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Abstract

Let h > w > 0 be two fixed integers. Let H be a random hypergraph whose
hyperedges are all of cardinality h. To w-orient a hyperedge, we assign exactly w

of its vertices positive signs with respect to the hyperedge, and the rest negative. A
(w, k)-orientation of H consists of a w-orientation of all hyperedges of H, such that
each vertex receives at most k positive signs from its incident hyperedges. When k

is large enough, we determine the threshold of the existence of a (w, k)-orientation of
a random hypergraph. The (w, k)-orientation of hypergraphs is strongly related to a
general version of the off-line load balancing problem. The graph case, when h = 2
and w = 1, was solved recently by Cain, Sanders and Wormald and independently by
Fernholz and Ramachandran, which settled a conjecture of Karp and Saks.

1 Introduction

In this paper we consider a generalisation to random hypergraphs of a commonly studied
orientation problem on graphs. An h-hypergraph is a hypergraph whose hyperedges are all of
size h. Let h > w be two given positive integers. We consider Gn,m,h, the probability space of
the set of all h-hypergraphs on n vertices and m hyperedges with the uniform distribution.
A hyperedge is said to be w-oriented if exactly w distinct vertices in it are marked with
positive signs with respect to the hyperedge. The indegree of a vertex is the number of
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positive signs it receives. Let k be a positive integer. A (w, k)-orientation of an h-hypergraph
is a w-orientation all hyperedges such that each vertex has indegree at most k. If such a
(w, k)-orientation exists, we say the hypergraph is (w, k)-orientable; for w = 1 we simply say
k-orientable. Of course, being able to determine the (w, k)-orientability of an h-hypergraph
H for all k solves the optimisation problem of minimising the maximum indegree of a w-
orientation of H . If a graph (i.e. the case h = 2) is (1, k)-oriented, we may orient each edge
of the graph in the normal fashion towards its vertex of positive sign, and we say the graph
is k-oriented.

Note that a sufficiently sparse hypergraph is easily (w, k)-orientable. On the other hand,
a trivial requirement for (w, k)-orientability is m ≤ kn/w, since any w-oriented h-hypergraph
with m edges has average indegree mw/n. In this paper, we show the existence and deter-
mine the value of the sharp threshold (defined more precisely later) at which the random
h-hypergraph Gn,m,h fails to be (w, k)-orientable, provided k is a sufficiently large constant.
We show that the threshold is the same as the threshold at which a certain type of subhyper-
graph achieves a critical density. In the above, as elsewhere in this paper, the phrase “for k
sufficiently large” means for k larger than some constant depending only on w and h.

The hypergraph orientation problem is motivated by classical load balancing problems
which have appeared in various guises in computer networking. A seminal result of Azar,
Broder, Karlin and Upfal [2] is as follows. Throw n balls sequentially into n bins, with each
ball put into the least-full of h ≥ 2 randomly chosen boxes. Then, with high probability,
by the time all balls are allocated, no bin contains many more than (ln lnn)/ lnh balls. If,
instead, each ball is placed in a random bin, a much larger maximum value is likely to occur,
approximately lnn/(ln lnn). This surprisingly simple method of reducing the maximum is
widely used for load balancing. It has become known as the multiple-choice paradigm, the
most common version being two-choice, when h = 2.

One application of load balancing occurs when work is spread among a group of computers,
hard drives, CPUs, or other resources. In the on-line version, the jobs arrive sequentially and
are assigned to separate machines. To save time, the load balancer decides which machine
a job goes to after checking the current load of only a few (say h) machines. The goal is to
minimise the maximum load of a machine. Mitzenmacher, Richa and Sitaraman [22] survey
the history, applications and techniques relating to this. In particular, Berenbrink, Czumaj,
Steger, and Vőcking [2, 3] show an achieveable maximum load is m/n + O(log log n) for m
jobs and n machines when h ≥ 2.

Another application of load balancing, more relevant to the topic of this paper, is men-
tioned by Cain, Sanders and the second author [5]. This is the disk scheduling problem, in
the context where any w out of h pieces of data are needed to reconstruct a logical data
block. Individual pieces can be initially stored on different disks. Such an arrangement has
advantageous fault tolerance features to guard against disk failures. It is also good for load
balancing: when a request for a data block arrives, the scheduler can choose any w disks
among the h relevant ones. See Sanders, Egner and Korst [25] for further references.

These load balancing problems correspond to the (w, k)-orientation problem for h-uniform
hypergraphs, with w = 1 in the case of the job scheduling problem. The machines (bins) are
vertices and a job (ball) is an edge consisting of precisely the set of machines to which it
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can be allocated. A job is allocated to a machine by assigning a positive sign to that vertex.
The maximum load is then equal to the maximum indegree of a vertex in the (w, k)-oriented
hypergraph.

The work in this paper is motivated by the off-line version of this problem, in which the
edges are all exposed at the start. This has obvious applications, for instance, in the disk
scheduling problem, the scheduler may be able to quickly process a large number of requests
together off-line, to balance the load better. This can be useful if there is a backlog of requests;
of course, if backlogs do not occur, the online problem is more relevant, but this would indicate
ample processing capacity, in which case there may be less need for load balancing in the first
place. Trivially, the on-line and off-line versions are the same if h = 1, i.e. there is no choice.
For h = 2, the off-line version experiences an even better improvement than the on-line one. If
m < cn items are allocated to n bins, for c constant, the expected maximum load is bounded
above by some constant c′ depending on c.

To our knowledge, previous theoretical results concern only the case w = 1 (this also
applies to on-line). For w = 1 it is well known that an optimal off-line solution, i.e. achieving
minimum possible maximum load, can be found in polynomial time (O(m2)) by solving a
maximum flow problem. As explained in [5], it is desirable to achieve fast algorithms that are
close to optimal with respect to the maximum load. There are linear time algorithms that
achieve maximum load O(m/n) [11, 19, 21].

A central role in solutions of the off-line orientation problem with (w, h) = (1, 2) is played
by the k-core of a graph, being the largest subgraph with minimum degree at least k. The
sharp threshold for the k-orientability of the random graph G(n,m) = Gn,m,2 was found in [5],
and simultaneously by Fernholz and Ramachandran [14]. These were proofs of a conjecture
of Karp and Saks that this threshold coincides with the threshold at which the (k + 1)-core
has average degree at most 2k. (It is obvious that a graph cannot be k-oriented if it has a
subgraph of average degree greater than 2k.) In each case, the proof analysed a linear time
algorithm that finds a k-orientation a.a.s. when the mean degree of the (k+1)-core is slightly
less than 2k. In this sense, the algorithms are asymptotically optimal since the threshold for
the algorithms succeeding coincides with the threshold for existence of a k-orientation. The
proof in [14] was significantly simpler than the other, which was made possible because a
different algorithm was employed. It used a trick of “splitting vertices” to postpone decisions
and thereby reduced the number of variables to be considered.

During the preparation of this paper, three preprints appeared by Frieze and Melsted [12],
Fountoulakis and Panagiotou [13], and by Dietzfelbinger, Goerdt, Mitzenmacher, Montanari,
Pagh and Rink [10] which independently study the threshold of (1, 1)-orientability of Gn,m,h,
i.e. the case w = k = 1. This has applications to cuckoo hashing. However, there seems to be
no easy way to extend the proofs in [10, 12, 13] to solve for the case k > 1, even when w = 1.

In this paper, we solve the generalisation of the conjecture of Karp and Saks mentioned
above, for fixed h > w > 0, provided k is sufficiently large. That is, we find the threshold
of (w, k)-orientation of random h-hypergraphs in Gn,m,h. The determination of this threshold
helps to predict loads in the off-line w-out-of-h disk scheduling problem, where the randomness
of the hypergraph is justified by the random intial allocation of file segments to disks. We
believe furthermore that the characterisation of the threshold in terms of density of a type
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of core, and possibly our method of proof, will potentially help lead to fast algorithms for
finding asymptotically optimal orientations.

Our approach has a significant difference from that used in the graph case when (w, h) =
(1, 2). The algorithm used in [14] does not seem to apply in the hypergraph case, at least,
splitting vertices cannot be done without creating hyperedges of larger and larger size. The
algorithm used by [5], on the other hand, generalises in an obvious way, but it is already
very complicated to analyse in the graph case, and the extension of the analysis to the
hypergraph case seems formidable. However, in common with those two approaches, we first
find what we call the (w, k + 1)-core in the hypergraph, which is an analogue of the (k + 1)-
core in graphs. We determine the size and density of this core when the random hypergraph’s
density is significantly larger than what is required for the core to form. This result may be
of independent interest, and uses the differential equation method in a setting which contains
a twist not encountered when it is applied to the graph case: some of the functions involved
have singularities at the starting point. (See Section 3 for details.)

Although we gain information on the threshold of appearance of this core, we do not,
and do not need to, determine it precisely. From here, we use the natural representation
of the orientation problem in terms of flows. It is quite easy to generalise the network flow
formulation from the case h = 2, w = 1 to the arbitrary case, giving a problem that can be
solved in time O(m2) for m = Θ(n). Unlike the approaches for the graph case, we do not
study an algorithm that solves the load balancing problem. Instead, we use the minimum
cut characterisation of the maximum flow to show that a.a.s. the hypergraph can be (w, k)-
oriented if and only if the density of its (w, k + 1)-core is below a certain threshold. When
the density of the (w, k+1)-core is above this threshold, it is trivially too dense to be (w, k)-
oriented. Even the case w = 1 of our result gives a significant generalisation of the known
results. We prove that the threshold of the orientability coincides with the threshold at which
certain type of density (in the case w = 1, this refers to the average degree divided by h)
of the (w, k + 1)-core is at most k, and also the threshold at which certain type of induced
subgraph (in the case w = 1, this refers to the standard induced subgraph) does not appear.
For the graph case, our method provides a new proof (for sufficiently large k) of the Karp-Saks
conjecture that we believe is simpler than the proofs of [5] and [14].

We give precise statements of our results, including definition of the (w, k + 1)-core, in
Section 2. In Section 3 we study the properties of the (w, k + 1)-core. In Section 4, we
formulate the appropriate network flow problem, determine a canonical minimum cut for
a network corresponding to a non-(w, k)-orientable hypergraph, and give conditions under
which such a minimum cut can exist. Finally, in Section 5, we show that for k is sufficiently
large, such a cut a.a.s. does not exist when the density of the core is below a certain threshold.

An extended abstract for this paper, omitting most proofs, will appear in STOC 2010 [16].

2 Main results

Let h > w > 0 and k ≥ 2 be fixed. For any h-hypergraph H , we examine whether a (w, k)-
orientation exists. We call a vertex light if the degree of the vertex is at most k. For any light
vertex v, we can give v the positive sign respect to any hyperedge x that is incident to v (we
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call this partially orienting x towards to v), without violating the condition that each vertex
has indegree at most k. Remove v from H , and for each hyperedge x incident to v, simply
update x by removing v. Then the size of x decreases by 1, and it has one less vertex that
needs to be given the positive sign. If the size of a hyperedge falls to h − w, we can simply
remove that hyperedge from the hypergraph. Repeating this until no light vertex exists, we
call the remaining hypergraph Ĥ the (w, k + 1)-core of H . Every vertex in Ĥ has degree at

least k + 1, and every hyperedge in Ĥ of size h− j requires a (w − j)-orientation in order to
obtain a w-orientation of the original hyperedge in H .

In order to simplify the notation, we use n̄, m̄ and µ̄ to denote the numbers of vertices
and of hyperedges, and the average degree, of H ∈ Gn̄,m̄,h, reserving n, mh−j and µ to denote

the numbers of vertices and of hyperedges of size h− j, and the average degree, of Ĥ.
Instead of considering the probability space Gn̄,m̄,h, we may consider Mn̄,m̄,h, the proba-

bility space of random multihypergraphs with n̄ vertices and m̄ hyperedges, such that each
hyperedge x is of size h, and each vertex in x is chosen independently, uniformly at random
from [n̄]. Actually Mn̄,m̄,h may be a more accurate model for the off-line load balancing
problem in some applications, and as we shall see, results for the non-multiple edge case
can be deduced from it. For a nonnegative integer vector m = (m2, . . . , mh), we also de-
fine the probability space Mn,m, being the obvious generalisation of Mn,m,h to non-uniform
multihypergraphs in which mi is the number of hyperedges of size i.

All our asymptotic notation refers to n → ∞. For clarity, we consider H ∈ Mn̄,m̄,h. We
use n, mh−j and µ for the number of vertices, the number of hyperedges of size h− j and the

average degree of Ĥ . We parametrise the number m̄ of edges in the hypergraphs under study
by letting µ̄ = µ̄(n) denote hm̄/n̄, the average degree of H ∈ Mn̄,m̄,h (or of H ∈ Gn̄,m̄,h).

Our first observation concerns the distribution of Ĥ and its vertex degrees. Let Multi(n,m, k+
1) denote the multinomial distribution of n integers summing to m, restricted to each of the
integers being at least k + 1. We call this the truncated multinomial distribution.

Proposition 2.1 Let h > w ≥ 1 be two fixed integers. Let H ∈ Mn̄,m̄,h and let Ĥ be its
(w, k + 1)-core. Conditional on its number n of vertices and numbers mh−j of hyperedges of

size h − j for j = 0, . . . , w − 1, the random hypergraph Ĥ is distributed uniformly at ran-
dom. Furthermore, the distribution of the degree sequence of Ĥ is the truncated multinomial
distribution Multi(n,m, k + 1) where m =

∑w−1
j=0 (h− j)mh−j.

The following theorem shows that the size and the number of hyperedges of Ĥ are highly
concentrated around the solution of a system of differential equations. The theorem covers
the cases for any arbitrary h > w ≥ 2 and holds for all sufficiently large k. The special case
w = 1 has been studied by various authors and the concentration results can be found in [5,
Theorem 3] which hold for all k ≥ 0. Since w and k are fixed, we often omit them from the
notation.

Theorem 2.2 Let h > w ≥ 2 be two fixed integers. Assume that for some constant c > 1 we
have ck ≤ µ̄ where µ̄ = hm̄/n̄. Let H ∈ Mn̄,m̄,h and let Ĥ be its (w, k+ 1)-core. Let n be the

number of vertices and mh−j the number of hyperedges of size h− j of Ĥ. Then, provided k is
sufficiently large, there are constants α > 0 and βh−j > 0, defined in (3.3) below, depending
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only on µ̄, k, w and h, for which a.a.s. n ∼ αn̄ and mh−j ∼ βh−jn̄ for 0 ≤ i ≤ w − 1. The
same conclusion (with the same constants) holds for H ∈ Gn̄,m̄,h.

Note. The full definition of α and βh−j in the theorem is rather complicated, involving the
solution of a differential equation system given below in (3.4–3.14).

Let P be a hypergraph property and let Mn,m,h ∈ P denote the event that a random
hypergraph from Mn,m,h has the property P. Following [1, Section 10.1, Definition 4], we say
that P has a sharp threshold function f(n) if for any constant ǫ > 0, P(Mn,m,h ∈ P) → 1
when m ≤ (1− ǫ)f(n), and P(Mn,m,h ∈ P) → 0 when m ≥ (1 + ǫ)f(n).

Let κ(Ĥ) denote
∑w−1

j=0 (w − j)mh−j/n, which we call the w-density of Ĥ. We similarly
define the w-density of any hypergraph all of whose hyperedges have sizes between h−w+1
and h. It helps to notice, by the definition of w-density, that

nκ(Ĥ) = d(Ĥ)− (h− w)m,

where d(Ĥ) denotes the degree sum of Ĥ and m =
∑w−1

j=0 mh−j. We say that a hypergraph

H has property T if κ(Ĥ) ≤ k, where Ĥ is the (w, k + 1)-core of H . The following theorem,
proved using Theorem 2.2, immediately gives the corollary that there is a sharp threshold
function for property T .

Theorem 2.3 Let H ∈ Mn̄,m̄,h. Let µ̄ be the average degree of H and let Ĥ be the (w, k+1)-
core of H. Then for all sufficiently large k, there exists a strictly increasing function c(µ̄) of

µ̄, such that for any fixed c2 > c1 > 1 and for any c1k < µ̄ < c2k, a.a.s. κ(Ĥ) ∼ c(µ̄).

Corollary 2.4 There exists a sharp threshold function f(n̄) for the hypergraph property T in
Mn̄,m̄,h and Gn̄,m̄,h provided k is sufficiently large.

The function c(µ̄) in the theorem, and the threshold function in the corollary, are determined
by the solution of the differential equation system referred to in Theorem 2.1.

We have defined a (w, k)-orientation of a uniform hypergraph in Section 1. We can sim-
ilarly define a (w, k)-orientation of a non-uniform hypergraph G with sizes of hyperedges
between h− w + 1 and h to be a simultaneous (w − j)-orientation of each hyperedge of size
h− j such that every vertex has indegree at most k. By counting the positive signs in orien-
tations, we see that if property T fails, there is no (w, k)-orientation of Ĥ , and hence there is
no (w, k)-orientation of H .

