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Abstract: Synthetic biology as a new discipline is driven by progresses made in the understand-
ing of microbiological processes and its mathematical description by system biological models.
The topic of synthetic biology is a systematic construction of artificial biological systems with
tailored properties. The subject of this work is to develop an artificial cell model consisting
of functional biological devices like genome, transcriptome, proteome, metabolome, with a
structure that guarantees a synchronization of the devices in a robust way. The mathematical
model shown in this work involves the metabolism, the polymerization subsystem and the
membrane. The model structure enables an oscillatory behavior of the system with a stable
limit cycle. Also the system provides a robust self-replicating state and a biological robustness
with respect to parameter uncertainties.
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1. INTRODUCTION

Enormous progresses have been made in the fields of mi-
crobiology and systems biology. The mathematical mod-
eling of biological systems is becoming increasingly im-
portant for a deepened understanding of intracellular pro-
cesses. Synthetic biology as a new biological field aims at
the systematic construction of artificial biological systems
with tailored properties. Two main working directions can
be identified in synthetic biology: the top-down and the
bottom-up approach. The top down approach starts from
an existing micro-organism whose genome is manipulated
and reduced intentionally based on acquired knowledge
and hoping to achieve a desired property(Keasling, 2012;
Jaschke et al., 2012). In contrast, the bottom up approach
starts on the molecular level from functional biological de-
vices like genome, transcriptome, proteome, metabolome
and attempts to assemble these biological parts into an ar-
tificial cell (Stano, 2011; Pohorille and Deamer, 2002). The
idea behind the bottom-up approach is to obtain better
understanding and improved predictability by building up
something from zero. In reality, the bottom-up approach
still has to solve many problems before reaching the final
goal of a self-reproducing artificial cell.

In spite of existing mathematical models, which have been
developed for describing artificial cells (Gánti, 2003; Novák
and Tyson, 2008), there is a need for further theoretical
analysis and mathematical modeling for a deepened in-
sights into functional device interactions. Various qual-
itative artificial cell models have been proposed during
the last decades (Gánti, 2003; Novák and Tyson, 2008;

Rasmussen et al., 2003). As pointed out by Rasmussen
et al. most of these models may be structured into three
functional devices: a container forming the boundary of
the cell, a metabolism generating the building blocks
of the cell, and a programming part containing genetic
information and regulating the processes inside the cell
(Rasmussen et al., 2003).

The issue of this work is the definition of a structure that
masters the synchronization of those three devices. The
synchronization problem includes the question of robust
functional dependence of the devices in the sense that the
material in each of the devices has at least doubled at
the end of the cell cycle. In such a case we can assume
that self-replication of the artificial cell is achieved. The
demand for the biological robustness of the model, i.e. a
certain independence of the qualitative system behavior
on the kinetic parameter values, is justified by the aim to
being able to deal with perturbations.

The dependence of the functional devices is well exem-
plified by the Chemoton model described by T. Gánti
(Gánti, 2003). The Chemoton comprises three functional
self-reproducing devices. The autocatalytic chemical cycle
can be seen as the metabolic cycle and produces precursor
molecules needed for reproducing the other two devices.
One precursor is consumed as a monomer by the template
polymerization subsystem which serves as an information
carrier. The second precursor reacts with a by-product of
the polymerization cycle into a membrane molecule. The
membrane represents a container and grows proportional
to the production of the polymerization by-product un-
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til the volume of the Chemoton is duplicated. Then the
division of the protocell occurs spontaneously.

It was shown by the simulation studies of Csendes (1984)
that the Chemoton model displays self-sustained oscilla-
tions. This behavior could be verified by our own simula-
tions (data not shown). However, if we wanted to reduce
the complexity of the model structure these oscillations
were not necessarily synchronized with cell growth, i.e. the
time needed to double the total amount of material in the
cell is not always an integer multiple of the oscillation’s
period.

The task of this work is to find a model structure with
less complexity in comparison to the Chemoton and with
an inherent mechanism guaranteeing the synchronization
of container, metabolism and program for a wide range
of kinetic parameter values. The minimal cascade model
for the mitotic oscillator described by Goldbeter (1991)
(Fig.1) provides such a model structure, which we have
used as a starting point for the design of a new artificial
cell model.

