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Abstract

Background: Constraint-based analysis of genome-scale metabolic models has become a key methodology to gain
insights into functions, capabilities, and properties of cellular metabolism. Since their inception, the size and
complexity of genome-scale metabolic reconstructions has significantly increased, with a concomitant increase in
computational effort required for their analysis. Many stoichiometric methods cannot be applied to large networks
comprising several thousand reactions. Furthermore, basic principles of an organism’s metabolism can sometimes
be easier studied in smaller models focusing on central metabolism. Therefore, an automated and unbiased
reduction procedure delivering meaningful core networks from well-curated genome-scale reconstructions is
highly desirable.

Results: Here we present NetworkReducer, a new algorithm for an automated reduction of metabolic
reconstructions to obtain smaller models capturing the central metabolism or other metabolic modules of
interest. The algorithm takes as input a network model and a list of protected elements and functions
(phenotypes) and applies a pruning step followed by an optional compression step. Network pruning
removes elements of the network that are dispensable for the protected functions and delivers a subnetwork
of the full system. Loss-free network compression further reduces the network size but not the complexity
(dimension) of the solution space. As a proof of concept, we applied NetworkReducer to the iAF1260
genome-scale model of Escherichia coli (2384 reactions, 1669 internal metabolites) to obtain a reduced model
that (i) allows the same maximal growth rates under aerobic and anaerobic conditions as in the full model,
and (ii) preserves a protected set of reactions representing the central carbon metabolism. The reduced
representation comprises 85 metabolites and 105 reactions which we compare to a manually derived E. coli
core model. As one particular strength of our approach, NetworkReducer derives a condensed biomass
synthesis reaction that is consistent with the full genome-scale model. In a second case study, we reduced a
genome-scale model of the cyanobacterium Synechocystis sp. PCC 6803 to obtain a small metabolic module
comprising photosynthetic core reactions and the Calvin-Benson cycle allowing synthesis of both biomass and
a biofuel (ethanol).

Conclusion: Although only genome-scale models provide a complete description of an organism’s metabolic
capabilities, an unbiased stoichiometric reduction of large-scale metabolic models is highly useful. We are
confident that the NetworkReducer algorithm provides a valuable tool for the application of computationally
expensive analyses, for educational purposes, as well to identify core models for kinetic modeling and
isotopic tracer experiments.
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Background
Stoichiometric and constraint-based analysis of metabolic
networks has become a key methodology to gain insights
into functions, capabilities and properties of cellular me-
tabolism [1–3]. Applications of metabolic network model-
ing include, for example, (i) simulation and prediction of
metabolic phenotypes (metabolic flux distributions) for
cellular growth under certain environmental conditions,
either in the wild-type or in mutants containing certain
gene knockouts; (ii) the identification of maximal growth
or product yields and the respective metabolic pathways
leading to optimal yields; (iii) the computation of interven-
tion strategies increasing the synthesis of certain products
(metabolic engineering); or (iv) analysis of general struc-
tural properties such as coupled reactions or the identifi-
cation of gaps in reconstructed metabolic networks. Until
the end of the 90’s, stoichiometric models had usually not
more than 100 (central metabolic) reactions. With the ad-
vent of annotated genomes, however, larger metabolic
models were constructed for different organisms and the
first reconstruction reached genome-scale level at the turn
of millennium. Today, more than 100 genome-scale meta-
bolic network reconstructions for diverse organisms from
all kingdoms of life have been published and examined
[4]. These models are still evolving with new biological
knowledge, as can be exemplified by network reconstruc-
tions for Escherichia coli (E. coli). The first E. coli genome-
scale model (iJE660) was published in 2000 [5] and
consisted of 627 reactions and 438 metabolites. It was up-
dated by Reed et al. in 2003 [6] leading to an expanded
network with 931 reactions and 625 metabolites (iJR904).
The next iteration (iAF1260) was published in 2007 [7]
and contained as many as 2077 reactions and 1039 metab-
olites. The latest update was made in 2011 (iJO1366 [8])
and comprises 2251 reactions and 1136 metabolites. Nu-
merous applications of these models demonstrated the
power of constraint-based modeling in general and gained
invaluable insights on the metabolism of E. coli [2].
With increasing size and complexity of genome-scale

models the computational effort for their analysis in-
creased as well. Some stoichiometric methods, for ex-
ample those that require enumeration of elementary
modes [9], cannot be applied to networks consisting of
several thousand reactions due to computational intract-
ability. Furthermore, metabolic flux analysis can usually
only be used with models of the central metabolism since
intracellular fluxes would poorly be determined in the full
system [10], even if data from isotopic tracer experiments
are available [11]. Similar arguments hold for kinetic mod-
eling, which, due to lacking knowledge about kinetic
mechanisms and parameters, can usually only be applied
to smaller modules of the complete metabolic network. Fi-
nally, metabolic core models may sometimes be more
suitable to study and understand basic principles of an
organism’s (central) metabolism. In all these cases, it
would be most desirable to take a well-curated genome-
scale model and to reduce this model to a certain core or
module while keeping key elements or/and important
functional properties. While some specific examples for
network reduction of genome-scale models have been
described in the literature [10, 12, 13], we are not aware
of an automated and flexible network reduction
approach that can generically be applied to any meta-
bolic network. In this work we present such an algo-
rithm and demonstrate its applicability and power by
reducing a genome-scale metabolic network of E. coli
(iAF1260) to a meaningful core network representing
the central metabolism. In a second case study, we re-
duce a genome-scale model of a cyanobacterial species
to a small metabolic module which comprises photo-
synthetic core reactions and the Calvin-Benson cycle
and allows synthesis of both biomass and a biofuel
(ethanol).

