
 

Supplementary Figures 

 

Supplementary Figure 1: Estimation of the error of the number and brightness of 

molecules in a single cluster; Simulation 

(a,c) Relative estimated numbers of molecules       ; (b,d) relative estimated molecular 

brightness       .   and   are the simulated numbers of molecules and molecular 

brightness. Molecules in a single cluster share the same brightness. (a,b) the number of 

simulated molecule   varies (from 1 to 50) while keeping the molecular brightness 

constant        . (c,d) the simulated molecular brightness   varies (from 0.005 to 

0.035) while keeping the number of molecules constant     . Dots: the mean estimated 

values (magenta), the 15% (blue) and 85% (green) quantiles of the distribution of the 

values; Lines:    analytically derived relative standard deviation (RSTD) of the estimated 

value (red) (Supplementary Note). For each condition, the simulation was repeated 500 

times. The number of illumination pulses is 25,000 (a,b) and 40,000 (c,d). The full width 

at half maximum (FWHM) of the point spread function (PSF) is 240 nm FWHM with 48 nm 

pixel size. 



 

 

Supplementary Figure 2: Comparison of the estimated number of molecules obtained 
with photon statistics or by analyzing bleaching steps 

Double stranded DNA (dsDNA) conjugated with up to 4 ATTO 647N or 2 Abberior STAR 

635P was sparsely immobilized on a coated cover slip (see Methods). The estimation 

based on the detection of simultaneous photons was performed on the confocal scanned 

images with 50 nm pixel size and 1 ms pixel dwell time. Each dsDNA was localized by the 

confocal image and then moved into the focus individually for time-resolved fluorescence 

intensity measurement until all fluorophores were bleached. Histograms of the estimated 

number of molecules of each dsDNA are plotted: a, b, c and d correspond to dsDNA 

labelled with ATTO 647N with 1, 2, 3 or 4 bleaching steps respectively. e and f 

correspond to dsDNA labelled with Abberior STAR 635P with 1 or 2 bleaching steps 

respectively.  

 

 

  



 

 

Supplementary Figure 3: Bleaching rate under multiple confocal scans  

Immobilized dsDNA labelled with ATTO 647N (a) or Abberior STAR 635P (b) is scanned 

with confocal microscopy. The overall number of molecules is determined by photon 

statistics for each scan. The overall number of molecules in the scanning area decrease 

gradually from scan to scan due to bleaching. The solid lines are the exponential fitting 

curves to the estimated number of molecules from 3 experimental measurements with the 

fitting model and the resulting parameters indicated by the text in the same colors. 

 

  



 

 

Supplementary Figure 4: Dependence of uncertainty of molecule mapping on 

depletion power in STED microscopy 

Immobilized dsDNA (labelled with ATTO 647N) is measured under different STED 

illumination. (a) The error (relative standard deviation/RSTD) of the estimation (based on 

the theory in supplementary note) is plotted against the STED laser pulse energy. 

Experimental conditions are kept except for different STED illumination pulse energy. The 

red line is the linear fit to the data, with parameters and model indicated by red text. (b) 

The measured FWHM of the effective PSF is plotted with different STED illumination 

pulse energy. The PSF is measured on the average of over 50 scans on single ATTO 

647N labeled dsDNA immobilized on surface. The red line is the fitting curve to the 

measured effective PSF to the square root law of resolution scaling in STED microscopy1. 

Blue dots and error bars are mean and standard deviation (n=9). 



 

 

Supplementary Figure 5: Mapping molecule distributions of immobilized dsDNA in the 

combination of confocal and STED microscopy through analysis of coincident photon 

detection 

ATTO 647N labelled dsDNA is immobilized on glass surface and measured with confocal 

and STED microscopy. Molecule mapping is achieved by analyzing the photon statistics 

of confocal and STED recording. (a,b) 1- and 2-photon detection confocal images of 

dsDNA on surface. (c) 1-photon detection STED image of the same area as a. (d,e) 