Fig. 1. Minimal cascade model for mitotic oscillations.
(Goldbeter, 1991)

2. ARTIFICIAL CELL MODEL

By combining the functional devices as proposed in the
Chemoton model with the less complex structure of Gold-
beter’s minimal cascade we developed a model of a self-
reproducible artificial cell. Fig.2 shows a scheme of this
model representing the mother cell (S1) and the daughter
cell (S2).

Three main functional devices form the mother cell: the
metabolism (A), the polymerization subsystem (Pt, P )
and the membrane (M∗,M). The activity of metabolism A
is induced by the polymer template Pt with a constant rate
vA and hence slows down towards the end of the polymer
replication when there is hardly Pt in the cell. A catalyzes
the polymer replication until Pt is completely consumed.
The replicated polymer splits into the polymer template
Pt and the new polymer Pt,d. During the polymerization
the new growing polymer P catalyzes the conversion of
catalytically inactive membrane building blocks M∗ into
the active state M . M triggers the transformation of
A, P and M to daughter cell components Ad, Pt,d, M

∗
d

with constant degradation rates vdA, vdP and vdM . This
initiates the cell division in our model.

The proposed structure establishes a close interaction be-
tween the activation of the metabolism and the replication

Fig. 2. Artificial cell model based on Goldbeter’s minimal
cascade including the functional devices of Gánti’s
Chemoton. System S1 represents the mother cell
including the metabolism A, the polymer template
Pt, the new growing polymer P , catalytically inactive
membrane building blocksM∗ and catalytically active
membrane building blocks M . System S2 represents
the daughter cell arising from degraded mother cell
components. The daughter cell contains initially the
metabolism component Ad, the polymer template Pt,d

and the membrane composed of inactive membrane
building blocks M∗

d . Arrows symbolize catalysis (→)
and induction (⇢).

of the polymer. This interaction forces a synchroniza-
tion between metabolism and polymerization. In addition,
the membrane subsystem serves as a self-replicating unit
(Fig.3). First an inactive membrane building block be-
comes active catalyzed by a polymer. Then a second active
membrane building block binds the first one and induces
its duplication. After the copying process the inducing M
molecule is free and able to induce another replication
cycle. The newly generated M molecules become inactive
during the separation of the daughter cell.

Fig. 3. Self-replication of membrane building blocks.

In the first instance, we assume that newly generated
membrane building blocks M remain inside the mother
cell, so the volume changes of the mother cell are neglected.

2.1 Model equations

The proposed model system possesses three different op-
eration modes, which may be represented as a Petri net
with three nodes, as illustrated in Fig.4.

First, we assume that the total quantity of the polymer
template Pt and the newly synthesized polymer P is Pt +
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Fig. 4. Representation of the protocell’s three operation
modes as a Petri net.

P = Ptot and the total concentration of inactive and active
membrane building blocks amounts to M∗ +M = Mtot.
We call this case normal condition (Fig.4). Under normal
conditions, the following chemical reactions take place
inside the protocell:

Pt

vA
A (1)

Pt
A

k1

P (2)

P
k2

Pt (3)

M∗
P

k3

M (4)

M
k4

M∗ (5)

A
M

vdA
Ad (6)

P
M

vdP
Pt +Pt,d (7)

M
M

vdM
M∗ +M∗d (8)

Based on (1)-(8) for the normal condition case mass
balances lead to the following set of differential equations:

dA

dt
= vAPt − vdAMA

KmdA +A (9)

dP

dt
= k1APt

Km1 + Pt
− k2P

Km2 + P − vdPMP (10)

dPt

dt
= − k1APt

Km1 + Pt
+ k2P

Km2 + P + vdPMP (11)

dM

dt
= k3PM∗

Km3 +M∗
− k4M

Km4 +M − vdMM2 (12)

dM∗

dt
= − k3PM∗

Km3 +M∗
+ k4M

Km4 +M + vdMM2 (13)

dAd

dt
= vdAMA

KmdA +A (14)

dPt,d

dt
= vdPMP (15)

dM∗
d

dt
= vdMM2 (16)

