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Abstract 

Neuroimaging and transcranial magnetic stimulation provide insights into the neuronal 

mechanisms underlying speech disfluencies in chronic persistent stuttering. In the 

present paper, the goal is not to provide an exhaustive review of existing literature, but 

rather to highlight robust findings. We, therefore, conducted a meta–analysis of diffusion 

tensor imaging studies which have recently implicated disrupted white matter 

connectivity in stuttering. A reduction of fractional anisotropy in persistent stuttering 

has been reported at several different loci. Our meta–analysis revealed consistent 

deficits in the left dorsal stream and in the interhemispheric connections between the 

sensorimotor cortices. In addition, recent fMRI meta–analyses link stuttering to reduced 

left fronto–parieto–temporal activation while greater fluency is associated with boosted 

co–activations of right fronto–parieto–temporal areas. However, the physiological 

foundation of these irregularities is not accessible with MRI. Complementary, 

transcranial magnetic stimulation (TMS) reveals local excitatory and inhibitory 

regulation of cortical dynamics. Applied to a speech motor area TMS revealed reduced 

speech–planning–related neuronal dynamics at the level of the primary motor cortex in 

stuttering. Together, this review provides a focused view of the neurobiology of 

stuttering to date, and may guide the rational design of future research. This future 

needs to account for the perpetual dynamic interactions between auditory, 

somatosensory, and speech motor circuits that shape fluent speech. 
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Introduction 

Stuttering is a speech disorder which most often occurs between the age of 3 and 6 years 

[1]. Lifespan incidence is higher than 5 %, with high rates of recovery (52–87 %) [2, 3]. 

Lifespan prevalence is 0.72 % with a sex ratio of 2.3 [4]. Neither etiology nor 

pathogenesis is known [5]; thus, stuttering is characterized by its symptoms. The 

hallmark signs of stuttering are involuntary sound and syllable repetitions, sound 

prolongations, and speech blocks [6]. In some cases, additional facial and limb 

movements such as grimacing, hand tapping, or stamping with one’s foot accompany 

these speech motor signs. Strategies to avoid stuttering include word substitutions, 

sentence reordering, but also to fall silent in certain situations. Failure in communication 

provokes negative emotions such as fear and embarrassment. The course of stuttering 

varies across individuals and distinct phenotypes emerge. Depending on severity, 

stuttering critically compromises quality of life [7]. 

Similar to other behaviourally defined disorders, the cause of stuttering is multifactorial 

and is associated with various genetic and environmental risk factors. The large 

presence of familial stuttering and the high concordance rate in twins support a genetic 

role in stuttering [8]. To date, few linkage studies have nominated contributing genes [9, 

10]. Genome–wide significance [10] still awaits replication [11••] and more genome–

wide association studies are required [12]. It remains to be seen whether future efforts 

will demonstrate the polygenetic basis of stuttering and thus shed light on the questions 

of involved transmission models, chromosomes, genes, or sex factors. 

The phenomenon of stuttering has given rise to manifold theories, each shaped by the 

perspective of a certain field such as for example analytic psychology [13], speech and 

language pathology [1, 5, 14], psychology [15, 16], linguistics [17–19], biomechanics 

[20–22] and neuroscience [23–27]. Neuroscience–based hypotheses have included an 

aberrant dominant hemisphere structure [28–30], basal ganglia dysfunction [23], a 

disconnection syndrome [31], altered brain timing networks [25, 26, 32, 33], or an 

altered sensorimotor integration [20, 34, 35], mostly interrelating with each other. This 

multiplicity of causes is plausible due to the fact that a broad assortment of linguistic, 

cognitive, and sensorimotor processes are involved in speech production. Speech is a 

very complex sensorimotor action, and its intimate connection to language, a defining 

feature of human cognition, makes speech and stuttering a very complicated field of 

study for neuroscientists and neurologists. In the last 30 years, studies on the 

neurobiology of stuttering have improved our understanding of potential mechanisms, 

but there are still fundamental questions open. Here, we will summarize the main 

neuroscientific findings on chronic persistent stuttering. 