For a nonnegative integer vector m = (mh−w+1, . . . , mh), let M(n,m, k+1) denote Mn,m

restricted to multihypergraphs with minimum degree at least k + 1. By Proposition 2.1,
M(n,m, k + 1) has the distribution of the (w, k + 1)-core of H ∈ Mn̄,m̄,h conditioned on the
number of vertices being n and the number of hyperedges of each size being given by m. To
emphasise the difference, we will use G to denote a not-necessarily-uniform hypergraph in
cases where we might use H for a uniform hypergraph.

Given a vertex set S, we say a hyperedge x is partially contained in S if |x ∩ S| ≥ 2.

Definition 2.5 Let 0 < γ < 1. We say that a multihypergraph G has property A(γ) if for
all S ⊂ V (G) with |S| < γ|V (G)| the number of hyperedges partially contained in S is strictly
less than k|S|/2w.
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In the following theorem, m = m(n) denotes an integer vector for each n.

Theorem 2.6 Let γ be any constant between 0 and 1. Then there exists a constant N > 0
depending only on γ, such that for all k > N and any ǫ > 0, if m(n) satisfies

∑w−1
j=0 (w −

j)mh−j(n) ≤ kn − ǫn for all n, then G ∈ M(n,m(n), k + 1) a.a.s. either has a (w, k)-
orientation or does not have property A(γ).

Let f(n̄) be the threshold of property T given in Corollary 2.4. We show in the forthcoming

Corollary 4.3 that for certain values of γ, a.a.s. Ĥ has property A(γ) if the average degree of
H is at most hk/w. We will combine this with Corollary 2.4 and Theorem 2.6 and a relation
we will show between Mn̄,m̄,h and Gn̄,m̄,h (Lemma 3.1), to obtain the following.

Corollary 2.7 Let h > w > 0 be two given integers and k be a sufficiently large constant.
Let f(n̄) be the threshold function of property T whose existence is asserted in Corollary 2.4.
Then f(n̄) is a sharp threshold for the (w, k)-orientability of Mn̄,m̄,h and Gn̄,m̄,h.

For any vertex set S ⊂ V (H), define the subgraph w-induced by S to be the subgraph of
G on vertex set S with the set of hyperedges {x′ = x∩S : x ∈ H, s.t. |x′| ≥ h−w+1}. Call
this hypergraph HS. It helps to notice that Ĥ is the largest w-induced subgraph of H with
minimum degree at least k + 1. From the above results and a relation we will show between
Mn̄,m̄,h and Gn̄,m̄,h, we will obtain the following.

Corollary 2.8 The following three graph properties of H ∈ Mn̄,m̄,h (or Gn̄,m̄,h) have the same
sharp threshold.

(i) H is (w, k)-orientable.

(ii) H has property T .

(iii) There exists no w-induced subgraph H ′ ⊂ H with κ(H ′) ≥ k.

3 Analysing the size and density of the (w, k + 1)-core

A model of generating random graphs via multigraphs, used by Bollobás and Frieze [4] and
Chvatál [8], is described as follows. Let Pn̄,m̄ be the probability space of functions g : [m̄]×
[2] → [n̄] with the uniform distribution. Equivalently, Pn̄,m̄ can be described as the uniform
probability space of allocations of 2m̄ balls into n̄ bins. A probability space of random
multigraphs can be obtained by taking {g(i, 1), g(i, 2)} as an edge for each i. This model
can easily be extended to generate non-uniform random multihypergraphs by letting m =
(m2, . . . , mh) and taking Pn̄,m = {g : ∪h

i=2[mi]× [i] → [n̄]}. Let Mn̄,m be the probability space
of random multihypergraphs obtained by taking each {g(j, 1), . . . , g(j, i)} as a hyperedge,
where j ∈ [mi] and 2 ≤ i ≤ h. (Loops and multiple edges are possible.) Note that Mn̄,m,
where m = (m2) = (m̄), is a random multigraph; it was shown in [8] that if this is conditioned
on being simple (i.e. no loops and no multiple edges), it is equal to Gn̄,m̄,2, and that the
probability of a multigraph in Mn̄,(m̄) being simple is Ω(1) if m̄ = O(n̄). This result is easily
extended to the following result, using the same method of proof.

7



Lemma 3.1 Assume h ≥ 2 is a fixed integer and m = (m2, . . . , mh) is a non-negative integer
vector. Assume further that

∑h
i=2mi = O(n̄). Then the probability that a hypergraph in Mn̄,m

is simple is Ω(1).

Cain and Wormald [6] recently introduced a related model to analyse the k-core of a
random (multi)graph or (multi)hypergraph, including its size and degree distribution. This
model is called the pairing-allocationmodel. The partition-allocation model, as defined below,
is a generalisation of the pairing-allocation model, and analyses cores of multihypergraphs with
given numbers of hyperedges of various sizes. We will use this model to prove Theorem 2.6
and to analyse a randomized algorithm called the RanCore algorithm, defined later in this
section, which outputs the (w, k + 1)-core of an input h-hypergraph.

Given h ≥ 2, n, m = (m2, . . . , mh), L = (l2, . . . , lh) and a nonnegative integer k such
that D − ℓ ≥ kn, where D =

∑h
i=2 imi and ℓ =

∑h
i=2 li, let V be a set of n bins, and M a

collection of pairwise disjoint sets {M1, . . . ,Mh}, where Mi is a set of imi balls partitioned
into parts, each of size i, for all 2 ≤ i ≤ h. Let Q be an additional bin to V . It may assist
the reader to know that Q ‘represents’ all the hyperedge incidences at vertices of degree less
than k, and li is the number of these incidences in edges of size i. The partition-allocation
model P(V,M,L, k) is the probability space of ways of allocating balls to bins in the following
way. Let C = {c2, . . . , ch} be a set of colours. Colour balls in Mi with ci. (The function of
the colours is only to denote the size of the part a ball lies in.) Then allocate the D balls
uniformly at random (u.a.r.) into the bins in V ∪ {Q} , such that the following constraints
are satisfied:

(i) Q contains exactly ℓ balls;

(ii) each bin in V contains at least k balls;

(iii) for any 2 ≤ i ≤ h, the number of balls with colour ci that are contained in Q is li.

We call Q the light bin and all bins in V heavy. To assist with the analysis in some
situations, we consider the following algorithm which clearly generates a probability space
equivalent to P(V,M,L, k). We call this alternative the allocation-partition algorithm since
it allocates before partitioning the balls. First, allocate D balls randomly into bins {Q} ∪ V
with the restriction that Q contains exactly ℓ balls and each bin in V contains at least k balls.
Then colour the balls u.a.r. with the following constraints:

(i) exactly imi balls are coloured with ci;

(ii) for each i = 2, . . . , h, the number of balls with colour ci contained in Q is exactly li.

Finally, take u.a.r. a partition of the balls such that for each i = 2, . . . , h, all balls with colour
ci are partitioned into parts of size i.

To prove Theorem 2.2, we will convert the problem to a question about P(V,M,L, k+1),
in particular the (w, k + 1)-core of the hypergraph induced in the obvious way by the bins
containing at least k + 1 balls.
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A deletion algorithm producing the k-core of a random multigraph was analysed in [6].
The differential equation method [27] was used to analyse the size and the number of hyper-
edges of the final k-core. The degree distribution of the k-core was shown to be a truncated
multinomial. We now extend this deletion algorithm to find the (w, k+1)-core of H in Mn̄,m̄,h

and Gn̄,m̄,h. We describe the algorithm in the setting of representing multihypergraphs using
bins for vertices, where each hyperedge x is a set h(x) of |x| balls. Initially let LV be the set
of all light vertices/bins, and let LV = V (H) \ LV be the set of heavy vertices. A light ball
is any ball contained in LV .

RanCore Algorithm to obtain the (w, k + 1)-core
Input: an h-hypergraph H . Set t := 0.

While neither LV nor LV is empty,
t := t+ 1;
Remove all empty bins;
U.a.r. choose a light ball u. Let x be the hyperedge that contains u and let v be
the vertex that contains u;
If |x| ≥ h− w + 2, update x with x \ {u},

otherwise, remove this hyperedge x from the current hypergraph. If any vertex

v′ ∈ LV becomes light, move v′ to LV together with all balls in it;
If LV is empty, ouput the remaining hypergraph, otherwise, output the empty graph.

We will prove Proposition 2.1 and Theorem 2.2 by analysing the RanCore algorithm
using the partition-allocation model and the allocation-partition algorithm which generates
P(V,M, 0, k + 1). Define

fk(µ) =
∑

i≥k

e−µ · µ
i

i!
= 1−

k−1∑

i=0

e−µ · µ
i

i!
, (3.1)

for any integer k ≥ 0. By convention, define fk(µ) = 1 for any k < 0. Let Z(≥k) be a truncated
Poisson random variable with parameter λ defined as follows.

P(Z(≥k) = j) =
e−λ

fk(λ)
· λ

j

j!
, for any j ≥ k. (3.2)

Note that it follows that P(Z(≥k) = j) = 0 whenever j < k. The following proposition will be
used in the proof of Theorem 2.2 and in Section 5.

Proposition 3.2 For µ ≥ k + 2, there exists a unique real λ satisfying λfk(λ) = µfk+1(λ).
Moreover, µ ≥ λ, and if µ ≥ ck for a fixed c > 1, then µ− λ → 0 and fk(λ) → 1 as k → ∞.

Proof. Since yfk(y)/fk+1(y) is monotonic in the domain y > 0, as shown in [24, Lemma 1],
there exist a unique λ > 0 that satisfies λfk(λ) = µfk+1 as long as µ ≥ infy>0{yfk(y)/fk+1(y)}.
Clearly fk(1)/fk+1(1) < k + 2, so µ ≥ k + 2 suffices. Since fk(λ) ≥ fk+1(λ) for all k ≥ −1
by the definition of the function fk(x) in (3.1), it follows directly that µ ≥ λ. For k → ∞,
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we use well known simple bounds on tails of the Poisson distribution. Set c = 1 + 3α, where
α > 0. If λ < k + αk, then

λfk(λ) ∼
⌊k+2αk⌋∑

j=k

e−λλ
j+1

j!
< (1 + o(1))(k + 2αk)

⌊k+2αk⌋∑

j=k

e−λ λj+1

(j + 1)!

< ckfk+1(λ) < µfk+1(λ),

a contradiction. So λ ≥ k + αk, whence fk(λ) and fk+1(λ) are both 1 + o(1/λ) and so
λ− µ = o(1).

The following is essentially [28, Lemma 4.2].

Lemma 3.3 Let c > 0, δ be constants. Let (Yt)t≥1 be independent random variables such that
|Yt| ≤ c always and EYt ≤ δ for all t ≥ 1. Let X0 = 0 and Xt =

∑
i≤t Yi for all t ≥ 1. Then

for any ǫ > 0, a.a.s. Xn ≤ δn+ ǫ|δ|n. More precisely, P(Xn ≥ δn + ǫ|δ|n) ≤ exp(−Ω(ǫ2n)).

Proof of Proposition 2.1. Consider an element H ∈ Mn̄,m arising from P ∈ Pn̄,m, where
m = (0, . . . , 0, m̄) with m̄ corresponding to the value of the coordinate mh. If we merge all
the bins of P containing k or fewer balls into one bin Q, we obtain in an obvious way an
element P ′ ∈ P(V,M,L, k + 1) for an appropriate sequence L = (0, 0, . . . , L0) where L0 is
the total degree of light vertices (vertices with degree at most k) in H . Given the parameters
(V,M,L, k + 1), the number of P that will produce P ′ is independent of P ′. It follows that,
conditional on the total degree of the light vertices in H , this generates P(V,M,L, k+1) with
the correct distribution. Moreover, the hypergraph induced by the vertices of H of degree at
least k + 1 is also induced in the obvious way by the heavy bins of P ′. Hence, it suffices to
study the (w, k+ 1)-core of this hypergraph, conditional upon any feasible L. Because of the
correspondence between P(V,M,L, k + 1) and the random multihypergraphs, we sometimes
call bins in V vertices and the degree sequence of V denotes the sequence of numbers of balls
in bins in V .

To this end, we adapt the RanCore algorithm in the obvious way to be run on P(V,M,L, k+
1), as follows. In each step t, the algorithm removes a ball, denoted by u, u.a.r. chosen from
all balls in Q. If the colour of u is ch−j for i < w − 1, the algorithm recolours the balls in
the same part as u with the new colour ch−j−1. If the colour of u is ch−w+1, the algorithm
removes all balls contained in the same part as u, and if any heavy bin becomes light (i.e. the
number of balls contained in it becomes at most k) because of the removal of balls, the bin
is removed and the balls remaining in it are put into Q. This clearly treats the heavy bins of
P ′ in a corresponding way to RanCore treating the heavy vertices of H . Thus, the modified
RanCore stops with a final partition-allocation that corresponds to the (w, k + 1)-core of H ,
and this is what we will analyse.

For easier reference, let gt denote the random partition-allocation derived after t steps
of this process. Let Vt denote its set of heavy bins and let Mt denote the class of sets
{Mt,h−w+1, . . . ,Mt,h} such that Mt,h−j denotes the set of partitioned balls with colour ch−j

in gt for 0 ≤ j ≤ w − 1. Let mt,h−j = |Mt,h−j|/(h − j) and m = (mt,h−w+1, . . . , mt,h). Let
Lt,h−j denote the number of balls with colour ch−j in Q and let L = (Lt,h−w+1, . . . , Lt,h). Let
Lt =

∑w−1
j=0 Lt,h−j . Initially, g0 = P ′, V0 = V etc.

10



There is a straightforward way to see, by induction on t, that the partition-allocation
gt, conditional on Vt, Mt and Lt, is distributed as P(Vt,Mt,Lt, k + 1). We have already
noted that this is true for t = 0. For the inductive step, it suffices to note that that for any
t ≥ 0, conditional on the values of Vt,Mt,Lt for gt, the probability that gt+1 is any particular
member g′ of Vt+1,Mt+1,Lt+1 does not depend on g′. This is because of three facts. Firstly,
gt is uniform conditional on the parameters at step t. Secondly, the change in the parameters
determines which type of step the algorithm is taking (e.g. if a heavy bin becomes light).
Thirdly, each possibility for gt+1 is reachable from the same number of gt and, given the type
of step occurring, each such transition has the same probability of occurring as step t+ 1.

Furthermore, it is easy to see that the degree distribution of the (w, k+1)-core, conditional
on the number of hyperedges of each size, is truncated multinomial. This is because, for any
V and M, the allocation-partition algorithm which generates P(V,M, 0, k + 1) produces a
truncated multinomial distribution for the degrees of vertices in V .

The proof of Theorem 2.2 uses the differential equation method (d.e. method). In partic-
ular, we use the following special case of [28, Theorem 6.1]. For each n > 0 let a sequence of

random vectors (Y
(1)
t , . . . , Y

(l)
t )0≤t≤m be defined on a probability space Ωn. (We suppress the

notation n.) Let Ut denote the history of the process up to step t.

Theorem 3.4 Suppose that there exists C > 0 such that for each i, Y (i) < Cn always. Let
D̂ ⊂ R

l+1 and let the stopping time T be the minimum t such that (t/n, Y
(1)
t /n, . . . , Y

(l)
t ) /∈ D̂.

Assume further that the following three hypotheses are satisfied.

(a) (Boundedness hypothesis.) There exists a constant C ′ > 0 such that for all 0 ≤ t ≤
min{m, T}, |Yt+1 − Yt| < C ′ always;

(b) (Trend hypothesis.) There exists functions fi for all 1 ≤ i ≤ l such that for all 0 ≤ t ≤
min{m, T} and all 1 ≤ i ≤ l,

E(Y
(i)
t+1 − Y

(i)
t | Ut) = fi(t/n, Y

(1)
t /n, . . . , Y

(l)
t /n) + o(1);

(c) (Lipschitz hypothesis.) For every 1 ≤ i ≤ l, the functions fi are Lipschitz continuous
in all their variables on a bounded connected open set D where D contains the intersec-
tion of (t, z(1), . . . , z(l) : t ≥ 0) with some neighbourhood of (0, z(1), . . . , z(l) : P(Y

(i)
0 =

z(l)n, 1 ≤ i ≤ l) 6= 0 for some n).

Then the following conclusions hold.

(a) For any (0, ẑ(1), . . . , ẑ(l)) ∈ D, the differential equation system

d zi
d s

= fi(s, z1, . . . , zl), i = 1, . . . , l

has a unique solution in D for zl : IR → IR with the initial conditions

zi(0) = ẑ(i), i = 1, . . . , l,

where the solution is extended arbitrarily close to the boundary of D.
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(b) A.a.s.

Y
(i)
t = nzi(t/n) + o(n)

uniformly for all 0 ≤ t ≤ min{σn, T}, where σ is the supremum of all x such that the
solution (z(i)(x))1≤i≤l to the differential equation system lies inside the domain D.

