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Abstract

The transition of recent experiences into stable and remote memory traces is an important

task that mainly occurs during sleep. Sleep-associated consolidation of remote long-term

memory is based on cortical networks that are concerted by the prefrontal cortex. The

bHLH transcription factors SHARP1 and SHARP2, modulators of the circadian system,

are expressed mainly in the hippocampus and cortex of the mammalian brain and are

partially redundant in function. SHARP1/DEC2 has been shown to control sleep length

and increased vigilance during wake in humans as well as in mice.

We hypothesized that these factors could be involved in cortex dependent memory con-

solidation. Therefore, we investigated the role of SHARP1 and SHARP2 in cognitive

processing. In order to study prefrontal cortex-associated cognitive performance, we stud-

ied remote memory and flexible learning of Sharp1 and Sharp2 single and double mutant

mice. Sharp1 and Sharp2 double mutant mice (S1/2-/-) showed enhanced anterior cortex

(ACx) dependent remote fear memory formation as well as improved reversal learning,

but did not display alterations in hippocampus (Hi) dependent recent fear memory for-

mation. In contrast single mutants did not display any learning or memory phenotype. In

line, molecular and biochemical analyses revealed elevated IGF2 signaling, p44/42-MAPK

and S6 activity in the ACx but not the Hi of S1/2-/- mice. We did not observe similar

changes in single mutant mice. In order to study the effect of IGF2 on cognitive processes,

we studied the function of its target receptors in the brain, the insulin receptor (INSR)

and IGF1 receptor (IGF1R). The analysis of forebrain specific null mutants of the INSR

and IGF1R revealed their implication in memory formation. Mice lacking both receptors

in CaMKII positive neurons in the Hi and cortex exhibited a significantly reduced fear

memory. Furthermore, AAV2 virus mediated IGF2 over-expression in the ACC enhanced

remote fear memory formation.

In summary, we conclude that the bHLH transcription factors SHARP1 and SHARP2 are

involved in cognitive processing by controlling Igf2 expression and associated signaling

xvii
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cascades. In parallel studies performed with aged S1/2-/- mice revealed reduced life span

together with an overall loss of contextual fear memory. More specific, recent memory

was significantly lower compared to WT and remote memory was attenuated to the level

of the control mice. To exclude that memory enhancement via insulin signaling might

trigger aging related processes, further studies are needed. Overall, our analyses provide

evidence that the control of sleep and memory consolidation may share common molecular

mechanisms.



Chapter 1

Introduction

The mammalian brain has an extraordinary potential to process newly learned experiences

into already available information networks. Retrieval of the saved information at later

time points can be part of our personality and supports us with our decisions. This infor-

mation processing is highly dependent on a fast storage of the new experience, following

a consolidation of the information that supports an optimal retrieval at later time points.

A number of psychiatric diseases are associated with cognitive decline and memory loss as

schizophrenia, bipolar disorders and Alzheimer’s disease (Larson et al., 1992; Vöhringer

et al., 2013). Studies with schizophrenic and bipolar patients have identified a deregulated

prefrontal cortex as a potential source of cognitive decline (Chai et al., 2011; Manoach,

2003). However, the mechanisms underlying the cortical processing in this brain region are

still unknown. Understanding these mechanisms might introduce new therapeutic targets

to address cognitive decline in a number of psychiatric diseases.

1.1 Cognitive decline in psychiatric diseases

Several well studied psychiatric diseases are known so far, that have cognitive impairments

in common. Among those, schizophrenia, bipolar disorders, Alzheimer’s disease and de-

mentia are reported with impairments in cortical processes (Chai et al., 2011; Manoach,

2003; Perlstein et al., 2001; Vallortigara et al., 2014; Wong et al., 2014). Genome wide

association studies with schizophrenic patients identified a number of genes that are dereg-

ulated in the prefrontal cortex, however little is known about the significance of these genes

(Hosak, 2013). What becomes clear form available data is that schizophrenia is a multi-

genetic disease that is dependent on genetic as well as environmental factors (Cardno

1



2 1 | Introduction

et al., 1999; Franzek and Beckmann, 1998; Gottesman and Shields, 1967; Ribbe et al.,

2010). On genetic level increasing evidence suggests that susceptibility of schizophrenia

might involve multiple single nucleotide polymorphisms (SNPs) and the course of disease

might in addition be influenced by rare copy number variants (CNVs) (Levinson et al.,

2012). However these data might support understanding the cause of the disease, but give

no indication on the pathogenesis. Therefore genetic research on endophenotypes are at

least as important to understand psychiatric diseases as schizophrenia (Allen et al., 2009;

Braff and Light, 2005; Greenwood et al., 2012). Because of the accentuated role of the

prefrontal cortex in schizophrenia and other psychiatric diseases with cognitive decline,

genetic research of prefrontal cortex specific endophenotypes might reveal pathways and

networks that are of relevance to find potential therapeutic candidates.

1.2 Prefrontal cortex dependent memory formation

The prefrontal cortex (PFC) is a centrally involved region in a network with cortical mod-

ules and might coordinates these in higher order cognitive processes (Alvarez and Emory,

2006; Frankland and Bontempi, 2005). Among the executive functions of the prefrontal

cortex are working memory, stimulus-reward associations, error detection, theory of mind,

conflict management and action inhibition (Botvinick et al., 2001; Frith and Frith, 2003;

Miyake et al., 2000; Pardo et al., 1990; Rolls, 2000). Furthermore, the prefrontal cortex

neuronal networks are involved in some aspects of social behavior as personality, social

cognition and moral judgment (DeYoung et al., 2010; Forbes and Grafman, 2010). Long-

term potentiations (LTPs), which are associated with learning and memory, are monitored

in the prefrontal cortex and afferents to the PFC from the hippocampus, sensory cortex,

amygdala and thalamus (Gurden et al., 1999; Herry et al., 1999; Kim et al., 2003; Malenka

and Nicoll, 1999; Maroun and Richter-Levin, 2003; Otani et al., 2003). However not much

is known about the networks from the prefrontal cortex so far.

The processing of context dependent experienced information is mainly mediated through

the hippocampus (Hi) and the PFC, whereas the PFC is primarily responsible for higher-

order cognitive abilities. The Hi and PFC have been associated with different aspects of

cognitive processes as recent and remote long-term fear memory formation, respectively

(Frankland et al., 2004). Recent memory formation in the hippocampus is mediated

through highly dynamic changes in synaptic plasticity (Kandel, 2001; Martin et al., 2000).
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Disruption of the hippocampus can lead to a specific loss of recent fear memory, although

remote memory stays unaffected (Kim and Fanselow, 1992; Zola-Morgan and Squire, 1990).

Current concepts suggest that long term memory consolidation involves a gradual transfer

of memory traces from hippocampal networks into stable cortical modules integrated by

the anterior cingulate cortex (ACC) (Fig. 1.1) (Frankland and Bontempi, 2005). Along

other aspects of prefrontal cortex specific cognitive performance is flexible learning, an abil-

ity to rewrite already learned false memory with new updated information (Rolls, 2004;

Schoenbaum et al., 2009). Damages in areas of the prefrontal cortex can result in a specific

loss of flexible learning in reversal learning tasks (de Bruin et al., 1994; Dias et al., 1996;

Iversen and Mishkin, 1970). The gradual transfer of memory traces from the Hi to the

ACx is thought to be dependent on different aspects of sleep (Diekelmann and Born, 2010).

recent

TIME

remote

active
inhibited

Figure 1.1: Model of transfer from recent to remote memory. It is thought that the formation

of recent memory is based on the activation of the hippocampal networks to cortical modules. At

this phase the activity level of the prefrontal cortex is low. However remote memory seems to be

dependent on an activation of the prefrontal cortex and its connections to the cortical modules.

At the same time, hippocampal networks are reduced in activity. Adapted from Frankland and

Bontempi (2005)

.

In the 19th century, the german psychologist Hermann Ebbinghaus, who initiated the

experimental approach in memory research, contributed a series of scientific publications

on the importance of sleep for the consolidation of memory (Ebbinghaus, 1885). In stud-

ies performed on himself, he discovered the “forgetting curve” that represents the loss of

recent memory over the first hours after learning. Here he also discovered that sleep can

reduce the loss of memory (van Omer, 1933). Until today several studies of different ap-

proaches have shown the importance of post-learning sleep for long-term remote memory

consolidation (Rasch and Born, 2013). Memory formation during sleep is closely associ-
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ated with the slow wave activities during NREM (non REM) sleep phase (Marshall et al.,

2006). During this sleep phase the slowest waves with the highest voltages are located

in the prefrontal cortex. Furthermore studies in human have shown strong correlations

between disrupted NREM slow wave activities and impaired memory as a consequence

of aging related prefrontal atrophy (Mander et al., 2013). In order to study processes

that are specific for remote memory consolidation in the prefrontal cortex, aspects of sleep

associated cognitive processes might help to identify potential candidates.

1.3 Circadian rhythms and cognitive processes

The controls of sleep and memory consolidation appear to be interconnected processes.

Disturbance of sleep can lead to a decline in cognitive performance (Aleisa et al., 2011;

Graves et al., 2003; Guan et al., 2004; Xu et al., 2010; Zhu et al., 2012). In particular

specific phases of sleep seem to be important for memory consolidation (Marshall et al.,

2006). The regulation of sleep homeostasis is crucial for optimal cognitive performance

during wake. It is well known that many aspects of sleep-wake related behavior are

controlled by clock genes. Emerging evidence suggests an involvement of the circadian

system in the regulation of these cognitive processes (Eckel-Mahan and Storm, 2009).

For example, several signaling pathways have been studied in the context of hippocampal

learning (Bekinschtein et al., 2007; Chen et al., 2005; Enriquez-Barreto et al., 2014; Fortress

et al., 2013; Kelleher et al., 2004; Man et al., 2003; Potter et al., 2010), and it has been

shown that the circadian timing of MAPK activity might be important for proper memory

consolidation in the hippocampus (Eckel-Mahan et al., 2008). Thus, a circadian regulation

of MAPK activity seems to be associated with physiologically intact memory performance.

Moreover, MAPK as well as S6 activity is involved in processes of long term potentiation

and memory formation (Kelleher et al., 2004; Orban et al., 1999; Philips et al., 2013).

A number of clock associated transcription factors have been identified so far to be neces-

sary for intact memory consolidation. These clock proteins interact in a densely regulated

network to guarantee optimal adaptation to daily recurrent changes of the organism to

the environment. Disruption of these transcription factors can lead to an impairment of

the memory function of the brain. The core clock transcription factors BMAL1 (brain and

muscle ARNT-like 1) and CLOCK/NPAS2 (circadian locomotor output cycle kaput / neu-

ronal PAS domain protein 2) form heterodimers and are regulated by a negative feedback
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loop through the CRY (Cryptochrome) and PER (Period) circadian clock transcription

factor proteins (Reppert and Weaver, 2001). In drosophila, a deletion of per induces a re-

duction in long term memory performance and over-expression leads to an improvement of

long term memory in wild type (Sakai et al., 2004). Furthermore the disruption of the core

clock transcription factor BMAL1 in mice leads to a reduction in hippocampus-dependent

memory performance (Wardlaw et al., 2014). In parallel, the forebrain-expressed core

clock transcription factor NPAS2, has been implicated in the control of NREM sleep and

Npas2-/- mice display deficits in hippocampus dependent cognitive processing (Franken

et al., 2006; Garcia et al., 2000; Reick et al., 2001). Altogether these finding increase

the evidence that the circadian molecular machinery that adapts the organism to daily

changes, is also involved in the fine tuning of memory formation. Yet, it is not known

through which molecular mechanisms cognitive processes are regulated by clock genes.

1.3.1 SHARP1 and SHARP2 transcription factors

The basic loop helix (bHLH)) transcription factors SHARP1 (DEC2/BHLHE41) and

SHARP2 (DEC1,BHLHE40) are modulators of the circadian system and have also been

implicated in the control of homeostatic sleep, neuronal plasticity and working memory

(He et al., 2009; Rossner et al., 1997, 2008) (Baier et al., manuscript in submission). Both

transcription factors, as also other clock transcription factors, consist of a bHLH domain

which can bind to the palindromic E-box sequence CACGTG (Ferré-D’Amaré et al., 1993).

SHARP1 and SHARP2 have a high structural homology, especially in the bHLH and CKII

(Casein Kinase II) domain (Fig. 1.2). CKII is important in the regulation of DNA repair,

circadian regulation and other cell cycle processes (Meggio and Pinna, 2003; Ruzzene and

Pinna, 2010).

The function of the orange domain is not determined so far. However it is proposed to play

a role in dimerization and specificity of transcriptional repression (Davis and Turner, 2001;

Steidl et al., 2000). Via indirect binding through NPAS2/BMAL1 heterodimers, or direct

transcriptional interaction with target genes, SHARP1 and SHARP2 can act as repressors

and co-activators in a context-specific manner (Honma et al., 2002; Rossner et al., 2008;

Sato et al., 2004). In human, mouse and drosophila, a point mutation in the Sharp1 gene

leads to reduced sleep length and increased vigilance during the activity phase (He et al.,

2009). In contrast to core clock genes, disruption of SHARP1 and SHARP2 does not shift

the phase of the circadian cycle nor does it change the frequency (Rossner et al., 2008).
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Depending on the context, SHARP1 and SHARP2 can increase or attenuate the ampli-

tudes of circadian gene expression. Therefore SHARP1 and SHARP2 act as modulators

of the circadian system.

97% 48% 25%

orangeb HLH CTDCKII

98%

Figure 1.2: The structural homology of SHARP1 and SHARP2. Comparing the open reading

frame of the SHARP1 and SHARP2 mouse sequence. Highest homology could be observed

in the bHLH (97%) and CKII (98%) domains. Furthermore the orange domain (48%) and the

C-terminal domain (CTD) (25%) display high to moderate homology in these regions.

Besides the function of Sharp1 and Sharp2 in the network of clock genes, they are also

reported to act as tumor suppressor genes (Falvella et al., 2008; Liu et al., 2013). The

disruption in the interaction of SHARP1 with hypoxia-inducible factor 1α (HIF-1α) is

reported in breast cancer metastasis (Montagner et al., 2012). Here SHARP1 can be

regulated by the p63 metastasis suppressor. Generally oncogenetic regulatory factors of

transcription and translation as MAPK and mTOR are also involved in cognitive processes

(Krab et al., 2008). This might in parts explain the occurrence of cognitive impairment as

a side effect of cancer treatment (Ahles and Saykin, 2007; Bower, 2008; Ganz et al., 2013;

Vardy and Tannock, 2007; Wefel et al., 2004).

