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Gyrational modes of benzenelike magnetic vortex molecules
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With scanning transmission x-ray microscopy we study six magnetostatically coupled vortices arranged in a
ring that resembles a benzene molecule. Each vortex is contained in a ferromagnetic microdisk. When exciting
one vortex of the ring molecule with an alternating magnetic high-frequency field, all six vortices perform
gyrations around the equilibrium center positions in their disks. In a rigid particle model, we derive the dispersion
relation for these modes. In contrast to carbon atoms, magnetic vortices have a core polarization that strongly
influences the intervortex coupling. We make use of this state parameter to reprogram the dispersion relation of
the vortex molecule experimentally by tuning a homogeneous and an alternating polarization pattern. In analogy
to the benzene molecule, we observe motions that can be understood in terms of normal modes that are largely
determined by the symmetry of the system.
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I. INTRODUCTION

In magnetic nanodisks of suitable geometry, the magne-
tization curls in the plane around the center of the disk
and turns out-of-plane in the center. This magnetic ground-
state configuration is called magnetic vortex. Dynamically,
a gyration of the vortex core around the center of the disk is
inherent in magnetic vortices [1]. Therefore it can be compared
to a harmonic oscillator [2]. The polarization p, i.e., the
out-of-plane direction of the vortex core (p = ±1), determines
the gyration direction. It gyrates anticlockwise for positive
polarization and clockwise for negative polarization. A second
state parameter, the chirality (C = ±1), describes the sense of
in-plane curling of the magnetization in the disk [3,4]. The
gyrotropic mode can be resonantly excited in various ways,
using magnetic fields or electric currents [5,6]. Vortices in
coupled periodic arrangements feature properties that can be
described with common concepts of solid state physics, i.e.,
group velocity, density of states, and band structure [7–9].
The coupling of vortices strongly depends on their relative
polarizations. Thus arrangements of vortices are expected to
feature a reprogrammable band structure depending on their
polarization configuration [7,10–12]. The molecule benzene
(C6H6) is a ring of six carbon atoms that each binds a
hydrogen atom. When excited, for example, with infrared light,
small vibrations of the atoms with respect to the interatomic
distances emerge. Historically, the comprehension of the
so-called normal modes and the relation to their excitation
frequencies was crucial for understanding the infrared and
Raman spectra. In this article, we study six magnetostatically
coupled vortices arranged in a ring that resembles the benzene
molecule. Scanning transmission x-ray microscopy is used to
directly observe the gyrational excitations. We find that in
analogy to the benzene molecule, normal modes explain the
measured dynamics that largely depend on the symmetry of the
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system. As for the actual benzene molecule, such symmetry
considerations allow to understand the dynamics in a vivid
fashion. The normal modes are plane waves with wavelengths
that are fractions of the circumference of the ring, such as
a breathing mode of the molecule. Our approach allows for
deducing the dispersion relation of the vortex molecule in a
convenient way. This will be shown in the last section. The
dispersion relation depends on the tuned polarization states in
the molecule and is measured for two states exemplarily.

II. NORMAL MODES OF VORTEX GYRATION

A convenient and powerful model to describe the motions
of coupled vortices is the Thiele model [2,13–15]. It describes
the magnetic vortex as a quasiparticle that is exposed to a
force �F = −�∇E that acts in the plane of the disk. In our case,
it reads

(
G2

0 + D2
0α

2
Gilbert

) �̇x = G0r̃90 �F − D0αGilbert �F . (1)

Here, �x is the two-dimensional position vector of the vortex
core within the disk and r̃90 is a 90◦ rotation matrix. Two
components add to the velocity of the vortex core. The first
term describes the nature of the gyrotropic mode that moves
the vortex perpendicular to the driving force �F . The second
term depends on the dimensionless Gilbert damping parameter
αGilbert and forces the vortex core back to its equilibrium
position. The constants G0 and D0 depend on material
parameters [2]. It can be challenging to determine the driving
force �F in a coupled system. For a single magnetic vortex, a
harmonic confining potential can be assumed to approximate
the internal forces. A linear energy term is commonly used
to describe the influence of external magnetic fields. Recent
approaches for systems of vortices in coupled arrays employ
surface charges that emerge when the vortex is deflected from
the center of the disk to approximate the coupling mediated
by the stray field [11,14–16]. Even when neglecting the
damping, for a number of N coupled vortices, the Thiele
equation becomes a 2N -dimensional system of differential
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FIG. 1. (Color online) X-ray micrographs of six disks that con-
tain a vortex each. The permalloy disks are 60-nm thick and have
a 2-μm diameter, the minimal distance between the disks is 50 nm.
(a) Vortex molecule with homogeneous core polarizations in all six
disks. The magnetic contrast can be seen in the raw data of one time
frame. The vortex cores appear as black dots. (b) Vortex molecule
with alternating polarizations. The static contrast is subtracted to
emphasize the magnetic contrast even more prominently. Disks and
stripline are colorized. In the captured movie (see Ref. [18], movie
1) black vortex cores gyrate clockwise (pi = −1) and white cores
counterclockwise (pi = 1).

