
Frequency Tuning in the Behaving Mouse: Different
Bandwidths for Discrimination and Generalization
Livia de Hoz1,2*, Israel Nelken1

1 Department of Neurobiology, the Silberman Institute for Life Sciences, and the Edmond and Lily Safra Center for Brain Sciences. Hebrew University of Jerusalem,

Jerusalem, Israel, 2 Max Planck Institute for Experimental Medicine, Göttingen, Germany

Abstract

When faced with sensory stimuli, an organism may be required to detect very small differences in a physical parameter
(discrimination), while in other situations it may have to generalize over many possible values of the same physical
parameter. This decision may be based both on learned information and on sensory aspects of perception. In the present
study we describe frequency processing in the behaving mouse using both discrimination and generalization as two key
aspects of behaviour. We used a novel naturalistic behavioural apparatus designed for mice, the Audiobox, and paradigm
contingencies that were identical for both auditory discrimination and generalization, the latter measured using latent
inhibition. Mice learned to discriminate between frequencies that were an octave apart in a single trial. They showed
significant discrimination between tone frequencies that were as close as 4–7%, and had d’ of about 1 for DF of around 10%.
In contrast, pre-exposure frequencies that were half an octave or less below the conditioned tone elicited latent inhibition,
showing a generalization bandwidth of at least half an octave. Thus, in the same apparatus and using the same general
memory paradigm, mice showed generalization gradients that were considerably wider than their discrimination threshold,
indicating that environmental requirements and previous experience can determine whether the same two frequencies will
be considered same or different. Remarkably, generalization gradients paralleled the typical bandwidths established in the
auditory periphery and midbrain, suggesting that frequencies may be considered similar when falling within the same
critical band.
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Introduction

Two sensory stimuli may be highly discriminable, and yet

sufficiently similar to be considered essentially the same. In natural

speech, for example, two utterances of the same word by the same

speaker, even with the same nominal pitch trajectory, would

almost certainly be physically different and (with some effort) also

discriminable from each other; nevertheless, as a rule, they would

be judged ‘the same’. In natural contexts, both discrimination and

generalization may have important roles. While discrimination is

generally believed to be limited by peripheral sensory factors,

generalization may be driven by context and task requirements

[1]. Nevertheless, it is reasonable to hypothesize that animals have

formed, even without explicit training, some ideas about what

stimuli should or should not be considered the same. In the present

study we set out to describe frequency-driven behaviour in the

mouse using both discrimination and generalization as two key

aspects of perception.

Mice have good acoustic abilities. Audiograms, as well as

thresholds for frequency or duration discrimination, are well

described in the rodent literature using a variety of tasks [2],

training procedures [3–4], ages [5] (Jackson laboratories), devel-

opmental experience [6], and strains (Jackson laboratories). Mice

discriminate between frequencies that are separated by 3% or less

when detecting the frequency difference between one stimulus and

the next [7–8]. Less is known, however, about the abilities of mice

to make absolute comparisons between two learned stimuli that

are presented separately in time.

Little is known about the capacity of mice to generalize across

stimuli. We studied generalization using latent inhibition. Latent

inhibition refers to the diminished capacity of a conditioned

stimulus to be associated with reinforcement when that stimulus

has been previously presented to the subject in a non-reinforced

manner [9]. Stimuli that are similar to the conditioned stimulus

can also lead to latent inhibition due to a generalization over some

stimulus property, such as the frequency of a tone (e.g. [10]). We

chose the latent inhibition paradigm since the task itself does not

determine the level of generalization [1]. Measurements of

generalization gradients using conditioned responses have been

made [10], but to the best of our knowledge ours is the first

attempt to use latent inhibition in mice for that purpose.

Here we used the Audiobox, where training occurs automat-

ically and the animals perform the task ad libitum. This paradigm is

fully automatic, allowing both continuous recording of individual

mouse behaviour in its living quarters, as well as the training and

monitoring of several cohabiting mice. In consequence, we could

train mice relatively quickly to discriminate between two fre-

quencies and we could reliably measure generalization gradients
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using latent inhibition. The main result of this paper is the

measurement, in the same apparatus and using the same

technique, of small frequency discrimination thresholds (of few

per cents) and much wider generalization gradients (spanning at

least half an octave).

Methods

Ethics statement: Experiments were performed in The Hebrew

University of Jerusalem and in the Max Planck Institute for

Experimental Medicine in Göttingen. The joint ethics committee

(IACUC) of the Hebrew University and Hadassah Medical Center

approved the study protocol for animal welfare. The Hebrew

University is an AAALAC International accredited institute. All

animal experiments that took place in Göttingen were approved

by and performed in accordance with the Niedersächsisches

Landesamt für Verbraucherschutz und Lebensmittelsicherheit,

project license number 33.14-42502-04-10/0288.