Methods
Stoichiometric networks and constraint-based modeling
Metabolic network models with m internal metabolites
and n reactions can be represented by a m × n stoichio-
metric matrix N. The basic assumption of steady state
(internal metabolite concentrations do not change) leads
to the metabolite balancing equation

Nr¼0 ð1Þ
where r is the vector of net reaction rates (also called
flux or rate vector). The solutions r satisfying (1) form
the null space of N whose dimension is given by the de-
grees of freedom (dof ) defined as

dof ¼ n−rank Nð Þ: ð2Þ
Information on reaction rates (e.g., reversibilities and

maximal flux capacities) can be integrated by setting
lower and upper boundaries for some reaction rates:

αi≤ri≤βi: ð3Þ
The set of flux vectors r fulfilling (1) and (3) forms, in

general, a polyhedron which can be bounded or un-
bounded. Flux balance analysis (FBA [14]) is often used
to find optimal flux vectors in this polyhedron by maxi-
mizing a specific linear objective function

maximize
r

z ¼ cT r: ð4Þ

Typical examples are maximization of biomass pro-
duction or of formation of a certain product. While the
optimal value z in (4) is always unique, infinite optimal
flux vectors r achieving the maximal z may exist (espe-
cially in genome-scale networks). Here, flux variability
analysis (FVA; [15]) can be used to identify the feasible
flux ranges in the network by determining for each
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reaction the minimum and the maximum reaction rate
under the given constraints (1) and (3).

Network reduction algorithm
Our network reduction algorithm NetworkReducer re-
duces a given large-scale metabolic network to a smaller
subnetwork thereby keeping desired features of the full
network. NetworkReducer accepts the following specifi-
cations of protected parts, properties, and phenotypes
(specific cellular behaviors, functions, capabilities):

(a)Set of protected metabolites PM: all metabolites in
PM must be retained in the reduced network.

(b)Set of protected reactions PR: all reactions
in PR must be retained in the reduced network.
Optionally, one may also specify whether protected
reactions must be feasible (i.e., whether for each
protected reaction i ∈ PR at least one flux vector
r must exist such that ri ≠ 0).

(c)Protected functions and phenotypes: described by
appropriate inequalities (see below).

(d)Minimum degrees of freedom: the dof (equation (2))
of the reduced network may not fall below a
minimum threshold: dof ≥ dofmin.

(e)Minimum number of reactions (n ≥ nmin).

Specifications of type (a) and (b) allow protection of cer-
tain reactions and metabolites which will not be deleted
by the algorithm. A typical scenario is to preserve reac-
tions and metabolites from the central metabolism of a
genome-scale network. For protected metabolites we
demand that at least one (non-blocked) reaction involving
this metabolite must be maintained in the network.
A key feature of our algorithm is the consideration of

desired (protected) functions and phenotypes (specifica-
tions of type (c)). Each protected functionality k is de-
scribed by a corresponding set of linear equalities/
inequalities (s denotes the number of protected func-
tions and phenotypes; the terms “phenotypes” and “func-
tions” are used interchangeably in the following):

Dkr≤dk k ¼ 1…s: ð5Þ
In the E. coli case study presented in the Results section,

for instance, given a maximal substrate (glucose) uptake
rate of 10 mmol/gDW/h and a non-growth associated
ATP maintenance (ATPM) requirement of 8.39 mmol/
gDW/h [7] (these values are included as flux bounds in
(3)), we will demand that the maximal growth rate in the
reduced network should be close (99.9 %) to the maximal
growth rate (μmax_full) of the full network. Inequalities de-
scribing these constraints in the style of (5) are

rGlcup≤10
−μ≤−0:999μmaxfull

ð6Þ
which can be integrated in an appropriate matrix/vec-
tor pair D1/d1. We thus demand that at least one
steady state flux vector (fulfilling (1) and (3)) must
exist in the reduced network that obeys (6) and thus
achieves maximal growth rate. In the case study we
will additionally demand that under anaerobic condi-
tions the maximal (anaerobic) growth rate of the full
network (μmax_full_anaerobic) can also be reached by the
reduced network:

rGlcup≤10
rO2up≤0
−μ≤−0:999μmaxfullanaerobic:

ð7Þ

Inequalities (7) can be properly described by a second
pair D2/d2. Hence, D1/d1 and D2/d2 describe two (inde-
pendent) functionalities of the full system to be preserved
in the reduced network (i.e., for each functionality k, one
steady-state flux vector rk must exist in the reduced net-
work fulfilling the respective inequalities). Other pheno-
types, for example, the production of a certain compound
with high yield, could be protected as well.
The actual network reduction algorithm (see pseudo-

code below and Fig. 1) starts with a preprocessing step,
which checks the feasibility of the protected functions in
the original network and removes (non-protected) blocked
reactions. The main algorithm is divided into two major
parts: network pruning followed by network compression.
Network pruning involves a loop which removes itera-
tively non-protected reactions thereby checking that none
of the desired properties (a)-(e) is violated. In each iter-
ation, the algorithm applies FVA in the current network
to calculate for each removable (non-protected) reaction i
the feasible flux ranges separately for each protected func-
tion k defined by Dk/dk. With Fi

k we identify the flux range
of reaction i under the protected function k, k = 1…s, and

determine then the union Fi of all these flux ranges: Fi

¼ ∪
s

k¼1
Fk
i . (If no protected function was specified then Fi is

defined as the full flux range of reaction i in the network.)
Two important results can be derived from these flux
ranges. First, a reaction having an entirely positive or en-
tirely negative flux range Fi

k for any of the desired
functionalities k is identified as essential reaction and
therefore removed from the list of removable reac-
tions. Second, from the remaining removable reac-
tions, the next deletion candidate is identified as the
reaction that has the smallest overall flux range Fi.
We assume that removal of this reaction maintains a
high degree of flux variability in the network (other cri-
teria for selecting the next deletion candidate could be used
as well). After deletion of a reaction, feasibility of the pro-
tected functions (condition (c)), of protected reactions (if
enforced in the specification of (b)) and of protected metab-
olites (at least one reaction that contains the protected