Our usage of a.a.s. in conjunction with other asymptotic notation such as o() conforms to
the conventions in [29]. For more details of the method and proofs, readers can refer to [27,
Theorem 1], [28, Theorem 5.1] and [28, Theorem 6.1]. In our case, Ωn is the probability space
of sequences of random partition-allocations generated by running the RanCore algorithm on
graphs with n vertices, where t refers to the t-th step of the algorithm and the Yt are variables
defined during the algorithm.)

The idea of the proof of Theorem 2.2 is, roughly speaking, as follows. We use the d.e.
method to analyse the asymptotic values of random variables defined on the random process
generated by the RanCore algorithm. The difficulty arises from the fact that the natural
functions fi for our application are not Lipschitz continuous at x = 0. To avoid this, we
artificially modify the fi in a neighbourhood of the problem point, and show that the solution
to the new differential equation system coincides with the original inside a domain D0 which
contains all points relevant to the random process. Theorem 3.4 then applies to show that
the asymptotic values of the random variables inside D0 are approximated by the solution of
the system, we analyse the random variables when they leave D0. We show that provided k
is sufficiently large, the algorithm then terminates quickly, which allows us to estimate the
size and density of Ĥ.

Proof of Theorem 2.2. It was shown in the proof of Proposition 2.1 that for every
t, conditional on the values of Vt, Mt and Lt, the partition-allocation gt is distributed as
P(Vt,Mt,Lt, k + 1). After step t of the RanCore algorithm, define (or recall) the following
random variables:

Bt total number of balls remaining

Bt,h−j number of balls coloured ch−j

At,i number of bins containing exactly i balls

At At,k+1 (number of bins containing exactly k + 1 balls)

Lt number of light balls

Lt,h−j number of light balls that are coloured ch−j

Ht,h−j number of balls contained in heavy bins that are coloured ch−j

HVt |Vt|, number of heavy bins

and note that Ht,h−j = Bt,h−j − Lt,h−j.
Recall that n and mh−j denote the number of vertices and the number of hyperedges of

size h − j in Ĥ, the (w, k + 1)-core of H , and µ̄ denotes its average degree. We show that
if µ̄ ≥ ck for some c > 1 and k is sufficiently large, then a.a.s. n ∼ αn̄ and mh−j ∼ βh−jn̄
for some constants α > 0, βh−j > 0 which are determined by the solution of the differential
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equation system given below, on a domain D0 defined below (3.14). In particular, we will
show that

α = zHV (x
∗), βh−j = zH,h−j(x

∗)/(h− j), (3.3)

where x∗ is the smallest positive root of zL(x) = 0.
The d.e. method relies on a relation between solutions of a differential equation system

and the random variables of the process under consideration. We will use subscripts of the
real valued functions to indicate their corresponding random variables. For instance, the real
function zL,h−j(x) is associated with the random variable Lt,h−j . The differential equation
system is as follows.

z′L,h−j(x) =
zL,h−j

zL

(
−1− (h− j − 1)zL,h−j

zB,h−j

)

+
zL,h−w+1

zL

(
(h− w)zH,h−w+1

zB,h−w+1
· (k + 1)zA
zB − zL

· k · zH,h−j

zB − zL

)

+
zL,h−j+1

zL

(h− j)zL,h−j+1

zB,h−j+1

, j = 1, . . . , w − 1, (3.4)

z′H,h−j(x) =
zL,h−j

zL

(
−(h− j − 1)zH,h−j

zB,h−j

)

−zL,h−w+1

zL

(
(h− w)zH,h−w+1

zB,h−w+1

· (k + 1)zA
zB − zL

· k · zH,h−j

zB − zL

)

+
zL,h−j+1

zL

(h− j)zH,h−j+1

zB,h−j+1
, j = 1, . . . , w − 1, (3.5)

z′L(x) = −1 +
zL,h−w+1

zL

(
− (h− w)zL,h−w+1

zB,h−w+1
+ (h− w)k · zH,h−w+1

zB,h−w+1
· (k + 1)zA
zB − zL

)
(3.6)

z′B(x) = −1− (h− w)zL,h−w+1

zL
(3.7)

z′HV (x) = −zL,h−w+1

zL

(h− w)zH,h−w+1

zB,h−w+1
· (k + 1)zA
zB − zL

(3.8)

λ′(x) =
((z′B − z′L)zHV − (zB − zL)z

′
HV )fk+1(λ)

z2HV (fk(λ) + λe−λ · λk−1

(k−1)!
− zB−zL

zHV
· e−λ · λk

k!
)

(3.9)

zL,h(x) = zL(x)−
w−1∑

i=1

zL,h−j(x), zH,h(x) = zB(x)− zL(x)−
w−1∑

i=1

zH,h−j(x), (3.10)

zB,h−j(x) = zL,h−j(x) + zH,h−j(x), for every 0 ≤ j ≤ w − 1, (3.11)

zA(x) =
λ(x)k+1

eλ(x)(k + 1)!fk+1(λ(x))
zHV (x), (3.12)

where fk(λ) was defined in (3.1). The initial conditions are

zB(0) = µ̄, zL,h−j(0) = 0, zH,h−j(0) = 0, for all 1 ≤ j ≤ w − 1, (3.13)

zL(0) = µ̄(1− fk(µ̄)), zHV (0) = 1− exp(−µ̄)

k∑

i=0

µ̄i/i!, λ(0) = µ̄. (3.14)
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Let D0 be the domain which contains all points such that x ∈ R, 0 ≤ zL,h−j ≤ zB,h−j ,
zL,h−j ≤ zL for all 0 ≤ j ≤ w − 1, zL > 0, zB − zL > 0, zHV > 0 and (zB − zL)/zHV > k + 2.
We will call the right hand sides of (3.4–3.9) the derivative functions, and at present we regard
them to be only defined in D0. It is straightforward to check that for any point z∗ ∈ D0 such
that zL,h−j = zB,h−j = 0, the functions specified in the right hand sides of (3.4–3.8) tend to 0
when z approaches z∗ from the interior of D0. For example, note that the term

zL,h−j

zL
· (h− j − 1) · zL,h−j

zB,h−j

on the right hand side of (3.4) is bounded above by (h−j−1)zL,h−j/zL since |zL,h−j/zB,h−j | ≤ 1
when z ∈ D0. Hence, it tends to 0 if z → z∗. The same applies to similar terms in (3.4)–(3.8).
As part of our definition of the differential equation system (3.4)–(3.14), we now declare the
values of these terms at such points z∗ to be 0.

In applying Theorem 3.4, the variable x will be associated with t/n̄. As mentioned above,
the variable zL,h−j(x) is associated with the variable Lt,h−j/n̄, which we call the scaled version
of the random variable Lt,h−j . We do the same for the other random variables, and call t/n̄
the scaled version of t.

There are two kinds of problems with the Lipschitz property required in Theorem 3.4 (c).
The first is caused by terms in the equations with denominators zL or zB − zL appearing in
the derivative functions, which are potentially 0, causing singularities. These are relatively
easy to take care of since they do not become small until near the end of the process. For any
fixed constant ǫ > 0, define D0(ǫ) to be the connected subset of D0 obtained by restricting
to z such that zL > ǫ and zB − zL > ǫ. We will basically restrict consideration to points in
D0(ǫ). Let T be the (stopping) time that the vector of scaled random variables leaves D0(ǫ).
Let t∧T denote min{t, T}. The conclusion of Theorem 3.4 will give information on the scaled
random variables up to the step when they reach the boundary of the domain D0(ǫ). This
gives us information about (gt∧T )0≤t≤τ , where gt is the partition-allocation obtained after step
t. At that point we will need some further observations to show that the process finishes soon
afterwards.

The second type of problem comes from denominators containing zB,h−j , which can be
0 even right at the start of the process. This poses a difficulty since the theorem requires
the derivative functions to be Lipschitz in an open domain containing the starting point. To
deal with this, we will, at an appropriate point below, extend the differential equations into
a larger connected open domain D ⊃ D0, and correspondingly extend D0(ǫ) to D(ǫ). We will

actually apply Theorem 3.4 with D = D(ǫ) and D̂ = D0(ǫ).
We first verify hypotheses (a) and (b) of Theorem 3.4, which are unrelated to the choice of

D(ǫ). It is easy to see that the change of each random variable in every step of the algorithm
is bounded. This is because in every step, the number of balls deleted (or recoloured, or
moved from heavy bins to the light bin Q) is bounded. Thus, Theorem 3.4(a) clearly holds.

To verify hypothesis (b), we will need to show that the expected one-step change of each
random variable, such as Lt,h−j , can be approximated to within o(1) error by some function
of the scaled variables. Replacing the scaled variables in these functions by their associated
real variables will give the derivative functions in (3.4)–(3.8).
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Let gt be the partition allocation obtained after step t. At step t+1, a partition-allocation
gt+1 is to be obtained by applying the RanCore algorithm to gt. Let v be the ball randomly
chosen by the algorithm from Q. Let C(v) be the colour of v, so C(v) = h − j for some j.
If j < w − 1, the algorithm removes another h − j − 1 balls that are uniformly distributed
among all balls with colour ch−j since gt ∈ P(Vt,Mt,Lt, k+1) as proved in Proposition 2.1. If
j = w− 1, then the algorithm removes v together with another h−w balls which are chosen
u.a.r. from all balls of colour ch−w+1. If the removal of the h− w balls results in some heavy
bins turning into light bins, these bins are removed and the balls remaining in these bins are
put into Q.

Now we estimate the expected value of Lt+1,h−j − Lt,h−j for any 1 ≤ j ≤ w − 1 and for
any 0 ≤ t < τ conditional on Vt, Mt, Lt and the event gt ∈ P(Vt,Mt,Lt, k + 1). Given j, the
probability that C(v) = ch−j is Lt,h−j/Lt. If C(v) = ch−j, one ball of colour ch−j contained
in Q is removed, and another h − j − 1 balls of colour ch−j are recoloured with ch−j−1 (or
removed if j = w − 1). So the expected number of those balls that are contained in Q is

(h− j − 1)Lt,h−j

Bt,h−j
(1 + o(1)),

provided Bt,h−j ≥ logn (say). Hence

Lt,h−j

Lt

(
−1− (h− j − 1)Lt,h−j

Bt,h−j

)
+ o(1)

is the negative contribution to E(Lt+1,h−j−Lt,h−j | Vt,Mt,Lt, gt ∈ P(Vt,Mt,Lt, k+1)). Note
that we reach the same conclusion if Bt,h−j < log n because in that case

Lt,h−j/Lt ≤ Bt,h−j/Lt < log n/ǫn = o(1).

The positive contribution to E(Lt+1,h−j − Lt,h−j | Vt,Mt,Lt, gt ∈ P(Vt,Mt,Lt, k + 1)) comes
from the following two cases.
Case 1: C(v) = ch−w+1. Here, the algorithm removes v and another h − w balls of colour
ch−w+1. P(C(v) = h− w + 1) = Lt,h−w+1/Lt. We first note that, for any 2 ≤ i ≤ h− w, the
contribution from the case that i of the h− w removed balls lie in a bin containing at most

k + i balls is at most
(
(k + i)/(Bt − Lt)

)i−1
= o(1), since the definition of D̂ = D0(ǫ) ensures

that the denominator is at least ǫn for t ≤ T .
It only remains to consider the contribution from the case that a ball in a bin containing

exactly k + 1 balls is removed. For each ball removed, the probability that it is in a bin
containing exactly k + 1 balls is

Ht,h−w+1

Bt,h−w+1
· (k + 1)At,k+1

Bt − Lt
+ o(1).

The removal of such a ball causes the bin to become light. Since gt ∈ P(Vt,Mt,Lt, k+1), the
balls of each colour are uniformly distributed among all balls in the heavy bins, and thus the
expected number of balls of colour ch−j, for 0 ≤ j ≤ w − 1, among the remaining k balls in
the bin is

k · Ht,h−j

Bt − Lt
+ o(1).
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In total, h− w balls of colour ch−w+1 are removed, other than v. Hence the expected contri-
bution to E(Lt+1,h−j − Lt,h−j | Vt,Mt,Lt, gt ∈ P(Vt,Mt,Lt, k + 1)) is

(h− w) · Lt,h−w+1

Lt
· Ht,h−w+1

Bt,h−w+1
· (k + 1)At,k+1

Bt − Lt
· k · Ht,h−j

Bt − Lt
+ o(1).

Case 2: C(v) = ch−j+1. The algorithm removes v, chooses another h − j balls u.a.r. from
those of colour ch−j+1, and recolours them with ch−j. Since P(C(v) = ch−j+1) = Lt,h−j+1/Lt,
conditional on C(v) = ch−j+1, the expected number of balls of colour ch−j+1 that are in the
light bins and are recoloured is

(h− j) · Lt,h−j+1

Bt,h−j+1

+ o(1),

provided Bt,h−j+1 ≥ log n. Hence the positive contribution toE(Lt+1,h−j−Lt,h−j | Vt,Mt,Lt, gt ∈
P(Vt,Mt,Lt, k + 1)) is

Lt,h−j+1

Lt

· (h− j) · Lt,h−j+1

Bt,h−j+1

+ o(1)

in this case. The same conclusion holds when Bt,h−j+1 < log n for the same reason as discussed
before. Therefore

E(Lt+1,h−j − Lt,h−j | Vt,Mt,Lt, gt ∈ P(Vt,Mt,Lt, k + 1))

=
Lt,h−j

Lt

(
−1 − (h− j − 1)Lt,h−j

Bt,h−j

)
+

Lt,h−j+1

Lt

· (h− j)Lt,h−j+1

Bt,h−j+1

+
Lt,h−w+1

Lt

(
(h− w)Ht,h−w+1

Bt,h−w+1
· (k + 1)At,k+1

Bt − Lt
· k · Ht,h−j

Bt − Lt

)
+ o(1), (3.15)

for j = 1, . . . , w − 1. Replacing the random variables in the right hand side of (3.15) by
their associated real variables (noting that the scaling cancels out) gives the right hand side
of (3.4). Using a similar approach to computing the expected changes of Ht,h−j, Bt, Dt,
HVt, conditional on Vt, Mt, Lt and the event gt ∈ P(Vt,Mt,Lt, k + 1), we easily obtain the
derivative functions in (3.5)–(3.8). The equations

Lt,h = Lt −
w−1∑

i=1

Lt,h−j , Ht,h = Bt − Lt −
w−1∑

i=1

Ht,h−j,

Bt,h−j = Lt,h−j +Ht,h−j, for every h− w + 1 ≤ j ≤ h

are obvious and lead to (3.10) and (3.11).
Let µt denote (Bt − Lt)/HVt, the average degree of heavy vertices after step t. Corre-

spondingly we define a function µ(x) associated with the random variable µt to be

µ(x) = (zB(x)− zL(x))/zHV (x). (3.16)

Then by Proposition 3.2, we may define λ(x) by

λ(x)fk(λ(x)) = µ(x)fk+1(λ(x)) (3.17)
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provided that µ(x) > k + 2, which is guaranteed inside D0(ǫ). Let λt = λ(t/n̄), so that λt is
the unique positive root of

λtfk(λt)

fk+1(λt)
− µt = 0. (3.18)

Since gt ∈ P(Vt,Mt,Lt, k+1) for every t, by considering the allocation-partition algorithm
that generates P(Vt,Mt,Lt, k+1), the degree sequence of the heavy vertices has the truncated
multinomial distribution. Hence, by [6, Lemma 1],

At,k+1 ∼
e−λtλk+1

t

(k + 1)!fk+1(λt)
HVt, (3.19)

where λt satisfies (3.18). This gives (3.14).
Now (3.9), which gives the derivative of λ(x), follows by taking the derivative of both sides

of (3.17),

λ′(x)fk(λ(x)) + λ(x)
dfk(λ)

dλ

∣∣∣∣
λ=λ(x)

λ′(x) = µ′(x)fk+1(λ(x)) + µ(x)
dfk+1(λ)

dλ

∣∣∣∣
λ=λ(x)

λ′(x),

where, by the definitions of fk(λ) in (3.1) and µ(x) in (3.16),

dfk(λ)

dλ
= e−λ λk−1

(k − 1)!
and µ′(x) =

(z′B − z′L)zHV − (zB − zL)z
′
HV

z2HV

.

Now we justify hypothesis (c). We will first extend the derivative functions (which, up
until this point, we restricted to D0) into a larger domain D, which defines an extended d.e.
system, and show that these extended functions are continuous and Lipschitz inside an open
domain D(ǫ) extended from D0(ǫ). Later we will show that the solution of the extended d.e.
system for 0 ≤ x ≤ T/n̄, with the same initial conditions as the original system, is contained
inside the domain D0(ǫ) and is thus the solution to the original d.e. system.

We begin with the domain D0(ǫ), which was defined by restricting the points in D0 to
zL > ǫ and zB−zL > ǫ. Recalling our treatment of the possible singularity zL,h−j = zB,h−j = 0
just after (3.14), each derivative function is continuous in D0(ǫ). The only potential problems
for the Lipschitz property are the constant multiples of the function

f(zL,h−j, zL, zB,h−j) =
zL,h−j

zL
· zL,h−j

zB,h−j
. (3.20)

However, recalling that zL > ǫ, 0 ≤ zL,h−j ≤ zB,h−j and zL,h−j ≤ zL in D0(ǫ), we have that the
partial derivatives of f(zL,h−j, zL, zB,h−j) with respect to zL,h−j, zL and zB,h−j are all O(1/ǫ),
from which it follows that the derivative functions are Lipschitz in D0(ǫ).