 

The continuous speech stream 

The ultimate readout of language planning and speech motor control is articulation that 

results in an audible, smooth, continuous stream of speech. Articulation is a demanding 

coordinative challenge because it requires the orchestration of respiratory, laryngeal, 
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and supralaryngeal structures by using approximately 100 muscles [36]. The 

respiratory system regulates the outflow of air during speech and thus provides energy 

for the acoustic targets of speech. The laryngeal system generates the quasiperiodic and 

tone–like sound fundamental for pitch modulation, vowels, and voiced consonants (e.g., 

[b], [z], and [m]). Voiceless and aspirated consonants (e.g., [p], [s], and [h]) require 

timely voice offsets transmitted by short transient glottal abductions. The 

supralaryngeal system comprises the pharyngeal, oral, and nasal cavities whose 

architecture and configuration shape the timbre and sound of the generated acoustic 

signal. The supralaryngeal system, also called the vocal tract, can be constricted at 

different places, for example via lip closure; lip protrusion; tongue tip or body elevation, 

or retraction; and velum elevation. Characteristic sound features of speech vowels are 

generated by articulatory gestures such as jaw lowering, tongue body elevation, and lip 

protrusion. In contrast, distinct acoustic features of consonants are generated by the 

magnitude of obstruction, resulting in bursts due to closure and friction–like noise due 

to fine–tuned constriction. 

During speaking, our articulators are continuously in motion [37]. Our thoughts are 

transformed into coupled articulatory patterns that carry specific melodies and 

rhythms. Prosody and articulation are built upon motor units that act on multiple 

timescales. Their execution happens simultaneously, in an overlapping or subsequent 

manner continuously adapting to ever–changing contexts due to changes in speaking 

rate, co–articulation, or emotional load. Imagine a machine buildup of all necessary 

effectors and degrees of freedom enabling the spatio–temporal dynamics of sound 

production. Why would such a machine only produce scattered sounds but not smooth, 

fluid speech? One aspect is the unsolved problem of prosodic modeling in speech 

synthesis [38]. The other problem is a missing feedback system in current speech 

synthesis programs. Human speech production is closely coupled to its perception. The 

key to fluent speech is a production–perception interaction. The timely sequencing and 

context–dependent binding of speech units are constantly monitored and adjusted by an 

effective sensorimotor integration [39]. Feedback–related control couples not only 

perception and production processes but also internal models that closely relate to the 

sound envelop of a corresponding utterance [40] possibly translating auditory targets 

into motor commands. For this reason, it is necessary to consider the output and input 

systems as well as internal models, interfaces, and monitors to comprehensively 

elucidate the neurobiology of stuttering.  

 

Neural underpinnings of persistent stuttering: From structure to 

function 

Chronic persistent stuttering is highly heterogeneous with regard to symptoms, 

avoidance behavior, applied strategies to overcome disfluencies, and severity. Therefore, 

it is not surprising that imaging studies have produced diverse, puzzling, and sometimes 

contradictory results [41]. It has been suggested that the “core” of the stuttered 
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response may have nothing to do with changes in functional imaging observed at rest, 

during speech, or following therapy [42]. This review will not outline the diverging 

neuroimaging findings of the last 30 years. In fact, we rather have concentrated on 

published findings from diffusion tensor imaging (DTI) in an informative meta–analysis 

to obtain the most robust white matter changes in persistent stuttering currently 

reported. Subsequently, we relate these structural findings to irregular brain function as 

described in two recent activation likelihood estimation (ALE) meta–analyses [43••, 

44••]. To account for the fact that the neural organization of speaking employs recurrent 

networks working at a high temporal resolution, we complement the view by reviewing 

results of those few transcranial magnetic stimulation (TMS) studies available. 

