vanish, the dynamics is then trivially captured by a single
Slater determinant with the SPFs evolving under the second
line of Eq. (12) and the mean field being just the one-body
Hamiltonian. Such a single-configuration description corre-
sponds to the time-dependent Hartree-Fock scheme, which
may still provide reasonable results for small U. In general,
however, the problem becomes multiconfigurational in nature
for interactions U # 0 and can become very hard for large
U, requiring conceivably a huge set of Slater determinants to
obtain convergent results.

Apart from using determinants (or permanents) in the
multiconfiguration expansion it is, however, also possible to
describe the dynamics of many-body systems of fermionic
(bosonic) symmetry by working explicitly within the occu-
pation number representation, such that the state vectors are
members of Fock space instead of a Hilbert space. This scheme
was introduced by Thoss and Wang under the name MCTDH
in SQR (MCTDH-SQR) [24]. As we use the MCTDH-SQR
instead of the MCTDHEF to solve the DMFT impurity problem,
we briefly review the key points of the scheme and refer the
interested reader to the original reference.

For M spin orbitals, the basis of the Fock space is given by
the collection of states

M
) =[]ch101.0.. ...

i=1

|n1an2a ey 7OM>a (22)

where for fermions n; = 0,1 are the allowed occupations of the
spin orbital |x;), 01,02, ...,0y) denotes the empty vacuum
state, and cj and ¢; are the fermionic creation and annihilation
operators which satisfy the anticommutation relations,
Ty — T T
{cicj} = cicj +cjei =8y, 23)
feres} = {cl.cl)y =0.

To apply the standard MCTDH formalism for distinguishable
particles for the basis of Eq. (22) we represent all basis
vectors |ny,n, ...,ny) as Hartree products of kets |n;) for
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the occupation of each spin orbital,
ap) =1m) Qn) ... @ Iny).  (24)

Formally, this is done by performing an inverse Jordan-Wigner
transformation of the fermionic degrees of freedom, i.e.,

-1
f . i
cj = exp (—i—m chck> S;f,

k=1

|n1,n2, N

. (25)
j—1
cj =exp (—in Zchk> Si,
k=1
and
njzcjcj=5§+%, (26)
where S} = o+ io}), S = %(o}“ —io}), and §5 = %a;"

are the standard spin (ladder) operators with Pauli matrices
o}, J;', and af. In this way all operators acting in Fock space
are mapped to products of 2 x 2 matrices and the occupation
number states of a spin orbital |y ;) become states of a two-
dimensional vector space:

0
|nj ZO) < <1>,

1
nj=1) & (0)'

Furthermore, regarding Eq. (9), the expansion coefficients
Ch,..n,, then do not fulfill any particular antisymmetry relation
upon exchange of their indices and thus can be compactified
according to Eq. (20).

It is clear that any operator in second quantization, such
as the Hamiltonians in Egs. (1) and (6), consists of a sum of
products of terms acting on one degree of freedom only, where
the degrees of freedom are the occupation numbers of each
spin-orbital. All the exchange symmetry logic is contained
in the products of sign-change operators S acting on the
degrees of freedom in front of position P, where a particle is
being either created or annihilated, i.e., the (anti-)symmetry
properties of the system are carried by the operator and not by
the state vector as is the case in first quantization.

In the second quantizatioq treatment, the one-electron
terms of Hamiltonian (1), #; ¢}, cj,, change two occupation
numbers (and therefore two degrees of freedom) at once
in the process of describing electron hopping, which is the
definition of a two-body term. In contrast, electron repulsion
terms of the form Un;yn;; do not change any occupation
numbers. The application of such a term to any ket in
occupation number representation returns either the same
ket or 0. Therefore these terms are not responsible for any
dynamics in this representation and simply shift the total
energy of some occupation number state kets with respect
to others. The different role of the electron hopping and
electron repulsion terms in the first quantization and Fock-
space descriptions is irrelevant when exact (and therefore
equivalent) calculations are performed using either or the other
representation. This difference, however, becomes of utmost
importance when multiconfigurational (or, in general, tensor
contraction) schemes are attempted. Cases with ¢ > U will
benefit from a first quantization (MCTDHF) approach where