Let z0 denote the initial condition vector given by (3.13) and (3.14): x = 0, zL =
µ̄(1 − fk(µ̄)), zB = µ̄, zHV = 1 − exp(−µ̄)

∑k
i=0 µ̄

i/i!, zL,h−j = zB,h−j = 0 for all 1 ≤
j ≤ w − 1. Note that z0 lies on the boundary of both D0 and D0(ǫ). Define D :=
{(x, zL,h−w+1, . . . , zL,h−1, zB,h−w+1, . . . , zB,h−1, zL, zB, zHV ) : zL > 0, zB − zL > 0, zB − zL >
(k + 2)zHV }, and let D(ǫ) be the domain obtained by restricting points in D to those with
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zL > ǫ and zB − zL > ǫ. Thus D(ǫ) is the corresponding extension of D0(ǫ). Clearly z0 is an
interior point in D and D(ǫ). To extend the derivative functions to D, it is enough to extend
the function f in (3.20). Define

f ∗(zL,h−j, zB,h−j , zL) =





f(zL,h−j, zB,h−j, zL) if 0 ≤ zL,h−j ≤ zB,h−j, zB,h−j > 0
0 if zL,h−j = zB,h−j = 0,
zB,h−j/zL if zL,h−j > zB,h−j ≥ 0
f(|zL,h−j|, |zB,h−j|, zL) otherwise.

(3.21)

We have already shown that f is Lipschitz continuous onD0(ǫ), which is the first case of (3.21).
Since zL > ǫ and zB−zL > ǫ in D(ǫ), f ∗ is Lipschitz continuous on D(ǫ). Hence, if we modify
the differential equation system (3.4)–(3.14) by replacing each expression equivalent to f by
f ∗, we obtain derivative functions that are Lipschitz continuous in the open domain D(ǫ).
Thus, hypothesis (c) holds for this system, which we call the extended differential equation
system.

We may now apply Theorem 3.4, to deduce that a.a.s. uniformly for every 0 ≤ t ≤ T , Lt =
n̄zL(t/n̄) + o(n̄), and the same applies to all the other random variables under consideration.
We claim that the stopping time T coincides with the time at which Lt/n̄ or (Bt − Lt)/n̄
decreases to ǫ. This follows by the following two observations, whose verifications are only
sketched here since they require straightforward analysis. (See [15, pp. 86,87] for details.)

(i) The solution of the extended differential equation system is interior to D0(ǫ) for all
sufficiently small x > 0. For instance, all functions taking the value 0 at x = 0 have posi-
tive derivatives for sufficiently small x > 0. Thus, these functions become positive for any
sufficiently small x and thus the solution is inside D0(ǫ).)

(ii) Once the solution is interior to D0(ǫ), the only boundaries of D0(ǫ) it can reach are
zL = ǫ, zB − zL = ǫ, zHV = 0 and (zB − zL)/zHV = k + 2. The other boundaries of this
domain are zL,h−j = 0, zL,h−j = zB,h−j (i.e. zH,h−j = 0), and zL,h−j = zL for any j ≥ 0. For
example, it cannot reach zL,h−j = 0 because the only negative contribution to the derivative
of zL,h−j is proportional to zL,h−j itself. In view of this, zL,h−j < zL for any 0 ≤ j ≤ w − 1
and the last-listed boundary cannot be reached.

Let x(ǫ) be the smallest value of x such that zL(x) = ǫ, zB(x)− zL(x) = ǫ, zHV (x) = 0 or
zB(x) − zL(x) = (k + 2)zHV (x), i.e., µ = k + 2, considering the definition (3.16). Then the
solution to the extended differential equation system for all 0 ≤ x ≤ x(ǫ) is also the solution
to the original differential equation system. Let x∗ be the smallest real number such that
zL(x

∗) = 0, zB(x
∗) − zL(x

∗) = 0, zHV = 0 or µ = (k + 2). Then the solution of the original
differential equation system can be extended arbitrarily close to x∗.

By the theorem’s hypothesis, µ̄ ≥ ck for some c > 1. We next show that for sufficiently
large k (depending on the value of c), the function zL(x) reaches 0 before zB(x) − zL(x) or
zHV (x) reach 0 or µ reaches k + 2, and we also provide an upper bound of the value of x∗.
Let zH(x) = zB(x) − zL(x). Clearly zL(x) =

∑w−1
i=0 zL,h−j(x) and zH(x) =

∑w−1
i=0 zH,h−j(x).

So (3.6), (3.7) and (3.8) immediately lead to

z′L(x) ≤ −1 +
hk(k + 1)zA

zH
, z′H ≥ −h− hk(k + 1)zA

zH
, z′HV (x) ≥ −h(k + 1)zA

zH
. (3.22)
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Let δ = (1 − fk(µ̄))µ̄. Then the initial conditions give zL(0) = δ and zH(0) = µ̄ − δ. Since
µ̄ ≥ ck for some c > 1, δ = exp(−Ωc(k)). By Proposition 3.2, we may assume that as
long as µ(x) ≥ c′k for some c′ > 1 and k sufficiently large, λ(x), is well defined by (3.17),
and |µ(x) − λ(x)| ≤ 1, which implies that zA(x)/zH(x) = exp(−Ωc′(k)) by (3.19). We next
observe that µ(0) ≥ λ(0) = µ̄ by (3.14) and Proposition 3.2. Let [0, x0] be an interval such
that µ(x) ≥ µ̄ − 4h for all 0 ≤ x ≤ x0. Certainly µ(x) ≥ c′k for some c′ > 1 for all
0 ≤ x ≤ x0. We may choose k sufficiently large (depending only on the value of c′) that
δ ≤ 1 and for all 0 ≤ x ≤ x0 we have |λ(x) − µ(x)| ≤ 1, hk(k + 1)zA(x)/zH(x) ≤ 1/2 and
h(k + 1)zA(x)/zH(x) ≤ 1/8. Then for all 0 ≤ x < x0

z′L(x) ≤ −1/2, 0 ≥ z′H(x) ≥ −h− 1/2, z′HV (x) ≥ −1/8. (3.23)

Note that zHV (0) ≤ 1, and z′HV (x) < 0 from (3.8). Thus µ(x) = zH(x)/zHV (x) ≥ zH(x)
for any 0 ≤ x < x∗. Hence, provided zH(x) ≥ µ̄ − 4h, we have µ(x) ≥ µ̄ − 4h and so the
inequalities (3.23) hold. Then zH(x) ≥ zH(0) + x

(
−h− 1

2

)
= µ̄ − δ + x(−h − 1

2
) > µ̄ − 4h

provided x ≤ 3δ say, since δ is arbitrarily small for large k. It follows that µ(x) ≥ zH(x) ≥
µ̄− 4h for x ≤ min{x∗, 3δ}. Thus we may choose x0 ≥ min{x∗, 3δ}, and so (3.23) implies, for
any 0 ≤ x < min{x∗, 3δ}, that

zHV (x) ≥ zHV (0)−
3δ

8
> 0, zL(x) ≤ δ − x

2
. (3.24)

So x∗ < 3δ and zHV (x
∗) > 0, since otherwise 3δ ≤ x∗ and zL(3δ) ≤ δ−3δ/2 < 0, contradicting

the definition of x∗. Combining this with µ(x) ≥ zH(x) ≥ µ̄− 4h, which is greater than k+2
for sufficiently large k, we conclude that zL(x) reaches 0 before zH(x) or zHV (x) reaches 0
and before µ(x) reaches k+2 (in fact, before µ(x) reaches µ̄−4h) and x∗ ≤ 3δ. We also have
that z′L(x) ≤ −1/2 for all x < x∗.

For notational convenience, define the following limits from below (which we know to exist
from the above bounds on the functions and their derivatives):

zH,h−j(x
∗) := lim

x→(x∗)−
zH,h−j(x) and zHV (x

∗) := lim
x→(x∗)−

zHV (x). (3.25)

Note that this definition yields continuous functions zH,h−j(x) and zHV (x) on the closed
interval [0, x∗].

Given any sufficiently small ǫ > 0, let x(ǫ) be the root of zL(x) = ǫ and let t(ǫ) = ⌊x(ǫ)n̄⌋.
Let Yt denote any of the random variables Ht,h−j or HVt, and y(x) its associated real function.
We have shown that a.a.s.

Y⌊xn̄⌋ = n̄y(x) + o(n̄) (3.26)

for 0 ≤ x ≤ x(ǫ). Also, we have |Y⌊xn̄⌋ − Y⌊x(ǫ)n̄⌋| = O((x− x(ǫ))n̄) for all x(ǫ) ≤ x ≤ x∗ since
the change of each variable in every step is bounded by O(1). Let δ1(ǫ) denote the number
of light balls remaining at step t(ǫ). Then δ1(ǫ) = ǫn̄ + o(n̄). Applying Lemma 3.3 with
X0 = Lt(ǫ), Xn = Lt(ǫ)+4δ1(ǫ), n = 4δ1(ǫ), δ = −1/2 and c = h, we have a.a.s. Lt(ǫ)+4δ1(ǫ) ≤
δ1(ǫ) − (4δ1(ǫ)/2)/2 = 0. Hence, the time τ that the RanCore algorithm terminates a.a.s.
satisfies τ ≤ t(ǫ) + 4δ1(ǫ). If it terminates before n̄x∗, we may artificially let it run to that
point, with the variables remaining static, thereby defining them on the interval t ≤ ⌊x∗n̄⌉.
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Then, letting ǫ → 0 shows that the conclusion (3.26) above applies for 0 ≤ x ≤ x∗, noting
that the function y(x) is continuous on [0, x∗] as noted below (3.25). We may also conclude,
since δ1(ǫ) → 0 as ǫ → 0, that

τ = x∗n̄+ o(n) a.a.s. (3.27)

In particular, we conclude that a.a.s.H⌊xn̄⌋,h−j = n̄zH,h−j(x)+o(n̄) andHV⌊xn̄⌋ = n̄zHV (x
∗)+

o(n̄). Since zHV (x
∗) > 0 as shown above, a.a.s. H has a non-empty (w, k+ 1)-core Ĥ. Recall

that n and mh−j denote the number of vertices and hyperedges of size h− j in Ĥ. Then a.a.s.

the number of vertices in Ĥ is n̄zHV (x
∗)+ o(n̄), and the number of hyperedges of size h− j in

Ĥ is n̄zH,h−j(x
∗)/(h− j)+ o(n̄). Since zHV (x

∗) > 0 and zH,h−j(x
∗) > 0, we have a.a.s. n ∼ αn̄

and mh−j ∼ βh−jn̄, where α = zHV (x
∗) and βh−j = zH,h−j(x

∗)/(h− j).
This proves the assertions about H ∈ Mn̄,m̄,h. Lemma 3.1 transfers them to Gn̄,m̄,h.

There are several useful results that we will now derive recalling various pieces of the proof
of Theorem 2.2. As noted at the start of that proof, the partition-allocation gτ output by the
RanCore algorithm, if it is nonempty, is distributed as P(Vτ ,Mτ , 0, k + 1) conditional on Vτ

and Mτ . Let n denote |Vτ | and mh−j denote |Mτ,h−j|/(h− j) for all 0 ≤ j ≤ w− 1. Without
loss of generality, by relabeling elements in Vτ and Mτ in a canonical way, we can simplify
the notation P(Vτ ,Mτ , 0, k + 1) to P([n],M, 0, k + 1), where M = (Mh−w+1, . . . ,Mh) and
Mi = [mi]× [i]. The space P([n],M, 0, k+1) is used in the proof of Theorem 2.6 in Section 5.

Lemma 3.5 Assume c1k < hm̄/n̄ < c2k for some constants c2 > c1 > 1. Let H be a random
multihypergraph in Mn̄,m̄,h. Then, provided k is sufficiently large, a.a.s. H has a nonempty
(w, k + 1)-core with average degree O(k).

Proof. Let µ̄ = hm̄/n̄. Since µ̄ > c1k for some c1 > 1, the existence of a non-empty (w, k+1)-
core has been shown in Theorem 3.4. Let x∗ be as defined in the statement of Theorem 2.2 and
let δ = L0/n̄. We have shown that δ = O(e−Ω(k)) below (3.22) and x∗ ≤ 3δ below (3.24). Let
zB(x) and zHV (x) be defined the same as those functions in (3.4)–(3.14) for 0 ≤ x ≤ x∗. Then
clearly zB(x

∗) ≤ zB(0) since z′B(x) ≤ −1 for all 0 ≤ x ≤ x∗. We also have z′HV (x) ≥ −1/8
for all 0 ≤ x ≤ x∗ when k is large enough, as shown in the argument below (3.22). So
zHV (x

∗) ≥ zHV (0)−x∗/8 for sufficiently large k. Since zHV (0) = fk+1(µ̄) = 1−O(e−Ω(k)) and
x∗ = O(e−Ω(k)), we have zHV (x

∗) = 1−O(e−Ω(k)). Recall that µ(x) = (zB(x)−zL(x))/zHV (x).
Recall also that z′B(x)− z′L(x) ≤ 0 by the argument below (3.22). Thus, we have µ(0) = O(k)
since hm̄/n̄ < c2k and

µ(x∗) ≤ zB(0)− zL(0)

zHV (x∗)
=

zB(0)− zL(0)

zHV (0)
(1 +O(e−Ω(k))) = O(k).

By Theorem 2.2, the average degree of the (w, k+1)-core of H is asymptotically µ(x∗), which
is bounded by O(k).

The following lemma gives a lower bound on the size of the (w, k + 1)-core of a random
h-multihypergraph.

Lemma 3.6 Assume c1k < hm̄/n̄ < c2k for some constants c2 > c1 > 1. Let H be a random
multihypergraph in Mn̄,m̄,h. Then a.a.s. the number of vertices in the (w, k + 1)-core of H is
(1− O(e−Ω(k)))n̄.
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Proof. Let n denote the number of vertices in the (w, k + 1)-core of H . We showed just
after (3.24) that x∗ < 3δ where we had δ = exp(−Ωc(k)). Since in each step at most h heavy
bins can disappear, the result follows from (3.27).

We need the following lemma before proving Theorem 2.3.

Lemma 3.7 Assume c1k < hm̄/n̄ < c2k for some constants c2 > c1 > 1. Let ǫ > 0 be
fixed. Let H1 be a random multihypergraph in Mn̄,m̄,h and H2 ∈ Mn̄,m̄+ǫn̄,h. Let n1 and n2 be
the number of vertices in the (w, k + 1)-core of H1 and H2 respectively. Then a.a.s. we have
|n1 − n2| = O(e−Ω(k)ǫn̄).

Proof. Since c1k < hm̄/n̄ < c2k, by Lemma 3.5, the (w, k + 1)-core Ĥ1 of H1 exists and

the average degree of Ĥ1 is O(k). Let H2 be a random uniform multihypergraph obtained
from H1 ∪ E , where E is a set of ǫn̄ hyperedges, each of which is a multiset of h vertices,
each of which u.a.r. chosen from [n̄]. Then H2 ∈ Mn̄,m̄+ǫn̄,h. We say that the hyperedges
in E are marked, and the other hyperedges in H2 are unmarked. Define a random process
(H

(1)
t , H

(2)
t )t≥0 as follows.

(i) The process starts with (H
(1)
0 , H

(2)
0 ) = (H1, H2).

(ii) The RanCore algorithm is applied to H
(2)
t for every t ≥ 0. The process (H

(1)
t , H

(2)
t )t≥0

stops when the RanCore algorithm running on (H
(2)
t )t≥0 terminates.

(iii) For every t ≥ 0, if a marked hyperedge x in H
(2)
t−1 is updated to x′, then x′ remains

marked in H
(2)
t and H

(1)
t is defined as H

(1)
t−1; if a marked hyperedge x is removed, also

let H
(1)
t = H

(1)
t−1.

(iv) For every t ≥ 0, if an unmarked hyperedge x in H
(2)
t−1 is updated or removed, do the

same operation to x in H
(1)
t−1 and define H

(1)
t to be the resulting hypergraph.

We call the random process (H
(i)
t )t≥0 for i = 1, 2 generated by (H

(1)
t , H

(2)
t )t≥0 the Hi-

process. Note that the H1-process is not equivalent to running the RanCore algorithm on H1,
since the light balls are not chosen u.a.r. in each step.