In the context of psychiatric diseases, association studies revealed significant frequency of

Sharp2 SNPs in bipolar disorders, however no association was detected so far for Sharp1

SNPs (Mansour et al., 2009; Shi et al., 2008). In parallel, circadian gene expression anal-

yses of human brain samples revealed a high circadian cyclic expression of Sharp1 and

Sharp2 which was unique for regions of the prefrontal cortex, and attenuated in the hip-

pocampus and amygdala (Li et al., 2013). However in in the prefrontal cortex of patients

with major depressive disorder circadian pattern of Sharp1 and Sharp2 expression was

attenuated.
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1.4 Metabolism in the context of cognitive performance

The regulation of the intensity and episodes of sleep, is regulated by circadian as well

as homeostatic aspects (Borbély, 1982). Impairment of the circadian system alters sleep

homeostasis and leads to obesity and metabolic disorders (Naylor et al., 2000; Turek et al.,

2005). Overall the homeostatic sleep is a key regulator of neuronal activity synaptic plastic-

ity (Tononi and Cirelli, 2006). One example is the circadian regulation of the nicotinamide

adenine dinucleotide (NAD+) bio-availability and therefore mitochondrial oxidative func-

tion. Neuronal information processing is initially powered by oxidative phosphorylation

and pre as well as post-synaptic mechanisms are essentially affected by changes in mito-

chondrial activities (Hall et al., 2012). Here, circadian regulation of mitochondria activity

can directly control aspects of neuronal processes. In parallel disruption of clock genes

causes oxidative stress and therefore leads to enhanced neurodegeneration (Musiek et al.,

2013).

In order to regulate the plasticity in the central nervous system in adaptation to the

actual need, whether in resting mode or in activity, circadian genes are involved in the

regulation of the synaptic plasticity. The elevation of synaptic strength during cognitive

tasks and cognitive standby condition correlates with an increase in energy consumption

in order to synthesize and transport the involved protein machinery at the nucleus and

at the synapses. Around 87% of the available energy for neuronal signaling is needed for

the release of action potentials, synaptic ion-trafficking and transmitter recycling (Attwell

and Gibb, 2005). Though synaptic plasticity is mainly limited by the available energy.

An excess signaling of neurons is limited by the fact, that energy must be left for the

maintenance of the resting potential. It is thought that sleep restores synaptic plasticity

and cell homeostasis and in parallel reorganizes the synchronization of synapses (Tononi

and Cirelli, 2014). Thus, a disruption of sleep architecture might negatively influence

the rehabilitation of cortical networks. Already a slight reduction of sleep over a short

time leads to a deregulation of genes that are involved in sleep homeostasis, circadian

rhythmicity, oxidative stress and metabolism (Möller-Levet et al., 2013). Potentially the

role of sleep might be to restore the protein machinery that is involved in energy intensive

mechanisms as synaptic plasticity for maximal performance during activity.

The increased metabolism of active firing neurons is accompanied with elevated oxygen

consumption and causes an accumulation of neurotoxic reactive oxygen species (ROS)

(Drechsel and Patel, 2008). A network of antioxidants as superoxide dismutase, catalase
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and peroxidases keep the presence of antioxidants in the brain at physiological levels. Ag-

ing and neurodegenerative diseases are associated with increased levels of ROS in the brain

(Butterfield and Kanski, 2001; Gabbita et al., 1998; Mecocci et al., 1993). Several studies

implicate that an increase of ROS is associated to a decline in cognitive tasks (Forster et al.,

1996; Fukui et al., 2001). Yet, besides the negative neurotoxic features, ROS molecules

can also act positively on synaptic plasticity (Carney et al., 1991). In the hippocampus,

ROS are able to regulate p44/42 MAPK and CaMKII, both molecules that are involved in

the synaptic plasticity (Kanterewicz et al., 1998; Shetty et al., 2008). Overall disequilib-

rium of ROS in the cells might lead to disrupted synaptic plasticity. A deregulation of the

circadian clock, which is often occurring during aging or psychiatric diseases, might induce

oxidative stress responses and neurodegeneration (Lai et al., 2012; Musiek et al., 2013).

Therefore, knockout of the circadian modulators SHARP1 and SHARP2 potentially might

affect cognitive processes through mechanisms that are involved in metabolic aging.
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1.5 Aims of the study

Molecular mechanisms of sleep regulation and memory consolidation in the prefrontal

cortex appear to be interconnected processes. However, little is known of a common link

between these regulatory machineries. SHARP1 and SHARP2 transcription factors are

modulators of sleep architecture and potentially involved in the autonomous circadian

regulation of the prefrontal cortex.

Here, we analyzed at which quality and extend SHARP1 and SHARP2 might influence

cognitive features in adult and aged mice. We investigated the specific function of SHARP1

and SHARP2 in the cellular context of the prefrontal cortex and studied the potential reg-

ulatory effect on signaling activities and gene expression. Furthermore, we identified and

analyzed factors that are deregulated and might be involved in the metabolic regulation

of synapse plasticity. The answers to these questions could provide evidence for the reg-

ulatory role of SHARP1 and SHARP2 and identify candidates that mediate mechanisms

of cortical processes in the prefrontal cortex. Finally we explored the impact of identified

signaling molecules on prefrontal cortex specific aspects of memory formation.

Investigating the role of SHARP1 and SHARP2 in cortical processes and identification of

prefrontal cortex specific molecular markers for cognitive processes might provide insight

into basic common mechanisms of the sleep and memory regulatory networks.
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Chapter 2

Materials and Methods

2.1 Materials

2.1.1 Chemicals and consumables

All chemicals and consumables were purchased from Life Technologies, Merck, Roche and

Sigma-Aldrich unless stated different. DNA and RNA purification kits were purchased

from Qiagen and Macherey-Nagel. Cell culture media supplements and sera were ordered

from Life Technologies or Lonza. All general consumable materials were obtained from

Eppendorf, Falcon and Nunc.

2.1.2 Commercial kits

DAB Zytomed Zytomed Systems

DC Protein Assay (Lowry) Bio-Rad

ECL Plus Western-Blot Detection Reagents Amersham Biosciences

LSAB2 Dako

NucleoSpin Gel and PCR Clean-up Macherey-Nagel

NucleoSpin Plasmid Quick Pure Macherey-Nagel

NucleoBond PC100 Midiprep Macherey-Nagel

pGEM-T Vector System Promega

Polyethylenimine Polysciences

Power SYBR Green Master Mix Applied Biosystems

RNaesy Mini Kit Qiagen

TaqMan Universal PCR Master Mix Applied Biosystems

11
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2.1.3 Enzymes

Alkaline Phosphatase Roche

BP Clonase II Invitrogen

Easy-A HiFi PCR cloning enzyme Stratagene

GoTaq DNA Polymerase Sigma-Aldrich

HotStarTaq DNA Polymerase Qiagen

LR Clonase II Invitrogen

LR Clonase II Plus Invitrogen

Pfu Ultra Advanced DNA Polymerase Stratagene

Proteinase K Invitrogen

PWO Polymerase Roche

Restriction enzymes New England Biolabs

RQ1 DNase Promega

SuperscriptIII Reverse Transcriptase Invitrogen

T4 DNA-Ligase Promega

2.1.4 Buffers and stock solutions

50× TAE buffer

242 g Tris-Base, pH 8.0

57.1 mL acetic acid (glacial)

100 mL 0.5 M EDTA, pH 8.0

Adjust volume to 1 L with H2O

5× TBE buffer

54 g Tris-base

27.5 g boric acid

20 mL 0.5 M EDTA

Adjust volume to 1 L with H2O

10× TE buffer
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1 mL 1M Tris, pH 7.5

200 µL 0.5 M EDTA

Adjust volume to 10 mL with H2O

10× MGB buffer

6.7 mL 1M Tris-HCl, pH 8.8

1.66 mL 1M (NH4)2SO4

650 µL 1M MgCl2

Adjust volume to 10 mL with H2O

1× MGB working solution

1 mL 10× MGB buffer

500 µL 10% Triton X-100

Adjust volume to 10 mL with H2O

10× PBS

100 g NaCl

2.5 g KCl

7.2 g Na2HPO4 · 2 H2O

2.5 g KH2PO4

Adjust pH to 7.2 with NaOH

Adjust volume to 1 L with H2O

20× TBS

100 mL 1 M Tris-Base, pH 8

60 mL NaCl

Adjust pH to 7.4 with HCl

Adjust volume to 1 L with H2O

1× TBS-T

500 mL 20× TBS, pH 7.4

5 mL Tween-20

Adjust volume to 10 L with H2O
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20× MES running buffer

97.6 g MES

60.6 g Tris-Base

10 g SDS pellets

3 g EDTA

Adjust volume to 500 mL with H2O

store at 4◦C

4× LDS sample buffer

0.666 g Tris-HCl

0.682 g Tris-Base

0.8 g Lithium dodecyl sulfate

0.006 g EDTA

4 g Glycerol

0.75 mL 1% Serva Blue G250

0.25 mL 1% Phenol Red

Adjust volume to 10 mL with H2O

store at -20◦C

20× Transfer buffer

40.8 g Bicine

52.4 g Bis-Tris (free base)

3 g EDTA

1 mM Chlorobuthanol

Adjust volume to 500 mL with H2O

store at 4◦C

1× Transfer buffer

25 mL 20× Transfer buffer

20% Methanol

Adjust volume to 500 mL with H2O

Western Blot stripping buffer

0.2 M Glycine-HCl, pH 2.5
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0.1% Tween-20

Blocking buffer

5% non-fat dry milk

1% BSA

in 1× TBS-T

Sucrose lysis buffer for brain tissue

1,37 mL 80% sucrose

100 µL 1 M Tris

10 µL 1M NaHCO3

5 µL 2 M MgCl2

in 1× TBS-T

Adjust volume to 10 mL with H2O

Add protease and phosphatase inhibitors directly before use

Modified RIPA buffer for cell culture

50 mM Tris-HCl, pH 7.4

150 mM NaCl

1 mM EDTA

0.1% SDS

1.0% Sodium deoxycholate

1.0% Triton X-100

Add protease and phosphatase inhibitors directly before use

Inhibitors

Protease inhibitor cOmplete, Mini, EDTA-free

Phosphatase inhibitor PhosSTOP

10× DNA Orange loading dye

50% glycerol

0.1% Orange G

49.9% 1× TAE buffer
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10× GelRed/Orange loading buffer

90% 10× DNA Orange loading dye

10% 10× GelRed

49.9% 1× TAE buffer

Ethidium bromide

0.1% 1 mg/mL EtBr

50× dNTP mix

10mM dATP, dCTP, dGTP, dTTP

LB-medium

0.5% yeast extract

1% Bacto-Peptone, pH 7.5

1% NaCl

low-salt LB-medium

0.5% yeast extract

1% Bacto-Peptone, pH 7.5

0.5% NaCl

LB medium antibiotics

200 µg/mL ampicillin

50 µg/mL kanamycin

35 µg/mL zeocin (in low-salt LB)

25 µg/mL chloramphenicol

50 µg/mL gentamycin

SOC-Medium

0.5% yeast extract

2% Bacto/Peptone

20 mM glucose

10 mM NaCl

2.5 mM KCl
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10 mM MgSO4

LB-Agar plates

0.5% yeast extract

1% Bacto/Peptone

1% NaCl

1.5% Agar

Autoclave

Add antibiotics after cooling

Low-salt LB-Agar plates

0.5% yeast extract

1% Bacto/Peptone

0.5% NaCl

1.5% Agar

Autoclave

Add antibiotics after cooling

2.1.5 Antibodies and labeling components

Primary antibodies which are listed in table 2.1 were used in this study.

Table 2.1: Primary antibodies

Target Host species Application1 Resource

AMPKβ1/2 (pan) Rabbit WB (1:1000) Cell Signaling

AMPKβ1 (p-Ser-182) Rabbit WB (1:1000) Cell Signaling

Akt (pan) Rabbit WB (1:1000) Cell Signaling

Akt (p-Ser-473) Rabbit WB (1:1000) Cell Signaling

CREB (pan) Rabbit WB (1:1000) Cell Signaling

CREB (p-Ser-133) Rabbit WB (1:1000) Cell Signaling

GAPDH Mouse WB (1:1000) Stressgen

GFAP Mouse WB (1:5000) Novocastra

GSK-3β (pan) Rabbit WB (1:1000) Cell Signaling

GSK-3β (p-Ser-9) Rabbit WB (1:1000) Cell Signaling

IGF-I Receptor β1 (pan) Rabbit WB (1:1000) Cell Signaling

Insulin Receptor β (pan) Rabbit WB (1:1000) Cell Signaling

IGF-I-R β1 (p-Tyr-1135/1136) INS-R β (p-Tyr-1150/1151) Rabbit WB (1:1000) Cell Signaling

p44/42 MAPK (pan) Rabbit WB (1:1000) Cell Signaling
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p44/42 MAPK (p-Ser-473) Rabbit WB (1:1000) Cell Signaling

mTOR (pan) Rabbit WB (1:1000) Cell Signaling

mTOR (p-Ser-2448) Rabbit WB (1:1000) Cell Signaling

PI3K p85 (pan) Rabbit WB (1:1000) Cell Signaling

PI3K p85 (p-Tyr) Rabbit WB (1:1000) Cell Signaling

Ribosomal S6 (pan) Rabbit WB (1:1000) Cell Signaling

Ribosomal S6 (p-Ser-235/236) Rabbit WB (1:1000) Cell Signaling

Tubulin, α Mouse WB (1:10000) Sigma

The secondary antibodies used in this study are listed in table 2.2.

Table 2.2: Secondary antibodies

Name Obtained from

HRP-anti mouse Dianova, Hamburg, Germany

HRP-anti rabbit Dianova, Hamburg, Germany

2.1.6 Animals

The following mouse strains were utilized in this study.

Table 2.3: Mouse strains

Strain Genetic alteration Origin

C57/N WT mice No mutation Animal core facility, MPI of Experimental Medicine

S1-/- mice Sharp1 knockout M. J. Rossner (Rossner et al., 2008)

S2-/- mice Sharp2 knockout M. J. Rossner (Rossner et al., 2008)

Igf1rfl/fl mice Igf1r conditional knockout J. C. Brüning (Klöting et al., 2008)

Insrfl/fl mice Insr conditional knockout J. C. Brüning (Brüning et al., 1998)

CaMKII-cre mice CaMKII-cre R. Klein (Minichiello et al., 1999)

2.1.7 Plasmids

The Igf2 and Igfbp5 expression sequences were cloned into an AAV2 plasmid with a CAG

promoter.

