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Abstract: This paper discusses the use of Proper Orthogonal Decomposition (POD) for the
model reduction of particle processes in fluid flow described by Population Balance Equations
(PBEs). This class of processes is very important for chemical engineering. As detailed models
of such processes turn out to be very complicated, POD is an attractive way to obtain reduced
models of low order. This paper reports on the automatization of the mentioned method. An
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to linear models, but is extendable to nonlinear models, as well.
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1. INTRODUCTION

Particle processes are very important for chemical and
pharmaceutical industries. The vast majority of products
in these industries is produced in particulate form (Win-
termantel (1999)). Main examples of such processes are
crystallization, granulation, and polymerization.

Particle processes typically consist of the actual dispersed
phase and a fluid phase, which stands in exchange with the
dispersed phase. Essential processes within the dispersed
phase are formation of particles (nucleation), their division
into smaller particles (breakage) and union of particles
into larger units (aggregation). The dispersed phase with a
large number of particles can be described by population
balance equations (Ramkrishna (2000)). Particulate sys-
tems in general form can be expressed by the following set
of model equations (see John et al. (2009), Jürgen Koch

(2008), Öncül et al. (2006)):

• population balance of the dispersed phase
∂n

∂t
+

∂

∂Lj
(Gjn)

︸ ︷︷ ︸
growth

+
∂

∂xk
(νkn+ jnk )

︸ ︷︷ ︸
convection/diffusion

=

∫

ΩL

hbrdVL

︸ ︷︷ ︸
breakage

+

∫

ΩL

haggdVL

︸ ︷︷ ︸
agglomeration

(1)

In Eq. (1) n is the number density function of the
particle population. This function depends on time,
and in addition on external xk and internal Lj coordi-
nates which usually describe a geometry configuration
and some properties of a system, respectively. The
function Gk denotes the growth rate of particles in

the direction of internal coordinate Lj . νk is the fluid
velocity in the direction of internal coordinate Lj and

fk is the diffusion flow in the direction of external
coordinate xk. The nonlinear functions hbr and hagg

denote breakage and agglomeration of particles re-
spectively.

• mass and energy balances of the continuous phase

∂(ρsl)

∂t
+

∂

∂xk
(ρνksl + jslk)

︸ ︷︷ ︸
convection/diffusion

=

∫

ΩL

Js
l dVL

︸ ︷︷ ︸
exchange with dispersed phase

+ σL(s)︸ ︷︷ ︸
chemical reaction

(2)

In Eq. (2) ρ denotes a mass density of the fluid phase.
sl describes a specific state (internal energy, mass
fraction). jslk denotes a diffusion flow and Js

l is an
exchange with the dispersed phase.

• momentum balances of the continuous phase

∂(ρνm)

∂t
+

∂

∂xk
(ρνkνm + πmk)

︸ ︷︷ ︸
convection/diffusion

=

∫

ΩL

Jν
mdVL

︸ ︷︷ ︸
exchange with dispersed phase

+ρgm
(3)

where πmk is a stress tensor.

The numerical solution of such equation system (1)-(3)
with several internal and external coordinates is hardly
possible in real time. To enable model-based process design
and process control of systems with particle populations
in fluid flow, there is a need for reduced models. The
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reduced models should have much lower system order than
the reference models. Their numerical solutions should be
much easier and faster. Also the reduced models should
be able to reproduce the system behavior with sufficient
accuracy in the relevant window of operation conditions
and in a relevant range of system parameters.

In this paper Proper Orthogonal Decomposition is used
for the development of an automatic procedure for model
reduction and is applied to the linear model of a flu-
idized crystallizer. This method has been successfully used
during the last years for the nonlinear model reduction
of population balance systems like crystallizers (Krasnyk
and Mangold (2010), Mangold et al. (2014a)), granulators
(Mangold (2012)).