Instead of analysing (H
(1)
t , H

(2)
t )t≥0 directly, we consider (g

(1)
t , g

(2)
t )t≥0, the corresponding

process obtained by considering the pairing-allocation model. Recall that H1 can be repre-
sented as dropping hm̄ unmarked balls u.a.r. into n̄ bins with balls evenly partitioned into m̄
groups randomly and H2 can be represented as dropping hǫn̄ partitioned marked balls into
H1. The partition-allocation g

(i)
0 for i = 1, 2 is obtained by putting all balls contained in light

bins of Hi into one light bin. Define L
(i)
t , HV

(i)
t , m

(i)
t and L

(i)
t , etc., for i = 1, 2 and for t ≥ 0,

the same way as in the proof of Theorem 2.2, for the Hi-process. Conditional on L
(i)
0 , V

(i)
0 ,

M
(i)
0 and L

(i)
0 , g

(i)
0 is distributed as P(V

(i)
0 ,M

(i)
0 ,L

(i)
0 , k+1) for i = 1, 2 and all balls in g

(1)
0 are

unmarked.
Let µ̄ denote the average degree of H1 and let τ be the time the H2-process terminates. It

is easy to show that g
(1)
τ is distributed as P(V

(1)
τ ,M

(1)
τ ,L

(1)
τ , k + 1) conditional on the values

of V
(1)
τ , M

(1)
τ and L

(1)
τ , since whenever a light ball is chosen, even not uniformly at random,
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it results in recolouring or removal of heavy balls that are uniformly chosen at random. We
will later let the RanCore algorithm be run on g

(1)
τ in the following steps and apply the d.e.

method to analyse the asymptotic behavior of this process.
First we show that τ = O(e−kn̄). The solution of the differential equation system (3.4)–

(3.14) tells the asymptotic value of L
(2)
t in every step t. Let x∗

(2) be the smallest root of

z
(2)
L (x) = 0. Since z

(2)
L (0) = O(e−Ω(k)) and by the argument below (3.22), z

′(2)
L (x) < −1/2 for

all 0 ≤ x < x∗
(2) provided k sufficiently large, we have x∗

(2) = O(e−Ω(k)) and so τ = O(e−Ω(k)n̄).

Next we show that n2 − n1 = O(e−Ω(k)ǫn̄), assuming the following three statements.

(S1) The number of balls that are unmarked and light in g
(1)
0 but not in g

(2)
0 is bounded by

O(e−Ω(k)ǫn̄).

(S2) The number of bins that begin heavy in the H1-process and become light in that process
but remain heavy in the H2-process up to step τ is O(e−Ω(k)ǫn̄).

(S3) L
(1)
τ = O(e−Ω(k)ǫn̄).

Run the Rancore algorithm on g
(1)
τ . The differential equation system (3.4)–(3.14) tells

the asymptotic values of the various random variables in g
(1)
t for all t ≥ τ . Let x∗

(1) be the

smallest positive root of z
(1)
L (x) = 0. Since z

(1)
L (τ/n̄) = O(e−kǫ) by (S3) and by the argument

below (3.22), z
′(1)
L (x) ≤ −1/2 for all τ/n̄ ≤ x < x∗

(1) provided k sufficiently large, we have

x∗
(1) − τ/n̄ = O(e−kǫ). We also have −1/8 ≤ z′HV (x) ≤ 0 for sufficiently large k for all

τ/n̄ ≤ x < x∗
(1) as explained in Lemma 3.5. So HV

(1)
τ − n1 = O(e−kǫn̄). Since n2 − HV

(1)
τ

counts the number of bins that are, or become light in the H1-process but stay heavy in the
H2-process, it follows from (S1) and (S2) that n2−HV

(1)
τ = O(e−kǫn̄). So |n1−n2| = O(e−kǫn̄).

It only remains to prove (S1)–(S3). We first show that (S3) follows directly from (S1)

and (S2). L
(1)
τ counts two types of light balls. The first type comes from balls that are

unmarked and light in g
(1)
0 but not in g

(2)
0 . By (S1), the number of these balls is a.a.s.

O(e−Ω(k)ǫn̄). The second type comes from balls that begin heavy and become light in the
H1-process but stay heavy in the H2-process. By (S2), the number of these balls is a.a.s.
k ·O(e−Ω(k)ǫn̄) = O(e−Ω(k)ǫn̄). Thereby (S3) follows.

Next we show (S1). At step 0, clearly the set of unmarked light balls in g
(2)
0 is a subset of

those in g
(1)
0 . The number of light balls in g

(1)
0 is a.a.s. (1− fk(µ̄))µ̄n̄ = O(e−Ω(k)n̄) as shown

in the proof of Theorem 2.2 and hence the number of light vertices of H1 is a.a.s. O(e−Ω(k)n̄).
Since each multihyperedges in E is a random multihyperedges, the expected number of those
which contains a light vertex in H1 is O(e−Ω(k)ǫn̄), hence the number of light vertex in H1

that become heavy after the hyperedges in E being dropped is a.a.s. O(e−Ω(k)ǫn̄) and each of
these vertex/bin contains at most k unmarked balls. Thus (S1) follows.

Now we show (S2). Recall that H1 is represented as dropping hm̄ unmarked balls u.a.r.
into n̄ bins and H2 is obtained by dropping hǫn̄ extra marked balls u.a.r. into the n̄ bins in
H1. Recall that Ĥ1 denotes the (w, k + 1)-core of H1. The number of bins that begin heavy
in the H1-process and become light in that process but remain heavy in the H2-process up
to step τ is at most the number of bins/vertices not in Ĥ1 which receive at least one marked
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balls after dropping hǫn̄ marked balls u.a.r. into the n̄ bins. By Lemma 3.6, the number of
vertices/bins in Ĥ1 is a.a.s. (1−O(e−Ω(k)))n̄. Then for each marked ball, the probability that

it is dropped into a bin not in Ĥ1 is O(e−Ω(k)). By Lemma 3.3, the number of marked balls

dropped into bins not in Ĥ1 is a.a.s. O(e−Ω(k)ǫn̄). Hence the number of bins that are not in

Ĥ1 and receive at least one marked balls is a.a.s. O(e−Ω(k)ǫn̄).

Proof of Theorem 2.3. Let H1 be a random uniform multihypergraph with average degree
µ̄ and let H2 be a random uniform multihypergraph obtained from H1 ∪ E , where E is a set
of ǫn̄ hyperedges, each of which is a multiset of h vertices, each of which is uniformly chosen
from [n̄].

For i = 1, 2, let Ĥi be the (w, k+1)-core of Hi and let m
(i)
h−j be the number of hyperedges

with size h− j in Ĥi. We first show that

w−1∑

j=0

(w − j)m
(2)
h−j −

w−1∑

j=0

(w − j)m
(1)
h−j ≥ wǫn̄/2.

Clearly Ĥ1 is a subgraph of Ĥ2. Let ni denote the number of vertices in Ĥi and let [ni]

denote the set of vertices in Ĥi. By Lemma 3.6, a.a.s. n1 = (1 − O(e−Ω(k)))n̄. Then for any
hyperedge x ∈ E , the probability that all vertices in x are contained in [n1] is 1−O(e−Ω(k)). So
the expected number of hyperedges in E lying completely in [n1] is (1−O(e−Ω(k)))ǫn̄. By the
Chernoff bound, originally given in [7, Theorem 1], we have a.a.s. the number of hyperedges
in E lying completely in [n1] is at least ǫn̄/2 for sufficiently large k. So it follows immediately
that a.a.s.,

w−1∑

j=0

(w − j)m
(2)
h−j −

w−1∑

j=0

(w − j)m
(1)
h−j ≥ wǫn̄/2.

For simplicity, let S(i) denote
∑w−1

j=0 (w − j)m
(i)
h−j for i = 1, 2. Recall that κ(Ĥi) denotes

S(i)/ni. Then a.a.s.,

κ(Ĥ2)− κ(Ĥ1) =
S(2)

n2

− S(1)

n1

≥ (S(1) + wǫn̄/2)− S(1) · n2/n1

n2

.

By Lemma 3.7, a.a.s. n2 − n1 = O(e−Ω(k))ǫn̄, i.e. n2/n1 − 1 ≤ f(k)ǫ for some function
f(k) = O(e−Ω(k)). Then a.a.s.,

κ(Ĥ2)− κ(Ĥ1) ≥
wǫn̄/2−O(f(k)ǫS(1))

n2
≥ wǫ/4 > 0, (3.28)

for sufficiently large k and for every ǫ > 0, since S(1) = O(k)n̄ and n2 = (1− O(e−Ω(k)))n̄.

By Theorem 2.2, for given h > w > 0 and sufficiently large k, a.a.s. κ(Ĥ) = c(µ̄) + o(1),
where c(µ̄) is a constant depending only on µ̄. The inequality (3.28) implies that c(µ̄) is an
increasing function of µ̄.

Proof of Corollary 2.4. By Theorem 2.3, there exists a unique critical value of µ̄ such
that a.a.s. κ(Ĥ) = k + o(1) and so there exists a threshold function m̄ = f(n̄) of Mn̄,m̄,h for
the graph property T . Then this holds as well in Gn̄,m̄,h by Lemma 3.1.
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The differential equations in Theorem 2.2 are only used in a theoretical way to show
properties of the (w, k + 1)-core, and we do not have an analytic solution. However, they
can be numerically solved when the values of h, w, k and µ are given. Table 3 gives the
results of some computations, where h, w and k are given, µ̃ denotes the expected average
degree of the hypergraph H at the threshold for T given in Corollary 2.4, and µ̂ denotes the
corresponding average degree of its core Ĥ . Even though our results on the concentration
of the size and density of the (w, k + 1)-core and the threshold of property T only cover for
the case of sufficiently large k, our numerical computation results as shown in the table do
coincide with our simulation results. Hence we believe that Theorem 2.2, 2.3 and Corollary 2.4
actually hold for all k ≥ 1. By Corollary 2.7, discussed in the next section, µ̃ is also our main
target, the threshold for orientability. Note that µ̂ must be at least hk/w by the definition
of property T , and that it follows from the trivial upper bound of the orientability threshold
given in the introduction part that µ̃ is at most hk/w.

h w k µ̃ µ̂
3 2 4 5.485 6.65086
3 2 10 14.766 15.5872
3 2 40 59.991 60.0773
10 2 4 19.99999 20.0003

Table 1: Some numerical computation results

4 The (w, k)-orientability of the (w, k + 1)-core

In this section we prove Corollary 2.7 assuming Theorem 2.6, and study the basic network
flow formulation of the problem that is used in the next section to prove Theorem 2.6.

The following lemma is in preparation for proving that Ĥ, the (w, k + 1)-core of H ∈
Mn̄,m̄,h, if not empty, a.a.s. has property A(γ) for some 0 < γ < 1.

Lemma 4.1 Let H ∈ Mn̄,m̄,h and let Ĥ be the (w, k+1)-core of H. Let c1 > 1 be a constant
that can depend on k. Then there exists a constant 0 < γ = ϕ(k, c1) depending only on k
and c1, such that a.a.s. there exists no S ⊂ V (H) with |S| < γn̄ and at least c1|S| hyperedges
partially contained in S. More specifically, when c1 ≥ 2 and c1 < h2e2µ̄, we may choose
γ = ϕ(k, c1) = (c1/h

2e2µ̄)
2
.

Proof. Let s be any integer such that 0 < s < n and let r = s/n. Let Y denote the number
of S with |S| = s and at least c1s hyperedges partially contained in S. The probability for
a given hyperedge to be partially contained in S is at most

(
h
2

)
(s/n̄)2 < h2r2. Then the

probability that there are at least c1s such hyperedges is at most
(
m̄

c1s

)
(hr)2c1s.
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Since there are
(
n̄
s

)
ways to choose S,

E(Y ) =
∑

s≤γn̄

(
n̄

s

)(
m̄

c1s

)
(hr)2c1s

≤
∑

ln n̄≤s≤γn̄

(en̄
s

)s(em̄

c1s

)c1s

(hr)2c1s +
∑

1≤s≤ln n̄

n̄sm̄c1s

(
hs

n̄

)2c1s

=
∑

ln n̄≤s≤γn̄

(
h2c1e1+c1rc1−1

(
µ̄

c1

)c1)s

+
∑

1≤s≤ln n̄

(
(µ̄h2s2)c1

n̄c1−1

)s

≤
∑

ln n̄≤s≤γn̄

(
C̄rc1−1µ̄c1

)s
+ ln n̄ · (µ̄h

2 ln2 n̄)c1

n̄c1−1

=
∑

ln n̄≤s≤γn̄

(
C̄rc1−1µ̄c1

)s
+ o(1),

for some constant 0 < C̄ = C̄(c1) ≤ (h2/c1)
c1 ec1+1. Choose

γ <

(
c1

h2eµ̄

) c1
c1−1

e
− 1

c1−1 .

Then C̄γc1−1µ̄c1 < 1. So there exist 0 < β < 1, such that C̄γc1−1µ̄c1 < β, for all r ≤ γ. When
c1 ≥ 2 and c1/h

2e2µ̄ < 1,

(
c1

h2eµ̄

) c1
c1−1

e
− 1

c1−1 >

(
c1

h2e2µ̄

)c1/(c1−1)

>

(
c1

h2e2µ̄

)2

.

Hence we may simply choose γ = (c1/h
2e2µ̄)2. Then

∑

ln n̄≤s≤γn̄

(
C̄rc1−1µ̄c1

)s
<

∑

ln n̄≤s≤γn̄

βs = O(β ln n̄) = o(1).

Hence we have E(Y ) = o(1).

The following corollary shows that the same property is shared by Ĥ .

Corollary 4.2 Let H ∈ Mn̄,m̄,h and let Ĥ be the (w, k+1)-core of H. Let c1 be a constant that

can depend on k, with the constraint that 2 ≤ c1 < h2e2µ̄. Let 0 < γ = ϕ(k, c1) = (c1/h
2e2µ̄)

2
.

Then a.a.s. for all S ⊂ V (Ĥ) with |S| < γn, the number of hyperedges partially contained in
S is less than c1|S|.

Proof. Let n be the number of vertices in Ĥ and D the sum of degrees of vertices in Ĥ .
For any hyperedge x ∈ Ĥ, let x+ denote its corresponding hyperedge in H . Obviously n ≤ n̄.
Combining with Lemma 4.1 and the fact that for any S ⊂ V (Ĥ), a hyperedge x is partially
contained in S only if x+ is partially contained S in H , Corollary 4.2 follows.

We next show that Ĥ , if not empty, a.a.s. has property A(γ), defined in Definition 2.5,
for some certain value of γ.
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Corollary 4.3 Assume that H ∈ Mn̄,m̄,h with m̄ ≤ hk/w, and that Ĥ is the (w, k + 1)-core

of H. Let γ = e−4h−6/4. Then provided k ≥ 4w, a.a.s. either Ĥ is empty or Ĥ has property
A(γ).

Proof. Apply Lemma 4.2 with c1 = k/2w. Clearly c1 < ch2e2k, and c1 ≥ 2 provided k ≥ 4w.

Then γ ≤ φ(k, c1). By Definition 2.5, Ĥ a.a.s. has property A(γ).

Proof of Corollary 2.7 Let Ĥ be the (k + 1)-core of the random multihypergraph H ∈
Mn̄,m̄,h. Let ǫ > 0 be any constant. By Theorem 2.3, there exists a constant δ > 0, such
that a.a.s. if m̄ ≤ f(m̄) − ǫn̄, then

∑w−1
j=0 (w − j)mh−j ≤ kn − δn. By Theorem 2.6 and

Corollary 4.3, there exists a constant N depending only on h and w such that provided
k > N , Ĥ a.a.s. has a (w, k)-orientation. On the other hand, if m̄ ≥ f(m̄) + ǫn̄, then a.a.s.∑w−1

j=0 (w− j)mh−j ≥ kn+ δn, and hence clearly Ĥ is not (w, k)-orientable. Therefore f(n̄) is
a sharp threshold function for the (w, k)-orientation of Mn̄,m̄,h. By Lemma 3.1, f(n̄) is also
a sharp threshold function for the (w, k)-orientation of Gn̄,m̄,h.

Let G be a non-uniform multihypergraph with the sizes of hyperedges between h−w + 1
to h. In the rest of the chapter, we will use the following notations. Let Eh−j := {x ∈ E(G) :
|x| = h − j}. For any given S ⊂ [n], let mh−j,i(S) := |{x ∈ Eh−j : |x ∩ S| = i}| for any
0 ≤ i ≤ h− j. When the context is clear of which set S is referred to, we may drop S from
the notation. Let S denote the set [n] \ S and let d(S) denote the sum of degrees of vertices
in S.

Recall from above the statement of Corollary 2.8 in Section 2 that for any S ⊂ V (G), GS

denotes the subgraph w-induced by S. The following Lemma generalises Hakimi’s theorem [17,
Theorem 4] for graphs. It is proved using network flow and the max-flow min-cut theorem,
along the lines of the standard techniques discussed in [9, 26]. This setting was used before
in connection with the load balancing problem in [25, Section 3.3].

Lemma 4.4 A multihypergraph G with sizes of hyperedges between h − w + 1 and h has a
(w, k)-orientation if and only if κ(GS) ≤ k for all S ⊂ V (G).