1IF: immunocytochemistry, WB: western blot, DB: dot blot
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2.1.8 Media and sera

2.1.8.1 Commercial media, sera and solutions

Table 2.4: Commercial media, sera and solutions

Media, sera, and solution Manufacturer

Dulbecco’s Modified Eagle Medium (DMEM) Lonza

Fetal Calf Serum (FCS) Lonza

GlutaMAX™ supplement Gibco

Opti-MEM Gibco

Trypsin-EDTA Lonza

2.1.8.2 Media preparation

HEK293FT cells medium

10% FCS

1× GlutaMAX™

in DMEM with high glucose and without glutamine.

2.1.9 Softwares

Table 2.5: Softwares

Softwares Source

Adobe Illustrator CS 5 Adobe Systems Incorporated

GraphPad Prism GraphPad Software, Incorporated

ImageJ http://rsbweb.nih.gov/ij/

ZEN Microscope Software ZEISS

2.2 Methods

2.2.1 Animal experiments

All animal experiments were performed in accordance with institutional guidelines and

were approved by the Government of Lower Saxony, Germany. Mice were housed at
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a 12-hour light/12-hour dark cycle and received food and water available ad libitum.

All experiments were performed with cohorts of adult male mice at the same age be-

tween 4-5 months for most experiments and 12-16 months for aging studies. S1-/-, S2-/-,

Igf1rfl/fl and Insrfl/fl single knockout mice as well as CaMKII-cre heterozygous mice were

backcrossed to C57Bl/6J for more than ten generations as described previously (Rossner

et al., 2008; Minichiello et al., 1999; Brüning et al., 1998; Klöting et al., 2008). Wild-

type (WT) and Sharp1 and -2 double mutant mice (S1/2-/-) were obtained from double

heterozygous breeding pairs (Rossner et al., 2008; Sun et al., 2001). Igf1r/Insrfl/fl and

Igf1r/InsrCaMKII-cre mice were obtained from Igf1r/Insrfl/fl homozygous and CaMKII-

cre heterozygous breeding pairs. Igf1r/Insrfl/fl homozygous mice were obtained from

Igf1r/Insrfl/+ double heterozygous breeding pairs. Igf1r/Insrfl/+ mice were obtained from

Igf1rfl/fl and Insrfl/fl breeding pairs. All experiments were performed blinded to genotypes.

2.2.2 Genotyping PCR

For the preparation of genomic DNA for genotyping, 2-3 mm of mouse tails were digested

with 180 µL of 1×MGB and 20 µL of proteinase K (10 mg/mL). This mixture was incu-

bated at 52ºC over night while shaking. At the end, proteinase K was heat inactivated by

incubation at 95ºC for 10 min. Genotyping PCR amplification was performed with 0.1 µL

of the obtained genomic DNA with respective primers (Table 2.6).

Table 2.6: Genotyping primers

Gene 5’-3’ Sequence

Sharp1 WT/KO fwd ACCTACAAGTTACCGCACAG

WT rev TTTCTCCAAATGCCCCAGTG

KO rev GCAATCCATCTTGTTCAATGGC

Sharp2 KO fwd TGGGCTGACCGCCTCGTGC

WT fwd GGAAGCTCAGGCTAGCTCAT

WT/KO rev CGTTTTATTCCCCGCCTGGA

CaMKII-cre fwd CGAGTGGCCCCTAGTTCTGGGGGCAGC

rev CGTTGCATCGACCGGTAATGCAGGC

Igf1r fwd TCCCTCAGGCTTCATCCGCAA

rev CTTCAGCTTTGCAGGTGCACG

Insr fwd CTGAATAGCTGAGACCACAG

rev GATGTGCACCCCATGTCTG
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2.2.3 Behavioral analyses

All performed behavior experiments were previously described unless stated otherwise

(Brzózka et al., 2010).

2.2.3.1 Memory tests

Morris water maze test

Spatial learning and memory was analyzed in the Morris water maze test. The test started

with a two-day visible platform task to allow the mice to learn the platform position. For

initial and reversal learning the flag was removed from the platform. During the following

6 days of spatial learning (initial learning) each mouse was released in the tank 4 times

per day, and was allowed to swim until they found the hidden platform. After 6 days, a

probe trial was performed to assess the memory of the mice . Therefore, the platform was

removed and the following parameters were analyzed: time spent in the target quadrant,

number of crossings of the platform position and swim speed. After 7 days of break the

reversal memory test was performed. The hidden platform was placed in the opposite

quadrant and 6 days of testing as for the initial learning phase was performed. Finally

the probe trial was performed again to test long term memory.

Fear conditioning test

Contextual fear memory was assessed in the fear conditioning paradigm with several co-

horts of mice. All animals were tested with equipment provided by TSE Systems, except

of AAV injected mice which were analyzed with a testing system of Ugo Basile. How-

ever, parameters for shock intensity and duration (0.4mA, 2s) were identical. The freezing

rate of the AAV injected mice was analyzed automatically by the Any Maze software

(Stoelting). Tone depending cue fear conditioning was performed with a modified setup

with a 10 kHz and 75 dB tone played for 30 s directly before the applied shock. Later cue

dependent fear memory regarding the associated tone was tested in a separate new context.

2.2.3.2 Standard behavior tests

Light-dark preference

To analyze anxiety behavior, the light-dark preference test was performed in a box con-

sisting of two equal parts, a dark and a transparent compartment connected by a door.
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Within 5 min of testing, time spent in the dark compartment was analyzed.

Open field test

The spontaneous loco-motor activity of mice was assessed in the open field test for 10

minutes. In this time the total time of activity, number of rearings, total time of rearings,

traveled distance, time spent at the center, time spent at the periphery and corner visits

were analyzed.

Hole board test

The open field setup was modified for the hole board test by inserting a plastic plate with

16 symmetrical holes to the ground. Within 10 min of time the traveled distance, number

of visits of the holes, total exploration time as well as time spent for one exploration were

measured.

Hot plate test

To test the pain threshold with the hot plate test, each mouse was placed on a 52◦C hot

metal plate, and the time until the mice licked the hind paw was measured.

Tail suspension

To test the overall motivation behavior of mice the tail suspension test was performed.

For this purpose mice were suspended by their tails for 6 min and the time of struggling

to get free were scored.

Elevated plus maze test

To assess the anxiety behavior, mice were analyzed in the elevated plus maze test. The

test setup has two opened arms and two closed arms, and preference of mice was tested.

For a duration of 5 min, total distance traveled, distance traveled in closed arms, time

spent in center, running speed, and relative time in closed arms were analyzed.

2.2.3.3 Stereotactic injections

Surgery was performed under intra-peritoneal (i.p.) anesthesia with ketamine/xylazine

(100 mg/kg; 10 mg/kg). Viral vectors (AAV, AAV-Igf2, AAV-Igfbp5 ) were injected into

the anterior cingulate cortex (1 mm anterior to bregma, 0.5 mm lateral to midline, 1 mm
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ventral to surface). One µL was administered at each injection site using a 10 µL Hamilton

syringe at a rate of 0.5 µL/min for a total of 4×1011 drp (DNase-resistant particles) per

injection site. Immediately after surgery, mice were given buprenorphine (0.2 mg/kg, s.c.)

for analgesia.

2.2.4 Molecular biology

All molecular biology standard methods that are not described in detail were performed

according to ”Molecular Cloning: A Laboratory Manual” (Sambrook and Russel, 2001)

and to the manufacturer’s protocols.

2.2.4.1 E.coli DNA transformation

Chemically competent bacteria

Transformation-competent bacteria (E.coli, strain DH5α, Mach1, XL1 blue) were thawed

on ice. To 100 µL of cells, 5-10 µL of a ligation or recombination reaction was added and

incubated on ice for 30 min. The bacteria were heat-shocked at 42◦C for 42 s and cooled

on ice for 2 min. Subsequently 600 µL of cold SOC medium was added and incubated

for 45 min at 37◦C with gentle shaking. This first incubation step at 37◦C is required for

the cells to express the antibiotic’s resistance. Then, the samples were centrifuged, the

supernatant was discarded and the bacteria were plated on a LB-agar plate containing the

appropriate antibiotic. The bacteria were distributed by using sterile glass beads. The

plates were incubated overnight at 30-37◦C .

Electro-competent bacteria

Commercially available DH10B E.coli were diluted 1:4 with sterile 10% glycerol and 20 µL

aliquots were made. 2-2.5 µL of a recombination or ligation reaction was added to the bac-

teria and transferred into a 1 mm electroporation cuvette (BioRad). The electroporation

was performed using the ‘GenePulserII’ (BioRad) with the following settings: 1.75 kV,

25 µF capacitance and resistance of 200 Ω. The cells were resuspended in 600 µL cooled

LB, or alternatively in SOC medium, without antibiotics and incubated at 37◦C for 45

min with moderate shaking. The bacteria were processed and plated as described above

for chemically competent bacteria.
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2.2.4.2 Purification of plasmid DNA

General plasmid DNA purification

Preparation of plasmid DNA is based on alkaline cell lysis, followed by SDS precipitation

(Birnboim and Doly, 1979). A silica membrane binds the plasmid DNA under high-salt

conditions. After binding, the DNA can be washed and eluted with appropriate buffers.

To isolate plasmid DNA from fresh overnight bacterial LB cultures, we used plasmid DNA

purification kits provided by Macherey-Nagel. Detailed protocols are provided by the

manufacturer.

Mini plasmid DNA preparation

In brief, 2-4 mL LB medium with antibiotics was inoculated with the selected bacterial

clone and incubated overnight at 30-37◦C . Amplified bacteria were centrifuged and resus-

pended in 250 µL buffer A1 with RNAse. Cells were lysed by adding 300 µL buffer A2.

After 5 min incubation, the lysis reaction was stopped by adding buffer A3. The lysed

bacteria were centrifuged and the clear supernatant was loaded to the column. Then, the

column was washed with buffer AQ, dried by additional centrifugation and eluted with

100 µL H2O or TE buffer.

Midi plasmid DNA preparation

200 mL LB medium with antibiotics was inoculated with selected bacterial clone and incu-

bated overnight at 30-37◦C . DNA was purified and isolated according to manufacturer’s

protocol

Concentration determination of nucleic acid

To determine the purity and concentration of nucleic acids, spectrometry was used.

2.2.5 RNA expression analyses

RNA was isolated according to the manufacturer’s protocol using RNeasy columns (Qi-

agen, Hilden, Germany). All isolated RNA samples were tested for quality and quantity

with the Bioanalyzer (Agilent Technologies). RNA-integrity (RIN) values were higher

than 8. SYBRgreen real time PCR experiments were performed with a LC480 detection

system (Roche). All used primers were designed online at the assay design center of the
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Roche Universal Probe Library.

Table 2.7: RTPCR primers

Gene sense antisense

Mouse

Actb ATTGGCAATGAGCGGTTC GGATGCCACAGGACTCCAT

Atp5b GGATCTGCTGGCCCCATAC CTTTCCAACGCCAGCACCT

c-Fos TCGACCTAGGGAGGACCTTACC CCAGATGTGGATGCTTGCAA

Cyc1 CAGAGCATGACCATCGAAAA CACTTATGCCGCTTCATGG

Igf2 CGCTTCAGTTTGTCTGTTCG GCAGCACTCTTCCACGATG

Igfbp5 CTACCGCGAGCAAGTCAAG GTCTCCTCGGCCATCTCA

Per2 CAACACAGACGACAGCATCA TCCTGGTCCTCCTTCAACAC

Rpl13a ATCCCTCCACCCTATGACAA GCCCCAGGTAAGCAAACTT

Human

ATP5B TGATGAAAGAGGTCCCATCAA ACCAGAATTTCCTGCTCAACA

BMAL1 CAGGAAAAATAGGCCGAATG AGGCGATGACCCTCTTATCC

CLOCK CACCAGGATGATGATGAATAATG CGTTTTCGTCTTGTAGTAGACATTTG

EGR1 AGCCCTACGAGCACCTGAC GGTTTGGCTGGGGTAACTG

FOS CTACCACTCACCCGCAGACT AGGTCCGTGCAGAAGTCCT

GAPDH GCTCTCTGCTCCTCCTGTTC ACGACCAAATCCGTTGACTC

PER1 CTCTTCCACAGCTCCCTCA CTTTGGATCGGCAGTGGT

PER2 CTGCAAACCTGGCACTTCTC GTGTCTGAGGGTTCATCACG

POLR2B ACCTACTTAAAGCTATGGCAAAGG TGTTGCACAAATAACGACACTG

RPL13A CCCCTGTTTCAAGGGATAAGA GACCATCAAGCACCAGGAC

SHARP1 GTACAGAGCCCCAAAAATCG TTCCTTCGTCCATGTTCAACT

SHARP2 AAGCATGTGAAAGCACTAACAAA TCTCCCTGACAGCTCACCA

ERBB4-CYT1 TGAGGAGTACTTGGTCCCTCAGGC GCAGGAGGAGGGCTGTGTCCA

ERBB4-CYT2 AGGCTTTCAACATCCCACCTCCCA ACAAACTGGTTCCTATTCGAGTCA

ERBB4-CYT1/2 GGCTTTCAACATCCCACCTCCCA GCAGCAAAACCTCCATCTCGGT

ERBB4-JMa TGGACGGGCCATTCCACTTTACCA TGACCAGAATGAAGAGCCCACCA

ERBB4-JMb CACCCAAGGGTGCATAGGCTCA TGACCAGAATGAAGAGCCCACCA

ERBB4-JMa/b GCCATCCAAACTGCACCCAAGG TACTCCAGCTGCAATCAGGGGA

2.2.6 Protein biochemistry

2.2.6.1 Preparation of tissue lysates

Dissected tissue samples were directly frozen on dry ice and lysed with a Polytron PT

2000 homogenizer in an appropriate volume of sucrose buffer. For preservation of proteins

as well of protein phosphorylation cOmplete (Roche) and PhosSTOP tablets were freshly
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added to the buffer.

2.2.6.2 Protein lysates

Before processing the protein lysate, a fraction of the lysate was removed and added to an

appropriate volume of RLT buffer (Qiagen) for further RNA extraction. Protein lysates

were quantified with a Lowry based DC Protein Assay Kit II (BIO-RAD) and adjusted

to a final concentration of 1 µg/µL with 1mM DTT and 1xNuPAGE® lithium dodecyl

sulphate (LDS) sample buffer. Finally samples were heated for 10 min at 70°C.

2.2.6.3 SDS-PAGE

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was performed

under denaturing conditions for protein analyses. Samples were separated in 4-12% Nu-

PAGE Bis-Tris gel in 1×Mes buffer (Invitrogen) for 30 min at 200 V.