 

DTI — The left dorsal stream and interhemispheric somatosensory 

connections are affected in stuttering 

Fractional anisotropy (FA) is the most frequently reported parameter of DTI. It 

measures the directionality of water molecule mobility on a submillimeter scale. This 

directedness is especially high along the myelinated axons of the white matter, though 

orientation distribution of axons and the degree of myelination are not the only 

influencing factors. Axon diameter distribution and the axonal tissue fraction or density 

affects the magnitude of the FA as well. Moreover, the macroscopic geometrical 

arrangement of white matter bundles such as crossing or fanning fibers comes into play 

especially at the low resolutions of 2–3 mm³ usually employed in human diffusion 

weighted MRI. However, a reduced FA is commonly interpreted as less coherent white 

matter structure [45]. Group comparisons of neuroimaging parameters are not trivial, as 

individually shaped brains need to be aligned to a common space. To render DTI group 

statistics possible, this normalization is most often achieved by the projection of voxels 

with the highest FA in the center of each gyrus or white matter tract to a skeleton that 

represents a common tract–based template for the studied group (tract–based spatial 

statistics, TBSS [46]).  

To date, nine DTI studies have reported whole–brain FA reductions from white matter 

regions in cases with persistent stuttering (Table 1). Sixty widespread loci result from 

the seven studies that examined subjects older than 14. Loci number and variability 

increase when adding studies in children (aged 3 to 12) as well (Fig. 1a). To reduce 

dimensionality, we calculated an informative meta–analysis of the coordinates of 

decreased FA using the ALE method. This method was introduced for the meta–analysis 

of functional MRI activation maps and detects three–dimensional conjunctions of 

coordinates, weighted by sample size [47]. The 60 loci that were included were from 

seven studies which interrogated 121 persons who stutter and 124 fluent speakers aged 

14 to 52 years. Higher FA values in persons who stutter were not considered because 

increases are infrequently reported. The current analysis yielded three clusters of lower 

FA values in persons who stutter (p<0.001; FDR q<0.05; Fig. 1b), located in the left 

hemisphere and in the corpus callosum. 
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Subsequent deterministic DTI tractography served to estimate the course of the white 

matter connections passing through the significant clusters of the current meta–

analysis. The chosen high–quality diffusion tensor image of a representative single 

young healthy subject has an isotropic resolution of 1 mm acquired on an ultra–high–

field MRI scanner using 60 diffusion directions and 4 averages [48, 49]. The first cluster 

was located in the left superior longitudinal fasciculus (SLF III, 344 mm³ centered at  

{–41, –53, 42}; Fig. 1c left) of the inferior parietal lobe (IPL) adjacent to the angular 

gyrus and the posterior division of the supramarginal gyrus (SMG). Reconstructed 

connections terminated in the postcentral gyrus, in the ventral premotor cortex, and in 

the posterior–ventral area of the inferior frontal gyrus (IFG) pars opercularis as part of 

Broca’s area. The second cluster was located below the fundus of the left central sulcus 

in the left SLF but this time also including fibers of the arcuate fasciculus (AF, 280 mm³ 

centered at {–38, –22, 30}; Fig. 1c middle). Connections terminated frontally in the 

ventral motor cortex, in the ventral premotor cortex, and in the posterior part of Broca’s 

area, the IFG pars opercularis; parietal terminations reached the SMG and the angular 

gyrus; and temporal terminations reached the posterior superior temporal gyrus (STG) 

and in the middle temporal gyrus (MTG). The third cluster was placed in the posterior 

midbody of the corpus callosum (240 mm³ centered at {3, –22, 25}; Fig. 1c right) where 

interhemispheric fibers pass through and terminate at the postcentral and precentral 

gyri close to the vertex.  