27
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the degrees of freedom are the positions of each electron in the
lattice. Cases with t <« U will be efficient in a Fock-space
description (i.e., in MCTDH-SQR) where the degrees of
freedom are the occupation numbers in the occupation number
representation. One can thus think of a general framework
based on the MCTDH method, which could efficiently treat
the STAM (and other lattice models) in the whole parameter
regime from weak to strong on-site Coulomb interactions.
As the present study focuses mainly on strong coupling, it
emphasizes that the MCTDH-SQR can certainly be applied
more advantageously than the MCTDHEF in this regime.

On the other hand, it remains for future work to investigate
the applicability of an MCTDHF solver to the STAM of DMFT.
In practice, virtually any MCTDH implementation for distin-
guishable particles with the possibility of mode combination
or ML-MCTDH, e.g., the Heidelberg MCTDH package used
here [35], can perform MCTDH-SQR calculations without
further modification. All that needs to be done is to define
the corresponding system Hamiltonian making use of the
representation of second quantization operators as (products
of) 2 x 2 matrices according to the rules introduced above.

III. RESULTS AND DISCUSSION

In this section, we apply the MCTDH-SQR method as
impurity solver and evaluate its performance on the basis of
the computational cost. In Sec. IIT A, we outline the procedure
for a simple test bath and compute the time-dependent
wave function of the corresponding SIAM including L bath
sitesand N = Ny + N, = L + 1 fermions for various on-site
interactions U. In Sec. IIIC, we discuss the self-consistency
and illustrate the computation of the two-time impurity Green’s
function.

A. Model setup

To assess the performance of the MCTDH-SQR for a
time-dependent impurity problem which is representative for
a DMFT calculation, we solve an impurity model which is
suddenly coupled to a bath with semielliptical density of
states; i.e., we choose a hybridization function A, (¢,t") =
v(t)gs (t,t")v(t"), where the coupling v(¢) to the bath is given by
a Heavyside step function, and g, is the equilibrium Green’s
function of the uncoupled bath,

g2(t,t) = Fi f dwfZ(w)A(w)e =" (28)

with f<(@) = f(w) = 1/(eP* + 1), f7(w) =1 — f(w), and
Alw) = %\/4 — w?. Furthermore, we set the temperature to
T = B~' =1, which corresponds to the generic situation
where the time scale on which the bath loses its memory is
of the order of a few hopping times. The complex hopping
parameters Vj(¢) in the SIAM then follow from a low-rank
Cholesky decomposition of A, (¢,") [14]. As an illustration,
Fig. 3 shows the resulting hopping parameters for a setup with
L = 4 bath sites on a time window up to ¢t = 10; the time
discretization comprises n; = 500 time steps.

For the MCTDH-SQR setup, we group two bath sites
(i.e., four bath spin orbitals corresponding to four degrees of
freedom) into one combined mode. As each spin orbital can be
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FIG. 3. (Color online) Time evolution of the complex hopping
matrix elements Vo (t) = V) (1) = V5 (¢) for a SIAM with L = 4 bath
orbitals and a reference bath which is governed by the equilibrium
Green’s function of Eq. (28) with inverse temperature 8 = 1.

in either state |0) (empty) or state |1) (occupied), the span with
2% = 16 SPFs represents the full Fock space. The impurity
is left as a separate mode, which will, in practice, always
be described with the maximum of 2> = 4 SPFs. Starting
from the atomic limit, the impurity site is initially decoupled
from the bath and is occupied by a single up- or down-spin
electron. Consistent with the decomposition scheme outlined
in Sec. Il A, the bath orbitals have different initial populations:
The first half is doubly occupied, whereas the second half is
empty (L even).