Molecular map based on the photon statistics of a, b and c. The color map of d codes the 

number of molecules at each pixel; the color map of e codes the number of molecules 

within each cluster. The segmentation of the clusters is processed with the built in 

watershed function in MATLAB2. (f) Molecular brightness map based on the photon 

statistics of a, b and c (only indicated where there are molecules). Scale bars: 1 µm 

 
  



 

 

Supplementary Figure 6: Mapping the number of molecules on DNA Origami 

DNA origami with up to 24 ATTO 647N was sparsely immobilized on the cover slip and 

measured by confocal and STED microscopy (see details in methods). (a-h) 8 examples 

of DNA origami. Top rows: Confocal 1- and 2- photon detection images and the 

corresponding estimated molecular map (from left to right). Bottom rows: STED 1- and 2- 

photon detection images and the estimated molecular map based on both confocal and 

STED measurements (from left to right). The number of molecules in each cluster is 

labeled at the vicinity. Scale bars: 200 nm. 

 



 

 

Supplementary Figure 7: Comparison of molecular counting by photon statistics and 

molecular brightness on DNA origami with confocal microscopy  

DNA origami with up to 24 ATTO 647N was sparsely immobilized on the cover slip and 

measured by confocal microscopy. (a) The estimated molecular concentration   based on 

photon statistics. The number of molecules in each DNA origami is the summation of the 

segmentation based on watershed algorithm2 and labeled at the vicinity of the coordinate 

of the DNA origami. (b) The number of molecules in each DNA origami estimated by 

molecular brightness. Scale bars: 500 nm. (c) The scatter plot of the estimated number of 

molecules by coincidence photon detection ncoincidence and that by dividing the intensity of 

the isolated DNA origami with molecular brightness nbright. The method based on 

coincidence photon detection is described in the main text and supplementary note. The 

method based on molecular brightness is done as follows: the average molecular 

brightness is given by the former estimation method; the intensity of an isolated DNA 

origami is summed up and divided by the average molecular brightness and then divided 

by the summation of the PSF (normalized to the center). 69 isolated DNA origami are 

analyzed.  

 

  



 

 

Supplementary Figure 8: Comparison of 2D and 3D molecular counting of single 

dsDNAs 

dsDNA is immobilized on the glass surface and imaged on multiple z positions (100 nm 

distance between two immediate stacks) in both confocal and STED microscopy. (a) 2D 

image of a single dsDNA: confocal (left) and STED (right). The color code represents the 

event counts. Scale bars: 100 nm. (b) Estimated number of molecules in single dsDNAs 

from 2D and 3D imaging. The error bars represent the standard deviation and the red line 

is the linear fit to the mean value of the estimation (y=1.037x). (c) 3D imaging of the same 

dsDNA as that in a: fluorescence intensity isosurface (70% of the maximum intensity) with 

summation projections of fluorescence intensity on each dimension. Left: confocal; right: 

STED. (d) Estimation of the number of molecules of the same dsDNA of a and c: The 

isosurfaces, which embraces 70% of the molecules, are plotted with the summation 

projections on each dimension. Pixel size is 20 nm in lateral dimensions. Pixel dwell time 

is 300 µs (2D) and 100 µs (3D).  

 
  



 

 

Supplementary Figure 9: 1- and 2-photon detection events and the resulting molecule 

map of transferrin receptors in HEK293 cells 

Transferrin receptors stained with aptamer in HEK293 cells (refer to Methods in the main 

text for detailed sample preparation). (a, b) Axial summation of 1- and 2-photon detection 

events by confocal microscopy. The color code represents the detection event counts. (c) 

Axial summation (6 stacks cover 0.9 µm) of 1-photon detection events by STED. The 

color code represents the detection event counts. (d) Molecular map calculated obtained 

from photon statistics of a and b. The color represents the axial position (z) of the 

molecules. Scale bars: 1 µm. 