equations that can only be solved numerically. Following the
ideas of Wigner [17], we show that for rings of N coupled
magnetic vortices the solution can be deduced exclusively
by symmetry considerations. Figure 1 shows the investigated
vortex molecule consisting of six permalloy (Ni80Fe20) disks.

A stripline is fabricated on one disk in order to excite
the gyrotropic mode with the unidirectional high-frequency
magnetic field generated by an alternating current sent through
the stripline. The steady-state motions are directly observed by
scanning transmission x-ray microscopy at the MAXYMUS
microscope of the BESSY II synchrotron in Berlin, Germany.
As can be seen in Fig. 1(b), the method provides magnetic
contrast that allows to clearly see the vortex cores as white
or black dots, corresponding to their polarization. The time
resolution provided by the third generation synchrotron of up
to 40 ps allows to trace the vortex trajectories (see Ref. [18],
movies 1 and 3). In accordance with our measurements, we
assume that the excitation will lead to approximately circular
motions of the N = 6 vortices:

�xi = aiCi

(
cos(ωt + ϕi)

pi sin(ωt + ϕi)

)
, i ∈ {0,1, . . . ,N − 1}. (2)

With given chiralities Ci and polarizations pi a motion of the
molecule is fully determined by the N gyration amplitudes
ai and phases ϕi . In the experiment, the polarizations and
the chiralities are measured [19]. Due to the N -fold rotational
symmetry and the linearity of the system, there has to be a basis
of N normal modes, that fulfill this symmetry. In analogy to
the description of a linear chain of harmonic oscillators with
periodic boundary conditions, we determine these modes to
be plane waves with wavelengths that are fractions of the
circumference of the ring. For a ring of an even number of N

disks, the normal modes �xi,κ are given by

�xi,κ ∈ {�xi | ai = aκ, ϕi = ϕi,κ = (κ + pi) iα + φκ}. (3)

(a) (b)

FIG. 2. (Color online) (a) Pictograms for the form and the propa-
gation direction of the normal modes of the ring (see Ref. [18], movie
2). (b) Experiments with a homogeneous core polarization pattern in
the ring (pi = −1). Each graph shows the contribution of a normal
mode to the overall motions in the molecule for different excitation
frequencies. The data points are obtained by a fit to the trajectories
traced via scanning transmission x-ray microscopy (see Fig. 1 and
Ref. [18], movie 3). The solid lines are Lorentzian fit curves. The
vertical scale of each graph ranges from 0 to 34 nm/mT.

The integer number κ ∈ [−N/2, . . . ,N/2) indexes the normal
mode and is analogous to the wave number k = 2π/λ in a
linear chain of oscillators. The angle α = 2π/N corresponds
to the lattice constant in a linear chain. Since a general
vibration of the molecule is given by a linear combination
of the normal modes �xi = ∑