Assuming a SIAM with Ny = L/2 4 1 spin-up particles
and N, = L/2 spin-down particles, the dimension of the
Hilbert space of the SIAM is given by

L+1\/L+1
Du = <L/2+l)< L2 ) 29

On the other hand, the A vector A}, ;, in the MCTDH ansatz
of Eq. (19) has dimension

2L/ Ny

Da = 2*(Ngpp) (30)

for an orbital partition scheme with N2, bath spin orbitals in
a combined mode and each combined mode being represented
by N, é’PF SPFs (as stated above, the impurity degrees of freedom
are treated in a single separate mode and are accounted for by
the factor 22). In Fig. 4 we observe that (despite the exponential
scaling of the configuration space with L) application of the

\ ! ! !
4 6 8 10 12 14 16
Number of bath sites L

FIG. 4. (Color online) Hilbert-space dimension of the SIAM as
a function of the number of bath sites L (dashed black line) and
dimensionality of the corresponding A vectors in MCTDH-SQR
(colored lines) for a setup where four bath spin orbitals are treated in
a combined mode (N, = 4) and N&y. single-particle functions are
involved [cf. Eq. (30)].
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FIG. 5. (Color online) Time-dependent double occupancy (d)(¢)
of the impurity site for a SIAM with L =4 bath orbitals at (a)
U =2 and (b) U = 6, calculated by exact diagonalization (ED) and
MCTDH-SQR with various numbers of SPFs (N&py).

MCTDH-SQR can become favorable compared to ED for
specific numbers of SPFs N&p at fixed L, provided that the
relevant observables of the impurity model are satisfactorily
resolved in time. Note also that for large numbers of SPFs the
size of the A vector can exceed the size of the Hilbert space
of the STAM. This is due to the fact that the MCTDH-SQR
is defined in the whole Fock space and an exact calculation
corresponds to the sum of all Hilbert space sizes corresponding
to all possible occupations.

B. Comparison to exact diagonalization
1. Time evolution of the double occupancy

To examine the quality of the MCTDH ansatz of the SIAM
for different numbers of SPFs, we compute the time-dependent
impurity double occupancy

(d)(1) = (W(D)lnornoy W (1)) €19}

for various sizes L of the bath and different on-site interactions
and compare it to exact reference data which are obtained by
ED. In Figs. 5(a) and 5(b), we show MCTDH data for the
SIAM with four bath sites at U = 2 and U = 6. In both cases,
the MCTDH results for N3 = 16 (orange lines) correspond
to the time-dependent full configuration interaction result
and thus lie perfectly on top of the ED curves. Since the
dynamics starts from the atomic limit with a singly occupied
impurity at ¢ = 0, the double occupation is initially 0 and
then becomes finite and oscillatory; note that the density
on the impurity site is a constant of motion by construction
of the complex hopping matrix elements V{ (¢). For Ngop < 16
the MCTDH results are approximate, and we generally find
that convergence towards ED (by increasing the number of
SPFs) is harder to reach as U decreases. This behavior can be
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attributed to the fact that, during the time evolution at small
U, the intersite hopping of electrons [i.e., the influence of
Hyyy, in Eq. (6)] is more pronounced. Consequently, the wave
function expands to a larger area in configuration space, which
requires an increased number of time-adjusted SPFs |¢;(?)) to
optimally cover the support of |W(¢)). For strong coupling
(large U), on the contrary, the wave function implies relatively
weak intercoordinate correlation such that convergence can be
reached more rapidly.

In summary, we expect that the MCTDH method can
accurately capture the time evolution of the nonequilibrium
impurity model in the moderate- to strong-coupling regime,
where U is larger than the kinetic energy. Moreover, it is
important to note that the partition of spin orbitals into
combined physical modes can affect the performance of the
MCTDH [26]. When a combined mode contains both initially
empty and initially unoccupied bath orbitals, the initial phase
of the dynamics already involves a larger number of electronic
configurations. Thus one may need a higher-dimensional basis
to achieve observables of similar quality. A more favorable
partition scheme is to group spin orbitals with the criterion
that all bath spin orbitals of a combined mode are initially
either empty or fully occupied. This guarantees that only a
small set of possible electronic configurations can be accessed
within the projected Fock space of a certain combined mode.