Our current meta–analysis related the most robust white matter changes in stuttering to 

the left dorsal language stream. This is in line with diffusion tractography studies 

reporting a reduced FA in these streams [50], the absence of streamlines in a large 

portion of the left AF [51], as well as a reduced tractography density of the left SLF III 

[52] in persons who stutter compared to fluent speakers. The four branches of the SLF 

and AF are the prominent fiber bundles mediating the interaction between frontal, 

parietal, and temporal regions [53–55] – also evident in the current tractography 

results. 

Another robust outcome of the current meta–analysis was the reduced FA in the 

interhemispheric fibers of the posterior midbody of the corpus callosum. Our 

deterministic fiber tracking showed that the disrupted callosal connections most likely 

connect sensorimotor regions (Fig. 1c right). The reconstructed pathways link medial 

regions of the post– and precentral gyri, but the more lateral regions that are known to 

control orofacial structures were not involved. Before drawing conclusions on this 

restricted course, one should consider that transcallosal fibers are massively crossed by 

orthogonal association and projection fibers. The DTI tractography algorithm used is 

influenced by these crossing fiber populations, and the reconstruction of all callosal 

connections cannot be easily solved [56]. No diffusion tractography study on stuttering 

has fully reconstructed transcallosal connections. This may be due to these 

methodological difficulties. Hence, the current tractogram does not allow ruling out an 

involvement of fibers terminating in ventral sites of the sensorimotor cortex. 
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The interpretation of the reduced FA values is not trivial. Particularly, the dorsal stream 

is affected by crossing fibers from transcallosal as well as corticospinal and 

corticothalamic connections or other subcortical loops. Whether FA reductions result 

from a weakened intrahemispheric connectivity, a strengthened interhemispheric 

connectivity, or both remains to be shown. Ultra–high–field imaging [48] in combination 

with a sophisticated tracking algorithm [56] might disentangle macro–anatomy–related 

changes. In contrast, FA is not affected by crossing fibers within the corpus callosum; 

fibers run exclusively in one direction, reducing the number of variables that influence 

FA to the degree of myelination, axon diameter distribution, and axon population 

density. The axons with the largest diameter reside in the posterior midbody of the 

corpus callosum [57] in healthy human subjects. From this, it follows that the 

interhemispheric transmission is fastest and most efficient in this area which is capable 

of transmitting reliable, precisely timed neuronal coupling. Hence, it is plausible that the 

frequency–specific interhemispheric correlation structure of spontaneous oscillatory 

neuronal activity is nested in the highest frequency range (32–45 Hz) between the 

sensorimotor cortices compared to the temporal lobes (4–6 Hz) and the lateral parietal 

areas (8–23 Hz) [58]. Large–diameter axon fibers may also determine the degree of 

interhemispheric–correlated fMRI resting–state activity which is again highest in the 

somatosensory cortices [59]. In stuttering, the reduced FA could be related to either 

reduced myelination or altered axonal diameter distribution [60] in the affected area. 

However, these two possibilities could have different outcomes: While reduced 

myelination would cause a deficient interhemispheric interaction, increased density of 

large–diameter axon fibers could result in a strengthened interhemispheric interaction. 

For this reason, it would be desirable to employ advanced methods that better resolve 

the axon diameter distribution “in vivo” [61, 62].  

To summarize, non–invasive “in vivo” DTI provides the most important insights into 

connectivity changes of brain networks in stuttering. Short– and long–range widely 

integrated, parallel, and often redundant neuronal subcircuits supply speech fluency. It 

is likely that connectivity changes of speech–relevant perisylvian brain areas lead to 

disruption of speech functions. Our meta–analysis emphasized the important role of left 

hemisphere cortico–cortical connections, namely the SLF and the AF, and transcallosal 

connections of the posterior midbody for fluent speech production. However, right 

hemisphere connectivity [50, 51, 63••, 64–66] as well as axons of the corticospinal tract 