The basic idea of this method is to approximate the model
solution by a linear combination of time independent basis
functions weighted by time dependent coefficients. The
basis functions are constructed from numerical simulation
results of a detailed reference model. The reduced model
consists of ordinary differential equations in time. The
reference model will be presented in the next section. The
model reduction method is discussed in Section 3. Section
4 describes technical details of the developed tool for
automatic model reduction which is based on the modeling
and simulation environment ProMoT/Diana.

2. LINEAR MODEL OF A FLUIDIZED BED
CRYSTALLIZER

2.1 Reference Model

Fluidized bed crystallizers are an innovative method to
continuously produce crystals with high purity (Tung et al.
(2009)). In the following, the model of the fluidized crystal-
lizer sketched in Fig. 1 will be considered. The crystallizer
has the shape of a cylinder whose diameter narrows to-
wards the crystallizer’s bottom. An input volume flow of
the fluid comes from outside the model and enters the
bottom of the crystallizer. In the crystallizer, the fluid
flow goes from bottom to top. Small particles are dragged
upwards with the fluid. Larger particles sink to the bottom
due to gravity.

The reference model for this process is a variant of the
models described in Palis et al. (2013), Mangold et al.
(2014b). The main model assumptions are:

• Spatial gradients perpendicular to the external coor-
dinate x in the direction of the fluid flow are negligi-
ble.

• The fluid flow is a plug flow with flow velocity vf .
• The number of particles is sufficiently high that the
particle phase may be described by a particle popu-
lation with a number size density n(x, L, t) denoting
the number of particles with size L per volume at a
point x in space.

• The gravity force, the buoyancy force, and the drag
force acting on a partcile are in equilibrium.

The population balance equation of the system reads:

Fig. 1. Scheme of a fluidized crystallizer

A(x)
∂n

∂t

∣∣∣∣
x,L,t

= − ∂

∂x
(A(x)vp(x, L)n(x, L, t))

+D
∂

∂x
(A(x)

∂n

∂x

∣∣∣∣
x,L,t

)

(0 < x < H, 0 < L, t > 0)

(4)

with boundary conditions

vp(0, L)n(0, L, t)−D
∂n

∂x

∣∣∣∣
0,L,t

= 0 (5)

∂n

∂x

∣∣∣∣
H,L,t

= 0 (6)

and initial conditions

n(x, L, 0) = n0(x, L) (7)

The first term on the right-hand side of (4) is the advective
transport of particles with velocity vp; A(x) denotes the
cross-sectional area of the crystallizer. An expression for
vp follows from the assumption of an equilibrium of forces

0 = FG + FB + FD (8)

where FG = −π
6L

3ρP g is the gravity force, FB = π
6L

3ρF g

is the buoyancy force, and FD = (vP−vF )2

2 ρF cW
π
4L

2 is the
drag force. One obtains from (8)

vp = vf −

√
4

3

Lg

cW

ρP − ρF
ρF

(9)

The fluid flow velocity vf is calculated from

vf =
V̇

A(x)
(10)

where V̇ is the volume flow of the fluid.
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For the drag coefficient cW , the correlation

cW =
AcW

Re
+

BcW√
Re

+ CcW (11)

with Re =
vfd
ν is used [Palis et al. (2013)], where AcW ,

BcW , CcW are empirical constant parameters.

The second term on the right-hand side of (4) stands for
particle transport by dispersion.

2.2 Discretization

In order to apply a numerical method to solve the reference
system, it is transformed into a spatially discretized form
using the method of lines. For the numerical solution of the
reference system, a finite volume scheme is applied. The
external coordinate x and the internal coordinate L are
discretized. An equidistant grid is used in x direction, and
a logarithmic distribution of grid points in L direction.
Gradients in x direction are approximated by central
differences because the particle velocity vp may change its
sign along the x coordinate and a discretization scheme
is needed that provides numerical stability under these
circumstances.