2. Increase in configuration space with time

We now attempt to estimate the size of the configuration
space needed to access a certain maximum time. For this
analysis we restrict ourselves to the case of strong cou-
pling, where MCTDH converges most rapidly (U = 10). The
configuration space is determined by two contributions: (i)
the number of bath orbitals L(fy,x) needed to accurately
represent the dynamics up to t = fy,,x (cf. Sec. [T A) and (ii) a
possible reduction of the configuration space with respect to
Dy (L(tmax)) by MCTDH-SQR.

We first determine the configuration space needed within
the ED approach. Throughout Fig. 6, the solid black line
indicates the dynamics for the bath which is approximated by
14 sites, which is the largest system size accessible with ED in
our implementation. Comparing these reference data with ED
results for smaller L (e.g., the dashed black lines in Figs. 6(a)
and 6(b) for L = 10 and L = 12, respectively), we can extract
a maximum physical time #,,x(L) which can be reached in the
calculation with a certain computational effort, measured by
the corresponding Hilbert-space dimension Dy(L(#yax)). The
colored symbols in Fig. 7 indicate exponential scaling between
max and Dy for ED, where 1, is determined by allowing for
a maximum deviation of 1% [(red) crosses] and 10% [(orange)
squares] from the L = 14 reference data.

From the plot it becomes clear that it is exponentially hard
to reach long times with a Hamiltonian-based representation of
a DMFT bath. Therefore it is an interesting question whether
a MCTDH partition scheme with fewer and optimally time-
evolving SPFs can lead to a more favorable scaling behavior.
We obtain indications for this by analyzing the MCTDH results
in Fig. 6 for a minimum number of SPFs for which (d)(¢)
is still satisfactorily described within an error of about 5%.
While in Figs. 6(a) and 6(b) we can directly compare to the
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FIG. 6. (Color online) Comparison of MCTDH-SQR with four
combined modes (Ncy = 4) and Ngpr single-particle functions to
exact diagonalization (ED) at an on-site interaction of U = 10. Shown
is the time-dependent impurity double occupancy (d)(¢) for a SIAM
with (a) L = 10, (b) L = 12, and (c) L = 16 bath orbitals. The solid
black line, showing the ED result for L = 14, acts as a reference to
determine the maximum time #,,,x in Fig. 7.

corresponding ED result with the same number of bath orbitals
(see dashed black lines), in Fig. 6(c) we only have the L = 14
data as reference; here we estimate a maximum time of about
fmax = 9 up to which the oscillation of the double occupancy
for Nop = 8 is still decaying as a function of time.

The result of the analysis is presented by the black circles
labeled (L,N;’PF) in Fig. 7. Indeed, we find a deviating scaling
for MCTDH which roughly follows the delineated thick
dashed gray line as a function of #,,x. With eight SPFs, the
calculation for L = 16 also marks the first point where the size
of the MCTDH A vector (D4 =~ 6.7 x 107) is smaller than the
size of the corresponding Hilbert space dealt with in the ED
(Dy ~ 5.9 x 108).

C. Impurity Green’s function

For successful implementation as out-of-equilibrium impu-
rity solver, the MCTDH method must be capable of accessing
the two-time Green’s function G, (¢,#’) at the impurity site
of the SIAM, from which the hybridization function is
determined in a self-consistent manner. From this local Green’s
function one can then also obtain, e.g., the self-energy of
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FIG. 7. (Color online) Numerical complexity of the time evolu-
tion to a given time f,,c in the SIAM, measured in terms of the
number D of parameters in the wave-function ansatz [i.e., the required
Hilbert-space dimension Dy (L) for exact diagonalization and the size
of the tensor D, (L; Nspr) in MCTDH]. To determine the maximum
time 7.« Which can be accurately simulated for a given configuration
(L, Nspr), and hence with a given D, we require the error in the double
occupation to be lower than a given bound € [see Figs. (a)-6(c)]:
yellow and red symbols and lines correspond to exact diagonalization
and an € value of 1% and 10%, respectively. Black circles correspond
to MCTDH and € = 5%.

the system, the time-dependent momentum distribution, or
spectroscopic observables of pump-probe experiments [9]. We
emphasize that time- and frequency-resolved spectroscopic
quantities such as the photoemission spectrum with an intrinsic
Heisenberg-limited time-energy uncertainty are obtained from
the Green’s function G(¢,#') in the time window 7, — Af <
t,t' < tp, + At of width At around a probe time ¢, [48,49], so
that these quantities can be obtained exactly from the solution
of a SIAM with finitely many bath sites.