2.2.6.4 Western Blot

Following SDS-PAGE gel electrophoresis, the proteins were transferred to a 0.2 µm PVDF

membrane (Roche) for 2 h at 30 V in transfer buffer with 20% methanol at 4°C.

After successful transfer, unspecific epitopes were blocked for 30 min at RT in 5% milk

and 1xTBS with 0.05% Tween20. Blocked membranes were incubated with the primary

antibody in TBS-T at 4 °C overnight. The membranes were washed 3× 5 min at RT with

TBS-T, then the membranes were incubated with the appropriate secondary antibodies

conjugated to horseradish peroxidase (HRP) for 1 h at RT, and washed again 5× 5 min

at RT with TBS-T.

Finally, the proteins were visualized by enhanced chemiluminescence (Pierce/Thermo Sci-

entific) with an INTAS ECL Imager. Detected protein bands were quantified with ImageJ.

2.2.7 Immunocytochemistry and imaging

2.2.7.1 Immunohistochemistry

Mice were anesthetized with avertin and perfused with gassed ACSF following 4% PFA

in PBS. Brains were treated overnight in 4% PFA at 4°C and embedded in paraffin at the
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next day. Immunohistochemical analysis was performed on 10 µm thick coronal brain

sections. Haematoxylin-eosin (HE) stain as well as DAB based immunostaining (Dako-

LSAB2 kit) was used according to manufacturer’s manual. Primary antibodies were used

against phospho-S6 (1:100, Cell Signaling) and GFAP (1:200, Novocastra).

2.2.8 AAV virus production

2.2.8.1 Cell culture

HEK293FT cells were maintained in DMEM medium with 10% FCS with regular passag-

ing on PLL coated plates (Javanbakht et al., 2003). After obtaining the desired confluency,

cells were used for virus production and amplification.

2.2.8.2 Virus production

HEK293FT with a confluency of 50% were transfected with packaging plasmids.

AAV packaging plasmids

pF∆6 adenovirus helper proteins for replication (E2, E4, VA)

pH21 replication/capsid proteins for serotype 1

pRV1 replication/capsid proteins for serotype 2

The transfection reaction was performed with polyethylenimine (PEI). 1 pmol of the pack-

aging plasmids as well as the insert containing AAV plasmid were used for transfection

of HEK293FT cells with PEI according to manufacturer’s instructions. Transfected cells

were maintained for 3 days with daily medium changes. The cells were collected in a 50

mL tube (Falcon) and centrifuged at 1,000 rpm for 10 min. The medium was removed

and replaced with 5 mL cell lysis buffer (3 mL 5M NaCl, 5 mL 1M Tris-HCl, pH 8.5). The

cells were lysed with 3 cycles of freezing at -80°C for 20 min, and thawing at 37°C for 10

min. After lysis, 1 µL benzonase was added and incubated at 37°C for 30 min. Then, the

suspension was centrifuged at 3,000 rpm for 10 min. The virus containing supernatant

was filtered with a 0.45 µm filter and added to an Amicon Ultra-15 Centrifugal Filter

Unit. 10 mL of the medium later used for transduction was added to the filter unit and
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centrifuged at 3,000 rpm for 15 min. The filter was washed twice by transducing 10 mL

of the medium and finally centrifuged until a volume of 2 mL in the filter unit.

2.2.8.3 Virus titration

To determine the concentration of virus particles, the virus was titrated. First, 5 µL of

the virus containing solution was digested with 20 µL proteinase K in 200 µL PBS for 10

min at 50°C to break the viral capsid proteins. Viral DNA was isolated with a NucleoSpin

Gel and PCR Clean-up kit according to manufacturer’s protocol and eluted in 30 µL H2O.

The number of viral particles was assessed by quantitative RTPCR with calibrated virus

particle samples.
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Results

Parts of the results in Section 3.1-3.3 have been prepared for publication in:

Enhanced remote fear memory in Sharp1 and Sharp2 double mutant mice

caused by relaxed Igf2 signaling in the anterior cingulate cortex.

Ali Shahmoradi, Konstantin Radyushkin and Moritz J. Rossner (2015)

Proceedings of the National Academy of Sciences

3.1 Behavioral and molecular analyses of S1/2-/- mice

3.1.1 Behavioral analyses of S1/2-/- mice

To address the function of SHARP1 and SHARP2 in the context of learning and memory

formation, we analyzed wild type (WT) and Sharp1 (S1-/-) and Sharp2 (S2-/-) single

null mutants (Rossner et al., 2008) in the contextual fear conditioning paradigm (Kim

and Fanselow, 1992). Sharp1 and -2 prominently expressed in hippocampal and cortical

regions and are coupled to physiologically and pathologically altered neuronal activity

in the cortex (Honma et al., 2002; Rossner et al., 1997). Therefore, we tested recent

fear memory formation (1 day after shock) to study hippocampal as well as remote fear

memory (28 days after shock) to also assess cortical functions (Fig. 3.1A and B). Frontal

cortex regions such as the anterior cingulate gyrus (ACC) appear to be critically involved

in remote memory formation (Frankland et al., 2004). To assess recent memory, we first

conditioned WT and single mutant mice with two electric shocks. At the next day we

placed them again into the same environment of the fear conditioning and tested the

memory of the shock. To test remote memory, we tested the mice again after 28 days. In

29
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Figure 3.1: Behavioral analyses of S1-/- and S2-/- mice. A-B) Fear conditioning with WT, S1-/-

and S2-/- mice. No genotype difference was observed 1 day and 28 days after shock. C-G) Water

maze experiment with WT, S1-/- and S2-/- mice. No difference was observed in initial and reversal

water maze in 6 days of trials. Data shown are means ± SEM (error bars), n=7-10 [A) and B)], n=8

[E-G)]. Statistical significance was assessed by two-tailed Mann-Whitney U test [B)] and two-way

ANOVA followed by Bonferroni’s post-hoc test [E-G)].

all of the performed time points of the fear conditioning test S1-/- and S2-/- single mutants

performed as WT animals (Fig. 3.1A and B). Recent, as well as remote long-term memory

was not altered.
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Further, we applied a modified water maze task including a reversal test that monitors

learning flexibility depend of the anterior cortex (de Bruin et al., 1994). To test hip-

pocampus based spatial memory, mice were placed for 6 days with 4 trials per day into a

water bath with a hidden platform. In order to find rescue from the water, mice prefer to

stay on the platform whenever they find it. With every repeat, the previously acquired

memory reduces the time to find the platform. To test anterior cortex dependent flexible

learning, we added 6 days of training with the platform moved to the opposite quadrant

of the water bath. This way we test how effective the mice can rewrite already learned

memory that is not valid anymore. However, in the initial test as well as after changing

the platform position (reversal test), learning performance of S1-/- and S2-/- remained un-

altered compared to WT (Fig. 3.1C - F ). No phenotype of S1-/- and S2-/- single mutants

in the water maze and fear conditioning test supported a potential functional redundancy

of both genes in cognitive processing.

Because of a high structural homology of SHARP1 and SHARP2 and their potential

functional redundancy in cognitive processes, we next analyzed S1/2-/- double knockout

mice. In fear conditioning test, 1 day after conditioning S1/2-/- double mutant mice did

not reveal any differences in recent memory performance compared to WT (Fig. 3.2A and

C ). However when tested 28 days later, remote memory of S1/2-/- mice was significantly

improved. In order to exclude an additional effect on memory due to the repetition of

the test, we repeated the experiment with two separate mouse cohorts only testing at 1

or 28 days after fear conditioning (Fig. 3.2B). We could observe a significant increase of

remote memory performance of S1/2-/- mice only at the remote long-term fear memory

test. (Fig. 3.2D).

Next, we performed an initial and reversal water maze experiment with S1/2-/- and WT

mice. We saw no differences in memory performance of S1/2-/- mice compared to WT

in the initial learning phase (Fig. 3.2E ). However, in probe trial test, after removing the

platform at the end of the experiment, S1/2-/- mice spent significatly more time at the

target quadrant (Fig. 3.2F ). To exclude that this is an effect of a lack of forgetting, we

changed the location of the hidden platform to the opposite quadrant and repeated the

water maze experiment. After changing the platform position, S1/2-/- mice relearned the

new platform faster than WT. In the end of the water maze test again we removed the

platform and analyzed the memory of the relearned position.
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Figure 3.2: Increased remote fear memory formation and improved reversal learning in

S1/2-/- mice. A, B) Experimental procedure of recent and remote memory testing upon contex-

tual fear conditioning. C) Freezing behavior of mice tested 1 day and 28 days after training. No

significant difference was observed at day 1 between genotypes. Increased remote fear mem-

ory formation was observed in S1/2-/- mice compared to WT mice as measured by significantly

increased freezing rates 28 days after shock. D) Increased remote fear memory in S1/2-/- mice

was observed when tested only once 28 days post shock, but no change at 1 day after shock.

E, F) Water maze showed no difference between genotypes in the initial learning phase (E) but

increased spatial memory formation of S1/2-/- mice in the probe trial (F). The number of exact

crossings of the platform location and the swim speed remained unaltered. G, H) In the reversal

water maze experiment (upon exchanging the position of the platform), S1/2-/- mice relearned to

find the new platform position faster compared to WT mice (G). Time spent in the target quadrant

and numbers of crossings of the platform location (H) were increased in S1/2-/- mice compared to

WT controls indicating improved memory consolidation. Speed of swimming remained unaltered.

Data shown are means ± SEM (error bars), n=8-10 [(C)], n=10 [(C,recent)], n=12-16 [(C,remote)],

n=8 [(E) – (H)]. Statistical significance (∗ p < 0.05, ∗∗ p < 0.01) was assessed by two-tailed Mann-

Whitney U test [(C), (D), (F) and (H)] and two-way ANOVA followed by Bonferroni’s post-hoc test

[(E) and (G)]. Effect of genotype (F(1,14)=5.76; p=0.0309; [(G)]). Fear conditioning experiment [(C)]

was performed by Lisa Reinecke. Water maze experiments [(E) - (H)] were performed by Kon-

stantin Radyushkin.
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The time swimming in the quadrant of the hidden platform was again significantly higher

compared to WT (Fig. 3.2H ).

Furthermore, in the probe trial test the number of crossings of the exact position of the for-

mer platform location was significantly increased. Altogether, these observations support

an anterior cortex specific phenotype in S1/2-/- mice and indicate that improved learning

and not an impaired forgetting underlies the enhanced memory consolidation seen in the

remote fear conditioning and reversal water maze (Fig. 3.2).
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Figure 3.3: Signaling pathway activities in the ACx of S1/2-/- mice. A, B) Learning and mem-

ory related signaling pathways in the ACx of S1/2-/- mice. A) Western blot analyses of PI3K,

mTOR, AMPK, GSK3β and AKT phosphorylation levels in the ACx of WT and S1/2-/- mice. B)

Quantification of phosphorylation levels relative to respective total protein level. Phosphorylation

of PI3K, mTOR, AMPK and AKT was unaltered in the ACx of S1/2-/- compared to WT mice. GSK3β

phosphorylation was increased in the ACx compared to WT. Data shown are means ± SEM (error

bars), n=4 [(B)]. Statistical significance (∗ p < 0.05) was assessed by two-tailed Mann-Whitney U

test [(B)].
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3.1.2 Molecular analyses of learning and memory associated pathway activa-
tion

In order to further characterize the ACx specific phenotype in S1/2-/- mice, we analyzed

a set of surrogate markers of several signaling pathways (i.e. phosphorylation/ activation

states of p44/42-MAPK, S6, PI3K, mTOR, AMPK, GSK3β and AKT) that are impli-

cated in neuronal plasticity and hippocampal learning (Man et al., 2003; Fortress et al.,

2013; Enriquez-Barreto et al., 2014; Potter et al., 2010; Bekinschtein et al., 2007; Chen

et al., 2005; Kelleher et al., 2004).
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Figure 3.4: Signaling pathway activities in the Hi of S1/2-/- mice. A, B) Learning and memory

related signaling pathways in the Hi of S1/2-/- mice. A) Western blot analyses of PI3K, mTOR,

AMPK, GSK3β and AKT phosphorylation levels in the Hi of WT and S1/2-/- mice. B) Quantification

of phosphorylation levels relative to respective total protein level. Phosphorylation of PI3K, mTOR,

AMPK and GSK3β was unaltered in the Hi of S1/2-/- compared to WT mice. AKT phosphorylation

was increased in the Hi compared to WT. Data shown are means ± SEM (error bars), n=4 [(B)].

Statistical significance (∗ p < 0.05) was assessed by two-tailed Mann-Whitney U test [(B)].
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We speculated that elevated signaling selectively operating in the ACx and not the Hi

could mediate the underlying processes of the cortex-selective learning and memory en-

hancement in S1/2-/- mice. After quantification of the phosphorylated proteins relative to

the total amount of the respective protein, we could observe a significant increase of phos-

phorylated GSK3β in the ACx. However, when we analyzed the respective Hi samples, we

could determine the same tendency of GSK3β activation of S1/2-/- mice (Fig. 3.4). Fur-

thermore, studying the samples of the Hi of S1/2-/- mice, we could also observe elevated

AKT phosphorylation levels. All other signaling markers remained unaltered between the

genotypes and brain regions (Fig. 3.4).
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Figure 3.5: MAPK and S6 activity in the ACx and Hi of S1/2-/- mice. A, C) Western blot

analyses of p44/42-MAPK and S6 phosphorylation levels in the ACx and Hi of WT and S1/2-/-

mice. B, D) Quantification of p44/42-MAPK and S6 phosphorylation levels relative to respective

total protein amount. Phosphorylation of p44/42-MAPK and S6 was increased in the ACx and

decreased in the Hi of S1/2-/- compared to WT mice. Data shown are means ± SEM (error bars),

n=4 [(B, D)]. Statistical significance (∗ p < 0.05) was assessed by two-tailed Mann-Whitney U test

[(B, D)].

Western blot analyses with ACx samples obtained from S1/2-/- mice revealed an increase

in the phosphorylation of p44/42-MAPK as well as S6 in S1/2-/- mice in the ACx com-

pared to WT (Fig. 3.5A and B). However, in the respective Hi samples of the same mice

we rather observed a reduction of p44/42-MAPK and S6 phosphorylation compared to

controls (Fig. 3.5C and D).

To test if the MAPK pathway activation is specific for S1/2-/- double mutant mice, we

repeated the test with ACx and Hi samples of S1-/-, S2-/- and WT mice. However, anal-

yses of the MAPK phosphorylation level in ACx and Hi samples of single mutant mice,
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revealed no change in MAPK activity in both brain regions (Fig. 3.6).