Proof. Formulate a network flow problem on a network G∗ as follows. Let L be a set of
vertices, each of which represents a hyperedge of G, and R be a set of n vertices, each of which
represents a vertex in G. For any u ∈ L, and v ∈ R, uv is an edge in G∗ if and only if v ∈ u
in G. Add vertices a and b to G∗, such that a is linked to every vertex in L, and b is linked to
every vertex in R. Let c : E(G∗) → N+ be defined as c(au) = w− j for every u ∈ L such that
the degree of u is h− j, c(vb) = k for every v ∈ R, and c(uv) = 1 for every uv ∈ E(G∗). Then
G has a (w, k)-orientation if and only if G∗ has a flow of size

∑w−1
j=0 (w − j)mh−j from a to b.

By the max-flow min-cut Theorem, G∗ has a flow with all edges incident with a saturated if
and only if

c(δ(C)) ≥
w−1∑

j=0

(w − j)mh−j, for all (a,b)-cuts C. (4.1)

As an example in Figure 1, A ⊂ L is a set of hyperedges in G, and S ⊂ R is a set of
vertices in G. Let C = {a}∪A∪S define a cut of G∗. Then the condition in (4.1) is equivalent
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C
a

L R

S

A

b

Figure 1: A cut C in the graph G∗

to

∀C, c(δ(C)) = k|S|+
w−1∑

j=0


 ∑

x∈A∩Eh−j

(w − j) +
∑

x∈Eh−j\A

|x ∩ S|


 ≥

w−1∑

j=0

(w − j)mh−j, (4.2)

Let A∗ := {x ∈ Eh−j : |x∩S| ≤ h−w}. Clearly A∗ minimizes c(δ(C)) for a given S. Therefore
we only need to check (4.2) when A = A∗. The condition in (4.2) is then equivalent to

w−1∑

j=0


 ∑

x∈Eh−j\A

(w − j)−
∑

x∈Eh−j\A

|x ∩ S|


 ≤ k|S|.

For any hypergraph G, let β(G) denote the number of hyperedges in G. Recall from the
statement above Theorem 2.3 that |S|κ(GS) = d(G)− (h− w)β(G). Since

w−1∑

j=0


 ∑

x∈Eh−j\A

(w − j)−
∑

x∈Eh−j\A

|x ∩ S|


 =

w−1∑

j=0

∑

x∈Eh−j\A

(w − j)− (h− j − |x ∩ S|)

=
∑

x/∈A

|x ∩ S| −
∑

x/∈A

(h− w) = d(GS)− (h− w)β(GS) = |S|κ(GS), (4.3)

Lemma 4.4 follows.

The next corollary follows immediately.

Corollary 4.5 A hypergraph H in Gn̄,m̄,h has a (w, k)-orientation if and only if for every
S ⊂ V (H), κ(HS) ≤ k.

Proof of Corollary 2.8. This follows directly from Corollary 2.7 and Corollary 4.5.
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For any vertex set S, define

∂∗(S) = d(S)−
w−1∑

j=0

h−j∑

i=w−j+1

(i− (w − j))mh−j,i, (4.4)

which measures a type of expansion in the hypergraph. For each hyperedge x of size h − j
which intersects S with i vertices, its contribution to ∂∗(S) is w − j ≥ 0 if i ≥ w − j + 1
and i ≥ 0 otherwise. Therefore ∂∗(S) ≥ 0 for any S. The following lemma characterises the
existence of the (w, k)-orientation of G in terms of ∂∗(S).

Lemma 4.6 Let G be a multihypergraph whose hyperedges all have sizes between h − w + 1
and h inclusively. Then the following two properties of G are equivalent:

(i) κ(GS) ≤ k, for all S ⊂ V (G);

(ii) ∂∗(S) ≥ k|S|+
(∑w−1

j=0 (w − j)mh−j

)
− kn, for all S ⊂ V (G).

Proof. Let β(GS) denote the number of hyperedges in GS. We show that for any S ⊂ V (G),

κ(GS)|S| = d(GS)−(h−w)β(GS) ≤ k|S| if and only if ∂∗(S) ≥ k|S|+
(
∑w−1

j=0 (w−j)mh−j

)
−

kn. Then Lemma 4.6 follows immediately. Note from the definition of A∗, we have for any
x ∈ Eh−j \ A∗, |x ∩ S| ≥ h − w + 1 and hence |x ∩ S| ≤ (h− j) − (h− w + 1) = w − j − 1.
By (4.3), for any S ⊂ V (G),

d(GS)− (h− w)β(GS) ≤ k|S|

⇐⇒
w−1∑

j=0


 ∑

x∈Eh−j\A∗

(w − j)−
∑

x∈Eh−j\A∗

|x ∩ S|


 ≤ kn− k|S|

⇐⇒
w−1∑

j=0

w−j−1∑

i=0

(w − j − i)mh−j,i(S) ≤ kn− k|S|

⇐⇒
w−1∑

j=0

(w − j)mh−j −
w−1∑

j=0

(
h−j∑

i=w−j

(w − j)mh−j,i(S) +

w−j−1∑

i=0

imh−j,i(S)

)
≤ kn− k|S|

⇐⇒ ∂∗(S) ≥ k|S|+
(

w−1∑

j=0

(w − j)mh−j

)
− kn.

It follows from Lemma 4.4 and Lemma 4.6 that G is (w, k)-orientable if and only if
Lemma 4.6 (ii) holds.

Without loss of generality, we assume
∑w−1

j=0 (w − j)mh−j − kn ≤ 0. Otherwise, condi-
tion (4.1) is violated by taking C = {a} ∪L∪R. The following lemma shows that, instead of
checking conditions in Lemma 4.6 (ii), we can check that certain other events do not occur.
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For any S ⊂ V (G), let

qh−j(S) =

h−j∑

i=1

imh−j,i, η(S) =
w−1∑

j=0

h−j−1∑

i=1

mh−j,i. (4.5)

In other words, qh−j(S) denotes the contribution to d(S) from hyperedges of size h − j and
η(S) denotes the number of hyperedges which intersect both S and S. When the context is
clear, we may use qh−j and η instead to simplify the notation.

Recall that given a vertex set S, a hyperedge x is partially contained in S if |x ∩ S| ≥ 2.
Let ρ(S) denote the number of hyperedges partially contained in S and let ν(S) denote the
number of hyperedges intersecting S.

Lemma 4.7 Suppose that for some S ⊂ V (G),

∂∗(S) < k|S|+
(

w−1∑

j=0

(w − j)mh−j

)
− kn. (4.6)

Then all of the following hold:

(i) ρ(S) > k|S|/w;

(ii) ν(S) < k|S|;

(iii) (h− w)ρ(S) > d(S)− k|S|;

(iv) if, in addition,
w−1∑

j=0

w − j

h− j
qh−j(S) ≥ (1− δ)k|S| for some δ > 0, then η(S) < h2δk|S|.

Proof. Let s and s̄ denote |S| and |S| respectively. If (4.6) is satisfied, then

d(S)−
w−1∑

j=0

h−j∑

i=w−j+1

(i− (w−j))mh−j,i < ks−
(
kn−

w−1∑

j=0

(w − j)mh−j

)
=

w−1∑

j=0

(w−j)mh−j−ks̄.

Hence

ks̄ <

w−1∑

j=0

(w − j)mh−j −
w−1∑

j=0

h−j∑

i=1

imh−j,i +

w−1∑

j=0

h−j∑

i=w−j+1

(i− (w − j))mh−j,i

=

w−1∑

j=0

(w − j)mh−j,0 +

w−1∑

j=0

w−1−j∑

i=1

(w − j − i)mh−j,i

≤ w
w−1∑

j=0

(
mh−j,0 +

w−1−j∑

i=1

mh−j,i

)
.
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Since
mh−j,0 = |{x ∈ Eh−j : |x ∩ S| = h− j}|,

and
w−1−j∑

i=1

mh−j,i ≤ w|{x ∈ Eh−j : 2 ≤ |x ∩ S| ≤ h− j − 1}|,

(this is because 1 ≤ i ≤ w−1− j and so h− j− i ≤ h− j−1 and h− j− i ≥ h− (w−1) ≥ 2),
we have

ks̄ < w|{x ∈ E(G) : |x ∩ S| ≥ 2}|.
This proves part (i). Again, if (4.6) is satisfied, then

w−1∑

j=0

h−j∑

i=w−j+1

(i− (w − j))mh−j,i > d(S)− ks+

(
kn−

w−1∑

j=0

(w − j)mh−j

)
.

Since

w−1∑

j=0

h−j∑

i=w−j+1

(i− (w − j))mh−j,i ≤
h∑

i=2

(i− 1)|{x : |x ∩ S| = i}| = d(S)− ν(S),

we have

d(S)− ν(S) > d(S)− ks+

(
kn−

w−1∑

j=0

(w − j)mh−j

)
.

Since kn−∑w−1
j=0 (w − j)mh−j > 0, this directly leads to part (ii). Since

w−1∑

j=0

h−j∑

i=w−j+1

(i− (w − j))mh−j,i ≤ (h− w)|{x : |x ∩ S| ≥ 2}|,

we have

|{x : |x ∩ S| ≥ 2}| > d(S)− ks+

(
kn−

w−1∑

j=0

(w − j)mh−j

)
.

Since kn −
∑w−1

j=0 (w − j)mh−j > 0, this proves part (iii). Now we prove part (iv). Let

th−j = 1 − (h− j)mh−j,h−j/qh−j. Note that d(S) =
∑w−1

j=0 qh−j and qh−j =
∑h−j

i=1 imh−j,i. For
each hyperedge x of size h− j which intersects S with i vertices, its contribution to qh−j (and
thus to ∂∗(S)) is

• i · (w − j)/(h− j), if i = h− j;

• i · (w − j)/i ≥ i · (w − j)/(h− j − 1), if w − j + 1 ≤ i ≤ h− j − 1;

• i ≥ i · (w − j)/(h− j − 1), if 1 ≤ i ≤ w − j;
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Then

∂∗(S) ≥
w−1∑

j=0

(
w − j

h− j
qh−j(1− th−j) +

w − j

h− j − 1
qh−jth−j

)

=
w−1∑

j=0

w − j

h− j
qh−j +

w−1∑

j=0

w − j

(h− j)(h− j − 1)
qh−jth−j

≥
w−1∑

j=0

w − j

h− j
qh−j +

1

h2

w−1∑

j=0

(w − j)qh−jth−j.

If
∑w−1

j=0
w−j
h−j

qh−j ≥ (1− δ)ks for some δ > 0, then (4.6) implies that

1

h2

w−1∑

j=0

(w − j)qh−jth−j < δks.

Therefore η(S) ≤
∑w−1

j=0 qh−jth−j < h2δks. This proves part (iv).

5 Proof of Theorem 2.6

Recall from Section 2 that M(n,m, k + 1) is Mn,m, which is a random multihypergraph
with given edge sizes, restricted to multihypergraphs with minimum degree at least k + 1.
In this section we prove the only remaining theorem, Theorem 2.6. This theorem relates
the orientability of M(n,m, k + 1) to its w-density. Recall that this probability space was

important because, by Proposition 2.1, it gives the distribution of the (w, k + 1)-core Ĥ of
H ∈ Mn̄,m̄,h conditioned on the values of n, the number of vertices and mh−j , the number of
hyperedges of size h− j for each j, in the core.

It is clear, that given values of n andm, the probability space of random multihypergraphs
generated by P([n],M, 0, k + 1), with |Mh−j| = (h− j)mh−j (h = 0, . . . , w− 1), is equivalent
to M(n,m, k+1). So we may, and do, make use of the partition-allocation model for proving
results about M(n,m, k + 1).

For the rest of the chapter, let ǫ > 0 and k ≥ 2 be fixed. Without loss of generality, we may
assume that ǫ < 1

2
since ǫ may be taken arbitrarily small. By the hypothesis of Theorem 2.6,

we consider only m such that
∑w−1

j=0 (w − j)mh−j ≤ kn − ǫn. We may also assume that∑w−1
j=0 (w − j)mh−j ≥ kn − 2ǫn since otherwise, by Theorem 2.2, we can simply add a set of

random hyperedges so that the assumption holds. This is valid because (w, k)-orientability is
a decreasing property (i.e. it holds in all subgraphs of G whenever G has the property). Let

D =

w−1∑

j=0

(h− j)mh−j, m =

w−1∑

j=0

mh−j , µ =
D

n
. (5.1)

Since

D · 1

h− w + 1
≤

w−1∑

j=0

(w − j)mh−j ≤ D · w
h
, m ≤

w−1∑

j=0

(w − j)mh−j ≤ wm,
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and

kn− 2ǫn ≤
w−1∑

j=0

(w − j)mh−j ≤ kn− ǫn, (5.2)

we have

h(k − 1)/w ≤ µ = D/n ≤ (h− w + 1)k,
(k − 1)n

w
≤ m ≤

(
k − 1

2

)
n. (5.3)

In the rest of the paper, whenever we refer to the probability space H(n,m, k + 1) or
M(n,m, k + 1), we assume m satisfies (5.2).

Since h and w are given, we consider them as absolute constants. Therefore, whenever
we refer to g = O(f), it means that there exists a constant C such that g ≤ Cf , where C
can depend on h and w. We also use notation g = Oγ(f), which means that there exists a
constant C depending on γ only such that g ≤ Cf . The same convention applies to o(f),
Ω(f), Θ(f) and oγ(f), Ωγ(f) and Θγ(f).

By Proposition 2.1, conditioned on the values of n, the number of vertices and mh−j , the

number of hyperedges of size h− j, of the (w, k+ 1)-core Ĥ of H ∈ Mn̄,m̄,h, Ĥ is distributed
as M(n,m, k + 1). Recall that ǫ > 0 and k ≥ 2 are fixed. Let m be an integer vector
with the constraint (5.2). Given m, let D, µ be as defined in (5.1). Let G be a random
multihypergraph from the probability space M(n,m, k + 1).

We next sketch the proof of Theorem 2.6. Let qh−j(S) and η(S) be defined as in (4.5). The
partition-allocation model gives a good foundation for proving that a.a.s. certain properties
hold concerning the distribution of vertex degrees and intersections of hyperedge sets with
vertex sets. Using this and various other probabilistic tools, we show that

(a) the probability that G ∈ M(n,m, k + 1) has property A(γ) and contains some set S
with |S| < γn for which both Lemma 4.7(ii) and (iii) holds is o(1);

(b) there exists δ > 0, such that when k is large enough, a.a.s.
∑w−1

j=0
w−j
h−j

qh−j ≥ (1− δ)k|S|,
and the probability of G ∈ M(n,m, k + 1) containing some set S with γn ≤ |S| ≤
(1− γ)n and η(S) < h2δk|S| is o(1).

We also show the deterministic result that

(c) no multihypergraph G with property A(γ) contains any sets S with |S| > (1 − γ)n for
which Lemma 4.7(i) holds.

It follows that the probability that G has property A(γ) and contains some set S for which
all parts (i)–(iv) of Lemma 4.7 hold is o(1). Then by Lemmas 4.6 and 4.7,

P(G ∈ A(γ) ∧G is not (w, k)-orientable) = o(1).

Finally, Lemma 3.1 shows that the result applies to random (simple) hypergraphs as well.
We start with a few concentration properties. As discussed in Section 3, the degree se-

quence of G ∈ M(n,m, k + 1) obeys the multinomial distribution. The following lemma
bounds the probability of rare degree (sub)sequences where the degree distribution is inde-
pendent truncated Poisson. We will use this result to bound the probability of rare degree
sequences in M(n,m, k + 1).
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Lemma 5.1 Let s ≥ w(n) for some w(n) → ∞ as n → ∞ and let Y1, . . . , Ys be independent
copies of Z defined in (3.2) with λ satisfying λfk(λ) = µfk+1(λ). Let 0 < δ < 1 be any
constant. Then there exist N > 0 and 0 < α < 1 both depending only on δ, such that provided
k > N ,

P

(∣∣∣
s∑

i=1

Yi − µs
∣∣∣ ≥ δµs

)
≤ αµs.

Proof. Let G(x) be the probability generating function of Yi. Then

G(x) =
∑

j≥k+1

P(Z = j)xj =
e−λ

fk+1(λ)

(
eλx −

k∑

j=0

(λx)j

j!

)
≤ eλx−λ

fk+1(λ)
,

for all x ≥ 0. For any nonnegative integer ℓ,

P

(
s∑

i=0

Yi = l

)
≤ G(x)s

xℓ
, ∀x ≥ 0.

Putting x = ℓ/sλ gives

P

(
s∑

i=0

Yi = ℓ

)
≤ eℓ−λs

(ℓ/(λs))ℓfk+1(λ)s
=

(
esλ

ℓ

)ℓ(
e−λ

fk+1(λ)

)s

. (5.4)

It is easy to check that the right hand side of (5.4) is an increasing function of l when l ≤ λs
and decreasing function of l when l ≥ λs. By Proposition 3.2, there exists a constant N0

depending only on δ such that provided k > N0, (1− δ)µ < λ. Thus, for any ℓ ≤ (1− δ)µs,

P

(
s∑

i=0

Yi = ℓ

)
≤
(

esλ

(1− δ)µs

)(1−δ)µs (
e−λ

fk+1(λ)

)s

,

and so

P

(
s∑

i=1

Yi ≤ (1− δ)µs

)
≤ µs

(
eλ

(1− δ)µ

)(1−δ)µs (
e−λ

fk+1(λ)

)s

.