To demonstrate the general procedure and its feasibility
within the MCTDH-SQR we follow Ref. [14] and consider
the real-time dynamics of the Hubbard model on the Bethe
lattice, starting from the atomic limit and from a zero-
temperature initial state (7" = 0). More precisely, we fix the
on-site interaction to U = 4 and study the dynamics of the
paramagnetic phase at half-filling when the nearest-neighbor
hopping in the infinite-dimensional lattice is ramped up from
0 to v(t;) = 1 with a cosine-shaped profile [see the dotted
(red) line in Fig. 8(d)]; in the Hubbard Hamiltonian, (1),
we thus consider #;(¢) = (S(ij)v(t)/\/? in the limit of infinite
coordination number Z.

The DMFT action of the lattice Hubbard model is mapped
onto a SIAM with an initial state as described in Sec. IIT A;
i.e., it contains an equal number of empty and doubly occupied
bath sites with energy €; = 0 and a singly occupied impurity.
The hopping parameters V;(¢) are spin independent and
are determined self-consistently via the bath hybridization
function A, (z,t") = v(t)Goo (t,1)v(t"), where Goy = G, for
all times on the contour. To generate an initial guess for
A, (t,t") we use the Green’s function of Eq. (28); compare
with Fig. 8(a).

Given the time-dependent MCTDH wave function |W(¢))
of the SIAM for N = Ny + N particles, the two independent
(lesser and greater) components of the impurity Green’s
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FIG. 8. (Color online) (a) Imaginary part of the Green’s function
g5(t,t') of Eq. (28), which is used to compute the initial guess for
the hybridization function in the first DMFT iteration. (b)—(d) Self-
consistent results for the local impurity Green’s function G, (t,t")
as obtained from an MCTDH-SQR calculation with L = 8 bath
orbitals in the single-impurity Anderson model; the on-site Coulomb
repulsion is U = 4 (note that G5, = —Gg, because of particle-hole
symmetry). Black arrows indicate the early time domain, where
the transient dynamics due to the switch-on of hopping is most
pronounced. The gray (red) arrow in (c) points to the formation
of small artifacts in the final “steady” state which are due to the
representation of the DMFT bath with finitely many bath orbitals.
Furthermore, in (d), the solid black line shows the time evolution of
the double occupation (d) in the system, and the dotted (red) line
indicates the switch-on of hopping.

function, G, and G, can be computed as the overlaps
G (t.1)) = =i(¥(1)| D~ (1.17),

/ , (32)
Goo (1,t) = i (W D=(r',1)),

where the states |®2(r,')) are defined by |®~(r,1))) =
cOaU(t,t’)ngl‘P(t’)), |[D=(t,t")) =C$UU(I,t’)COOI‘I'(I/)) and
U(t,1') = Te ' Jr 45 H'®) denotes the time-evolution operator
for the impurity model, (6). In practice, we evaluate the
two-time Green’s functions as

G, (t,1") = —i(E”(D|E™ (1), 33)
G, (t,t") = i(E=(!H|E=()),
where |27 (1)) = U(0,0)ch, |W(t)) and |E=(1)) = U(0,)con

|W(t)) are the associated (N + 1)- and (N — 1)-particle wave
functions.

As the half-filled Hubbard model we start from is particle-
hole symmetric, but the SIAM with spin-imbalanced occu-
pation is not, we use an adapted initial state which is a
superposition of two degenerate states: One has a spin-up
electron occupying the impurity site, and the other has a
spin-down electron on the impurity site. An alternative scheme
which we have also implemented to restore particle-hole
symmetry is first to construct Green’s functions G*(¢,t') and
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G®(t,t') with interchanged particle numbers (i.e., Ny < N))
and then to average over the two Green’s functions according
to G(t,t") = 3[GA(t,t") + GB(1,1)].