Figure 3.6: MAPK phosphorylation levels in the ACx and Hi of S1-/- and S2-/- single mutant

mice. A) Phosphorylation levels of p44/42-MAPK in the Hi of S1-/- and S2-/- mice. Quantification of

phosphorylated protein signals resulted in no detectable change of p44/42-MAPK phosphorylation

levels in the Hi of WT and S1-/- and S2-/- mice. B) Phosphorylation level of p44/42-MAPK in

the ACx of S1-/- and S2-/- mice. Quantification of phosphorylated protein signal resulted in no

detectable change in p44/42-MAPK phosphorylation levels in the ACx of S1-/- and S2-/- mice

compared to WT. Data shown are means ± SEM (error bars), n=4 [(B, D)]. Statistical significance

(∗ p < 0.05) was assessed by two-tailed Mann-Whitney U test [(A, B)].

To understand if the activity of S6 can be altered as a consequence of cognitive stimula-

tion, we decided to analyze ACx and Hi samples before fear conditioning and after the

remote memory test time point. For this purpose we analyzed the number of cells that

were phospho-S6 positive in the anterior cingulate cortex (ACC) area of the ACx and the

CA1 region of the Hi before fear conditioning test, and after the remote memory test at

day 28 (Fig. 3.7B). In agreement with published observations (Knight et al., 2012), the

number of phospho-S6 positive cells was increased in the ACC of WT mice selectively

upon learning, but was constitutively elevated in S1/2-/- mice at both time points.
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Figure 3.7: Phospho-S6 positive cells in the ACx and Hi of S1/2-/- mice after remote memory

test. A) Locations of analyzed images in the ACC region of the ACx and CA1 region of the

Hi. B) Quantification of phospho-S6 immunohistochemistry performed with samples before fear

conditioning (base) and immediately after remote memory test reveals constitutively increased

numbers of phospho-S6 positive cells in the ACC of S1/2-/- mice independent of fear conditioning

which causes an increase of phospho-S6 positive cells in WT animals. C) Representative images

of the ACC of S1/2-/- and WT mice before fear conditioning and immediately after remote fear

memory test at day 28. D) Representative images of the CA1 region of the Hi of S1/2-/- and WT

mice before fear conditioning and immediately after remote fear memory test at day 28. Cells were

counted within a defined identical square, whereas only cells were counted that were entirely in

the square. Scale bar is 30 µm. Data shown are means ± SEM (error bars), n=3-5 [(B)]. Statistical

significance (∗ p < 0.05) was assessed by two-tailed Mann-Whitney U test.

Next, we planned to dissect potential circadian activity patterns of the identified signal-

ing pathway. The formation of memory in the ACx seems to be closely related to sleep

dependent factors. Since SHARP1 and SHARP2 are transcription factors which are asso-

ciated with circadian factors, we decided to analyze the observed increased p44/42-MAPK

activity in a kinetic experiment at different time points of the day. To promote neuronal

activity we housed the mice in cages with running wheels for 2 weeks before dissection.

Western blot analyses and quantification of p44/42-MAPK phosphorylation revealed in-

creased p44/42-MAPK activity in the ACx of S1/2-/- compared to WT at all time points
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of a zeitgeber day 3.8A and B). However, when analyzing the Hi samples of S1/2-/- mice,

the p44/42-MAPK activation seemed to be attenuated to the level of WT after running

wheel exposure (Fig. 3.8C and D).
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Figure 3.8: Circadian MAPK phosphorylation levels in the ACx and Hi of S1/2-/- mice after

exposure to running wheel. A), B) Western blot analyses of ACx and Hi tissue samples pre-

pared from WT and S1/2-/- mice housed with running wheel access showing an increase of p44/42

MAPK phosphorylation at all 6 time points of Zeitgeber Time over a 24h period in the ACx (A) but

not in the Hi (B) compared to WT. Statistical significance was assessed by two-way ANOVA fol-

lowed by Bonferroni’s post-hoc test [(B) and (D)]. Effect of genotype (F(1,5)=47.83; p=0.001; [(B)])

To get insight on the general circadian activity and the neuronal activity in the ACx,

we performed RNA expression analyses of Per2 and c-Fos with tissue samples that were

obtained during 1 Zeitgeber day (Fig. 3.9). Although the expression of Per2 in S1/2-/-

mice seems to be regulated similarly to WT, c-Fos expression at ZT16 is decreased in

S1/2-/- mice relative to WT.
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Figure 3.9: Circadian RNA expression of c-Fos and Per2 in the ACx of S1/2-/- mice. RNA

expression Per2 and c-Fos was analyzed and normalized to Atp5b and Actb. The RNA expression

of Per2 and c-Fos was regulated in a highly similar circadian manner, although the difference in

c-Fos expression was highest at ZT16.

Thus far, we observed an elevated level of phospho-MAPK and –S6 in the ACx that corre-

lated with the improved anterior cortex-dependent learning performance in S1/2-/- mice.

Since MAPK and S6 signaling are coordinately activated upon growth factors and insulin

signaling (Avruch et al., 2001; Hu et al., 2011; Seger et al., 1995; Um et al., 2006), we

scanned available microarray data (Baier et al., 2014) at lowered significance thresholds

for growth factor candidates with a differential expression in the cortex of S1/2-/- versus

WT mice. The only relevant candidates identified were insulin-related growth factor 2

(Igf2 ) and the IGF binding protein 5 (Igfbp5 ) as potentially up- and down regulated in

S1/2-/- mice. To validate these findings we used qRT-PCR to analyze differential mRNA

expression in the ACx of S1/2-/- and WT mice over the complete circadian cycle and could

reproduce the up- and down regulation of Igf2 and Igfbp5, respectively, in comparison to

two housekeeping genes that did not display genotype or time dependent changes (Rpl13a

and Atp5b) (Fig. 3.10A - D). Moreover, we also validated increased Igf2 and decreased

Igfbp5 expression in the ACx of S1/2-/- versus WT mice (Fig. 3.10F ). Studied genes were

normalized to unregulated housekeeping genes (Rpl13a and Cyc1 ) (Fig. 3.10E ). No dif-

ferences in Igf2 and Igfbp5 mRNA expression was detected in the Hi (Fig. 3.10F ).
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Figure 3.10: Elevated Igf2 and Igfbp5 RNA expression in the ACx of S1/2-/- mice. A - D)

RTPCR analyses with ACx samples obtained every 4 hours during 1 zeitgeber day from WT and

S1/2-/- mice housed with constant access to running wheels. A, B) Housekeeping genes used for

normalization of Igf2 and Igfbp5. C) Elevated Igf2 RNA expression in the ACx of S1/2-/- mice mice

compared to WT mice throughout all Zeitgeber time points except ZT20. D) The level of Igfbp5

mRNA expression was reduced in the ACx of S1/2-/- mice compared to WT mice throughout

all time points except ZT4. E, F) RNA expression analyses in ACx and Hi of standard housed

mice. E) No genotype dependent changes were detectd in Rpl13a and Cyc1 mRNA expression

levels in ACx and Hi of individual S1/2-/- mice compared to WT. F) Increased Igf2 and decreased

Igfbp5 mRNA expression were detected in the ACx of individual S1/2-/- mice compared to WT.

No differences were observed in the Hi. Data shown are means ± SEM (error bars), n=3 [(C)

and (D)] n=5 [(F)]. Statistical significance (∗ p < 0.05) was assessed by two-tailed Mann-Whitney

U and two-way ANOVA followed by Bonferroni’s post-hoc test [(C) and (D)]. Effect of genotype

(F(1,5)=18.47; p=0.0077; [(C)]) and (F(1,5)=12.07; p=0.0178; [(D)]).
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Figure 3.11: Increased GFAP RNA expression and protein abundance exclusively in the

ACx of S1/2-/- mice. A) Western blot analyses and quantification of ACx and Hi tissue sam-

ples prepared from standard housed S1/2-/- mice. An increase of GFAP protein abundance was

observed in the ACx and not in Hi of S1/2-/- mutant mice compared to WT. A) RNA expression

analyses from ACx and Hi samples obtained from standard group housed WT and S1/2-/- mice.

GFAP gene expression was increased in the ACx of S1/2-/- mice and not altered in the Hi of these

mice compared to WT. C), D) Representative figures and quantification of GFAP positive astro-

cytes in the ACC of WT and S1/2-/- mutant mice. The number of GFAP positive astrocytes was

increased in the ACC of S1/2-/- mice. Scale bar is 50 µm. Data shown are means ± SEM (error

bars), n=4 [(A)], n=5 [(B) and (D)]. Statistical significance (∗ p < 0.05) was assessed by two-tailed

Mann-Whitney U test.

An increase in memory performance might be coupled to elevated cellular activities and

therefore increased energy consumption. Due to the improved ACx based memory perfor-

mance of the S1/2-/- mice we hypothesized that an improved energy demand that might

be linked to an activation of astrocytes. To test our hypothesis, we analyzed the level of as-

trocyte activity which correlates with increased GFAP levels. We performed western blot
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analyses with Hi and ACx tissue samples from WT and S1/2-/- mutant mice (Fig. 3.11A).

Quantification of these data displayed an increase of GFAP which was specific for the ACx

and not observed in the Hi of S1/2-/- mice. The increase of GFAP levels in the ACx could

also be confirmed on RNA level (Fig. 3.11B). In parallel, immunohistochemical analyses

of the ACC of these mice, showed a significant increase of GFAP positive cells in S1/2-/-

mice compared to WT.
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3.2 Analyses of insulin signaling in memory formation

3.2.1 IGF2 enhances remote long term memory formation

Taken together, increased Igf2 levels along with a decreased expression of the IGF an-

tagonist Igfbp5 indicated an overall elevated IGF2 signaling in the ACx of S1/2-/- mice

that may explain the enhanced ‘cortical’ learning performance observed in S1/2-/- mice

(Fig. 3.2). In consequence, we hypothesized that elevating or reducing IGF2 signaling

in the ACC of WT mice should enhance and inhibit remote fear memory formation, ac-

cordingly. Therefore, we generated AAV2 constructs expressing Igf2 and Igfbp5 under the

control of the CAG promoter (Niwa et al., 1991) and injected corresponding viruses includ-

ing an empty control virus bilaterally into the ACC of WT mice (Fig. 3.12A). Four weeks

after injection and recovery, animals were subjected to fear conditioning and were analyzed

for recent and remote memory formation. Mice with virus mediated over-expression of

Igf2 in the ACC displayed a slight yet significant improvement of remote fear memory for-

mation (Fig. 3.12A). In contrast, animals that were injected with an Igfbp5 encoding virus

showed a significantly impaired remote fear memory formation compared to the control

(Fig. 3.12A). However, a modulation of IGF2 signaling by exclusive Igf2/Igfbp5 expres-

sion in the ACC did not affect hippocampus dependent recent fear memory (Fig. 3.12A).

Moreover, Igf2 over-expression does not alter amygdala based memory formation 3.12C

and D) (Phillips and LeDoux, 1992).

3.2.2 Behavioral analyses of neuronal Igf1r/Insr double knockout mice

The receptors that are targeted by IGF2 in the brain during memory consolidation are

highly discussed. It is not clear whether an activation of the IGF1R or IGF2R is involved

in the IGF2 mediated memory enhancement (Agis-Balboa et al., 2011; Chen et al., 2011).

Furthermore it is thought that in the brain, mainly the INSR isoform A (INSR-A) rather

than INSR isoform B (INSR-B) is expressed, which has a high affinity to IGF2 (Frasca

et al., 1999; Hernández-Sánchez et al., 2008). However neuronal INSR knockout studies

did not reveal changes in memory consolidation so far (Schubert et al., 2004).
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Figure 3.12: Altered remote fear memory formation by virus mediated modulation of Igf2

signaling in the ACC of WT mice. A - D) Igf2 and Igfbp5 expressing AAV2 viruses were in-

troduced via stereotactic injection bilaterally into the ACC of wild type mice 28 days prior fear

conditioning test. As a control empty AAV2 virus was injected. Remote memory was assessed

42 days after fear conditioning. A, B) Context based fear conditioning, triggered by learned con-

text. B) No changes in recent fear memory formation were observed 1 day after fear conditioning,

although remote fear memory formation (after 42 days) was significantly enhanced by expres-

sion of Igf2 and reduced by Igfbp5, respectively. C, D) Cue based fear conditioning, triggered

by learned tone in new context. D) No difference could be measured in this test after Igf2 over-

expression in the ACC of WT. Data shown are means ± SEM (error bars), n=7-19 [(B)], n=10-12

[(D)]. Statistical significance (∗ p < 0.05, ∗∗ p < 0.01) was assessed by two-tailed Mann-Whitney

U test.

Among the receptors that bind insulin-like peptides, the receptor tyrosine kinases INSR

and IGF1R are best known to mediate signaling also via the ERK/MAPK pathways

(Siddle, 2011). To address both receptors in order to exclude functional redundancy, we

knocked out Igf1r as well as Insr in CaMKII positive neurons of the frontal cortex and

hippocampus. Therefore, we generated forebrain specific neuronal Insr and Igf1r dou-

ble null mutant mice by crossing Insr/Igf1rfl/fl mice (Brüning et al., 1998; Klöting et al.,

2008) with CamKII-Cre expressing mice (Minichiello et al., 1999) to study MAPK sig-

naling and fear memory formation. As expected by the expression pattern of CamKII,

INSR and IGF1R protein levels were highly reduced in the ACx (Fig. 3.13A and B) and
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Hi (Fig. 3.13D and E ) of Igf1r/InsrCaMKII-cre compared to Igf1r/Insrfl/fl mice.
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Figure 3.13: Neuronal knockout of Insr and Igf1r in the forebrain decreases MAPK activity

in the ACx. A, D) Western blot analyses of samples obtained from the ACx and Hi of Igf1r/Insrfl/fl

and Igf1r/InsrCaMKII-cre mice. B-C, E-F) Quantification of Western blot data showing reduced phos-

phorylation of MAPK in the ACx but not the Hi. Data shown are means ± SEM (error bars), n=4

[(A-F)]. Statistical significance (∗ p < 0.05) was assessed by two-tailed Mann-Whitney U test.
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Phosphorylation levels of p44/42-MAPK were, however, significantly reduced only in the

ACx (Fig. 3.13C ) but not in the Hi (Fig. 3.13D) of the double mutants.
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Figure 3.14: Standard behavior tests of Igf1r/InsrCaMKII-cre mice. A - F) No significant alter-

ations were observed in Igf1r/InsrCaMKII-cre compared to Igf1r/Insrfl/fl. Performed experiments: A)

Light/dark box test, B) Tail suspension test, C) Open field test, D) Hole board test, E) Elevated

plus maze test. Data shown are means ± SEM (error bars), n=13-17. Statistical significance was

assessed by two-tailed Mann-Whitney U test.
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We first subjected Igf1r/InsrCaMKII-cre and Igf1r/Insrfl/fl mice to a series of standard be-

havioral tests as light/dark preference (anxiety), tail suspension (motivation), open field

(spontaneous locomotor activity and anxiety), hole board (curiosity) and elevated plus

maze (anxiety). In none of the control behavior tests any altered behavior could be ob-

served among the groups (Fig. 3.14). Thus, forebrain restricted deletion of the INSR and

IGF1R in CaMKII positive neurons does not alter basic behavior.
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Figure 3.15: Neuronal knockout of Insr and Igf1r in the cortex and hippocampus impairs

contextual fear learning. A, B) Igf1r/InsrCaMKII-cre display highly significant reduced contextual

fear learning compared to Igf1r/Insrfl/fl control mice at 1 day and 28 days after conditioning. C, D)

Cued fear memory was not altered in any of the tested time points. Data shown are means ± SEM

(error bars), n=13-17 [(B, D)]. Statistical significance (∗∗ p < 0.01, ∗ ∗ ∗ p < 0.001) was assessed

by two-tailed Mann-Whitney U test.