From (10) and (11), or (12) and (13), respectively, it is
obvious, that the total amount of P + Pt and the total
amount of M +M∗ are constant in the normal condition
case. For the total amount of Pt+P < Ptot we consider the

system as being in the P +Pt deficit state (Fig.4). In this
state, it is assumed that the cell does not produce Pt,d for
the daughter cell, but instead replenishes its own stock of
P and Pt. Then (7) is replaced by:

P
M

vdP
2Pt (17)

(11) and (15) are replaced by:

dPt

dt
= − k1APt

Km1 + Pt
+ k2P

Km2 + P + 2vdPMP (18)

dPt,d

dt
= 0.0 (19)

For the case of membrane building blocks deficit (Fig.4
M +M∗ deficit) we use the following equation instead of
(8):

M
M

vdM
2M∗ (20)

This modifies (13) and (16) in the following way:

dM∗

dt
= − k3PM∗

Km3 +M∗
+ k4M

Km4 +M + 2vdMM2 (21)

dM∗
d

dt
= 0.0 (22)

The artificial cell model is solved with the parameter set
listed in Table1.

Table 1. Initial conditions and parameter set.

Initial condition/parameter Value

A0 0.5
Pt0 , M

∗
0 2.0

P0, M0, Ad0 , Pt,d0 , M
∗
d0

0.0

Ptot, Mtot 2.0
vA 0.025

KmdA 0.002
Km1 ,Km2 ,Km3 ,Km4 0.001

k1 3.0
k2 1.5
k3 1.0
k4 0.5

vdA, vdP , vdM 0.02

The system is implemented in ProMoT/DIANA (Ginkel
et al. (2003); Mangold et al. (2014)).

2.2 Results

By using normal conditions (Table 1), i. e. Pt + P = Ptot

and M∗ +M = Mtot, the system shows an autonomous
oscillatory behavior with a stable limit cycle (Fig.5).

The growing polymer P increases when the activity of
metabolism A increases, and only then the catalytically
active membrane building blocks M increase as well. At
high values of M the levels of A and P begin to decrease
caused by conversion into daughter cell components cat-
alyzed by M . The catalytic activity of M decreases during
the degradation of the components Ad, Pt,d and M∗

d , i. e.
during the separation of the daughter cell. As soon as the
replicated polymer is split catalyzed by M the metabolism
becomes active again and a new cycle starts.
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Fig. 5. Simulation results of the mother cell components.
Dynamic behavior of mother cell components A, P ,
M (a); corresponding parts of the polymerization sub-
system P , Pt (b); inactive M∗ and active membrane
building blocks M (c); stable limit cycles (d,e).

2.3 Self-reproduction

To test the system with regard to the self-reproduction
we look at the degraded daughter cell components. We
consider the mother cell as being able of self-reproduction
if the degraded amounts of Ad, Pt,d, M

∗
d at the time point

of daughter cell separation are sufficient to start a new
cell cycle. It is assumed that the cell division occurs, when
the amount of M falls below a certain threshold due to its
inactivation during the separation of the daughter cell at
a time point tdiv. We determine the amounts of Ad, Pt,d,
M∗

d at the time point of the first separation tdiv = 16.6s
and define them as the initial conditions of the daughter
cell cycle (Table 2).

Table 2. Initial conditions for the daughter cell
cycle determined from degraded materials Ad,

Pt,d, M
∗
d at time point tdiv = 16.6s.
Initial condition Value

Ad0 0.4629
Pd0 0.0
Pt,d0 0.6275
Md0 0.0
M∗

d0
0.8671

The self-reproduction study shows that the quantities of
conversed materials are sufficient to initiate a new cell
cycle of daughter cell after a certain phase of adaptation
to new conditions (Fig.6). Based on the determined initial
conditions for the daughter cell we have the case of Pd +
Pt,d deficit and Md + M∗

d deficit, as a result of which
the polymerization subsystem proliferates firstly until the
condition Pd + Pt,d = Ptot is reached. Then the system
merges to the proliferation of the membrane subsystem
until it achieves the condition Md +M∗

d =Mtot. Only then
the case of normal condition persists about after 200s and
we can see the same dynamic behavior of the daughter
cell as of the mother cell. Consequently, the model offers
a robust self-replicating state.

Fig. 6. Dynamic behavior of daughter cell’s metabolism
Ad, growing polymer Pd and catalytically active mem-
brane building blocks Md in the deficit case.