κ �xi,κ , the factor aκ describes the
contribution of the normal mode �xi,κ to the motion. The relative
phases of the normal modes are given by φκ . Figure 2(a)
depicts the form of the normal modes for equal chiralities and
polarizations (ci = 1, pi = −1) of all vortices. For each point
in time, the vortex cores are located on geometric roulettes,
i.e., epitrochoids and hypotrochoids. For wave numbers κ with
|κ| > 0, the form of the roulettes stays constant over time and
they rotate around the center of the ring, whilst the vortex
cores are always located on the curve (see Ref. [18], movie
2). For positive wave numbers κ > 0, the roulettes rotate in
the same direction as the vortices (clockwise). In contrast, for
negative wave numbers, the roulettes rotate anti-clockwise,
i.e., against the gyration direction of the vortices. Thus the
sign of κ denotes the propagation direction of the waves.
For κ = 0, the normal mode �xi,0 is called the breathing
mode since the vortices lie on a circle that changes its size
over time. It can be compared to the modes 1 and 2 of
the actual benzene molecule in the seminal work of Wilson,
see Ref. [20], when only the vibrations of the carbon atoms
are considered. At the edge of the Brillouin zone κ = ±3 the
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waves can be understood as propagating in both directions.
Figure 2(b) shows the experimental results for the investigated
vortex benzene, when the homogeneous polarization pattern
pi = −1 is present. The steady-state motions of the vortices
are traced for 24 different frequencies around the resonance
frequency of an isolated disk. The grey line in each of the
six graphs is a Lorentzian fit through the black data points
that are proportional to the absolute gyration amplitude |aκ |
of one normal mode �xi,κ . These data points are obtained by
applying a curve fit with the linear combination of normal
modes given by Eqs. (2) and (3) to the vortex trajectories of
the six vortices. In order to ensure a linear gyration regime,
the amplitude of the excitation is adjusted to small vortex
trajectories. The influence of different excitation strengths on
the core velocity is normalized out [6,21]. For each frequency,
one global curve fit is performed that comprises the complete
motion of the six vortices and thus yields one data point in
each of the six graphs. We point out that each eigenmode
has its maximal contribution at different frequencies that lie
on a sinusoidal line (dashed blue). Thus, contrary to the actual
benzene molecule, the propagation of waves in the two possible
directions (sign of κ) is not degenerated. The global rotation
direction of the vortices in the homogeneous polarization case
has no equivalent in the linear vibrations in benzene. Such kind
of global gyration direction cannot be defined for an alternating
polarization pattern since the vortices gyrate in different
directions according to their polarization pi . The alternating
polarization pattern is shown in Fig. 1(b) and can be adjusted
when a strong alternating magnetic field with a frequency
of 224 MHz is applied via the stripline and is then reduced
adiabatically. Although only one vortex is directly excited, this
process of self-organized state-formation [16,23,29] allows to
tune the polarizations in the whole molecule. The symmetry
of the ring changes due to the alternating polarization pattern
so that two normal modes �xi,|κ| = �xi,κ + �xi,−κ have to be
combined in order to get standing waves. The combination of
such standing waves is depicted in Fig. 3(a) (see also Ref. [18],
movie 4). This time, all modes can be compared to the normal
modes of the actual benzene molecule when only the carbon
atoms are regarded. Using the Wilson numbering [20], the
normal mode with |κ| = 1 corresponds to mode “Y” of the
actual benzene, |κ| = 2 corresponds to mode “6a” and |κ| = 3
can be compared to normal mode “12.” The arrow pictograms
in Fig. 3(a) are identical to those used by Wilson for the
motions of the actual benzene. This elucidates the strong
similarity between the actual benzene and vortex benzene.
The standing waves are fitted to the trajectories and yield the
results presented in Fig. 3(b) [28].

III. DISPERSION RELATION

Until now, we showed that there are strong similarities
between the very different physical systems of magnetic
vortices and bound carbon atoms with regard to their motions
during a harmonic excitation. Both systems feature similar
normal modes that are largely determined by the symmetry of
the system. In the following, we will show that the symmetry
considerations can be used to determine the dispersion relation
of a ringlike vortex-molecule of arbitrary number of vortices
in a very convenient way.

(a) (b)

FIG. 3. (Color online) (a) Pictograms of the composition of the
normal modes to obtain standing waves. (b) Experiments with
alternating polarization pattern. Each graph shows the contribution of
a standing wave to the overall motions in the molecule for different
excitation frequencies. The data points are obtained by a fit to the
trajectories traced via scanning transmission x-ray microscopy. The
solid lines correspond to the fit with Eq. (10). The vertical scale is
identical to that in Fig. 2.

To calculate the dispersion relation, we temporarily neglect
the damping (αGilbert = 0) in Eq. (1). All vortex trajec-
tories are described by the 2N -dimensional vector �u :=
(�x0,�x1, . . . �xN−1)T and each two-dimensional component of it
follows Eq. (1). When a normal mode with circular trajectories
�uκ = (�x0,κ ,�x1,κ , . . . �xN−1,κ )T is inserted, it simplifies to

ωκ p �uκ = 1

G0
( �F0, �F1, . . . , �FN−1)T . (4)

�Fi describes the sum of all driving forces of vortex i.
Multiplying both sides of the equation with �uκ yields

ωκ = 1

p G0

∑N−1
i=0

�Fi �xi,κ∑N−1
i=0 �x2

i,κ

= 1

p G0

∑N−1
i=0

�Fi �xi,κ

Na2
κ

. (5)

The driving forces �Fi are given by the total energy with respect
to vortex i. We approximate the coupling between two vortices
i and j by the most simple approximation, which is dipolar
stray-field interaction [22]:

Edipole,i,j = μ0

4πr3

(
�μi �μj − 3

r2
( �μi�r)( �μj �r)

)
. (6)

The dipole moment of a vortex is proportional to the
deflection of the vortex rotated by 90 degrees ( �μi =
r̃90Ciãκ