[50, 63–68], thalamic [64, 67], and cerebellar [50, 63••, 64, 65] connections have also 

been reported to show irregularities in stuttering. Similar to other behavioral and 

cognitive processes, fluent speech production depends on the embedding of various 

areas in the human connectome [69••]. The following section of functional imaging 

changes in stuttering mainly summarizes the altered recruitment of cortical and 

subcortical areas suggesting irregular input and output operations within the speech–

related connectome. 
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Table 1 Diffusion tensor imaging studies published between August 2002 and May 2015  

DTI/DSI – Study Method PWS Ctr Gender Age 

range 

p value Contrasts 

TBSS/VBS        

Sommer et al. [31] VBS 15 15 M/F 18 – 44 0.001 PWS < Ctr 

Watkins et al. [65] TBSS 17 13 M/F 14 – 27 0.0025 PWS < Ctr 

PWS > Ctr 

Chang et al. [64] TBSS 9 12 M 9 – 12 0.001 PWS < Ctr 

PWS > Ctr 

Kell et al. [106] TBSS 13 13 M 18 – 44 0.001 

0.05* 

PWS < Ctr  

PWS > Ctr 

Connally et al. [50] TBSS 29 37 M/F 14 – 45 0.002** PWS < Ctr 

PWS > Ctr 

Cai et al. [66] TBSS 20 18 M/F 18 – 47 0.002** PWS < Ctr 

Cykowski [125] TBSS 13 14 M Nan 0.05* PWS < Ctr 

Civier et al. [67] TBSS 14 14 M/F 19 – 52 0.001 

0.05# 

PWS < Ctr 

PWS < Ctr 

Chang et al. [63••] TBSS 37 40 M/F 3 – 10 0.001 PWS < Ctr 

PWS > Ctr 

 

Fibertracking Affected tracts 

Connally et al. [50] probablistic 29 37 L corticospinal tract, L & R AF 

Chang et al. [52] probablistic 15 14 L SLF, L AF 

Cieslak et al. [51] deterministic, 

DSI 
8 8 

L & R AF, L temporal–striatal tract 

Kronfeld–Duenias 

et al. [68] 

deterministic 15 19 L & R frontal aslant tract, L corticospinal 

tract 

 

VBS = voxel based statistics, TBSS = tract–based spatial statistics, PWS = persons who stutter, Ctr 

= controls, M = male, F = female, SLF = superior longitudinal fasciculus, AF = arcuate fasciciulus 

*Corrected p values; **k ≥ 10; #Corrected p value (one-tailed) 

 

fMRI – Right frontal over–activation characterizes stuttering while 

right parieto–temporal co–activation characterizes greater fluency 

So far, we have only elaborated on structural imaging, focusing particularly on white 

matter integrity and thus the connectome. A lot is already known about the underlying 

function of the connections that come into focus here. Predominantly, left dorsal paths 

subserve linguistic as well as speech motor functions. The AF, the medial part of the 

dorsal stream, connects the IFG pars opercularis to the STG and mediates complex 

syntax [70, 71] and phonology [72•]. Sublexical repetition of speech [73], speech 

planning [72•], and articulation [74] map to the lateral part of the dorsal stream and the 

indirect anterior portion of the SLF connecting the precentral gyrus to the SMG and the 
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STG [55]. Articulatory phonetic skills rely on an effective auditory–motor integration 

partly mediated by the recurrent networks of these dorsal streams [53, 75••, 76]. 

The functional anatomy underlying stuttering has mostly been studied with positron 

emission tomography [77–82] and functional magnetic resonance imaging [83–87]. Two 

activation likelihood meta–analyses on stuttering were recently published [43••, 44••]. 

The meta–analyses considered 23 functional imaging studies published over the past 30 

years; these included 213 [44••], and 222 [43••] persons who stutter and 186 [44••], 

and 188 [43••] control subjects, and Fig. 1d, e summarizes their outcome. 