The expectation of Y1 is λfk(λ)/fk+1(λ) = µ. By Proposition 3.2, we have µ ≥ λ and
µ− λ → 0 as k → ∞. Therefore

P

(
s∑

i=1

Yi ≤ (1− δ)µs

)
≤ µs

(
exp(µ− λ− δµ)

(1− δ)(1−δ)µfk+1(λ)

)s

= µs

(
exp(µ− λ)

fk+1(λ)
·
(

exp(−δ)

(1− δ)(1−δ)

)µ)s

.

Since 0 < δ < 1,

0 <
exp(−δ)

(1− δ)(1−δ)
< 1.
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Since
exp(µ− λ) → 1, fk+1(λ) → 1, as k → ∞

by Proposition 3.2, there exists N1 > 0 and 0 < α1 < 1, both depending only on δ, such that
provided k > N1,

P

(
s∑

i=1

Yi ≤ (1− δ)µs

)
≤ αµs

1 .

Now we bound the upper tail of
∑s

i=1 Yi. Let j = 1, 2, . . .. For any ℓ satisfying (1 + j)µs ≤
ℓ < (2 + j)µs, as with the lower tail bound,

P

(
s∑

i=0

Yi = ℓ

)
≤
(

esλ

(1 + j)µs

)(1+j)µs(
e−λ

fk+1(λ)

)s

=

(
exp(µ− λ)

fk+1(λ)
·
(

ej

(1 + j)(1+j)

)µ)s

,

and so

P

(
(1 + j)µs ≤

s∑

i=1

Yi < (2 + j)µs

)
≤ µs

(
exp(µ− λ)

fk+1(λ)
·
(

ej

(1 + j)(1+j)

)µ)s

. (5.5)

Similarly we have

P

(
(1 + δ)µs ≤

s∑

i=1

Yi < 2µs

)
≤ µs

(
exp(µ− λ)

fk+1(λ)
·
(

eδ

(1 + δ)(1+δ)

)µ)s

. (5.6)

Since 0 < eδ/(1+ δ)(1+δ) < 1 for any δ > 0, we may bound the right side of (5.5) and (5.6) by
αµs
2 where 0 < α2 < 1 is some constant depending only on δ. Also, since e/(1 + j) < 1 for all

j ≥ 2, the right side of (5.5) is at most exp(−Ω(µ)js) for j ≥ 2 provided k is large enough.
Hence there exists N2 > 0 and 0 < α3 < 1 depending only on δ, such that provided k > N2,

P

(
s∑

i=1

Yi ≥ (1 + δ)µs

)
≤ αµs

3 .

The lemma follows by choosing α = max{α1, α3} and N = max{N1, N2}.

Lemma 5.2 Let k ≥ −1 be an integer. Drop D balls independently at random into n bins.
Let µ = D/n and let λ be defined as λfk(λ) = µfk+1(λ). Assume D − (k + 1)n → ∞ as
n → ∞. Then the probability that each bin contains at least k + 1 balls is Ω(fk+1(λ)

n).

Proof. Let d denote (d1, . . . , dn). Let D = {d : di ≥ k + 1 ∀i ∈ [n],
∑n

i=1 di = D}. Let
P(B) denote the probability that each bin contains at least k + 1 balls. Then

P(B) =
∑

d∈D

(
D

d1, . . . , dn

)/
nD =

D!

nD

∑

d∈D

n∏

i=1

1

di!
.
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Let Y1, . . . , Yn be n independent truncated Poisson variables which are copies of Z(≥k+1) as
defined in (3.2) with parameter λ satisfying λfk(λ) = µfk+1(λ). Then

P

(
n∑

i=1

Yi = D

)
=
∑

d∈D

n∏

i=1

e−λλdi

fk+1(λ)di!
=

e−λnλD

fk+1(λ)n

∑

d∈D

n∏

i=1

1

di!
.

Since D − (k + 1)n → ∞ as n → ∞, P (
∑n

i=1 Yi = D) = Ω(D−1/2) (see [24, Theorem 4(a)]
for a short proof),

∑

d∈D

n∏

i=1

1

di!
= Ω

(
eλnfk+1(λ)

n

λDD1/2

)
.

So, using Stirling’s formula,

P(B) = Ω

(
D!

nD
· e

λnfk+1(λ)
n

λDD1/2

)
= Ω

(
√
D

(
D

en

)D

· e
λnfk+1(λ)

n

λDD1/2

)
(5.7)

= Ω
((µ

λ
eλ/µ−1

)µn
fk+1(λ)

n
)
.

Since (µ/λ) · eλ/µ−1 ≥ 1, P(B) = Ω(fk+1(λ)
n).

Corollary 5.3 Let k ≥ −1 be an integer. Let D = {d : di ≥ k + 1, ∀i ∈ [n],
∑n

i=1 di = D}
and let An be any subset of D. Let µ = D/n. Let P(An) denote the probability that the
degree sequence d of G ∈ M(n,m, k + 1) is in An and let PTP (An) be the probability that
(Y1, . . . , Yn) ∈ An where Yi are independent copies of the random variable Z(≥k+1) as defined
in (3.2) with the parameter λ satisfying λfk(λ) = µfk+1(λ). Assume D − (k + 1)n → ∞ as
n → ∞. Then

P(An) = O
(√

D
)
PTP (An).

Proof. Let An be any subset of D and let P(B) denote the probability that each bin contains
at least k + 1 balls by dropping D balls independently and randomly into n bins. Consider
the partition-allocation model that generates M(n,m, k+1), which allocates the partitioned
D balls randomly into n bins with the restriction that each bin contains at least k + 1 balls.
Then

P(An) =
∑

d∈An

1

P(B)
·
(

D

d1, . . . , dn

)/
nD =

D!

nDP(B)

∑

d∈An

n∏

i=1

1

di!
,

and

PTP (An) =
∑

d∈An

n∏

i=1

e−λλdi

fk+1(λ)di!
=

e−λnλD

fk+1(λ)n

∑

d∈An

n∏

i=1

1

di!
.

Therefore

P(An) =
D!eλnfn

k+1

nDP(B)λD
PTP (An) = O

(√
D
)
PTP (An),
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since P(B) = Ω
((

µ
λ
eλ/µ−1

)µn
fk+1(λ)

n
)
by Lemma 5.2 (5.7).

A significant difficulty in this work is to ensure that various constants do not depend
on the choice of ǫ. In particular, we emphasize that the constants such as α and N in the
following results do not depend on ǫ.

The next is a corollary of Lemma 5.1 and Corollary 5.3.

Corollary 5.4 Let µ be defined as in (5.1). Let 0 < δ < 1 be any constant. Then there exist
two constants N > 0 and 0 < α < 1, both depending only on δ, such that, provided k > N ,
for any vertex set S ⊂ V (G) with |S| ≥ log2 n,

P(|d(S)− µ|S|| ≥ δµ|S|) ≤ αµ|S|.

Proof. Let Y1, . . . , Yn be independent copies of the truncated Poisson random variable Z as
defined in (3.2). Let S ⊂ V (G) and let s = |S|. Then by Lemma 5.1, there exist N > 0 and
0 < α̂ < 1, both depending only on δ, such that provided k > N ,

P

(∣∣∣
∑

i∈S

Yi − µs
∣∣∣ ≥ δµs

)
≤ α̂µs,

By Corollary 5.3,

P(|d(S)− µs| ≥ δµs) ≤ O(D1/2)α̂µs =

(
exp

(
lnΘ(

√
µn)

µs

)
α̂

)µs

.

Since s ≥ log2 n and so
lnΘ(

√
µn)

µs
→ 0, as n → ∞.

Let α = 1/2 + α̂/2. Then 0 < α̂ < α < 1 and α depends only on δ. Then provided k > N ,
P(|d(S)− µs| ≥ δµs) ≤ αµs.

The following corollary shows that d(S) is very concentrated when S is not too small.

Corollary 5.5 Let δ > 0 and 0 < γ < 1 be arbitrary constants. Then there exists a constant
N depending only on δ and γ, such that provided k > N ,

P(∃S ⊂ V (G), s ≥ γn, |d(S)− µs| ≥ δµs) = o(1).

Proof. For any S ⊂ V (G), let s = |S|. By Corollary 5.4, there exists N1 > 0 and 0 < α < 1,
both depending only on δ, such that provided k > N1, for any S ⊂ V (G),

P(|d(S)− µs| ≥ δµs) ≤ αµs.

Let N2 be the smallest integer such that eαN2/γ < 1/2. Let N = max{N1, N2}. Then N
depends only on δ and γ. For all µ > N ,
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P(∃S ⊂ [n], s ≥ γn, |d(S)− µs| ≥ δµs) ≤
∑

γn≤s≤n

(
n

s

)
αµs ≤

∑

γn≤s≤n

(en
s

· αµ
)s

≤
∑

γn≤s≤n

(
e

γ
· αµ

)s

= O
(
2−γn

)
= o(1).

The following lemma will be used later to prove that a.a.s.
∑w−1

j=0 (w − j)qh−j/(h − j) ≥
(1− δ)ks provided k is large enough.

Lemma 5.6 Let C = {c0, . . . , cw−1} be a set of colours. Suppose that D balls are each coloured
with some colour in C, and let pj denote the proportion of balls that are coloured cj (0 ≤ j ≤
w − 1). Randomly choose a subset of q of the balls. Let qj be the number of balls chosen that
are coloured with cj. Then for any 0 ≤ j ≤ w − 1 and 0 < δ < 1,

P(|qj − pjq| ≥ δpjq) ≤ exp(−Ω(δ2pjq)).

Proof. For any 0 ≤ j ≤ w − 1 any ℓ > 0,

P(qj = ℓ) =

(
pjD

ℓ

)(
D − pjD

q − ℓ

)/(D
q

)
.

Let pℓ denote P(qj = ℓ). Put ℓ0 = pjq, ℓ1 = (1 − δ/2)pjq and ℓ2 = (1 − δ)pjq. Then for any
ℓ ≤ ℓ1,

pℓ−1

pℓ
=

ℓ(D(1− pj)− q + ℓ)

(pjD − ℓ+ 1)(q − ℓ+ 1)
≤ ℓ1(D(1− pj)− q + ℓ0)

(pjD − ℓ0)(q − ℓ0)
= 1− δ

2
.

Then

pℓ2 ≤ (1− δ/2)δpjq/2pℓ1 ≤ exp

(
δpjq

2
ln
(
1− δ

2

))
≤ exp(−δ2pjq/4).

So

P(qj ≤ (1− δ)pjq) =
∑

ℓ≤ℓ2

pℓ ≤
1

δ
pℓ2 ≤ exp(−Ω(δ2pjq)).

Similarly we can bound the upper tail and then Lemma 5.6 follows.

Lemma 5.7 Let 0 < δ < 1 and 0 < γ < 1 be two arbitrary constants. Given S ⊂ V (G), let
qh−j = qh−j(S) be as defined in (4.5). Then there exists N > 0 depending only on δ and γ
such that for all k > N ,

P

(
∃S ⊂ V (G), |S| ≥ γn,

w−1∑

j=0

w − j

h− j
qh−j < (1− δ)k|S|

)
= o(1).

Proof. For any 0 ≤ j ≤ w − 1, let pj denoted (h − j)mh−j/D. Let J := {j : pj > δ/8w}.
We first show that given S ⊂ V (G) with |S| ≥ γn, if

w−1∑

j=0

w − j

h− j
qh−j < (1− δ)k|S|, (5.8)
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then there exists j ∈ J such that qh−j(S) ≤ (1 − δ/8)pjd(S). Assume there is no such j by
contradiction. Then

w−1∑

j=0

w − j

h− j
qh−j(S) ≥

∑

j∈J

w − j

h− j
qh−j(S) > (1− δ/8)d(S)

∑

j∈J

w − j

h− j
pj

= (1− δ/8)d(S)




w−1∑

j=0

w − j

h− j
pj −

∑

j /∈J

w − j

h− j
pj


 ≥ (1− δ/8)d(S)

(
w−1∑

j=0

w − j

h− j
pj −

w

h

δ

8w

)

≥ (1− δ/8)d(S)

w−1∑

j=0

w − j

h− j
pj(1− δ/8) ≥ (1− δ/4)d(S)

w−1∑

j=0

w − j

h− j
pj . (5.9)

Let s = |S| and let r = s/n. Then by Corollary 5.5, there exists N2 > 0 depending on δ and γ
only, such that a.a.s. d(S) ≥ (1− δ/4)Dr whenever k > N2. Therefore, combining with (5.9),
we get a.a.s. provided k > max{N1, N2},
w−1∑

j=0

w − j

h− j
qh−j(S) > (1− δ/2)Dr

w−1∑

j=0

w − j

h− j
pj ≥ (1− δ/2)r(kn− 2ǫn) = (1− δ/2)(k − 2ǫ)s.

For any k > 2/δ ≥ 4ǫ/δ, we have (1−δ/2)(k−2ǫ)s > (1−δ)ks. Take N = max{N1, N2, 2/δ}.
Then for any k > N , we have a.a.s.

w−1∑

j=0

w − j

h− j
qh−j(S) > (1− δ)ks,

which contradicts (5.8). It follows that there exists j ∈ J such that qh−j(S) ≤ (1−δ/8)pjd(S).
Consider the partition-allocation model that generates P([n],M, 0, k + 1). Let C =

{c0, . . . , cw−1} be a set of colours. For balls partitioned into parts that are of size h − j
for some 0 ≤ j ≤ w−1, colour them with cj . Then the w colours are distributed u.a.r. among
the D balls. By Lemma 5.6, for any S ⊂ V (G),

P
(
qh−j(S) ≤ (1− δ/8)pjd(S)

)
≤ exp

(
− Ω(δ2pjd(S))

)
.

Then there exists a constant N1 depending only on δ and γ such that,

P
(
∃S, j ∈ J, s ≥ γn, qh−j(S) ≤ (1− δ/8)pjd(S)

)

≤ w2n exp
(
− Ω(δ3d(S))

)
≤ w

(
2 exp(−Ω(δ3γk))

)n
= o(1).

Note that the inequality holds because |J | ≤ w, the number of sets S with |S| ≥ γn is at most
2n, δ/8w ≤ pj < 1 for all j ∈ J and d(S) ≥ (k+1)|S| > kγn. It follows that a.a.s. there exists
no set S with |S| ≥ γn for which there exists j ∈ J such that qh−j(S) ≤ (1 − δ/8)pjd(S).
Lemma 5.7 then follows.

Recall that ρ(S) is the number of hyperedges partially contained in S and ν(S) is the
number of hyperedges intersecting S by the definition above Lemma 4.7.
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Lemma 5.8 Let δ > 0 be any constant and let µ = µ(G) = D/n as defined in (5.1). Then
there exists a constant N > 0 depending only on δ such that, provided k > N , a.a.s. there
exists no S ⊂ V (G) for which log2 n ≤ |S| ≤ n, d(S) < (1− δ)µ|S|, and ν(S) < k|S|.

This lemma will be proved after the proof of Theorem 2.6.

Proof of Theorem 2.6. By Lemma 4.6 and 4.7, it is enough to show that the expected
number of sets S contained in a hypergraph G ∈ M(n,m, k+1) with property A(γ) for which
all of Lemma 4.7 (i)–(iv) are satisfied is o(1). We call a set S ⊂ V (G) is interesting if it lies
in a hypergraph G with property A(γ). Let X be the number of interesting sets S ⊂ V (G)
such that (4.6) holds. Similarly, let X<a (or X>b or X[a,b]) for any 0 < a < b < n denote the
number of interesting S ⊂ [n] such that (4.6) holds and |S| < a (or |S| > b or a ≤ |S| ≤ b)
respectively. For any set S under discussion, let s denote |S| and s̄ denote |S|.

Case 1: s < ǫn/k. By theorem’s hypothesis

(
w−1∑

j=0

(w − j)mh−j

)
− kn < −ǫn,

any S satisfying (4.6) must satisfy

∂∗(S) < ks− ǫn. (5.10)

When s < ǫn/k, ks − ǫn < 0. However ∂∗(S) ≥ 0 as observed below (4.4). Hence (5.10)
cannot hold. Thus X<ǫn/k = 0.

Case 2: s > (1 − γ)n. part (i) of Lemma 4.7 says that (4.6) holds only if the number of
hyperedges partially contained in S is at least ks̄/w. But X counts only interesting sets, i.e.
sets that lie in a hypergraph with property A(γ). By the definition of property A(γ), there
are no such interesting sets and so X≥(1−γ)n = 0.

Case 3: ǫn/k ≤ s < γn. Let δ1 = (h− w)/2h. By Lemma 5.8, there exists N1 > 0 such
that provided k > N1, the expected number of S with d(S) < (1−δ1)µs for which Lemma 4.7
(ii) is satisfied and ǫn/k ≤ s ≤ n is o(1). We now show that there exists no interesting
sets S ⊂ V (G) with |S| < γn for which Lemma 4.7 (iii) holds and d(S) ≥ (1 − δ1)µs. If
d(S) ≥ (1− δ1)µs, d(S) ≥ h+w

2w
ks provided k ≥ h+w since µ ≥ h(k− 1)/w by (5.3). Then it

follows that
d(S)− ks

h− w
≥ ks

2w
.