After discretization a set of ordinary differential equations
is obtained for approximation of the population balance
equations (4), which may be written as

dn(t)

dt
= Lnn(t), (12)

where n(t) is the discretized state vector, and Ln denotes
a system matrix of the reference model.

3. MODEL REDUCTION

3.1 POD method

The Proper Orthogonal Decomposition Method (Kunisch
and Volkwein (2003), H. M. Park (1996), Sirovich (1987))
can be subdivided roughly into two steps. The first step,
the offline phase, includes preliminary calculations, like the
solution of the reference model and the generation of the
reduced model equations. Depending on the complexity
of the reference model the offline phase can be extremely
computationally intensive. But this investment pays off
in the second fast and cheap step, the online phase. In
the online phase only a system of ordinary differential
equations of very low order has to be solved.

As a starting point, the detailed reference model has to be
solved numerically. Snapshots for each state of the model
n(t1), n(t2), ... are collected and arranged as a matrix
N = (n(t1), n(t2), ...).

A reduced basis for the snapshot vectors is constructed
from the singular value decomposition

N = UΣV T (13)

The new basis vectors are taken as

ψn
i = Ui, i = 1, ..., Nn, (14)

where Ui denotes the i th column of U , and Nn is the
dimension of the reduced basis and correspondingly the
order of the resulting reduced model.

The state vector n(t) can be approximated by the following
expression:

n(t) ≈ ψnφn(t) (15)

where ψn = (ψn
1 , ..., ψ

n
Nn), and φn(t) is the coefficient

vector of the reduced basis; φn(t) will become the state
vector of the reduced model.

In order to obtain equations for φn(t), the approximation
for the state vector (15) is inserted into the discretized
population balance equation (12). To make the projection
of the residuals on the reduced basis vanish, Galerkin’s
method of weighted residuals is applied, which leads to

∂φn(t)

∂t
= ψnTLnψ

n

︸ ︷︷ ︸
=:L′

φn(t) (16)

The matrix L′ on the right-hand side of (16) has to be
evaluated only once for a fixed reduced basis, because it is
not depending on the reduced state vector φn(t). During
the online phase of POD, L′ is just a constant matrix.

3.2 Simulation Results

Simulation of the reference model was performed to obtain
snapshots for model reduction. Following discretization
grid was applied: 160 points in the direction of external
coordinate (position along the crystallizer) and 80 point in
the direction of internal coordinate (size of particles). In
total, we obtain a system with 12800 ordinary differential
equations. The snapshots are solutions of the detailed
model on a equidistant time grid for t = 0..1000 seconds
with interval of 10 seconds.

Figures 2 and 3 show a dynamic behavior of the reference
model in the upper and in the lower parts of the crystallizer
respectively. Initially, the particle population is located
in the upper part of the crystallizer. Large particles sink
faster to the ground than small particles. Therefore, the
large particles in the population in Fig. 2 vanish first, while
small particles are present until the end of the simulation.
The opposite situation is found at the point shown in Fig.
3, which is close to, but not exactly at the bottom. Initially,
this part of the crystallizer is free of particles. After some
time, large particles appear, and disappear again, because
they sink further to the ground. Smaller particles arrive at
a later time, as their sinking velocity is smaller.
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Fig. 2. Dynamic behavior of particles at the top of the
crystallizer

The reduced model consist of 24 ordinary differential
equations, compared to 12800 differential equations of the
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reference model. The reduced model and the reference
model agree very well, as is illustrated by Figure 4. The
Figure shows the relative total error ||n(t) − n̂||/||n(t)||,
where n̂(t) is the approximation of the reduced model.
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4. AUTOMATIC PROCEDURE FOR MODEL
REDUCTION

An automatic procedure for the reduction of linear models
is implemented in the modeling and simulation environ-
ment ProMoT/Diana.