Fig. 1 Schematic representation of the NetworkReducer algorithm. The figs. on the right-hand side illustrate the result of the step on the left-hand side
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metabolite must be feasible) is tested. If any of the condi-
tions is violated, then the last removed reaction is rein-
serted and marked as non-removable and the reaction with
the second smallest overall flux range Fi is considered.
Once a reaction has been removed, the next iteration starts
and the flux ranges are recalculated. The main loop of net-
work pruning stops when no further reaction can be de-
leted without violation of any of the specifications (a)-(e).
At the end, unconnected metabolites in the reduced net-
work not participating in any of the remaining reactions are
removed from the network.
In a post-processing step, loss-free network compres-

sion can be (optionally) applied using methods as
presented in [16, 17]. In particular, reaction or en-
zyme subsets (e.g., from linear chains of reactions)
will be represented as single overall reactions with
collapsed stoichiometries. As a special feature of our
compression algorithm, protected reactions and me-
tabolites are kept and excluded from compression.
One example illustrating the benefit of loss-free net-
work compression is the following (see also Fig. 1
and Results section): If the central metabolism of a
genome-scale model was specified as a protected sub-
network and (optimal) growth as a protected function,
then, for each compound (e.g., an amino acid) in the
biomass synthesis reaction, network pruning will
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typically keep one optimal pathway and remove all al-
ternate routes from the respective precursor(s) in the
central metabolism to this amino acid. Reactions and me-
tabolites along this pathway were not defined as protected
but were nevertheless kept in the system to still allow (op-
timal) growth. Loss-free network compression will com-
press the linear pathway from the precursor(s) to the
amino acid by replacing the stoichiometric coefficient of
the amino acid in the biomass synthesis reaction (BSR)
with the cumulative stoichiometries of the precursors and
cofactors (ATP, NAD(P)H etc.) needed to synthesize the
amino acid in the required amounts. For example, assume
we have precursor P (which is part of the protected core
network) and the three sequential reactions 2 P➔D; D
+NADPH➔F; F+ATP➔A for synthesizing the amino acid
A. Furthermore, let A be contained with a stoichiometric
coefficient of 2 in the BSR (2 A + …. ➔ Biomass). Network
compression will remove A from the BSR and add instead
P, ATP, and NADPH with coefficients 4, 2, and 2, respect-
ively. The BSR thus effectively changed to 4 P + 2 ATP + 2
NADPH + (0 A) + … ➔ Biomass. Metabolites D, F and A
as well as the three reactions can be afterwards removed.
Since ATP, NADPH and other metabolites (precursors)
appear in several synthesis pathways, their respective stoi-
chiometric coeffcients along all these pathways are
summed up to eventually obtain the cumulative stoichi-
ometry of biomass synthesis. We note that network com-
pression leads to a more compact network representation
but, in contrast to network pruning conducted in the first
step, it neither changes the dof nor the potential behaviors
of the network.
With the specifications (a)-(e), many relevant scenarios

of network reduction can be handled and two typical
examples are demonstrated in the Results section. A key
property of our method is that the resulting network
generates a true subset of the phenotypes of the full net-
work. Furthermore, if only the pruning step is performed
(no compression), the obtained network will represent a
proper subnetwork of the full network.
The pseudo-code of the whole NetworkReducer pro-

cedure is given below. The algorithm has been inte-
grated in our MATLAB toolbox CellNetAnalyzer [18].
Files and scripts used in this study (see Results section)
can be downloaded from http://www2.mpi-magde-
burg.mpg.de/projects/cna/etcdownloads.html.

Results and discussion
Reduction of an E. coli genome-scale model
This section aims to give a proof-of-principle of our
NetworkReducer algorithm using a realistic application
example. A typical scenario for a network reduction prob-
lem is as follows: given a genome-scale metabolic network
with several thousand reactions, the goal is to reduce the
network to a core network (with about 80–150 user-
defined reactions), usually the central metabolism, while
preserving the ability of the virtual organism to grow or/
and to produce certain metabolites. As source for a
genome-scale network we used the iAF1260 model of
Escherichia coli presented by Feist et al. [7] which contains
2382 reactions and 1668 metabolites and is one of the
most frequently used metabolic network models. We
compare the outcome of our network reduction routine
with an E. coli core model presented by Orth et al. [12].
The latter model, denoted in the following by ColiCore,
covers the central metabolism of E. coli. It contains 95 re-
actions and 72 internal metabolites and was manually de-
rived by Orth et al. with iAF1260 serving as a starting
point. Accordingly, ColiCore and iAF1260 use identical
identifiers for metabolites and reactions.
We considered the network spanned by the reac-

tions contained in the ColiCore model as the “target
network” to be reached by network reduction of
iAF1260. Before we could start with the reduction
process, some minor adaptations had to be done to
make both models consistent. First, ColiCore used the
fumarate reductase reaction with ubiquinol-8 as redox
carrier (instead with menaquinol-8 as used in
iAF1260) and we added this reaction also to iAF1260
to allow protection of this reaction during the reduc-
tion. In addition we introduced a metabolite “bio-
mass” in the genome-scale model, integrated it in the
biomass synthesis reaction as a product with stoichio-
metric coefficient of 1 [gram] and added then also a
reaction to “export” this biomass compound. This
configuration makes it easier to configure biomass
synthesis as a protected function and to keep track of
the stoichiometric coefficient of the biomass com-
pound during network compression. The final stoi-
chiometric matrix of the genome-scale model (in the
following denoted by ColiGS) was thus slightly ex-
tended to 2384 x 1669. Flux constraints in the ColiGS
model were specified such that glucose serves as the
only carbon substrate.
The ColiCore model contains uptake reactions for glu-