�xi,κ |�xi,κ | [26]).
The strength of the dipole moment is denoted as ãκ since

it is proportional to the gyration amplitude aκ . For the given
harmonic excitation, the chirality Ci has no influence on the
dipole moment, since the change of sign is compensated by a
phase shift of 180◦ in time. The anchor points of the dipoles
are assumed to be fixed at the centers of the disks. Thus, the
vector �r , that connects the dipoles, is constant. Separating the
dipolar coupling from all other forces that act on the isolated
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FIG. 4. (Color online) Experimentally determined dispersion re-
lations for the two polarization patterns and theoretical fit curves
derived from the extended Thiele model. The dashed lines result from
a global curve fit of Eq. (10). The data points result from individual
Lorentzian curve fits to the experimental results.

disks yields

ωκ − ω0 = − 1

p G0

1

Na2
κ

N−1∑
i=0

∑
j �=i

Edipole,i,j . (7)

The resonance frequency ω0 applies for noninteracting vortices
in isolated disks. Only considering next-neighbor interaction
yields the discrete dispersion relation [27]

ωhom(κ) = ω0 − 1
2Bhom cos ((κ + p)α) (8)

for the homogeneous case. For the alternating polarization
pattern, it is useful to integrate Eq. (7) over one period of
gyration to separate ωκ . It then yields

ωalt(κ) = ω0 + 1
2Balt cos(κα), Balt = 3 Bhom, (9)

for the alternating polarization pattern. The bandwidth Bhom

is a positive constant given by Bhom = −1
pG0

μ0

4πr3 ( ãκ

aκ
)2. When

comparing the two analytically calculated dispersion relations
ωalt and ωhom, one can see that the factor p has vanished
in the cosine and that the prefactor is multiplied by (−3).
The different bandwidths are commonly explained by a
weaker coupling between vortices of equal polarization than
of vortices with different polarizations [24]. For the borderline
case of an infinite linear chain (N → ∞), the results are in
concordance with previous results [11]. In the following, we
include the effects of damping and the experimental results.
For negligible damping, there are sharp resonances when the
eigenfrequency of a normal mode is met. In the experiment,
the damping allows to excite the system in between those
resonances. The normal modes mix in the way shown in
Fig. 2 (also see Ref. [18], movie 3). The contributions aκ (ωexc)
are fitted to the experimental data with Lorentzian functions
that are shifted according to the analytically derived discrete
dispersion relation ω(κ):

aκ (ωexc) = L	(ωexc − ω(κ)), κ ∈ [−N/2, . . . ,
N/2). (10)

This set of equations can be understood as the continuous
dispersion relation of the damped system, where ωexc is
the frequency of the exciting magnetic field and L	(ω) the
Lorentzian peak function with damping parameter 	. The

fit yields the three model parameters ω0, Bhom, and 	. The
first two parameters determine the discrete dispersion relations
shown in Fig. 4. The dashed green [blue] curve corresponds
to the dispersion relation ωalt(κ)[ωhom(κ)] measured for the
alternating [homogeneous] polarization configuration of the
vortex molecule. The data points correspond to peaks of
individual Lorentzian fits as presented in Fig. 2(b). The
parameters are determined to be ω0/2π = (225.5 ± 1.5) MHz
and Balt = (96 ± 6) MHz for the alternating case and ω0/2π =
(227.6 ± 0.8) MHz and Bhom = (31 ± 2) MHz for the homo-
geneous polarization pattern. Those are appropriate values
for the bandwidth when considering the low disk interdis-
tance [30]. In both cases, the damping parameter has a value
of 	 = (29 ± 3) MHz, which is in reasonable accordance
with the relation 	 = 2αGilbertω ≈ 0.02 ω expected from other
studies [32].

IV. CONCLUSION

In conclusion, we have shown that there are strong
similarities between the vibrational modes of benzene and the
gyrational modes of a sixfold magnetic-vortex ring molecule.
The symmetry of both systems determines the motions of
the oscillators, i.e., the carbon atoms or the vortices. The
best accordance in the analogy can be achieved when an
alternating polarization pattern is tuned to the vortex molecule.
In this case, all gyrational modes can be identified with
vibrational modes in the actual benzene. The symmetry
allows to simplify the derivation of the fundamentally dif-
ferent dispersion relations of the vortex molecule for the
homogeneous and alternating core polarization patterns. In
contrast to other models, the presented approach includes the
effect of damping and is characterized by only three model
parameters, each of them determined in the experiments. Both
dispersion relations have been confirmed by x-ray transmission
microscopy proving that the magnetic vortex molecule features
a reprogrammable band structure or dispersion relation.
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