These meta–analyses highlight the neuro–functional hallmark signs of persistent chronic 

stuttering. What is striking is the consistent over–activation of the frontal motor areas of 

the right hemisphere encompassing the primary motor cortex, the premotor cortex, the 

pre–supplementary motor area (pre–SMA), the supplementary motor area (SMA), the 

IFG, the insula, and the frontal and the rolandic operculum [43••, 44••] (Fig. 1d). An 

opposite pattern of cortical activity emerges in the left hemisphere. Here, frontal regions 

show no over–activation but instead a reduced activation of the M1 larynx area 

combined with reduced activity in the planum temporale and the middle temporal 

gyrus. The left cerebellar vermis and the left red nucleus also display robust imaging 

changes that emerge from a comparison of speech–related hemodynamic differences 

between persons who stutter and fluent speakers. The only region that shows a higher 

activation is the right parietal lobe. Stronger activations are located in the anterior 

intraparietal sulcus and in the IPL PFcm. The remarkable right hemisphere over–

activation in stuttering suggests an imbalanced hemispheric lateralization [28, 29]. It is 

not yet clear whether this imbalance causes stuttering, whether it is the result of 

impeded left fronto–parieto–temporal signal processes, or if it reflects compensatory 

mechanisms [31, 78, 84, 88–90].  

Every investigation of stuttering tries to find out how fluency of speech production can 

be attained. Therefore, imaging contrasts that relate brain activations to greater fluency 

in persons who stutter are of special interest. In the right hemisphere, such contrasts 

show a shift of activation patterns to parietal areas spanning several loci in the IPL, 

heavy involvement of the temporal lobe (Heschl’s gyrus, planum temporale, and STG) 

and the cerebellum. Greater fluency is associated with the recruitment of superior 

temporal and inferior parietal regions in both hemispheres, whereas severe stuttering is 

associated with dysfunction of a distributed network of classical motor areas engaging 

sensorimotor regions amongst the central sulcus including the left and right 

somatosensory cortex, the left larynx motor cortex, extended regions of the IFG 

including the left pars opercularis, the left pars triangularis and right pars orbitalis, 

bilateral SMA, and the cerebellum (Fig. 1e). Fluency–related activations in unimodal and 

heteromodal association areas of the parietal and right temporal lobe, the right pars 

opercularis, and the posterior ventral part of right Broca’s region strongly suggest an 

important role of internal models and feedforward– and feedback– relevant control 

mechanisms during speaking. In fluent speakers, lateralization of speech production 

seems to start in the left temporal and parietal regions [91], namely the somatosensory 
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cortex, the auditor cortex, and the planum temporale which might be the source of the 

early sound feature–related cortical entrainment observed in left Broca’s area and the 

left premotor cortex even ahead of external speech production [40]. Equivalent studies 

in stuttering are missing, leaving the question open as to whether right lateralization 

already occurs in the planning stage. However, one TMS study has indeed observed 

missing lateralization at an early stage. 

 
Figure 1 DTI (a–c) and fMRI (d, e) imaging changes associated with persistent 

chronic stuttering (a) Loci of reduced FA as reported in multiple studies were shown 

on a transparent isosurface of the MNI brain. Red spheres indicate foci from studies of 

persons aged 14 to 52 who stutter, and orange spheres indicate loci from children aged 
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3 to 10 who stutter [63]. (b) Blue illustrates clusters of reduced FA in persistent 

stuttering as derived from a meta–analysis using the activation likelihood estimation 