 

  



 

 

Supplementary Figure 10: Quantitative western blot of transferrin receptors (TfR) in 

HEK293 cells 

(a) Western blot of the transferrin receptors from cell lysate compared to the recombinant 

transferrin receptor standard loaded in increasing amounts from 0 to 50 ng. Fetal calf 

serum was added to the recombinant protein in amounts matching the total protein 

concentration in the HEK293 cell lysate in order to have equal total protein concentration 

in all lanes. (b) A standard curve was created based on the increasing recombinant TfR 

signal in western blots. Linear regression was applied on the standard curve to determine 

the absolute amount of the TfR in the cell lysate. (c) Cytoplasmic volume and total volume 

of HEK293 cells were calculated experimentally on stained cells (see Methods), and the 

cellular distribution (internalized vs. cell surface) of TfR was determined by 

immunostaining and the resulting values are expressed as percentages (see Methods). 

These values were used to estimate the average number of TfR per unit of volume 

(femtoliter), as well as the number of receptors present on the cell surface and inside the 

cell. The values are mean ± SEM (n=3). 

 



 

 

Supplementary Figure 11: Histograms of the number of transferrin receptors (TfR) in 

single clusters  



 

Histograms of the number of TfR in single clusters from 10 different scanning regions of 

different cells. Red line: exponential distribution fitting to the occurrences (blue dots) of 

the molecules in each cluster with the fitting model and resulting parameters indicated in 

red text. The lower parts in each panel are the residuals of the fitting from the 

corresponding histograms. Analysis of clustering is performed with built in watershed 

algorithm provided in MATLAB2. The TfR clusters with high number (>24) of molecules 

are not considered due to the potential risk of overlapping clusters under the given 

resolution of the STED setup. The fitting range is chosen from 1 to the occurrences before 

the first zero instances in each panel. 

 

  



 

 

Supplementary Figure 12: Excitation saturation of the molecular brightness 

Immobilized dsDNA labeled with up to 4 ATTO 647N molecules was imaged in a confocal 

microscope. The molecular brightness is estimated by recording the photon statistics. The 

saturation behavior of molecular brightness is plotted against increasing excitation pulse 

energy: Blue circles are mean values with standard deviation above and below. Each 

point is based on 3 regions of more than 200 molecules. The red line is the fit of an 

exponential saturation to the data. The fitting model and the resulting parameters are 

indicated by the red text.  

 

  



 

 

Supplementary Figure 13: The population and lifetime of the dark state of single ATTO 

647N molecules 

Immobilized dsDNA labeled with ATTO 647N molecules was imaged in a confocal setup. 

The dsDNAs with a single label were identified by observing a single bleaching step. The 

population and lifetime of the dark state, e.g. triplet state, of single ATTO 647N molecules 

was examined. (a) A typical time resolved fluorescence intensity trace of dsDNA labeled 

with a single ATTO 647N molecule. (b) Cross-correlation (blue dots) is calculated from 

the fluorescence intensity trace (0 - 18 s) in a. Red line: fit of the correlation curve with 

one population. (c) The residual of the fitting in b. (d,e) The histograms of the lifetime (d) 

and population (e) of the dark state from 83 molecules. The dark state lifetime is 9.2+/-4.5 

µs (mean+/-standard deviation) and the dark state population is 0.076+/-0.021 (mean+/-

standard deviation). The fitting model in b is  ( )        (     )    (     ), with     

the dark population at equilibrium and    the dark state lifetime3.  

 

  



 

 

Supplementary Figure 14: Differentiating single dsDNA with fluorescence lifetime & 

molecular brightness 

Mixture of dsDNA labelled with ATTO 647N or Cy5 are immobilized on the surface. 

Molecular brightness of each dsDNA is calculated by photon statistics. Fluorescence 

lifetime of isolated dsDNA spots is also found because our confocal recording is time 

correlated single photon counting measurements as well. ATTO 647N and Cy5 labelled 

dsDNA differ in molecular brightness and fluorescence lifetime due to the differences in 

their properties, such as quantum yield and extinction coefficient.  