cose but also for some other substrates (including some
amino acids). Since we aimed to focus on glucose as the
sole carbon substrate, we removed all reactions and me-
tabolites from the ColiCore model that are involved in
uptake of these substrates. Analogously to the ColiGS
model, we also included a biomass metabolite in the bio-
mass synthesis reaction and a corresponding “biomass
export” reaction. With these changes, the final dimen-
sion of the ColiCore model was 88 reactions and 69 in-
ternal metabolites. Key properties of ColiGS and
ColiCore are summarized in Table 1.
After these preliminary steps network reduction of the

ColiGS network could be started. Phenotypes and ele-
ments of the genome-scale model to be maintained in the

http://www2.mpi-magdeburg.mpg.de/projects/cna/etcdownloads.html
http://www2.mpi-magdeburg.mpg.de/projects/cna/etcdownloads.html


Erdrich et al. BMC Systems Biology  (2015) 9:48 Page 6 of 12
reduced model were specified as follows. All 88 reactions
of the ColiCore model were marked as protected reactions
(PR ) in the ColiGS model and we also demanded that all
these reactions should be feasible (unblocked) in the re-
duced network. Since all metabolites involved in these reac-
tions are implicitly protected as well we did not explicitly
specify protected metabolites (PM =∅). Concerning pro-
tected phenotypes, we demanded that (i) at least 99.9 % of
the maximal growth rate (0.9290 h−1; Table 1) in the ColiGS
model under aerobic conditions and (ii) at least 99.9 % of
the maximal growth rate in the ColiGS model under anaer-
obic conditions (0.2309 h−1) should be reachable in the re-
duced network (see equations (6) and (7)). As already
described in the Methods section, the maximal glucose up-
take rate was set to 10 mmol/gDW/h and minimal ATP
maintenance demand to 8.39 mmol/gDW/h. Finally, dofmin



Table 1 Properties of E. coli network models discussed in the text. ColiGS and ColiCore are slightly modified versions of iAF1260 [7]
and of the model presented in [12], respectively. All models are available in SBML format at http://www2.mpi-magdeburg.mpg.de/
projects/cna/etcdownloads.html

E. coli genome-scale
model (ColiGS)

E. coli pruned model
(ColiPruned)

E. coli pruned and
compressed model
(ColiPrunedComp)

E. coli core model of Orth
et al. [12] (ColiCore)

# reactions 2384 455 105 88

# int. metabolites 1669 438 85 69

# ext. metabolites 305 33 33 17

degrees of freedom 753 26 26 24

# conservation relations 38 9 6 5

# enzyme subsets
(# containing
reactions)

321 (890) 23 (413) 22 (62) 23 (55)

μmax (aerobic) 0.9290 h−1 0.9288 h−1 0.9288 h−1 0.8739 h−1

μmax (anaerobic) 0.2309 h−1 0.2309 h−1 0.2309 h−1 0.2117 h−1
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and nmin were both set to 1, hence, we aimed to reduce the
network as far as possible while keeping the protected reac-
tions and phenotypes.
Network reduction without applying network com-

pression in postprocessing (only pruning) yielded a re-
duced network model (ColiPruned) which already
decreased the dimension of the genome-scale network
from 2384 reactions / 1669 internal metabolites to 455
reactions / 438 internal metabolites. As demanded, the
maximal growth rates under aerobic and anaerobic
growth in ColiPruned are identical (anaerobic) or very
close (aerobic) to the respective maximal rates in the
genome-scale model. The dof of ColiPruned (26) is sig-
nificantly smaller than in ColiGS (753) and already close
to the dof of ColiCore (24) indicating a similar complex-
ity of the solution spaces of ColiPruned and ColiCore.
Even though ColiPruned still contains more than 400 re-
actions, the (1,410,332) elementary modes of this net-
work can be fully enumerated.
The structure of the ColiPruned network resembles

the second network shown in Fig. 1: many redundant
(and suboptimal) pathways to biomass components have
been removed while the (protected) core subnetwork
was retained. As described in the Methods sections, the
remaining linear pathways from the central metabolism
to the biomass components can be further compressed
to single (lumped) reactions without loss of information
(i.e., without loss of solutions or phenotypes). Applying
the network compression routine (under consideration
of the protected reactions) to ColiPruned yields the fully
reduced network ColiPrunedComp, whose structure is
now similar to ColiCore and resembles the third network
shown in Fig. 1. ColiPrunedComp (105 reactions) is
much smaller compared to ColiPruned (455 reactions)
while neither the dof nor the number of elementary
modes and the possible phenotypes changed. The
dimension of ColiPrunedComp is now very similar to
ColiCore (see properties in Table 1), yet, there are still
some differences which we analyzed in detail.
ColiPrunedComp contains 17 more reactions and 16

more internal metabolites than ColiCore. A large frac-
tion (15 reactions and 15 metabolites) of these additional
elements arises due to a different description of ex-
change reactions. The ColiCore considers two compart-
ments where metabolites are balanced (cytoplasm and
extracellular space) plus (implicitly) an environment.
Thus, 3 reactions and 3 balanced species are needed to
describe the import of a metabolite M (Menvironment ➔