ProMoT is a modeling tool written in Common Lisp with
a graphical user interface written in Java (Ginkel et al.
(2003), Mirschel et al. (2009)). ProMoT supports the
structured implementation of dynamic models described
by systems of nonlinear implicit differential algebraic equa-
tions. ProMoT itself is a purely symbolic modeling tool
and hence has no restriction with respect to numerical
properties of the models. On the ProMoT level the idea
is to keep the model formulation separate from numerical
requirements. ProMoT provides a general modeling lan-
guage and outputs to different numerical solution tools.

Diana (Krasnyk (2009)) is a simulation tool for the so-
lution and nonlinear analysis of differential algebraic sys-
tems, as they typically result from first principle modeling
of chemical engineering systems and biochemical systems.
The numerical core of Diana is written in C++ in order
to ensure fast and efficient numerical solutions. Model
equations also have to be implemented in C++ as an
equation set object (ESO) using CAPE-OPEN standard
interfaces. Usually, the model implementation is done au-
tomatically by ProMoT. For the numerical analysis, the
modeler accesses Diana via scripts written in the scripting
language Python. The advantage is that Python is more
user friendly than C++ code.

The developed automatic tool for model reduction is a
part of the ProMoT project and hence is written in
Common Lisp. One uses Diana simulation tool only as
an intermediate step for the numerical solution of the
reference model. The main parts of the tool so far are
the snapshots reader, the generator of basis functions,
the extractor of the system matrix of the reference model
and the generator of reduced model. The structure of the
automatic tool for model reduction is sketched in Fig. 5.

Fig. 5. Structure of automatic tool for model reduction

4.1 Snapshots Reader

The automatic procedure for model reduction begins with
the creation of the snapshots reader’s instance. The user
has to provide the name of a Python script which con-
tains all information about simulation conditions. Via this
script, the user has to define model parameter values,
a time range, and an output time interval for collecting
snapshots to which the POD method is to be applied.

After reading of all necessary information, the snapshots
reader runs the C++ code generator for Diana and trans-
lates the reference model for which we want to produce
a reduced model. Then the snapshots reader runs Diana
to generate snapshots and writes them into an output
file. The last step of this part is to read the snapshots
from the output file into the ProMoT environment and to
arrange them into a matrix N = (n(t1), n(t2), ...), where
n(t1), n(t2), ... are the states of the reference model.
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4. AUTOMATIC PROCEDURE FOR MODEL
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An automatic procedure for the reduction of linear models
is implemented in the modeling and simulation environ-
ment ProMoT/Diana.

ProMoT is a modeling tool written in Common Lisp with
a graphical user interface written in Java (Ginkel et al.
(2003), Mirschel et al. (2009)). ProMoT supports the
structured implementation of dynamic models described
by systems of nonlinear implicit differential algebraic equa-
tions. ProMoT itself is a purely symbolic modeling tool
and hence has no restriction with respect to numerical
properties of the models. On the ProMoT level the idea
is to keep the model formulation separate from numerical
requirements. ProMoT provides a general modeling lan-
guage and outputs to different numerical solution tools.

Diana (Krasnyk (2009)) is a simulation tool for the so-
lution and nonlinear analysis of differential algebraic sys-
tems, as they typically result from first principle modeling
of chemical engineering systems and biochemical systems.
The numerical core of Diana is written in C++ in order
to ensure fast and efficient numerical solutions. Model
equations also have to be implemented in C++ as an
equation set object (ESO) using CAPE-OPEN standard
interfaces. Usually, the model implementation is done au-
tomatically by ProMoT. For the numerical analysis, the
modeler accesses Diana via scripts written in the scripting
language Python. The advantage is that Python is more
user friendly than C++ code.

The developed automatic tool for model reduction is a
part of the ProMoT project and hence is written in
Common Lisp. One uses Diana simulation tool only as
an intermediate step for the numerical solution of the
reference model. The main parts of the tool so far are
the snapshots reader, the generator of basis functions,
the extractor of the system matrix of the reference model
and the generator of reduced model. The structure of the
automatic tool for model reduction is sketched in Fig. 5.