In order to address Hi and ACx dependent recent and remote long-term fear memory,

we used the contextual fear conditioning paradigm (Fig. 3.15A). Igf1r/InsrCaMKII-cre mice

tested 1 day after fear conditioning displayed significantly decreased memory performance

compared to the control group. Furthermore, significance was even higher when memory
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was tested 28 days after fear conditioning (Fig. 3.15B). In addition we performed amygdala

dependent cued fear memory, that is based on a learned tone (Fig. 3.15C ). Cued fear

memory was unaffected by a knockout of Igf1r and Insr at all time points of the test

(Fig. 3.15D).

As it was shown before for neuronal Insr knockout mice under high fat diet, the double

knockout mice displayed a significant gain of weight already under standard diet, which

has been attributed to reduced insulin signaling (Fig. 3.16) (Brüning et al., 2000). Alto-

gether, these data reveal that INSR and IGF1R are functionally redundant in the forebrain

and the loss of both receptors impairs MAPK signaling in the ACx but not the Hi. In

addition, our observations indirectly support the implication of the IGF2-INSR/IGF1R-

MAPK signaling axis in cortex-dependent memory consolidation processes.
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Figure 3.16: Weight analysis of Igf1r/InsrCaMKII-cre mice. Weight of Igf1r/InsrCaMKII-cre mice was

significantly increased compared to control mice. Data shown are means ± SEM (error bars),

n=13-17. Statistical significance (∗ ∗ ∗ p < 0.001) was assessed by two-tailed Mann-Whitney U

test.

Finally, we were interested if we can find a correlation between astrocyte activity and

memory performance in Igf1r/InsrCaMKII-cre mice. Therefore we analyzed brain tissue

samples obtained from the ACx and Hi of WT and Igf1r/InsrCaMKII-cre mice and deter-

mined the level of GFAP (Fig. 3.17). Since we observed a deregulation of α-tubulin as a

consequence of neuronal Igf1r/Insr knockout, we decided to quantify to the total amount

of p44/42-MAPK which seems to be unregulated. Potentially, α-tubulin could not be

used to normalize and quantify our data, yet tubulin mRNA was previously reported to

be stabilized by insulin and IGF1 signaling during neurite formation (Fernyhough et al.,

1989). After quantification of detected GFAP we observed no change in the ACx, how-

ever in the Hi GFAP was significantly decreased in Igf1r/InsrCaMKII-cre mice compared to

control (Fig. 3.17B and E ). Quantification of α-tubulin revealed a significant down reg-
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ulation in the ACx and in parallel a significant up regulation in the Hi (Fig. 3.17C and F ).
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Figure 3.17: GFAP and α-tubulin protein deregulation in the ACx and Hi as a consequence

of neuronal Insr and Igf1r knockout in the forebrain of mice. A, D) Western blot analyses

of samples obtained from the ACx and Hi of Igf1r/Insrfl/fl and Igf1r/InsrCaMKII-cre mice. B-C, E-F)

Quantification of Western blot data showing increased GFAP level in the Hi but not the ACx. In

parallel, α-tubulin was decreased in the ACx and increased in the Hi of Igf1r/InsrCaMKII-cre com-

pared to control mice. Protein data were quantified to total amount of detected p44/42-MAPK.

Data shown are means ± SEM (error bars), n=4 [(A-F)]. Statistical significance (∗ p < 0.05) was

assessed by two-tailed Mann-Whitney U test.
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3.3 Behavioral and molecular analyses of aged S1/2-/- mice

3.3.1 Early signs of aging in S1/2-/- mice

To investigate long-term effects of SHARP1 and SHARP2 deficiency and coupled Igf2

signaling, we studied aged WT and S1/2-/- mice. For this purpose we housed animals for

20 months in standard group cages. Between 6 months and 15 months of age weight was

analyzed every month. We observed a significant decrease of weight in old adults and aged

animals (Fig. 3.18B). In contrast, at an earlier age of 12 weeks no difference in weight

of S1/2-/- mice could be observed compared to control mice (Fig. 3.18A). The analyses

of death events revealed a significantly increased mortality rate of aged S1/2-/- animals

compared to control (Fig. 3.18C ).

age (weeks)

su
rv

iv
al

 [%
]

0 20 40 60 80
0

20
40
60
80

100

WT
S1/2

age (months)

w
ei

gh
t [

g]

6 7 8 9 10 11 12 13 14 15
25
30
35
40
45

* * * * * *

-/-
WT
S1/2-/-

A CB
WT

-/-S1/2

w
ei

gh
t [

g]

25
30
35
40
45

Figure 3.18: Aging related decrease in weight and reduced life span in old S1/2-/- mice. A,

B) Weight of S1/2-/- mice at 12 weeks of age (A) and between 8 and 15 months of age (B). C)

Furthermore survival analyses of aged mice until the age of 20 months, revealed a significantly

reduced life-span of S1/2-/- mice compared to WT. Data shown are means ± SEM (error bars), n=8

[(A)], n=13-14 [(B)], n=26-30 [(C)]. Statistical significance (∗ p < 0.05) was assessed by two-tailed

Mann-Whitney U test, Log-rank test [(B)] and two-way ANOVA followed by Bonferroni’s post-hoc

test [(A)]. Effect of genotype (F(1,25)=3.51; p=0.0729; [(A)]). Log-rank analysis showed that the

survival curves for the WT and S1/2-/- mice differed significantly (∗ p < 0.05).

3.3.2 Behavioral analyses with aged S1/2-/- mice

Next, we planned to study ACx and Hi dependent memory performance in aged WT and

S1/2-/- mice. First, we analyzed these mice in a water maze experimental setup. However,

the aged S1/2-/- mutant animals were not remembering the platform position at all when
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testing for 2 days, 4 trials each day (Fig. 3.19A). At the first day of learning as well as

on the second day of learning, S1/2-/- mutant mice found the platform with the same

delay. In contrast the analyzed aged WT mice found the platform significantly faster with

repeated trials at day 1, and showed constantly increased memory of the platform posi-

tion at day 2. To further study the vision ability of the aged S1/2-/- and WT mice, we

performed a visual cliff test (Fig. 3.19B). Here, we analyzed the time mice spent on the

opaque platform and not on the transparent platform. Mice generally prefer the opaque

platform, since the transparent part is pretending depth. S1/2-/- mutant mice did not

distinguish between opaque and transparent platform as WT mice. This suggests reduced

sight of the aged S1/2-/- mutant mice, most probably because of observed increased in-

cidence of cataracts, and has to be taken into account in further tests. Since the water

maze test is highly dependent on functional vision of the animals we did not proceed with

this test.
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Figure 3.19: Reduced vision in aged S1/2-/- mice. A) First 2 days of learning phase in water

maze experiment. S1/2-/- mice are not able to learn platform position as WT. A) Visual cliff test

to analyze vision ability of S1/2-/- mice. Here, the time that animals prefer the opaque platform to

the transparent platform was tested. S1/2-/- mice seem to prefer the opaque platform significantly

less compared to WT mice. Data shown are means ± SEM (error bars), n=9-12 [(A)], n=12-13

[(B)]. Statistical significance (∗ p < 0.05, ∗∗ p < 0.01, ∗ ∗ ∗ p < 0.001) was assessed by two-tailed

Mann-Whitney U test [(B)] and two-way ANOVA followed by Bonferroni’s post-hoc test [(A)]. Effect

of genotype (F(1,18)=8.26; p=0.0101; [(A), Day 1]), (F(1,18)=36.95; p=0.0001; [(A), Day 2]).

To address Hi based recent and ACx based remote long-term memory performance in aged

S1/2-/- mice, we planned to perform a contextual fear conditioning test (Fig. 3.20A). To

avoid influence of vision differnces we performed fear conditioning in complete darkness.

Here, S1/2-/- mutant mice that were analyzed 1 day after fear conditioning (Hi-dependent)
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remembered the shock significantly less compared to WT (Fig. 3.20B). However, no differ-

ence in memory performance could be observed after 28 days (ACx-dependent). To control

for further fear memory related brain regions, we used a tone-dependent fear conditioning

paradigm (amygdala-based) (Fig. 3.20C ). Here the mice are tested in a new context. As

a trigger for memory activation a tone was used, that was associated with the shock at

the previous conditioning phase. In contrast to the context based fear conditioning, tone

based fear conditioning did not reveal any significant difference between WT and S1/2-/-

mutant animals at any of the tested time points. Altogether it seems that only Hi based

fear memory is reduced in aged S1/2-/- mice compared to WT. At the same time, the

ACx dependent remote memory of S1/2-/- mice is attenuated to the level of WT mice

after aging.
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Figure 3.20: Reduced memory performance exclusively in Hi dependent tasks in aged

S1/2-/- mice. A) Context dependent fear conditioning with tests at day 1 and day 28 after con-

ditioning in the same context. B) S1/2-/- mice show reduced memory when tested at next day.

However, no difference to WT could be observed when tested 28 days after conditioning. C) Tone

dependent fear conditioning paradigm with memory test at day 1 and day 28 after conditioning in

a new context. D) No differences in tone dependent memory performance could be observed in

any of the testing time points. Data shown are means ± SEM (error bars), n=10-12 [(B) and (D)].

Statistical significance (∗ p < 0.05) was assessed by two-tailed Mann-Whitney U test [(B) and

(D)].
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3.3.3 Molecular analyses of Igf2 and MAPK in aged S1/2-/- mice
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Figure 3.21: Increased Igf2 expression in the ACx and decreased MAPK activity in the

Hi of aged S1/2-/- mice. A) - C) RTPCR analyses of ACx and Hi samples from aged WT and

S1/2-/- mice. A) Igf2 expression levels were increased only in the ACx of aged S1/2-/- mice, and

not in the hippocampus. B) No difference could be observed in Igfbp5 expression in any of the

analyzed tissues. C) Applied housekeeping genes. D) Western Blot analyses of ACx samples

from aged WT and S1/2-/- mice. E) Quantification of ACx western blot analyses. No difference

could be observed in phosphorylation levels of p44/42 MAPK of aged S1/2-/- mice compared to

WT. F) Western Blot analyses of Hi samples from aged WT and S1/2-/- mice. G) Quantification of

Hi western blot analyses. Phosphorylation levels of p44/42 MAPK were significantly decreased

in the Hi of aged S1/2-/- mice compared to WT. Data shown are means ± SEM (error bars), n=5

[(A) - (C)], n=4 [(E) and (G)]. Statistical significance (∗ p < 0.05) was assessed by two-tailed

Mann-Whitney U test [(A) - (C), (E) and (G)].
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To compare the role of Igf2 expression and p44/42 MAPK activity in aged mice to the

context memory performance of S1/2-/- mice, we analyzed the ACx as well as Hi of aged

WT and mutant animals. First we analyzed RNA expression levels of Igf2 and Igfbp5 in

aged WT and S1/2-/- mice. In these analyses we observed an increase of Igf2 expression

exclusively in the ACx of aged S1/2-/- mice (Fig. 3.21A). No difference in Igf2 expression

could be observed in the Hi of these mice. In parallel, the expression levels of Igfbp5 in

the ACx and Hi of aged S1/2-/- mice were on the same level as WT (Fig. 3.21B). In young

adult mice, the activity level of p44/42 MAPK seemed to correlate directly to the observed

memory performance of S1/2-/- mice. To study p44/42 MAPK activity in aged mice we

performed western blot analyses and quantified the p44/42 MAPK phosphorylation levels

(Fig. 3.21D - G). Quantification of phospho-p44/42 MAPK in the ACx did not reveal any

difference to WT mice (Fig. 3.21E ). Though, analyses of phosho-p44/42 MAPK levels in

the Hi indicate a significant decrease of p44/42 MAPK activity in the Hi of aged S1/2-/-

mice (Fig. 3.21G).
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Figure 3.22: GFAP up regulation in ACx and down regulation in Hi of aged S1/2-/- mice.

A, C) Western blot analyses of samples obtained from the ACx and Hi of GFAP up regulation in

ACx and down regulation in Hi of aged S1/2-/- mice. B, D) Quantification of Western blot data

showing increased GFAP level in the ACx. In in the Hi of aged S1/2-/- mice, however, GFAP

was significantly decreased. Protein data were quantified to total amount of detected GAPDH.

Data shown are means ± SEM (error bars), n=4 [(A-D)]. Statistical significance (∗ p < 0.05) was

assessed by two-tailed Mann-Whitney U test.