Mextracellular space ➔ Mcytoplasm) in the ColiCore model
(analogous for export). In contrast, ColiGS contains add-
itionally a periplasm compartment, hence, uptake of an
exchange metabolite M involves 4 exchange reactions
and 4 species (Menvironment ➔ Mextracellular space ➔ Mperi-

plasm ➔ Mcytoplasm). Since 15 metabolites can be exported/
imported to/from the environment in ColiCore, 15
additional species and reactions (for the periplasmic
space) must be maintained in the ColiPrunedComp model;
they can also not be compressed because they are sur-
rounded by protected reactions.
Another observation is that the genome-scale network

and its derived reduced models allow higher maximal
growth rates than the ColiCore model for which we
identified two reasons. First, different stoichiometries for
biomass synthesis may lead to different biomass yields
(discussed below). Second, we found that the remaining
two additional (non-exchange) reactions in the ColiGS
model not contained in the ColiCore model allow for
higher maximal growth rates; these reactions were kept
by the pruning algorithm to maintain the protected
phenotype of maximal growth in the ColiPrunedComp
model (in fact, these two reactions explain the higher
dof in ColiPrunedComp compared to ColiCore). The first

http://www2.mpi-magdeburg.mpg.de/projects/cna/etcdownloads.html
http://www2.mpi-magdeburg.mpg.de/projects/cna/etcdownloads.html
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of these two reactions is related to hydrogen production
which turns out to be necessary to attain the maximal
anaerobic growth rate. The second reaction is related to
respiratory pathways. The ColiGS model contains two
cytochrome oxidases (cytochrome bd and cytochrome
bo3 oxidase). Both oxidize ubiquinol but with different
stoichiometry for the translocated (pumped) protons:

2 Hþ þ 0:5 O2 þ Q8H2 ¼ H2Oþ 2 Hþ
periplasm þ Q8 ð8Þ

4 Hþ þ 0:5 O2 þ Q8H2 ¼ H2Oþ 4 Hþ
periplasm þ Q8 ð9Þ

Clearly, the second reaction (9) will lead to a higher
ATP yield during respiration and therefore allow a
higher growth rate under aerobic conditions. In contrast,
the ColiCore model contains only reaction (8) translocat-
ing two protons accompanied with a lower ATP and bio-
mass yield. This reaction (as all reactions from ColiCore)
was protected when reducing ColiGS, however, to allow
maximal growth, the second reaction had also to be kept
in ColiPrunedComp. In fact, integration of reaction (9)
in the ColiCore model increases the maximal growth
rate to 0.9647 h−1 which is even higher than the μmax of
ColiPrunedComp (and ColiGS).

These remaining discrepancies can be attributed to
different stoichiometric coefficients in the biomass syn-
thesis reaction (BSR) of ColiCore and ColiPrunedComp.
For the case of ColiCore, the stoichiometric coefficients
of the precursor metabolites (such as pyruvate, acetyl-
CoA, etc.) in the BSR had to be calculated manually
from the known requirements of monomers (amino
acids, nucleotides, fatty acids, etc.) in the genome-scale
BSR. Accordingly, Orth et al. wrote [12]: “Since most of
the subunits of the cellular macromolecules, such as nu-
cleic acids and amino acids, are not present in the core
model, they could not be directly accounted for the bio-
mass reaction. The metabolites in the core model that
those macromolecular subunits are synthesized from are
included instead. These are precursor metabolites. For
example, the amino acid L-alanine is synthesized from
pyruvate and L-glutamate, so both of these metabolites
are consumed in the biomass reaction.”
Hence, molecules such as amino acids contained in

the genome-scale BSR must be translated into a stoi-
chiometric demand for compounds present in the re-
duced model. Making this translation manually in a
genome-scale model is an error-prone and tedious task
and an automated approach as ours supports this step
and provides a rigorous approach to obtain a BSR in
the compressed network that is consistent with the BSR
of the full model. We directly compared the BSRs of
ColiCore and ColiPrunedComp to identify and under-
stand possible sources of different stoichiometries.
Table 2 shows the stoichiometric coefficients of me-
tabolites in the BSR of the ColiCore and of the Coli-
PrunedComp model (the BSRs of all models can be
found in the Appendix). At a first glance, we can see
that almost all metabolites contained in the BSR of
ColiCore appear also in the BSR of ColiPrunedComp,
in many cases with comparable amounts.
One major difference is that the BSR of ColiPruned-

Comp contains a number of external metabolites, in par-
ticular trace elements such as calcium, sulfate, cobalt,
copper, magnesium etc. Originally, in the ColiGS network,
trace elements were taken up by the cell yielding intracel-
lular representatives of these elements which were then
consumed by the BSR in the genome-scale model. These
essential components of the biomass were kept in the
ColiPrunedComp model, however, network compression
enforced the model to compress the two steps of uptake
and consumption of a trace element into one step by inte-
grating the required amount of external trace elements
directly in the BSR of ColiPrunedComp. Although these
external metabolites do not change the feasible network
behaviors (and could in principle be removed from the
BSR), it is one advantage of our algorithm that these con-
densed material balances are automatically calculated and
still visible in the reduced model. Note that the (cumula-
tive) amount of periplasmatic protons (H_p) consumed in
the condensed BSR of ColiPrunedComp is related to anti-
port uptake of trace elements.
Further differences in the BSRs may arise by non-unique

ways of representing precursor stoichiometries due to
different reference points. For example, ColiCore uses
glyceraldehyde-3-phosphate (G3P) as a precursor (− 0.129)
whereas ColiPrunedComp uses instead dihydroxyacetone-
phosphate with a similar amount (−0.141). Since both
metabolites can be converted into each other by a
triose-isomerase reaction, both metabolites can in fact
be used as precursors. A similar relationship exists for
Ribose-5-phosphate (R5P) and Ribulose-5-phosphate
(Ru5P). Ru5P occurs only in the BSR of ColiPruned-
Comp but, due to a simple isomerase reaction between
both metabolites, could also be integrated in the value
of R5P which is consumed in both BSRs.
Despite those explainable differences, the BSR of Coli-