In Figs. 8(b)-8(d) we present results for the self-consistent
impurity Green’s function where the hybridization function has
been approximated in a time window [0,4] by a SIAM with
L = 8 bath orbitals. We clearly see that while the density in the
system, (n,)(t) =ImG;(t,t) = 0.5, is a constant of motion,
the time-off-diagonal components of the Green’s function
containing the spectral information develop as a function of the
two times (see black arrows). Moreover, for times ¢,t" > 1.5
where the double occupation in the system approaches a
stationary value, also the Green’s functions attain a quasistatic
structure as a function of the physical (center-of-mass) time
@t +1)/2.

To bring the results to convergence, we have implemented
the self-consistency loop in two ways, either iterating on
the full (¢,7) mesh or using the time propagation scheme
described in Ref. [14]. While the former approach was simpler
to implement, the latter is found to be much more efficient
because the self-consistency is established for each time slice
separately, allowing for essentially fewer iterations. Finally,
we remark that the tiny changes in the Green’s function at
later times (¢ 2 3) are due to the discretization of the DMFT
bath with only eight bath sites; see, e.g., the gray (red) arrow
in Fig. 8(c) and compare it to the time evolution of the double
occupancy in Fig. 8(d), which also deviates from the steady
state (dashed line) for times ¢ > 3.

IV. CONCLUSION

In this work we have implemented and benchmarked a
solution of the impurity problem of nonequilibrium DMFT
based on the MCTDH method. The MCTDH method provides
a variationally optimized representation of a time-dependent
(fermionic or bosonic) wave function, which can reduce the
dimension of the underlying basis function space by several
orders of magnitude. Because the Hamiltonian representation
of the DMFT action requires increasingly more bath orbitals
for longer times, this compression of the wave function is
a crucial feature to access the transient dynamics in exact
nonequilibrium DMFT simulations beyond the current limit
of very few inverse hopping times.

For the time-dependent SIAM, which represents the core
component of the Hamiltonian-based DMFT approach out of
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equilibrium, we have been able to show that the MCTDH
can indeed go beyond the capability of ED for sufficiently
strong Coulomb interactions. For SIAMs with a small number
of bath sites, an exact solution is more favorable than the
MCTDH method, because the latter is implemented in SQR
(MCTDH-SQR) where the state vector is defined in Fock space
and contains redundant electronic configurations which are
unphysical for simulating a system with a given number of
electrons (and spin orbitals). For large systems, as needed
to solve the DMFT problem at long times, the MCTDH
method can become favorable. Using the concept of mode
combination, we have provided the dynamics of a SIAM which
describes a typical DMFT bath with L = 16 bath orbitals and is
not feasible to be solved by ED at a reasonable computational
cost. This calculation marks the onset of a regime in which the
state vector of MCTDH scales more favorably than the Hilbert
space with the maximum physical time that can be accessed
in the simulation.

Moreover, we have illustrated the feasibility of the
MCTDH-SQR algorithm to yield the time-dependent observ-
ables as well as the self-consistent real-time Green’s functions
for a generic Hubbard-type lattice problem, which shows
the potential of the method to act as full DMFT impurity
solver. Although the efficiency to directly compute the Green’s
function with the standard Heidelberg MCTDH package for
system sizes as large as L ~ 16 must still be proven, there are
no conceptual difficulties to upscale the scope of the method.

In order to push the applicable regime of the MCTDH-
based impurity solver to even larger SIAMs and hence to even
longer time scales, it is very promising to extend the approach
to the ML-MCTDH [24-26], by which the scaling barrier is
expected to be more efficiently overcome. Thus, to find an
optimal tree-tensor network decomposition of the fermionic
SIAM wave function within the ML-MCTDH scheme is the
main path for future work.
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