(ALE) method (p<0.001; FDR q<0.05). (c) Diffusion tractography derived from full brain 

deterministic fiber tracking [125] in an ultra–high–resolution DTI data set of a single 

subject [49]. Tracts are shown that cross a sphere with a diameter of 5 mm surrounding 

the MNI coordinates of the meta–analysis after a linear registration to the subject’s 

native space. (d) Trait stuttering is captured by contrasts between persons who stutter 

and fluent speakers. Therefore, it reveals brain areas that are either more active (red 

and orange dots) or less active (blue and light blue dots) in persons who stutter 

compared to fluent speakers. Right hemisphere over–activations reside in the precentral 

gyrus, lip motor cortex, rolandic operculum, insula, IFG pars opercularis, IFG pars 

orbitalis, pre–SMA, middle frontal gyrus, IPL and SPL. Left hemisphere over–activations 

reside in the SMA and in the SPL. Left hemisphere under–activations are located in the 

left larynx motor cortex, left MTG, left superior temporal sulcus, cerebellar vermis, and 

the red nucleus [43••, 44••]. Trait stuttering contrasts enlighten brain abnormalities 

that cause stuttering or that compensate for it. (e) Supplementary, state stuttering 

analyses capture within–group contrasts which enlighten areas in the brain that are 

more active when fluency is enhanced (green and light green dots) compared to areas 

that are more active when fluency is worse (purple and violet dots). Disfluency related 

activations reside in Broca’s area in the right IFG pars orbitalis, the left IFG pars 

opercularis and pars triangularis, bilaterally in the SMA, the somatosensory cortex, and 

the cerebellum, and in the left precuneus and the left globus pallidus. Fluency–related 

activations reside mostly in the right hemisphere, namely the Heschl gurus, the planum 

temporale, the posterior STG, MTG, SMG, IPL, IFG pars opercularis and the MFG. Left 

hemisphere correlates are in the IPL [43••, 44••]. State stuttering contrasts might reveal 

causes of stuttering events, attempts to compensate for stuttering, or the correlates of 

stuttering as a motor act [44••]. 

 

TMS indicates a restricted range of neuronal dynamics at the level of 

the primary motor cortex in stuttering  

Both DTI and fMRI elucidate the spatial distribution of large–scale neuronal dysfunction 

in persistent stuttering, but its physiological basis remains unclear. Nonlinear neuronal 

dynamics consist of excitatory and inhibitory activation, but these cannot be 

discriminated with in vivo neuroimaging. The only non–invasive technique that allows 

to measure excitatory and inhibitory brain function in healthy humans is TMS [92]. A 

TMS pulse induces currents in conductive tissue such as the human cortex. When 

applied to the motor cortex, neurons are stimulated and evoke motor potentials (MEP) 

serving as a readout measure of excitability dynamics of local circuits. State–dependent 

excitability regulation is quantified by comparing baseline MEP amplitudes with 

amplitudes resulting under test conditions. Fortunately, the primary motor cortex is the 

final overarching cortical output region [93] that generates speech behavior. Almost all 
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dysfunctional computations accumulate at this site, making it an attractive target for 

stuttering research even in the nonspeech domain [94–96]. 

Paired–pulse TMS protocols are suitable for testing intracortical inhibitory and 

excitatory circuits [97]. Compared to single–pulse responses, MEP amplitudes are 

reliably reduced when a subthreshold pulse is followed by a superthreshold pulse with a 

short interstimulus interval of 2 to 3 ms. This inhibition is likely caused by excited 

GABAergic interneurons [98, 99]. In stuttering, ipsilateral and contralateral tongue 

representations in the left and right hemisphere showed a delayed inhibition of 

intracortical circuits [100]. The opposite phenomenon, intracortical facilitation, can be 

generated when applying paired pulses with longer interstimulus intervals of 10 to 15 

ms. In this case, MEP amplitudes are amplified driven by the sensory input on excitatory 

motor circuits [101••]. In stuttering, this facilitation is remarkably reduced in the 

primary motor tongue area of both hemispheres [100]. Thus, intracortical excitability 

regulation is hampered in an area that controls one of the main effectors of articulation. 

The combined reductions of intracortical inhibition and facilitation indicate a restricted 

range of neuronal dynamics at rest.  