Core seems to slightly underestimate the demand for most
precursors and, to a larger extent, for energy (ATP). On
the other hand, the core model consumes a significantly
larger amount of NADPH and NADH which, in the final
balance and biomass yield, could partially compensate the
lower demand for some precursors. As mentioned above,
would we add the high efficiency oxidase reaction (9) in
the ColiCore model, the growth rate (0.9647 h−1) would
be slightly higher than in the ColiPrunedComp model
(0.9288 h−1). We emphasize that we do not claim that the
BSR of ColiPrunedComp is necessarily “better” or more



Table 2 Stoichiometries of metabolites in the biomass synthesis
reaction of the ColiCore and the ColiPrunedComp network
model. Negative values indicate consumption, positive values
production during biomass synthesis

Metabolite Coefficient in
BSR of ColiCore
[mmol]

Coefficient in BSR
of ColiPrunedComp
[mmol]

2-Oxoglutarate 4.1182 7.4661

3-Phospho-D-glycerate −1.4960 −1.7175

Acetate 0.5810

Acetyl-CoA −3.7478 −3.8560

ADP 59.8100 67.7163

AMP 2.2653

ATP −59.8100 −69.9816

CO2 1.7341

Coenzyme-A 3.7487 4.3809

Dihydroxyacetone-phosphate −0.1413

Erythrose-4-phosphate −0.3610 −0.3720

Formate −0.1080

Fructose-6-phosphate −0.0709 −0.0945

Fumarate 0.7063

Glucose-6-phosphate −0.2050

Glutamate −4.9414 −6.7339

Glutamine −0.2557 −1.8075

Glyceraldehyde-3-phosphate −0.1290 0.0540

Glyoxylate 0.0007

H_c 59.8100 64.5223

H_p −0.1686

H2O −59.8100 −57.4196

NAD −3.5470 −0.3971

NADH 3.5470 0.3971

NADP 13.0279 7.2399

NADPH −13.0279 −7.2399

NH4 −0.4352

Oxaloacetate −1.7867 −2.9257

Phosphoenolpyruvate −0.5191 −0.8102

Pi_c 59.8100 75.3394

Pyruvate −2.8328 −2.7842

Ribose-5-phosphate −0.8977 −0.9325

Ribulose-5-phosphate −0.0398

Succinate 0.8586

Succinyl-CoA −0.5249

Several external metabolites
including trace elements (calcium,
sulfate, cobalt, copper, etc.)

(several amounts)
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realistic than the BSR of the ColiCore model in [12]. It is
possible that the authors used some specific assumptions
in the calculation of the BSR for the ColiCore model which
may have led to discrepancies with the condensed BSR cal-
culated herein. Nonetheless, the condensed BSR obtained
with the NetworkReducer algorithm is consistent with the
full model and allows for quantitative comparisons. Our al-
gorithm thus facilitates the unbiased and reproducible cal-
culation of condensed BSR stoichiometries in reduced
network models from their genome-scale representation.
To further test the quality of ColiPrunedComp we ex-

emplarily perfomed flux variability analyses for three dif-
ferent growth scenarios and compared the results with the
original genome-scale model (see Additional file 1). We
found a very good agreement of fluxes ranges in ColiPru-
nedComp and ColiGS. Although the trend of flux ranges
in ColiCore and ColiGS are also similar, several larger dif-
ferences can be observed.

Reduction of a cyanobacterial genome-scale model to a
module
In a second case study we used a genome-scale model of
the phototrophic cyanobacterium Synechocystis sp. PCC
6803 and applied NetworkReducer to obtain a small meta-
bolic core module which describes CO2 fixation by the
Calvin-Benson cycle in full detail and allows synthesis of
biomass and of a biofuel (ethanol). Such a strongly reduced
model may be useful to study basic principles and stoichi-
ometries of, for example, coupled synthesis of biomass and
biofuels (see e.g. [13]). The genome-scale model of Knoop
et al. [19] (in the variant used by Erdrich et al. [13]) served
as starting point. Heterotrophic (night) metabolism was
neglected and we again added biomass as internal species
and a corresponding pseudo transport reaction for its ex-
port. After those minor adaptations the full model con-
tained 599 reactions and 519 internal metabolites (with 96
degrees of freedom; see Additional file 2).
Since the goal was to extract a network module that rep-

resents the Calvin cycle and enables maximal photo-
trophic growth as well as maximal production of ethanol
we protected all reactions of the Calvin Cycle, the pathway
to ethanol, biomass and ethanol excretion, and light up-
take (in total 26 reactions; see Additional file 2). The two
protected phenotypes were specified by

rPhotonup≤100
−μ≤−0:999μmax;

representing maximal phototrophic growth (μmax is the
maximal growth rate for a photon uptake of 100 mmol/
gDW/h), and

rPhotonup≤100

−rEthanol≤−0:999rmaxEthanol

for maximal ethanol production (rmaxEthanol is the max-
imal ethanol production rate for a photon uptake of
100 mmol/gDW/h).
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As expected and desired, with the focus on a smaller
subnetwork, the dimension of the reduced model
(pruned and compressed) is much lower than in the E.
coli core model and contains 37 reactions and 38 in-
ternal metabolites. The rank of the stoichiometric matrix
is 33 implying four remaining degrees of freedom. The
reduced model gives rise to 10 elementary modes repro-
ducing not only the protected functions of pure biomass
or ethanol synthesis but also growth-coupled ethanol
production (Additional file 2). The condensed biomass
synthesis reaction withdraws metabolites (precursors,
ATP, NADPH) from the Calvin cycle module needed to
build biomass. Since only a subset of “normal” precur-
sors is part of the reduced model (for instance, the reac-
tions and metabolites of the TCA are completely
missing) the respective stoichiometric coefficients of
precursors in the BSR of the reduced model are rela-
tively large as they are not only needed as direct precur-
sors for the BSR but also as starting point to produce
other precursors. Again, NetworkReducer ensures that
the BSR of the reduced model is consistent with the BSR
of the genome scale model therefore generating the
same maximal growth rate and biomass yield.