After detected drastic up regulation of GFAP, specific for the ACx region of young adult

S1/2-/- mutant mice (Fig. 3.11), we were interested if this is stable throughout later lifetime

of these mice. Therefore we analyzed brain tissue samples from the Hi and ACx of WT and

S1/2-/- mice (Fig. 3.22A and C ). GFAP protein signals obtained by western blot analyses

were quantified to the total amount of GAPDH (Fig. 3.22B and D). Quantification of

GFAP revealed an up regulation of GFAP which was specific for the ACx region of aged

S1/2-/- mutant mice. Furthermore, in the Hi of aged S1/2-/- mice, a reduction of GFAP

could be observed.
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3.4 RNA expression analyses in the ACC of human schizophrenic

patients

3.4.1 Neuronal activity and clock genes
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Figure 3.23: RNA expression analyses of human ACC samples from schizophrenic pa-

tients. A) Housekeeping genes used for RTPCR analyses of ACC samples from human

schizophrenic and control patients. B) RNA expression analyses of immediate early genes EGR1

and FOS. No significant difference could be observed compared to the control patients, however

schizophrenic patients revealed a reduced variance in expression levels compared to the control

group. C) Among the analyzed clock related transcription factors BMAl1, CLOCK, NPAS2, PER1,

PER2, SHARP1 and SHARP2 only PER1 and SHARP2 were significantly deregulated in the ACC

of schizophrenic patients. In addition we observed reduced variance of BMAL1, CLOCK, PER1,

PER2 and SHARP2 expression levels. Data shown are means ± SEM (error bars), n=7. Statis-

tical significance (∗ p < 0.05) was assessed by two-tailed Mann-Whitney U test and F test was

applied to compare variance (# p < 0.05, ## p < 0.01, ### p < 0.001).

Schizophrenia, bipolar disorder and Alzheimer’s disease are associated with gene expres-

sion changes in the PFC (Vawter et al., 2002; Kim et al., 2010; Mirnics et al., 2000; Bossers

et al., 2010). In order to stuy SHARP1 and SHARP2 genes in the context of PFC associ-

ated psychiatric diseases, we analyzed brain samples of human schizophrenic patients on
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RNA level. Moreover, we studied the expression of circadian clock factors and neuronal

activity genes.

As a part of the prefrontal cortex, we analyzed the ACC of schizophrenia patients on

RNA expression level. Samples were obtained post-mortem and provided by Dr. An-

drea Schmitt (BrainNet Europe). Several housekeeping genes were tested and the 2 genes

RPL13A and POLR2B were selected for normalization (Fig. 3.23A). To study the gen-

eral state of neuronal activity in the ACC of schizophrenic patients, we were interested in

expression levels of the immediate early genes EGR1 and FOS (Fig. 3.23B) (Dragunow

and Faull, 1989; Guzowski et al., 2001). Although no significant difference was detected

in expression levels, we could observe a reduction in the variance of expression levels for

schizophrenic patients compared to control patients. Furthermore we analyzed the ex-

pression of core clock transcription factors BMAL1, CLOCK, NPAS2, PER1 and PER2

as well as the circadian modulators SHARP1 and SHARP2. Among the studied genes,

the expression levels of SHARP1 and PER1 were significantly reduced in the ACC of

schizophrenic patients. In parallel we could observe a significant reduction in gene ex-

pression variances for BMAL1, CLOCK, PER1, PER2 and SHARP2 in the ACC of the

analyzed schizophrenic individuals.

3.4.2 ERBB4 variants

During the past years increasing evidence suggested an important role of ERBB4 receptor

and its ligand NRGI in schizophrenia (Silberberg et al., 2006; Norton et al., 2006; Nicode-

mus et al., 2006). ERBB4 is mainly expressed in interneurons (Neddens and Buonanno,

2010). There are 4 major isoforms known for ERBB4 ; however, it is not understood so

far in which extend particular isoforms might be involved in the disease of schizophrenia

(Corfas et al., 2004; Mei and Xiong, 2008). These splice variants are JMa (exon 16) and

JMb (exon15) which are variants of the extra-cellular juxtamembrane (JM) domain or

variants of the C-terminal cytoplasmic (CYT) tail that differ in the sequence of 16 amino

acids of exon 26, CYT1 (with exon 26) and CYT2 (without exon 26) (Junttila et al.,

2000, 2003). So far CYT1 and JMa have been reported previously to be expressed at

higher levels in schizophrenic patients (Law et al., 2007; Silberberg et al., 2006). CYT1 is

known to activate PI3K signaling, and CYT2 activates the MAPK pathway (Kainulainen

et al., 2000; Junttila et al., 2000). To distinguish between these 4 isoforms, we designed

specific primers that exclusively recognized the respective addressed isoform. In respect to
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CYT1/CYT2 isoforms, RNA expression analyses by RTPCR identified a highly significant

over-expression of CYT2 in the ACC of the schizophrenic patients compared to control

patients (Fig. 3.24A). In our studies no significant change of CYT1 could be discovered

from health to disease status.
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Figure 3.24: Expression levels of ErbB4 splice variants in the ACC of human schizophrenic

patients. RNA isolated from the ACC of postmortem human control patients and schizophrenic

patients was anaysed by RTPCR. Primers were selected to exclusively detect respective CYT1,

CYT2, JMa and JMb splice variants. A) CYT1 and CYT2 RNA expression levels in the ACC

of control and schizophrenic patients. CYT2 RNA expression was significantly increased in

schizophrenic patients. Primer pairs that were specific for the CYT1 splicing variant did not reveal

any significant change in expression levels. In addition non selective primers detecting both vari-

ants of CYT1 and CYT2 detected significant increase of a sum of JMa and JMb splice variants of

ERBB4 expression in the ACC schizophrenic patients. A) JMa and JMb RNA expression levels in

the ACC of control and schizophrenic patients. JMb RNA expression was significantly increased

in schizophrenic patients. Primer pairs that were specific for the JMa splicing variant did not re-

veal any significant change in expression levels. In addition non selective primers detecting both

variants of JMa and JMb detected significant increase of a sum of JMa and JMb splice variants

of ERBB4 expression in the ACC schizophrenic patients. POLR2B and RPL13A. Data shown are

means ± SEM (error bars), n=9. Statistical significance (∗ ∗ ∗ p < 0.001, ∗ ∗ ∗∗ p < 0.0001) was

assessed by two-tailed Mann-Whitney U test.

As a control RTPCR with the same cohort was performed with pan primers that recog-

nize both CYT1 and CYT2 isoforms in the same reaction. In respect of JMa/b isoforms

we could identify a significantly higher expression of the JMb isoform in the ACC of

schizophrenic patients, and no change in JMa expression compared to control patients
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(Fig. 3.24B). RTPCR analyses with pan primers for JMa/b ErbB4 revealed an overall

over-expression of ERBB4 in this brain region of schizophrenic patients. So far these

results do not reflect, previous postmortem observations in human schizophrenic patients,

however due to the small cohort, it might reflect only a sub-type of a schizophrenia pheno-

type. Furthermore, additional factors of unknown impact might be medication that were

potentially applied. To fully understand the role of ERBB4 isoforms, further detailed

studies must be performed with human databases, regarding the expression levels of these

splicing variants.



Chapter 4

Discussion

The consolidation of hippocampal recent memory to remote memory is based on cortical

networks governed by the prefrontal cortex (Frankland and Bontempi, 2005). In parallel

observations of learning-associated brain activities during sleep identified an essential role

of prefrontal cortex activities. To study the memory function of the prefrontal cortex in

relation to sleep-related mechanisms, we analyzed the cognitive performance of SHARP1

and SHARP2 double mutant mice and investigated altered signaling activities which are

specific for the prefrontal cortex of these mice. Furthermore we tested the effect of iden-

tified factors on cognitive processes of memory consolidation.

4.1 Aspects of sleep regulation and memory consolidation

A physiological sleep architecture is crucial for optimal memory consolidation (Diekelmann

and Born, 2010). Moreover, EEG measurements could identify characteristic learning-

associated patterns of brain activities during sleep, most prominent in the prefrontal cortex

(Born, 2010).

Here we analyzed a mouse model, deficient for the modulators of the circadian system

SHARP1 and SHARP2. We analyzed SHARP1 and SHARP2 single and double mu-

tant mice, and observed improved remote long-term memory only in double mutant mice

(Fig. 3.2). Analyses of hippocampal recent fear memory did not reveal any difference.

Moreover, further cortical memory tasks as flexible learning were improved. In paral-

lel SHARP1 and SHARP2 potentially underlie a functional redundancy in certain tested

behavioral aspects. Altogether the S1/2-/- mouse model manifests an improvement of

cognitive tasks that might be associated with functional improvement of the prefrontal

61
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cortex. However, knockouts of the core clock genes as Bmal1, Clock and Npas2 result

in memory impairment (Garcia et al., 2000; A.Kondratova et al., 2010; Wardlaw et al.,

2014). In contrast to clock genes, SHARP1 and SHARP2 do not disrupt the circadian cy-

cle, they rather act as amplitude modifiers in a context-dependent manner (Rossner et al.,

2008). Therefore it seems likely that specific mechanisms which are altered locally in the

prefrontal cortex of the S1/2-/- double mutant mice might induce processes of cortical

activities.

4.2 Specificity of cognitive processes in the prefrontal cortex

What happens during sleep might be a progressive conversion of recently learned memory

tracks from hippocampal structures to cortical networks located in the anterior cingulate

cortex within the prefrontal cortex (Diekelmann and Born, 2010). Based on an improved

performance in tasks that rely on processes of the prefrontal cortex in SHARP1 and

SHARP2 double mutant mice, we decided to further dissect the underlying hippocampal

and cortical mechanisms. Understanding pathways that can locally improve cognitive

characteristics, might enable us to treat cognitive diseases that are limited to the prefrontal

cortex in a specific mode. To expose such mechanisms we analyzed the anterior cortex of

the mice on a molecular level. Since we observed a very specific cognitive improvement

which was limited to the function of the prefrontal cortex we decided to analyze the

hippocampus as a reference region which is preceding cognitive processes upstream from

the prefrontal cortex. When we analyzed these regions we discovered molecular changes

which were specific to the anterior cortex and unaltered in the hippocampus of S1/2-/-

mice (Fig. 3.5). In particular p44/42 MAPK activity was increased in the anterior cortex

of S1/2-/- mice, but not in the hippocampus. Previously a circadian regulation of p44/42

MAPK activity has been associated with functional hippocampal memory consolidation

(Eckel-Mahan et al., 2008). Here, we show for the first time an activation of p44/42

MAPK in relation to improved memory consolidation exclusively in a defined region of

the mammalian brain. Supporting the theory of functional redundancy of SHARP1 and

SHARP2, we could not observe a respective deregulation in single mutant mice (Fig. 3.6).

Furthermore, our data increases evidence of the mild and at the same time differential

modulatory role that SHARP1 and SHARP2 might have in the regulation of downstream

pathways. Although SHARP1 and SHARP2 is deleted in the prefrontal cortex as well as
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in the hippocampus, we observed a highly specific phenotype which was restricted to the

prefrontal cortex.

However, the mode of function of SHARP1 and SHARP2 in the prefrontal cortex is not

clear. Both transcription factors can generally act as activator as well as repressors of tar-

get genes, depending on the availability of NPAS2/CLOCK-BMAL1 co-factors (Rossner

et al., 2008). Regarding the circadian expression pattern of SHARP1 and SHARP2, the

highest circadian activity seems to be located in the prefrontal cortex (Li et al., 2013).

Although SHARP1 and SHARP2 can modulate the amplitudes of clock gene expression,

loss of both factors did not affect the expression of Per2 in the ACx (Fig. 3.9). The

expression pattern of c-Fos, a marker of neuronal activity, was altered at the peak of neu-

ronal activity of WT mice. Studies in human have highlighted the importance of circadian

cycling of clock genes for physiological cognitive performance (Li et al., 2013). Here, in

gene expression studies they identified the prefrontal cortex with highest cyclic patterns of

circadian genes. Yet, this rhythmicity was lost in patients with major depressive disorder.

Our data, together with the knowledge of the cyclic activity of SHARP1 and SHARP2 in

the prefrontal cortex increase the evidence that SHARP1 and SHARP2 might have a very

sensitive and daytime dependent role in the regulation of cortical processes.

4.3 MAPK activity involved in cognitive processes

Learning and memory performance involves the homeostatic regulation of neuronal activity

and synaptic plasticity (Tononi and Cirelli, 2006). To understand mechanisms, underlying

the cortical phenotype we analyzed a number of signaling pathways by investigating the

phosphorylation status as a surrogate marker of their activity. Among all analyzed signal-

ing molecules, only p44/42 MAPK and S6 seemed to be altered exclusively in the anterior

cortex. Moreover, in the anterior cortex, the mode of activity of p44/42 MAPK correlated

throughout all performed experiments with the status of remote long-term memory per-

formance. An increase in p44/42 phosphorylation in the prefrontal cortex was associated

with improved remote memory performance and vice versa. In the context of hippocampal

memory, a circadian cycling of p44/42 MAPK phosphorylation in the hippocampus was

previously reported to be associated with functional memory performance (Eckel-Mahan

et al., 2008). Furthermore sleep deprivation-induced decrease of spatial memory was asso-

ciated with a decrease in p44/42 MAPK activity (Guan et al., 2004). The loss of memory
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due to a reduction of p44/42 MAPK activity is linked to a reduction of S6 phospho-

rylation and synaptic plasticity (Kelleher et al., 2004). So far investigations of memory

related MAPK activities have been mainly focusing on hippocampal aspects (Revest et al.,

2013; Eckel-Mahan et al., 2008). Our data reveal a region specific MAPK activity status

that correlates with the cognitive performance of the prefrontal cortex. The activation

of MAPK that we detected in the prefrontal cortex of WT mice, was correlating with a

delay with the expression pattern of Igf2 (Fig. 4.1). We could detect 2 peaks of MAPK

phosphorylation, each occurring with few hours after an elevation of Igf2 RNA expression.

Based on these findings and on microarray data, we further investigated the role of Igf2

signaling in the context of prefrontal cortex specific memory enhancement.

rel. phospho-MAPK protein level
rel. Igf2 RNA expression

0 4 8 12 16 20 0 4 8 12 16 20 ZT
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Figure 4.1: Circadian Igf2 expression and MAPK activation in the ACx of WT. Analysis of

circadian MAPK activity (Fig. 3.8) and Igf2 expression (Fig. 3.10) in the ACx of WT mice. In order

to analyze the cycling pattern, highest data point was set to 100%, and lowest data point was set

to 0%.

4.4 Role of insulin signaling in memory consolidation

Originally insulin signaling was thought to be primarily involved in the peripheral reg-

ulation of glucose homeostasis. Increasing evidence suggest an additional role of insulin

signaling in the central nerve system, beyond its function of glucose regulation. Several

studies, performed in human and mice, identified factors of insulin signaling, involved in the

regulation of cognitive processes (Agis-Balboa et al., 2011; Chen et al., 2011; Iwamoto and

Ouchi, 2014). In parallel, studies reported an association of deregulated insulin signaling

and increased risk of developing mild cognitive impairments and potentially Alzheimer’s

disease (Gandy, 2005; Ohara et al., 2011). However it is not understood so far which

factors might be involved in insulin signaling-related aspects of memory performance.
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In the search of gene expression changes in the prefrontal cortex, we identified elevated

expression of Igf2 together with decreased levels of Igfbp5 expression. To test the categor-

ical function of IGF2 in cognitive processes of the prefrontal cortex, we virally expressed

Igf2 in neurons and glia of the anterior cingulate cortex via a CAG promoter. We could

observe an enhancement of remote contextual memory, although other aspects of memory

as recent contextual memory as well as recent and remote cue-related memory were not

changed (Fig. 3.12). Moreover expression of Igfbp5 resulted in an inversed effect on remote

context memory. So far several studies have shown a memory enhancing effect of IGF2

in the hippocampus (Agis-Balboa et al., 2011; Chen et al., 2011; Iwamoto and Ouchi, 2014).