Although orofacial midline muscles such as the tongue are bilaterally innervated from 

corticobulbar projections of both hemispheres, speech motor plans are primarily 

encoded in the left hemisphere motor cortex. However, this functional asymmetry 

towards the left orofacial motor cortex is missing in stuttering [102••], suggesting that a 

lack of a speech–motor–planning–induced facilitation of the left orofacial motor cortex is 

a major pathophysiological cause of disfluent speech production. This lack might be 

related to the under–activation of this area [32] as frequently reported in neuroimaging 

studies [44••] implicating a fallible transmission or integration of speech–planning–

related feedforward signals [20, 33, 103•]. Conversely, given the regularly reported 

over–activation of the right primary motor cortex in stuttering [77, 85, 87, 104–106], 

one might expect to see a speech–planning–induced facilitation of this site, but this 

pattern was not noted [102••]. 

The right hemisphere is known to play a dominant role in prosody perception and 

production [107–110]. One theory on stuttering suggests a misalignment of segmental 

(phonemic) and suprasegmental (prosodic) phonetic features [111]. While consonantal 

voice onsets and offsets act on a fast temporal scale with a resolution of 20 to 50 ms 

[112], features such as rhythm, stress, and melody patterns span the temporal frame of a 

whole utterance. The underlying auditory–to–articulatory alignment requires a precise 

temporal coupling at multiple timescales. Fast auditory signals are preferentially 

integrated in the left auditory cortex, while slow auditory signals are preferentially 

integrated in the right auditory cortex [113]. Supposing the sensorimotor control of 

slower suprasegmental features to be lateralized to the right hemisphere, and slow 

auditory targets such as melody and stress mainly arise from the right frontal motor 

regions. This would suggest speech–planning–induced facilitation of the right larynx 

area rather than the right tongue area. Especially prosodic features are regulated at the 
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laryngeal level, and notably the right primary motor larynx area shows increased 

hemodynamic responses in persons who stutter [44••]. 

 

Conclusion and Outlook 

Speech is regulated by co–activated neuronal circuits of large–scale dynamic networks 

[114] and their dysfunction results in persistent stuttering. Reduced speech–related 

dynamics in the left hemisphere and augmented right hemisphere involvement are 

cardinal neuronal signs possibly caused by imbalanced wiring. This review lacks a 

detailed description of subcortical contributions to stuttering behavior, although there is 

converging evidence for cerebellar, thalamic, as well as basal ganglia irregularities [23, 

50, 65, 86, 115–118]. We attach importance to the cortical dynamics within the speech–

related connectome as a result of new meta–analyses offering a condensed view of 

imaging changes associated with chronic persistent stuttering. This is by no means 

intended to scale down the importance of neuroimaging findings derived from every 

individual study. Quite the contrary is true; it elucidates that current methods are not 

sensitive enough to fully disentangle the brain dynamics of stuttering. However, our 

review provides a focused view on the brain deficits of persons affected with persistent 

stuttering, which might open the gate for a rethinking of how best to proceed. Future 

studies employing TMS, deep brain stimulation [118], sophisticated neuroimaging 

techniques [119, 120], and selected animal studies [121, 122•, 123•, 124•] may advance 

mechanistic models [75] and may eventually guide success in therapeutic efforts aiming 

to facilitate fluency. The following questions are of particular interest: What are the 

interhemispheric interactions that allow fluent speech production and how do they 

change in stuttering? Which brain dynamics characterize single acts of stuttering and 

would it be possible to interfere with those sudden interruptions of the integrity of the 

speech motor network? Is it possible to employ special hearing aids to facilitate the 

maturation of temporo–parieto–frontal interactions necessary for stable sensorimotor 

integration? Which neuromodulatory interventions could strengthen the left fronto–

parieto–temporal network to overcome the problem that only fluency–enhancing 

techniques such as chorus speaking or speaking to the rhythm of a metronome 

unburden the computational load of the frontal motor network [116] and bypass the 

IFG, precentral gyrus, insula, putamen, nucleus caudatus, and globus pallidus? 
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