Conclusions
In this work we presented NetworkReducer, a new algo-
rithm for automated reduction of large-scale metabolic
network models to obtain meaningful small- or medium-
scale models, typically representing the central metabol-
ism or certain modules of interest. The algorithm consists
of (i) a pruning step followed by (ii) network compression.
Network pruning removes elements of the network that
are dispensible for a user-defined set of protected proper-
ties and parts. Our algorithm accepts various criteria for
specifying protected features. In particular, inequalities as
in eqs. (5, 6, 7) provide a high flexibility in defining desired
phenotypes. Network pruning is accompanied with a real
loss of feasible phenotypes in the model but our algorithm
ensures that protected functions and parts are maintained.
As a very useful and desired feature, network pruning al-
ways delivers a subnetwork of the full system implying
that also all phenotypes (feasible flux distributions) of the
pruned network are a subset of the feasible behaviors of
the full system. As one consequence, for example, all
elementary modes of the pruned network are a subset of
the elementary modes of the complete system.
Network compression applied after network pruning fur-

ther condenses the network structure by collapsing some
reactions (e.g., from linear pathways) if these are not pro-
tected. Network compression works loss-free, that is none
of the feasible phenotypes and functions is lost, however,
the resulting network is generally not a proper subnetwork
of the full system and a mapping of flux distributions (and
reactions) between the compressed and the full network
can be cumbersome. It will depend on the application
whether network compression is applied to the pruned net-
work or not. If, for example, elementary modes are to be
calculated in a network, loss-free compression algorithms
are commonly used in a preprocessing step [16, 17]. In the
E. coli example study it was desired to fully condense the
network to the predefined core.
Whereas network compression delivers always a

unique result, the outcome of the network pruning
step can be unique or non-unique, depending on net-
work structure, input parameters, and protected func-
tions and parts. Although reactions are removed in the
order of their flux range (smallest range first), reac-
tions with identical flux ranges may exist (e.g., from
parallel pathways) from which then one is chosen
randomly.
The E. coli case study demonstrated the applicability and

potential of our approach. We reduced the genome-scale
reconstruction iAF1260 of Feist et al. [7] to an E. coli core
model. The reactions and metabolites to be maintained
were taken from the core model proposed by Orth et al.
[12], which itself was manually derived with iAF1260 serv-
ing as a basis. With the protected phenotype that the max-
imal growth rates of iAF1260 under aerobic and anaerobic
conditions must be achievable also in the condensed
model, we used our algorithm to reduce the iAF1260
model to its core and compared it with the model of Orth
et al. We found a generally good agreement between the
manually and the automatically derived model but also
some discrepancies. Essentially, two reactions of the
iAF1260 not contained in the Orth model were retained
by NetworkReducer to ensure that the maximal growth
rates can be achieved. Furthermore, the stoichiometries in
the condensed biomass synthesis reactions (BSRs) showed
some differences. With our algorithm we can ensure that
the condensed BSR fully reflects the stoichiometries of the
BSR of the original network thus leading also to the same
maximal growth rates and biomass yields. The E. coli case
study demonstrated the value of our approach for obtain-
ing a fast (less than 5 hours on a typical PC), unbiased,
and exact network reduction.
We consider the E. coli study as a typical application

scenario for our method, namely to reduce a genome-
scale network to its core (typically the central metabol-
ism) thereby protecting important properties such as
(maximal) biomass or/and product yields. In the general
case, a prerequisit is the careful delineation of the cen-
tral metabolism (to be protected) in the genome-scale
network which, however, should be possible for many
organisms from prior biological knowledge. Many other
reduction problems can be defined as well by using ap-
propriate criteria for protected functions and parts. For
example, instead of (or in addition to) the central metab-
olism, certain modules of a large-scale model (e.g., fatty
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acid or lipid synthesis) might be maintained in a high
resolution while the rest is condensed. The presented
case study of extracting a subnetwork of the cyanobac-
terial metabolism that comprises the Calvin cycle and al-
lows for biomass and biofuel (ethanol) synthesis
demonstrated that such an application is also supported
by our algorithm. Such extracted subnetworks are also
useful for the construction of kinetic models of specific
parts of metabolism, while preserving consistency with
a genome-scale reconstruction.
An extreme application of NetworkReducer would be

to compress the full network of an organism to just one
single overall reaction consuming external metabolites
(substrate, nutrients, etc.) and synthesizing biomass with
maximal yield. To simulate this maximal reduction, we
again specified maximal aerobic biomass synthesis in E.
coli as desired phenotype (ATP maintenance demand
was not considered) and protected (only) the biomass
export reaction. As a result, a “network” with only one
overall reaction was maintained which exclusively con-
verts external substrates and nutrients to external prod-
ucts The stoichiometry of this fully condensed BSR with
one degree of freedom (ColiPrunedComp_DOF1) can be
found in the Appendix showing that 10.3893 mmol glu-
cose are required to build 1 gram of biomass in the
optimal case.
Although only genome-scale models can provide a