Lemma 4.7 (iii) implies that (4.6) holds only if the number of hyperedges partially contained
in S is at least ks/2w. By the definition of property A(γ), there is no such interesting sets S
when s < γn. So provided k > max{N1, h+w}, a.a.s. there exists no interesting sets S, with
s < γn for which both Lemma 4.7 (ii) and (iii) hold. Then E(X<γn) = o(1).

Note that k|S|/2w in the definition of property A(γ) can be modified to be Ck|S| for any
positive constant C, and it can be checked straightforwardly that there exists a constant γ
depending on C only, such that Corollary 4.3 holds. Therefore, any 0 < δ1 < 1− w/h would
work here by choosing some appropriate C to modify the definition of property A(γ).
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Case 4: γn ≤ s ≤ (1 − γ)n. Let 0 < δ2 < 1 be chosen later. By Lemma 5.7, there exists
N2 > 0 depending only on δ2 such that provided k ≥ N2, a.a.s.

w−1∑

j=0

w − j

h− j
qh−j ≥ (1− δ2)ks for all S with γn ≤ |S| ≤ (1− γ)n.

For any S ⊂ V (G), let η = η(S) be as defined in (4.5). Then by Lemma 4.7, to show
E(X[γn,(1−γ)n]) = o(1), it is enough to show that the expected number of sets S with γn ≤ s ≤
(1−γ)n for which η(S) is at most h2δ2ks, is o(1). Consider the probability space M(n,m, 0),
which is generated by placing each hyperedge uniformly and randomly on the n vertices. Let
B be the event that all bins contain at least k+1 balls. ThenM(n,m, k+1) equalsM(n,m, 0)
conditioned on the event B. By Lemma 5.2 P(B) = Ω(fk+1(λ)

n) where λfk(λ) = µfk+1(λ).
Given any set S, let r = s/n. For any hyperedge of size h−j, the probability for it to intersect
both S and S is pj,r = 1− rh−j − (1− r)h−j . Then pj,r ≥ 1−γh−j − (1−γ)h−j ≥ 1−γh−w+1−
(1 − γ)h−w+1 for any set S and any 0 ≤ j ≤ w − 1. Recall from (5.1) that m is the total
number of hyperedges in G. Then Eη(S) =

∑w−1
j=0 pj,rmh−j ≥ m(1 − γh−w+1 − (1 − γ)h−w+1)

for any given S. Since m ≥ (k − 1)n/w by (5.3),

Eη(S) ≥ (1−γh−w+1−(1−γ)h−w+1)(k−1)n/w = Θγ(k)n, for any S with γn ≤ |S| ≤ (1−γ)n.

Choose

δ2 =
1− γh−w+1 − (1− γ)h−w+1

4wh2(1− γ)
.

Then δ2 depends only on γ and so N2 also depends only on γ. By the Chernoff bound [7],

P(η(S) < h2δ2ks) ≤ P(η(S) < h2δ2k(1− γ)n) ≤ P

(
η(S) <

1

2
Eη(S)

)
≤ exp(−Eη(S)/16).

Note that the second inequality holds because of the choice of δ2. So there exists some constant
C > 0 s.t.

P(η(S) < h2δ2ks | B) ≤ C exp (−Eη(S)/16) fk+1(λ)
−n = C

(
exp

(
−Eη(S)

16n
− ln fk+1(λ)

))n

.

The number of sets S with γn ≤ |S| ≤ (1 − γ)n is at most 2n. So the expected number of
sets S with γn ≤ s ≤ (1− γ)n and η(S) < h2δ2ks in M(n,m, k + 1) is at most

C

(
2 exp

(
−Eη(S)

16n
− ln fk+1(λ)

))n

.

Clearly fk+1(λ) → 1 as k → ∞ and Eη(S) = Θγ(k)n as observed before. Then there exists a
constant N3 > 0 depending only on γ such that provided k > N3,

2 exp

(
−Eη(S)

16n
− ln fk+1(λ)

)
< 1.
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Then provided k ≥ max{N2, N3},

E(X[γn,(1−γ)n]) = o(1).

Combining all cases, let N = max{N1, N2, N3, h + w}. Then N depends only on γ. We
have shown that provided k > N , EX = o(1). Then Theorem 2.6 follows.

Proof of Lemma 5.8. The idea of the proof is as follows. When S is big, by Corollary 5.5
there are no such sets with d(S) < (1 − δ)µ|S|. We will see later that ν(S) < k|S| requires
a lot of hyperedges partially contained in S, which is unlikely to happen when S is small
enough.

Let G ∈ M(n,m, k+1). Let D =
∑w−1

j=0 (h− j)mh−j and µ = D/n as defined in (5.1). For
any S, let ρ(S, i) denotes the number of hyperedges with exactly i vertices contained in S.
Then ν(S) < ks if and only if

∑h
i=2(i− 1)ρ(S, i) > d(S)− ks. By Corollary 5.5, there exists

N1 > 0 depending only on δ such that provided k > N1, a.a.s. there is no S such that s > n/h
and d(S) < (1 − δ)µs. So we only need to consider sets S with |S| ≤ n/h. We call a vertex
set S ∈ G bad if log2 n ≤ |S| ≤ n/h, d(S) < (1− δ)µ|S| and

∑h
i=2(i− 1)ρ(S, i) > d(S)− k|S|.

Let s denote |S|.
For any given S, let p(S) denote the probability of S being bad. By Corollary 5.4, there

exists N2 > 0 and 0 < α < 1, both depending only on δ, such that provided k > N2, the
probability that d(S) < (1 − δ)µs is at most αµs. Let p(q, t) be the probability that that∑h

i=2(i− 1)ρ(S, i) is at least t conditional on d(S) = q. Then

p(S) =
∑

(k+1)s≤q≤(1−δ)µs

p(q, q − ks)P(d(S) = q). (5.11)

For the small value of q (or s), we need the following claim, to be proved later.

Claim 5.9 If q < D/h, then

p(q, t) ≤
(
exp

(
h ln t

t

)
eh(h− 1)2q2

4tD

)t

.

In particular, if t → ∞ as n → ∞, then

p(q, t) ≤
(
eh3q2

4tD

)t

.

Case 1: s < 2n/eh3(k + 1). Since (k + 1)s ≤ q ≤ (1− δ)µs < D/h, we have

q

q − ks
≤ (k + 1)s

(k + 1)s− ks
= k + 1,

q

D
≤ (1− δ)µs

µn
<

s

n
, q − ks ≥ s ≥ log2 n.

So q − ks → ∞ as n → ∞. By (5.11) and the particular case of Claim 5.9, we have

p(S) ≤
∑

(k+1)s≤q≤(1−δ)µs

(
eh3(k + 1)s

4n

)q−ks

P(d(S) = q)

≤
(
eh3(k + 1)s

4n

)s

P
(
(k + 1)s ≤ d(S) ≤ (1− δ)µs

)
≤
(
eh3(k + 1)s

4n

)s

αµs.
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Note that the second inequality above holds because q − ks ≥ s and 0 < eh3(k + 1)s/4n < 1
since s < 2n/eh3(k + 1).

Then the expected number of bad sets S with |S| = s, for any fixed log2 n ≤ s <
2n/eh3(k + 1), is at most

(
n

s

)(
eh3(k + 1)s

4n

)s

αµs ≤
(
en

s
· αµ · eh

3(k + 1)s

4n

)s

=
(
e2h3(k + 1)αµ/4

)s
.

Since µ ≥ h(k − 1)/w by (5.3), this is at most exp(−s) provided k ≥ N3 for some N3 > 0
depending only on α.

Case 2: s ≥ 2n/eh3(k + 1). Take p(q, q − ks) ≤ 1 since p(q, q − ks) is a probability. So
the expected number of bad sets S with |S| = s, for any fixed 2n/eh3(k+1) ≤ s ≤ (1− δ)µs,
is at most (

n

s

)
· αµs =

(en
s
αµ
)s

≤
(
e2h3(k + 1)αµ/2

)s ≤ exp(−s),

whenever k > N4 for some N4 > 0 depending only on α. Since α depends only on δ, N3 and
N4 also depend only on δ. Let N = max{N1, N2, N3, N4}. Then N depends only on δ and
provided k > N , the expected number of bad S is at most

∑

log2 n≤s≤n/h

exp(−s) = o(1).

Lemma 5.8 follows.

It only remains to prove Claim 5.9.

Proof of Claim 5.9. To illustrate the method of computing p(q, t), we show in detail the
case h = 2 first. Conditional on that d(S) = q, we want to estimate the probability that there
are at least t edges in S. Consider the alternative algorithm that generates the probability
space of the partition-allocation model P([n], [m2], 0, k+1). Fix any allocation which allocates
q balls into bins representing vertices in S with each bin containing at least k+1 balls. There
are at most (

q

2t

)
(2t)!

2tt!

partial partitions that contain t parts within S. The probability of every such partial partition
to occur is

t−1∏

i=0

1

D − 1− 2i
.

So

p(q, t) ≤
(
q

2t

)
(2t)!

2tt!
·
t−1∏

i=0

1

D − 1− 2i
,

which is at most

[q]t
2tt!

t−1∏

i=0

q − t− i

D − 1− 2i
≤
(eq
2t

)t( q − t

D − 1

)t

≤
(eq
2t

· q

D

)t
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Note that the second inequality holds since q < D/2 and so q − t < (D − 1)/2.
Now we estimate p(q, t) in the general case h ≥ 2. Let M = ([2m2], . . . , [hmh]). Consider

the alternative algorithm that generates the probability space of the partition-allocation model
P([n],M, 0, k+1), defined in Section 3. Fix any allocation that allocates exactly q balls into S
with each bin containing at least k+1 balls. The algorithm uniformly randomly partitions balls
into parts such that there are exactly mh−j parts with size h− j for j = 0, . . . , w−1. Let U =

{(u2, . . . , uh) ∈ IN (h−1) :
∑h

i=2(i−1)ui = t}. Let u = (u2, . . . , uh) be an arbitrary vector from
U . We over estimate the probability that ρ(S, i) is at least ui for all i = 2, . . . , h, conditional
on d(S) = q. Let p(q,u) denote this probability. Then clearly p(q, t) ≤

∑
u∈U p(q,u). The

number of partial partitions that contain ui partial parts of size i within S is
(

q

u1, 2u2, 3u3, . . . , huh

)
(2u2)!

2!u2u2!
· · · (huh)!

h!uhuh!
, (5.12)

where u1 = q −
∑h

i=2 iui. For any such partial partition we compute the probability that it
occurs. The algorithm starts from picking a ball v unpartitioned in S and then it chooses at
most h− 1 balls that are u.a.r. chosen from all the unpartitioned balls to be partitioned into
the part containing v.

The probability of the occurrence of a given u2 partial parts of size 2 within S is at most

u2∏

i=0

(h− 1)
1

D − 1− hi
= (h− 1)u2

1

D − 1
· 1

D − h− 1
· · · 1

D − 1− h(u2 − 1)
.

The probability of the occurrence of a given u3 partial parts of size 3 within S is at most

u3−1∏

i=0

(
h− 1

2

)
1

D − hu2 − hi− 1
· 1

D − hu2 − hi− 2
≤ (h− 1)2u3

u3−1∏

i=0

1

(D − hu2 − hi− 1)2
.

Note that the above inequality holds because h
∑h

i=2 ui ≤ hq/2 < D/2. Keeping the analysis
in this procedure, we obtain that the probability of a particular partial partition with ui

partial parts of size i within S is at most

(h− 1)u2+2u3+···+(h−1)uh ×
u2−1∏

i=0

1

D − hi− 1

u3−1∏

i=0

1

(D − hu2 − hi− 1)2

× · · · ×
uh−1−1∏

i=0

1

(D − h
∑h−2

j=2 uj − hi− 1)h−1

uh−1−1∏

i=0

1

(D − h
∑h−1

j=2 uj − hi− 1)h−1
.

The product of this and (5.12) gives an upper bound of p(q,u), which is at most

[q]∑h
i=2

iui
(h− 1)t

u2!u3! · · ·uh!2!u2 · · ·h!uh!

u2−1∏

i=0

1

D − hi− 1
· · ·

uh−1∏

i=0

1

(D − h
∑h−1

j=2 uj − hi− 1)h−1
.

Since 2!u2 · · ·h!uh ! ≥ 2t, this is at most

[q]t(h− 1)t

u2!u3! · · ·uh!2t

u2−1∏

i=0

q − t− i

D − hi− 1
× · · · ×

uh−1∏

i=0

q − t−
∑h−1

j=2 uj − i

(D − h
∑h−1

j=2 uj − hi− 1)h−1
.
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Since q < D/h and so q − t ≤ (D − 1)/h, this is at most

(eq(h− 1)/2)t

uu2

2 · · ·uuh

h

(
q − t

D − 1

)u2
(

q − t− u2

(D − hu2 − 1)2

)u3

· · ·
(

q − t−∑h−1
j=2 uj

(D − h
∑h−1

j=2 uj − 1)h−1

)uh

=
(eq(h− 1)/2)t

uu2

2 · · ·uuh

h (q − t− u2)u3 · · · (q − t−
∑h−1

j=2 uj)(h−2)uh

×
(

q − t

D − 1

)u2
(

q − t− u2

D − hu2 − 1

)2u3

· · ·
(

q − t−
∑h−1

j=2 uj

D − h
∑h−1

j=2 uj − 1

)(h−1)uh

≤ (eq(h− 1)/2)t

uu2

2 (u3(q − t− u2))u3 · · · (uh(q − t−∑h−1
j=2 uj)h−2)uh

(
q − t

D − 1

)t

≤ (eq(h− 1)/2)t

uu2

2 (u3(q − t− u2))u3 · · · (uh(q − t−
∑h−1

j=2 uj)h−2)uh

( q

D

)t
.

Since q ≥
∑h

i=2 iui and t =
∑h

i=2(i − 1)ui, q − t −
∑i

j=2 uj ≥
∑h

j=i+1 uj ≥ ui+1 for all
2 ≤ i ≤ h− 1, and so

uu2

2 (u3(q − t− u2))
u3 · · ·

(
uh

(
q − t−

h−1∑

j=2

uj

)h−2)uh

≥ uu2

2 u2u3

3 · · ·u(h−1)uh

h .

We prove the following claim later.

Claim 5.10 Let t =
∑h

j=2(j − 1)uj. Then

uu2

2 u2u3

3 · · ·u(h−1)uh

h ≥
(

2t

h(h− 1)

)t

.

By Claim 5.10, for any h ≥ 2,

p(q,u) ≤
(
eqh(h− 1)2

4t
· q

D

)t

, ∀u ∈ U .

Since |U| < th, we have

p(q, t) ≤ th
(
eh(h− 1)2q2

4tD

)t

=

(
exp

(
h ln t

t

)
eh(h− 1)2q2

4tD

)t

.

In particular, if t → ∞ as n → ∞, then h ln t/t → 0 and so exp(h ln t/t) ≤ (h/(h − 1))2

provided n is large enough. So

p(q, t) ≤
(
eh3q2

4tD

)t

.
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Proof of Claim 5.10. We solve the following optimization problem

(P1) min mm2

2 m2m3

3 · · ·m(h−1)mh

h

s.t. m2 + 2m3 + · · ·+ (h− 1)mh = t

m2, m3, . . . , mh ≥ 0

Letting xi = (i − 1)mi for 2 ≤ i ≤ h, and taking the logarithm of the objective function,
(P1) is equivalent to the following optimization problem.

(P2) min x2 ln x2 + x3 ln(x3/2) + · · ·+ xh ln(xh/(h− 1))

s.t. x2 + x3 + · · ·+ xh = t

x2, x3, . . . , xh ≥ 0

For convention, let x ln x = 0 if x = 0. Applying the Lagrange multiplier yields x∗ =
(x∗

2, x
∗
3, . . . , x

∗
h) with xi = 2t(i− 1)/h(h− 1), which is a feasible solution of (P2). In order to

show that this is an optimal solution, we need to show that the optimal solution does not
appear on the boundary.

Let x be any solution on the boundary of (P2). Then there exists 2 ≤ i ≤ h such that
xi = 0. There also exists j with xj > 0. Consider x′ with x′

i = (i−1)xj/h, x
′
j = xj−(i−1)xj/h

and x′
l = xl for any l 6= i, j. Then x′ is feasible and it is straightforward to check that

x′
i ln(x

′
i/(i− 1)) + x′

j ln(x
′
j/(j − 1)) < xi ln(xi/(i− 1)) + xj ln(xj/(j − 1)).

Hence x′ cannot be an optimal solution. This proves that x∗ is the minimizer and so the
optimal value of (P1) is exp(t ln(2t/(h(h− 1)))) = (2t/(h(h− 1)))t.
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