2.4 Robustness with respect to parameter changes

In addition to self-reproduction we can show that the
model is robust with respect to parameter uncertainties.
By changing the parameters by about ±20% compared
to the case of normal condition the system indicates the
same oscillating behavior (Fig.7). It is obvious that for
parameter changes of −20% the period of the cycle is
extended while for a +20% increase of the parameter
values, the period becomes shorter, i.e. the cell divides
faster.

3. CONSIDERATION OF VOLUME CHANGES

So far, we have assumed that the cell volume is constant
throughout the complete cell cycle. However, in reality the
protocell’s volume will increase with its mass. To account

for this effect, dilution terms
A

V

dV

dt
,
P

V

dV

dt
,
M

V

dV

dt
are

added to the model equations in the following. We assume
that the volume changes are proportional to the change
of the membrane building blocks M caused by insertion
of the newly generated membrane building blocks M into
the membrane. We consider the case of normal condition,
so we examine the system of three differential equations
(23)-(25) by assuming Pt = Ptot − P , M∗ = Mtot −M and
by using (26), (27).
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Fig. 7. Parameter uncertainties study by changing the
parameters by about ±20%. Parameter changes with
respect to metabolist A (a), growing polymer P (b),
active membrane building blocks M (c).

dA

dt
= vA(Ptot − P ) − vdAMA

KmdA +A −
A

V

dV

dt
(23)

dP

dt
= k1A(Ptot − P )
Km1 + (Ptot − P ) −

k2P

Km2 + P − vdPMP

−P
V

dV

dt
(24)

dM

dt
= k3P (Mtot −M)
Km3 + (Mtot −M) −

k4M

Km4 +M − vdMM2

−M
V

dV

dt
(25)

The volume V is determined from the affine equation (28).
Thereby the factor σ defines the space captured by one
membrane molecule M .

1

V

dV

dt
= V0σrM
V + V0σM

(26)

rM = k3P (Mtot −M)
Km3 + (Mtot −M) −

k4M

Km4 +M − vdMM2 (27)

V = V0 + V0σM (28)

The initial conditions and parameter set for the implemen-
tation of the volume expansion model are listed in Table 3.

Table 3. Initial conditions and parameter set
for the model including volume expansion.

Initial condition/parameter Value

A0 0.1402
P0 0.1181
M0 0.1609
V0 100.0
vA 0.025

KmdA 0.00002
Km1 ,Km2 0.001
Km3 ,Km4 0.00011

k1 4.5
k2 0.395

k3, k4 0.6
vdA 0.02

vdP , vdM 0.002
σ 0.5

The extended system shows stable periodic oscillations in
the intracellular components of the mother cell in spite
of the dilution due to the volume increase (Fig.8). At
the maximal concentration of membrane building blocks
M the volume reaches the maximal value as well, and it
decreases during the separation of the daughter cell, when
M decreases. An adjustment of the parameters compared
to section 2 is needed, because the region of existence
of periodic solutions is shifted in the extended model.
The parameter adjustment causes a shorter cell cycle
time compared to the model without volume expansion.
However, periodic solutions still occur for wide parameter
ranges (Fig.9). This means that the property of robustness
is preserved in the extended model.

4. CONCLUSION

The model shown in this work describes an artificial self-
reproducible cell cycle, which is robust with respect to
parameter uncertainties. Furthermore we considered the
synchronization problem of intracellular changes with the
volume expansion. It is found that the synchronization
inside the cell is strongly dependent on the parameter set
and the space proportionality factor σ.

A further question, that we want to study in the future, is
how the Chemoton model of T. Gánti (Gánti, 2003) can be
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Fig. 8. Simulation results of the model taking into ac-
count of volume changes. Dynamic behavior of mother
cell devices: metabolism A, growing polymer P ,
newly generated catalytically active membrane build-
ing blocks M (a). Volume changes (b).

Fig. 9. Volume changes of the extended model with respect
to parameter changes by about ±20%.

modified and reduced to accomplish similar synchroniza-
tion of the concentration changes with the volume change
as the model described in this work. In addition we want
to expand the model described here with respect to the

polymerization subsystem similar to the Chemoton. In this
way we expect to gradually approach these two models in
order to better understand the synchronization mechanism
of the Chemoton model.
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