(a,b,c) An example of confocal image of the immobilized dsDNA (a: without time gating, b: 

0~2 ns time gating, c: 2~10 ns time gating). (d,e) Molecular brightness d and molecule 

map e obtained from the photon statistics of confocal recoding in a. Color coding in e 

represents the number of molecules in the dsDNA cluster. (f) Fluorescence decay (cyan & 

red) of two single dsDNAs. Green circles represent the instrument response scaled to the 

same height as the red curve. Solid lines are single exponential decay fit to the 

fluorescence decays4 with the lifetime information indicated by text in the same color. The 

locations of the corresponding dsDNA are indicated in a-e with triangles in the same 

colors. (g) Histograms of fluorescence lifetime and molecular brightness of the isolated 

dsDNA spots. Top: Histogram of the molecular brightness with two Gaussian peak fits; 

the parameters are (0.014, 0.005) and (0.022, 0.007) respectively. The green line is the 

summation of the two fits (red lines). Bottom left: 2D histogram of the molecular 

brightness and fluorescence lifetime. Color codes the number of occurrences. Bottom 

right: Histogram of the fluorescence lifetime with two Gaussian peak fits (red lines); the 

corresponding parameters are (1.23, 0.23) and (3.78, 0.17) respectively. Scale bars: 1 µm.  

  



 

 

 

Supplementary Figure 15: The point spread functions of 1-, 2-, 3- and 4-photon 

detection events in the confocal and STED microscopes measured on DNA origami 

DNA origami with up to 24 ATTO 647N in two lines of 41 nm spacing was sparsely 

immobilized on the cover slip and measured by (a) confocal (overlay of 64 single DNA 

origami images) and (b) STED microscopy (overlay of 114 single DNA origami images). 

The normalized line profiles crossing the center of the PSFs are on the right most; black: 

1-photon, red: 2-photon and blue: 3-photon. The bright DNA origami probe the point 

spread functions of 1-, 2-, 3- and 4-photon detection events5. For all overlays allowing a 

good fit with a 2D Gaussian peak, the resulting full widths at half maximum (  ) are 

displayed. H is the maximum value (counts) of the pseudocolor intensity scale. Scale bars: 

100 nm. 

 

 

 

  



 

 

Supplementary Note 1 

Supplementary Note 1: Identifying the distributions of the number of molecules  ( ) 

and their brightness  ( ) from fluorescence photon emission statistics. 

Here we derive the theory underlying the photon statistics analysis and describe the 

procedure of extracting the number of molecules and the distribution of molecular brightness. 

Then, we discuss the uncertainty of the estimation on the number of molecules and the 

molecular brightness of a single cluster. In the end, we extend the derived model and 

reconstructing procedure to the case of combining two imaging modes, which is confocal 

and STED in our implementation. 

 
The probability to observe two-photon detection from the same molecule by single 
illumination pulse  

Here we calculate the probability to observe 2-photon detection from the same molecule by 

one illumination pulse. 

We suppose that  ( ) is the laser intensity profile over time  , the photon emitter does not 

change its properties over time and the excited state population follows a single exponential 

decay as    (   ),   is the decay rate of the excited state of the photon emitter including 

both the radiative and non-radiative decay rate, the probability of observing two decays is  
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(1) 

where   is the absorption cross section of the photon emitter. 

For simplicity, we take the laser intensity  ( ) as a rectangular function with a width of    and 

max intensity   as given by 
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If we insert Eqn. (2) into Eqn. (1), by taking into account that     , Eqn. (1) turns into  

  ( )  
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where    is the energy of the illumination pulse. 

Therefore, the probability to detect two photons from one photon emitter by one illumination 

pulse is  ( )̂       ( ),   is the collection efficiency of the instrument and   is the quantum 

yield of the photon emitter. 

If we compare  ( )̂  to the square of typical one photon detection probability   ( )̂       , 
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Here,    is the lifetime of the excited state of the photon emitter and       . 

That is, the probability to observe two photons from the same molecule is still negligible 

since     , even compared to the case of detecting two photons from two different 

molecules with the same molecular properties. Similarly, the probabilities for detection of 

multiple photons from the same molecule by one illumination pulse are negligible as well. 

Therefore, we can assume that no more than one photon can be emitted and, then, detected 

from one photon emitter by one illumination pulse. 