complete view on the full functionality of a metabolic
network there are several reasons why reduction of
large-scale models can be useful or even necessary.
First, computationally extensive analyses, such as full
enumeration of elementary modes for metabolic path-
way analysis, may only be tractable in smaller models.
Methods of metabolic flux analysis seeking to calcu-
late internal metabolic fluxes based on measurements
of extracellular fluxes or/and on data from isotopic
tracer experiments are able to resolve metabolic
fluxes for smaller (core) networks only. Smaller
models are also useful for didactic or educational pur-
poses [12] and, in fact, might sometimes be more
suitable to gain a basic understanding of certain
metabolic principles than exploring the “jungle” of a
genome-scale network with thousands of reactions
and metabolites. Small-scale models are also useful
for testing and evaluating new constraint-based ana-
lysis methods. Finally, parameter-dependent dynamic
modeling of metabolic processes normally focuses on
smaller networks and network reduction allows one
to cut a network region or module of interest from a
genome-scale network which can then be studied by
kinetic models. With all these applications in mind,
we believe that NetworkReducer represents a valuable
tool for stoichiometric and constraint-based modeling
of metabolic networks.
Appendix
Biomass synthesis reaction of the genome-scale model
ColiGS:

0.000223 10fthf + 0.000223 2ohph + 0.5137 ala +
0.000223 amet + 0.2958 arg + 0.2411 asn + 0.2411 asp +
59.984 atp + 0.004737 ca2 + 0.004737 cl + 0.000576 coa
+ 0.003158 cobalt2 + 0.1335 ctp + 0.003158 cu2 +
0.09158 cys + 0.02617 datp + 0.02702 dctp + 0.02702
dgtp + 0.02617 dttp + 0.000223 fad + 0.007106 fe2 +
0.007106 fe3 + 0.2632 gln + 0.2632 glu + 0.6126 gly +
0.2151 gtp + 54.462 h2o + 0.09474 his + 0.2905 ile +
0.1776 k + 0.01945 kdo2lipid4 + 0.4505 leu + 0.3432 lys
+ 0.1537 met + 0.007895 mg2 + 0.000223 mlthf +
0.003158 mn2 + 0.003158 mobd + 0.01389 mur-
ein5px4p + 0.001831 nad + 0.000447 nadp + 0.011843
nh4 + 0.02233 pe160 + 0.04148 pe160 + 0.02632 pe161
+ 0.04889 pe161 + 0.1759 phe + 0.000223 pheme +
0.2211 pro + 0.000223 pydx5p + 0.000223 ribflv +
0.2158 ser + 0.000223 sheme + 0.003948 so4 + 0.000223
thf + 0.000223 thmpp + 0.2537 thr + 0.05684 trp +
0.1379 tyr + 5.5e-05 udcpdp + 0.1441 utp + 0.4232 val
+ 0.003158 zn2 ➔ 1 gram biomass + 59.81 adp +
59.81 h + 59.806 pi + 0.7739 ppi.

Biomass synthesis reaction of the ColiPrunedComp
model ((external) metabolites from the environment
compartment have extension _b; from perisplasm: _p):

1.7175 3pg + 3.8560 accoa + 69.9816 atp + 0.1413 dhap
+ 0.3720 e4p + 0.0945 f6p + 0.1080 for + 1.8075 gln +
6.7339 glu + 57.4196 h2o + 0.1686 h_p + 0.3971 nad +
7.2399 nadph + 0.4352 nh4 + 2.9257 oaa + 0.8102 pep +
0.9613 pi_e + 2.7842 pyr + 0.9325 r5p + 0.0398 ru5p +
0.5249 succoa + 0.0047 ca2_b + 0.0047 cl_b + 0.0032
cobalt2_b + 0.0032 cu2_b + 0.0076 fe2_b + 0.0071 fe3_b
+ 0.1776 k_b + 0.0079 mg2_b + 0.0032 mn2_b + 0.0032
mobd_b + 0.2503 so4_b + 0.0032 zn2_b ➔ 1 gram bio-
mass + 0.5810 ac + 67.7163 adp + 7.4661 akg + 2.2653
amp + 1.7341 co2 + 4.3809 coa + 0.7063 fum + 0.0540
g3p + 0.0007 glx + 64.5223 h + 0.3971 nadh + 7.2399
nadp + 75.3394 pi + 0.9613 pi_p + 0.8586 succ + 0.0002
4hba_b + 0.0004 5drib_b + 0.0004 hmfurn_b.

Biomass synthesis reaction of the ColiCore model:

1.496 3pg + 3.7478 accoa + 59.81 atp + 0.361 e4p +
0.0709 f6p + 0.129 g3p + 0.205 g6p + 0.2557 gln + 4.9414
glu + 59.81 h2o + 3.547 nad + 13.0279 nadph + 1.7867
oaa + 0.5191 pep + 2.8328 pyr + 0.8977 r5p ➔ 1 gram
biomass + 59.81 adp + 4.1182 akg + 3.7478 coa + 59.81 h
+ 3.547 nadh + 13.0279 nadp + 59.81 pi.

Biomass synthesis reaction of the ColiPrunedComp_-
DOF1 model ((external) metabolites from the environ-
ment compartment have extension _b):
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10.4352 nh4_b + 10.3893 glc_b + 19.2597 o2_b +
0.9613 pi_b + 0.0047 ca2_b + 0.0047 cl_b + 0.0032
cobalt2_b + 0.0032 cu2_b + 0.0076 fe2_b + 0.0071 fe3_b
+ 0.1776 k_b + 0.0079 mg2_b + 0.0032 mn2_b + 0.0032
mobd_b + 0.2503 so4_b + 0.0032 zn2_b ➔ 1 gram bio-
mass + 0.0002 4hba_b + 0.0004 hmfurn_b + 21.3862
co2_b + 47.7272 h2o_b + 9.1844 h_b.
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