Fig. 5. Structure of automatic tool for model reduction

4.1 Snapshots Reader

The automatic procedure for model reduction begins with
the creation of the snapshots reader’s instance. The user
has to provide the name of a Python script which con-
tains all information about simulation conditions. Via this
script, the user has to define model parameter values,
a time range, and an output time interval for collecting
snapshots to which the POD method is to be applied.

After reading of all necessary information, the snapshots
reader runs the C++ code generator for Diana and trans-
lates the reference model for which we want to produce
a reduced model. Then the snapshots reader runs Diana
to generate snapshots and writes them into an output
file. The last step of this part is to read the snapshots
from the output file into the ProMoT environment and to
arrange them into a matrix N = (n(t1), n(t2), ...), where
n(t1), n(t2), ... are the states of the reference model.
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4.2 Extractor of System Matrix of Reference Model

When the work of the snapshots reader is finished, the
automatic tool starts building the system matrix of the
detailed reference model. For these purposes the instance
of system matrix extractor has been developed. The main
idea in extracting the system matrix is a search of coef-
ficients in the ordinary differential equations which corre-
spond to the desired state variables of the reference model.
The general form of an element of the system matrix
of a linear autonomous system can be expressed by the
following equation:

Ln i,j =
∂ODEi

∂sj
(17)

In Eq. (17) Ln i,j is an element of the system matrix at i th
row and at j th column. ODEi is the right-hand side of the
ordinary differential equation corresponding to i th state
variable, sj is an symbolic name of j th state variable.

In ProMoT all modeling data is stored in symbolic form.
To preserve generality and to preserve the dependency of
the reduced model on the model parameters, the system
matrix has to keep the elements in a symbolic form.
For this purpose the computer algebra system Maxima
is used. Since it is written in Common Lisp and can
be called directly from Lisp code, Maxima is embedded
into the ProMoT core. For convenience of use of the
computer algebra system a program interface between
ProMoT and Maxima has been developed. The interface
allows to convert internal data structures of ProMoT into
corresponding Maxima representation and vice versa.

4.3 Generator of Basis Functions

In order to generate the equations of reduced model, it
is necessary to calculate the reduced basis of model. A
complicated mathematical apparatus is needed to accom-
plish this, in particular to calculate singular value de-
composition of snapshots matrix. For these purposes it
was decided to use a specialized software as an external
tool. GNU Octave is a high-level interpreted language,
primarily intended for numerical computations. To use
this numerical tool externally a program interface between
ProMoT and Octave has been developed. The interface
allows to run Octave in interactive mode, send and receive
data, and to apply all the built-in mathematical functions
of Octave.

4.4 Generator of Reduced Model

After completion of the above parts it is possible to calcu-
late the system matrix L′ of the reduced model from Eq.
(16). The generator of the reduced model creates a new
modeling file into which it writes the set of ordinary dif-
ferential equations, which can be expressed in the following
form:

dφn
i (t)

dt
=

Nn∑
j=1

L′
i,jφ

n
j (t) (18)

In Eq. (18) φn
j is a coefficient of the reduced basis and Nn

denotes the number of basis functions.

For reconstruction of actual states of the given model
n(t1), n(t2), ... one has to evaluate Eq. (15).

5. OUTLOOK

The automatic tool for reduction of linear models has
been developed by using proper orthogonal decomposition
(POD). The implemented approach has to be extended for
nonlinear systems. For these purposes, automatic splitting
of the ride-hand sides of differential equations into linear
and nonlinear terms has to be done.

There are various suggestions in literature on how to
deal with nonlinear terms in the context of POD model
reduction, whose key idea to approximate also the non-
liniarities by basis vectors constructed from snapshots.
The most populare ones are the empirical interpolation
method (Grepl et al. (2007)) and best-point interpolation
method (Nguyen et al. (2008)). These methods have to
be integrated into the existing environment for automatic
model reduction.
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