 

Spatial coincidence counting model 

Our experimental conditions make sure that the duration of the illumination pulse is much 

shorter than the lifetime of the photon emitter. As proved before, the probability for a single 

molecule to emit more than one photon per illumination pulse is negligible. We suppose that 

   is the molecular brightness of the     molecule located at position           ,   is the 

overall number of molecules. It is governed by the excitation intensity and the detection 



 

efficiency of the optical system, but also by the properties of the molecule, such as 

absorption cross-section, fluorescence quantum yield, and dipole moment orientation. If  ( ) 

is the point-spread function (PSF, invariant in space and normalized to 1 at the center) of the 

imaging system with   as the coordination, the term    (    ) is an expression for the 

fluorescence intensity of the     molecule, i.e. the probability of molecule   to contribute with 

one photon to the detection by one illumination pulse if the current scanning position is  . 

Therefore, the probabilities of the arrival of a single and of two photons at the detectors, 

denoted with   ( ) and   ( ), respectively, originating from any of the molecules, can then 

be expressed as: 

   ( )  ∑   (    )∏(     (    ))
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Here we exploited the fact that the fluorescence arrival of the molecules do not depend on 

each other. In the case of arrival of two photons, we explicitly require them to originate from 

two distinct molecules. Furthermore, the product terms in Eqns.(5) can be neglected when 

∑    (    )     holds everywhere. We then obtain: 
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Transition to molecular densities on a continuous grid 

To simplify the situation we denote  ( ) as the density of fluorophores and  ( )  as the 

molecular brightness of the molecules at position   and assume that all molecules at the 

same position share the same molecular brightness. Although the molecular brightness can 

be influenced by the properties of the molecule, such as absorption cross-section, 

fluorescence quantum yield and dipole moment orientation, the variation of the brightness is 

~ 15%6 in aqueous solution. For example, the effect of the dipole moment orientation can be 

largely washed out due to the free rotation of the dye molecules in the space of a cone in 

solution7. Therefore, the assumption is not far from the reality. Additionally, the variation in 

molecular brightness beyond the resolution of the microscope is taken into account in this 

model. The sums in Eqns. (6) can then be expressed as convolutions: 
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whereby the star “ ” denotes convolution and the arrow means replacement by the simplified 

convolution terms. 

 

Influence of detection geometry 

In reality, detectors may not be able to identify the number of the arriving photons after one 

illumination pulse because of the dead time of the detectors. Therefore, multiple detection 

channels are required to detect the simultaneously arriving photons. However, still multiple 

photons can reach the same detector after one illumination pulse and the information of the 

photon numbers are partially lost. This loss can be taken into account by a geometrical 

factor    . Hence the probabilities   ( ) and   ( ) for obtaining 1- and 2-photon detection 

events, respectively are given by  

   ( )    ( ) 

  ( )     ( )  
(8) 



 

When   independent identical detection channels are used and each channel is able to 

detect only up to one photon, the factor   (   )  . Inserting Eqns. (6) into Eqns. (8) 

yields Eqns. (1) in the main text: 
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Note that the main approximation in Eqns. (9) is that the product of local molecular number 

density and the local molecular brightness is small, i.e. (    )( )     at any  . If this 

condition is not fulfilled, contributions from higher orders of photon coincidences must be 

included. Under our experimental conditions, the number of background photons is low 

enough to be negligible in most cases. When the background has to be considered and is 

Poissonian distributed, Eqns. (9) and Eqns. (1) in the main text can be extended accordingly 

as 
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Here,   ( )  ((  )   )( ),   ( )  
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 (   )    ) ( ) and   is the mean value 

of the Poissonian background. We neglect the terms that are much smaller than   and    in 

  ( )  and    and     in   ( )  in Eqns. (10) since    ( )    under our experimental 

conditions. The background mainly includes the dark count of the detectors and scattered 

light from the sample in our experiments, which is typically ~ 1e-4/pulse or less. In the case 

of the 2D examples (dsDNA and DNA origami, Fig. 1 & 2 in the main text), the background is 

so low that it can be neglected without influencing the estimation of the number of molecules. 