INSR

INS IGF1

IGF1R IGF2R

IGF2

IRS1/2

S6P44/42
MAPK

Figure 4.2: Potential receptor affinities of insulin signaling factors and downstream activa-

tion of MAPK and S6. In the brain, the receptor tyrosine kinases IGF1R and INSR can both be

activated by binding of insulin, IGF1 and IGF2. In the brain, IGF2 binds with highest affinity to the

InsR isoform A which is the highest expressed isoform here. Insulin and IGF1 can activate the

INSR as well as the IGF1R. The IGF1R and INSR can activate MAPK and S6 signaling through

IRS1 or IRS2 activation. The IGF2R mainly binds and internalizes IGF2 and leads to the endo-

somal degradation of IGF2. The IGF1R and INSR, both can activate downstream MAPK and S6

signaling.

Here, we demonstrate for the first time a positive effect of IGF2 on the remote memory

formation in the prefrontal cortex. Interestingly the promoter of the Igf2 gene, contains
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several CACGTG E-Box binding sites that could potentially serve as binding sites for

SHARP1 and SHARP2 transcription factors. However, in which extend direct binding of

SHARP1 and -2 might affect changes in Igf2 expression needs to be further studied.

We analyzed which receptors might be mediating the memory enhancing effect of IGF2 in

cognitive processes. In the brain, MAPK can be activated by IGF2 and insulin through

the INSR as well as IGF1R (Hu et al., 2011; Roux et al., 2007; Siddle, 2011). In studies

performed in the hippocampus, selective inactivation of the InsR and Igf1R does not lead

to disruption of fear memory performance (Chen et al., 2011; Schubert et al., 2004). This

might simply be related to the functional redundancy of both receptors, as well as the

high affinity of the INSR isoform A (INSR-A) to IGF2 in the brain (Fig. 4.2) (Belfiore

et al., 2009; Frasca et al., 1999). The INSR-A is highest expressed INSR isoform in the

brain (Hernández-Sánchez et al., 2008).

In order to collect evidence whether IGF2 signaling generally can affect memory related

pathways in the hippocampus and cortex, we tested the memory performance of neuronal

Insr and Igf1r double knockout mice. These Igf1r/InsrCaMKII-cre double mutant mice,

displayed a very specific contextual fear memory phenotype (Fig. 3.15). The fact that

other behavioral tests did not reveal any change in cognitive performance emphasizes

the highly specific neuronal role of both receptors in this particular aspect of contextual

fear memory (Fig. 3.14). CaMKII-cre affected neurons in the hippocampus as well as in

the prefrontal cortex. Therefore the IGF1R and INSR were disrupted in both regions.

Behavior experiments revealed an impairment of hippocampal recent memory as well as

cortical remote memory performance. Based on our findings, amygdala based cued fear

conditioning is not affected by a manipulation of IGF2 and IGF1R/INSR signaling in the

prefrontal cortex. In the context of IGF2 signaling the IGF2 receptor (IGF2R) leads to

an internalization and endosomal degradation of IGF2 (Hawkes and Kar, 2004). However,

so far we cannot exclude an additional effect of the IGF2R through potential G-protein

coupled activation of relevant signaling factors (Hawkes et al., 2006). Yet, we showed

that the neuronal IGF1R and INSR are involved in the control of cognitive processes of

recent as well as remote fear memory consolidation, although an inactivation of the IGF1R

and INSR receptors alone did not effect altered hippocampal memory (Chen et al., 2011;

Schubert et al., 2004). Insulin injection studies revealed a rather a decline of cognitive

performance than an improvement (Kopf and Baratti, 1999; Schwarzberg et al., 1989).
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Potentially the memory enhancing effect of the IGF1R and INSR is indeed limited to the

function of IGF2.

Both receptors, the IGF1R and INSR can act as potential upstream activators of MAPK

signaling (Siddle, 2011). Moreover based on our data we suggest a more task specific

role of the MAPK activation in the cognitive processes. As we observed, the reduction in

remote memory performance correlates with a decrease in p44/42 MAPK activity in the

prefrontal cortex (Fig. 3.13). However, we could not observe a similar correlation between

unaltered p44/42 MAPK activity in the hippocampus and decreased hippocampal recent

memory performance. Therefore IGF1R and INSR-mediated activation of MAPK might

be relevant cortical processes that are involved in the consolidation of remote memory.

4.5 Potential role of astrocytes in cognitive processes

Among genes, that were identified through micro array analyses of WT and S1/2-/- mice,

surprisingly myelin and astrocyte specific genes were among the highest deregulated genes

(Baier et al., manuscript in submission). In addition, the expression of myelin genes

underlies a circadian pattern (Reinecke et al., manuscript in preparation). In human, a

deregulation of myelin genes and myelin proteins is registered especially in the prefrontal

cortex of schizophrenic patients (Flynn et al., 2003; Hakak et al., 2001; McInnes and

Lauriat, 2006). However, in S1/2-/- mice, on myelin level neither myelin structure nor

protein levels were affected (Reinecke et. al, manuscript in preparation). Therefore is

in not clear yet, what might be the relevance of myelin mRNA deregulations. It might

be possible that the highly dynamic circadian regulations of the myelin composition are

involved in the adaptation of neuronal communication to the sleep or activity status.

On protein level we could observe an increase of astrocytic GFAP, exclusively in the ACx

and not in the Hi of S1/2-/- mice (Fig. 3.5 and 3.11). Astrocytes are involved in the support

of the energy intensive synaptic transmission (Attwell and Gibb, 2005; Rouach et al., 2008).

They are crucial for function of the blood brain barrier and and can potentially regulate

blood flow based on local neuronal activity (Paulson and Newman, 1987). Increasing evi-

dence suggests the involvement of astrocytes in mechanisms of memory regulation (Bezzi

and Volterra, 2011; Suzuki et al., 2011). The size, number and complexity of astrocytes is

disproportionately increasing with the complexity of the brain, potentially reflecting the

significance in higher cognitive functions (Oberheim et al., 2006). The implantation of
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human astrocytes in the mouse forebrain leads to increased long-term potentiation (LTP)

and enhances several aspects of memory performance (Han et al., 2013).

However, it is not clear if the elevated GFAP level in the prefrontal cortex might be

the cause of cognitive enhancement in related tasks. So far, we could validate that the

IGF2-IGF1R/INSR path is directly mediating memory consolidation. Yet analysis of the

Igf1r/InsrCaMKII-cre did not reveal levels of GFAP abundance that correlated with the Hi

or ACx related cognitive performance as it did in S1/2-/- mice. Therefore it might be

that the observed GFAP increase in the ACx of S1/2-/- mice was just a secondary effect

potentially in response to altered neuronal activity. GFAP expression can be enhanced via

elevated nitric oxide (NO) (Brahmachari et al., 2006). Thus oxidative stress might have

led to an increase in GFAP level. Interestingly, in the ACx and Hi of aged S1/2-/- mice,

we observed GFAP levels that correlated with the observed recent and remote memory

performance of these mice (Fig. 3.20 and 3.22). Finally, although the expression of GFAP

is potentially not the primary cause of cognitive enhancement of the S1/2-/- mice, it still

might be affected by mechanisms that are related to memory performance.

4.6 Aging

Age related sleep fragmentation is thought to be associated with the incident of Alzheimer’s

disease and related cognitive decline (Carskadon et al., 1982; Lim et al., 2013). Already

a subtle reduction of sleep can lead to a deregulation of genes that are involved in sleep

homeostasis, oxidative stress and metabolism (Möller-Levet et al., 2013). In drosophila,

administration of insulin leads to a recovery of age-related sleep fragmentation (Metaxakis

et al., 2014). Analyses of aged S1/2-/- mice revealed signs of early aging, and an overall

decrease of contextual fear memory. Here, recent memory was impaired, yet the remote

memory performance was attenuated to the level of WT mice. Again, we could observe

MAPK activities directly correlating with the monitored memory performance. MAPK

as well as S6, are downstream in a signaling cascade with IGF2 and associated with bipo-

lar disorders, schizophrenia and Alzheimer’s disease (Funk et al., 2012; Kalkman, 2012;

Munoz and Ammit, 2010; Pei et al., 2008). All diseases which have cognitive impairments

in common (Vöhringer et al., 2013). Nevertheless MAPK activity fulfills an opposed role

in autism and schizophrenia (activation) as in bipolar disorder (inactivation) (Kalkman,

2012). Furthermore the development of Alzheimer’s disease might be enhanced by in-
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creased S6-driven translation of tau protein that aggregates and is progressively deposited

in neurons (Pei et al., 2008). Thus an increase in Igf2 signaling and following activation of

MAPK and S6 potentially enhances mechanisms that are involved in memory performance,

but this might occur at the price of an exhausted metabolism. Therefore, studying the

long-term effect of Igf2 signaling and MAPK/S6 pathway activity in the brain is essential

to understand the potential side effects that IGF2-mediated cognitive enhancement might

have.
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Chapter 5

Summary and conclusion

In this study, we analyzed aspects of cognitive processing in single and double null mouse

mutants of the clock modulators SHARP1 and -2, in order to address the question how

factors of sleep regulation can affect learning and memory performance. We discovered

that S1/2-/- mice display enhanced performance in prefrontal cortex-dependent learning

tasks. Correlating with the observed cognitive enhancement we discovered elevated Igf2

expression and activated MAPK signaling exclusively in the anterior cortex. Moreover,

viral enhancement of IGF2 signaling in the anterior cingulate cortex of wild type mice

improved remote fear memory performance. We conclude that in the anterior cortex, IGF2

potentially activates MAPK signaling and enhances memory consolidation in prefrontal

cortex-dependent cognitive tasks in S1/2-/- mice.

MAPK signaling has been associated with circadian aspects of hippocampal memory for-

mation, although the upstream mechanisms have not been identified so far. In parallel,

IGF2 can act as a memory enhancer in the hippocampus. Our analysis reveals an addi-

tional role for IGF2/MAPK signaling in prefrontal cortex dependent cognitive processing.

MAPK as well as S6 signaling are known to be involved in IGF2 signaling and insulin

signaling through the insulin and IGF1 receptors. However, individual inactivation of

INSR or IGF1R does not exhibit a substantial change in learning or memory abilities of

mice. Postulating that this could be due to a functional redundancy among these struc-

turally highly related receptors, we proved our hypothesis with the analysis of mice with

conditional forebrain-specific Igf1r/Insr double inactivation and observed impairment of

hippocampal and prefrontal cortex-associated recent and remote memory performance.

However, amygdala based cue memory was not affected. A parallel reduction of MAPK

activity in Igf1r/InsrCaMKII-cre, however, was restricted to the prefrontal cortex and was

not detectable in the hippocampus.

71
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The significance of MAPK activity for the timing of memory formation in the hippocam-

pus has been addressed already in a circadian context. Furthermore the disruption of

clock genes leads to memory impairment. Since circadian and activity coupled mRNA

expression of Sharp1 and -2 is restricted to the cortex, it appears likely that in the corre-

sponding mouse mutants cortex selective processes are affected. We could show that Igf2

expression and MAPK activation display a circadian regulation in the cortex of WT mice

that appears to be uncoupled upon loss of the negative clock modulators SHARP1 and

-2. Our study thus offers a way to study circadian aspects of cortex-dependent memory

consolidation in more depth in the future. Moreover, our analysis supports the hypothesis

that the control of sleep and memory consolidation may be regulated by similar mecha-

nisms including IGF2-dependent signaling. IGF2 seems to be a potent memory enhancer

in the hippocampus and as our data indicate also in the prefrontal cortex. IGF2 crosses

the blood brain barrier and might be relevant for future therapeutic use, for example in

non-invasive intra-nasal applications. In aged S1/2-/- mice, we observed a strong decline

in memory performance. So far, it is not clear whether this effect is mediated by the lack

of SHARP1 and -2 or continuously increased levels of Igf2 expression. Potentially IGF2

may not only provide beneficial effects as a memory enhancer. Therefore, to understand

the potential long-term consequences of elevated IGF2 on the neuronal metabolism and

aging-related processes is of fundamental importance.



Bibliography

Agis-Balboa, R. C., Arcos-Diaz, D., Wittnam, J., Govindarajan, N., Blom, K., Burkhardt, S.,

Haladyniak, U., Agbemenyah, H. Y., Zovoilis, A., Salinas-Riester, G., Opitz, L., Sananbenesi, F.

and Fischer, A. (2011). A hippocampal insulin-growth factor 2 pathway regulates the extinction

of fear memories. The EMBO journal 30, 4071–4083.

Ahles, T. A. and Saykin, A. J. (2007). Candidate mechanisms for chemotherapy-induced cognitive

changes. Nature Reviews Cancer 7, 192–201.

A.Kondratova, A., V.Dubrovsky, Y., Antoch, M. P. and Kondratov, R. V. (2010). Circadian clock

proteins control adaptation to novel environment and memory formation. Aging (Albany NY)

2, 285–297.

Aleisa, A. M., Alzoubi, K. H. and Alkadhi, K. A. (2011). Post-learning REM sleep deprivation

impairs long-term memory: Reversal by acute nicotine treatment. Neuroscience Letters 499,

28–31.

Allen, A. J., Griss, M. E., Folley, B. S., Hawkins, K. A. and Pearlson, G. D. (2009). Endophenotypes

in schizophrenia: a selective review. Schizophrenia Research 109, 24–37.

Alvarez, J. A. and Emory, E. (2006). Executive function and the frontal lobes: a meta-analytic

review. Neuropsychology Review 16, 17–42.

Attwell, D. and Gibb, A. (2005). Neuroenergetics and the kinetic design of excitatory synapses.

Nature Reviews Neuroscience 6, 841–849.

Avruch, J., Khokhlatchev, A., Kyriakis, J. M., Luo, Z., Tzivion, G., Vavvas, D. and Zhang, X. F.

(2001). Ras activation of the Raf kinase: tyrosine kinase recruitment of the MAP kinase cascade.

Recent progress in hormone research 56, 127–155.
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