  



 

Solving for  ( ) and  ( ) using penalized least squares 

Suppose that   (  ) and   (  ) are the experimental observations of the 1- and 2-photon 

detection events, respectively, normalized by the number of illumination pulses  . That 

means   ( ) and   ( ) are the frequency of 1- and 2-photon detection events at each grid 

position   , respectively 

   (  )    (  )     (  ),          (11) 

Here,     ( ) are the uncertainties introduced by measurement errors. Since the 1- and 2-

photon detection events are counting events with low probabilities and with   times,     ( ) 

will be dominated by shot noise. We also assume that the errors are approximately normally 

distributed, especially when M is large as in our experiments, which enables us to apply a 

constraint maximum likelihood framework which essentially means solving a least squares 

problem. Hence, in order to recover  ( )  and  ( ) , we employ a penalized maximum 

likelihood estimator as the solution of the following constraint optimization problem:  

 
minimize:   ‖  (   )    ‖

    ‖  (   )    ‖
     ( ) 

(12) 

subject to     and      

Here,   ,    and   are positive weighting parameters and   is a typical penalizing term8. We 

applied the Laplacian on the brightness (     ) in order to enforce smoothness in the 

brightness distribution. With the value of   appropriately chosen, this penalization sufficiently 

stabilizes the solution of Eq. (12), preventing strong spatial oscillations in brightness on 

scales smaller than the full width at half maximum of the effective PSF. The weighting 

parameters      are chosen such that both least square residuals are on a similar scale. We 

found that      ∑   (  )  largely achieves this goal. In order to incorporate the non-

negativity constraints we substituted  (  ) and  (  ) by squared variables   (  ) and   (  ), 

respectively, and solved Eqn. (12) for  (  ) and  (  ) instead.  

For the least-squares minimization of Eqn. (12), the gradient algorithm and other established 

methods are available. We chose the image reconstruction with the fast proximal gradient 

(FISTA) algorithm9 of Beck and Teboulle which is numerically more efficient than the 

classical gradient algorithm. As starting values for  (  ) we choose a deconvolved 1-photon 



 

detection image scaled by the average molecular brightness which was obtained assuming a 

constant molecular brightness over the whole image region (see below). Here, we chose 10 

iterations of the Richardson-Lucy deconvolution10 through our evaluation of experimental 

data. Usually 100-300 iterations were required to achieve stable solution and sufficient 

minimization. An automatic way to stop the iterations is suggested by Bissantz N, Mair BA 

and Munk A11. The implicit step corresponds to smoothing with the inverse of the Laplacian 

operator and therefore guarantees that  ( ) remains smooth during the iterative process and 

increases stability of the numerical minimization scheme. Instead of penalization with the 

Laplacian operator in FISTA, an explicit smoothing step of  ( )  (by convolution with a 

Gaussian smoothing kernel) in each iteration is also able to reject the strong variation of it. It 

should be possible to use other types of methods, such as Newton type methods12 or 

iteratively reweighted least squares algorithm13, to find the solution of Eqns. (12) as well. 

 

Direct solution for areas of constant molecular brightness 

In the case of an isolated (i.e. without molecules close to the border) area   of constant 

molecular brightness  (  )    , for     , we can solve for the molecular brightness as well 

as for the total number of molecules    ∑  (  )  ∈ 
 within this area explicitly. In this case, 

summing the convolution terms in Eqns. (9) gives simple products: 
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where the sums over the PSF are abbreviated by    ∑   (  )  ∈ 
,      . Eqns. (9) then 

uniquely determine      as well as   
    and    and    can be solved: 
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(14) 

Here,      and      are the estimation of and    and   . If the PSF   can be approximated by 

a Gaussian peak function, the terms    in Eqns. (14) can be simplified to simple factors. 

Provided the variation of molecular brightness within an isolated region of interest is small 

(~20%), the expressions in Eqns. (14) can be used to compute an initial estimate of the total 

number and the average brightness of the molecules within this region.  

 

Uncertainty of estimating the number and brightness of a single, isolated cluster of 

molecules 

We use Eqns. (14) to derive a measure for the uncertainty of the estimated number      and 

brightness      of    molecules in a single, isolated cluster with brightness   . Then, Eqns. 

(9) can be simplified to 
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The observed number of 1- and 2-photon detection events are the experimental realizations 

of multinomial distributed random variables with   repeats, with probabilities     ( ) . 

Because these probabilities are typically very small (    ( )   ), we approximate the 

variances of the observed 1- and 2-photon detection events by      ( ). Therefore, the 

normalized number of 1- and 2-photon detection events     ( ) have variances 
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Without any long lasting historical effects (e.g. molecular blinking and bleaching) the 

observations at different positions   are independent. Furthermore, the correlation between 

  ( ) and   ( ) is negligible, because     ( )   . Therefore, the error propagation of      

and      in Eqns. (14) can be expressed by    (  ( )) and    (  ( )) in Eqns. (16). As 

    , all terms containing    (  ( )) are dominated by those containing    (  ( )) and 

therefore can be neglected. Consequently, the simplified variant results in 

 
   (    )  

 

 

  (    )

  
    

 

   (    )  
 

 

(    )

     
  

(17) 

The relative standard deviations (RSTD) are the same for the estimation of the number of 

molecules      as well as for that of the molecular brightness     : 
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The fact that the RSTDs are inversely proportional to    makes it a critical parameter. 

Therefore, it suggests choosing a bright fluorophore with high quantum yield. Also good 

collection efficiency of the instrument is preferred. The RSTDs are also inversely 

proportional to √ , which is closely related to the pixel dwell time, so that a stable 

fluorophore is also preferred. If a (future) detector is able to identify the number of detected 

photons directly or does not have any dead time,    can reach its limit 1. 

Interestingly, the RSTDs are small for small numbers    and asymptotically independent on 

   when    is large. In the ideal case that fluorophores do not bleach, a smaller effective 

focal volume, e.g. in the case of STED microscopy, will embrace fewer fluorophores and 

decrease the relative estimation error on both    and   . The effect is significant when    is 

close to 1. 

  



 

Combined confocal and STED measurements 

If confocal and STED measurements are combined, all equations are doubled to 

accommodate for both imaging modes. Eqns. (9) turn into 
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Here,     ( )  and     ( )  are the 1- and 2-photon detection probabilities of the confocal 

microscopy, respectively;    is the effective PSF of confocal microscopy.     ( ),     ( ) and 

   are the counterparts of STED microscopy. In comparison to Eqns. (2) in the main text,   is 

additionally introduced as the molecular brightness ratio between confocal and STED 

microscopy. Theoretically,    , when the illumination pulse energy is kept the same in both 

confocal and STED measurements. In practice, the intensity minima of the STED light is not 

zero and  , which was set to 0.5-0.7, is used to adjust the brightness in STED microscopy.  

Analogously, the estimation function in Eq. (12) turns into  
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subject to     and      

Here,     ,     ,     ,      and   are positive weighting parameters and   is the same 

penalizing term as in Eqn. (12). We choose        ∑     (  )  and        ∑     (  ) , 

      to bring all least-square residuals to a similar scale, with     (  ) and     (  ) as the 

experimental realization of the 1- and 2-photon detection events normalized by the number 

of illumination pulses  . Again the fast proximal gradient algorithm (FISTA) can be applied 

to recover  (  ) and  (  ). The starting conditions and number of iterations can be chosen as 

in the non-combined case.  



 

Similar to the non-combined case, if the molecular brightness remains constant  (  )    , 

for     , over an isolated area  , the total number of molecules    ∑  (  )      and the 

average molecular brightness    within this area can be solved as in Eqn. (14), and the 

uncertainty in estimation of the combined confocal and STED measurements can be 

deduced as in Eqn.(18). However, in practice, the estimation on overall number of molecules 

and molecular brightness on a region of interest and the relative uncertainty of the estimation 

from confocal images is mainly used because the measured PSF of STED is not as precise 

as that of confocal microscope.  
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