The main set of experiments was performed in Jerusalem. A

replication of key subset of experiments was done in Göttingen, to

check the reproducibility of data with this new apparatus. Some

variations, such as roving of stimulus intensities, were introduced

in Göttingen, and did not affect the results. We therefore report

the results of the main experiments run in Jerusalem in the paper.

The details of the replications in Göttingen are reported in the

Text S1 and Figures S1 and S3.

We used 135 C57BL/6JOlaHsd female mice obtained from a

commercial supplier (98 from Harlan, Israel; 35 from Harlan,

Germany). The mice were 7–8 weeks (Israel) and 5–6 weeks

(Germany) old at the time of arrival and were always kept in a

light/dark 7am/7pm cycle. A few days after arrival, or 4 weeks

after arrival in the group that began training with 9–10 weeks of

age, each mouse was lightly anaesthetized with isoflurane vapour

or avertin i.p. and a sterile transponder (DATAMARS T-IS 8010

FDX-B, 13 mm long, 2 mm in diameter, 0.1 gr in weight; or IS0

compliant 11784 transponder, 12 mm long, from TSE) was

implanted subcutaneously in the upper back. In later replications,

a stitch or histoacryl (Braun) was used to close the small hole left

on the skin by the transponder injection. Once recovered from

anaesthesia, the mice were placed in the Audiobox (see below).

Apparatus: Audiobox
All behaviour was run in an Audiobox (New Behaviour/TSE,

Germany), a device developed for auditory research and based on

the Intellicage (NewBehavior, Switzerland). The model used in

Jerusalem was a prototype, while the one used in Göttingen is

commercially available (TSE). The Audiobox serves both as living

quarters for the mice and as their testing arena. The mice are kept

in groups of 8 to 10 animals. Each animal is individually

identifiable through the use of the implanted transponder, and

the behaviour of each mouse is automatically detected by two

means: reading of the unique transponder carried by each mouse

by an antenna at the entrance to the drinking corner (see below),

and detection of specific behaviours (nose-poking and licking)

through other sensors. In consequence, handling of the animals by

the experimenter is reduced to the weekly cleaning of the cages

and apparatus.

The Audiobox was kept in a dedicated room, used only for these

experiments (with no other animals present), temperature regu-

lated and kept in a 12 hr/12 hr dark/light cycle. The Audiobox

consists of two compartments connected by a long corridor

(Figure 1). One compartment, a normal mouse cage, serves as the

home cage, where the animals have access to food ad libitum. Water

is delivered in the second compartment of the Audiobox, the

‘corner’ (see image insert in Figure 1), which is positioned inside a

sound-attenuated box. Entrance into the corner, a ‘visit’, is

detected by an antenna located at its opening that reads the

implanted transponder. The beginning of the visit is defined by

both the detection of a transponder by the antenna and the

activation of a heat sensor within the corner. The end of the visit

occurs when the same transponder is not detected anymore by the

antenna and the heat sensor is no longer activated. Thus, the

Audiobox identifies the specific mouse that enters the corner, and

can therefore select the stimulus to be presented accordingly. All

behavioural data is logged for each mouse individually. Once in

the corner, the mouse can access water by nose-poking, a ‘nose-

poke’, into either of two ports, one at each side of the corner. The

doors to the ports can be opened or closed depending on the

demands of the experiment. A loudspeaker (DSM 25 FFL 8 Ohm

from Visaton, or a 22TAF/G from Seas Prestige) is positioned

directly behind the corner, or above it, for the presentation of the

stimuli.

We used mainly tones between 6 and 15 kHz, and for some

experiments between 3 and 19 kHz. This frequency range

contains the area of highest sensitivity in a mouse audiogram.

Natural background sounds, which the mouse might use for

information and warning, tend to be within this frequency range.

While some mouse vocalizations have frequencies above 45 kHz,

other mouse communication calls also occupy this range: for

example, wriggling calls emitted by pups contain mostly frequen-

cies below 20 kHz [11].

Sounds were generated using Matlab (Mathworks) at a sampling

rate of 96 or 48 kHz and written into computer files. Output was

calibrated using either a Brüel and Kjaer (4939 J0 free field) or a

GRAS (1/40 40BE) microphone. The microphone was placed at

different positions within the corner, as well as outside the corner.

Relevant sounds were played at the nominal intensities used in the

study. Microphone signals were sampled at 96 kHz and analyzed

in Matlab. Tones between 3 kHz and 19 kHz did not show any

significant harmonic distortion. In the rare occasions when

harmonics were present, they were at least 40 dB below the main

signal. There was a linear correspondence between the nominal

sound level and the sound level measured by the microphone.

While sounds played inside the corner were significantly

attenuated outside of the attenuated box (.20 dB), there was

little attenuation between the corner and the corridor directly

leading to it (about 10 dB). In consequence, mice in the corridor

could hear the sound presented to the mouse inside the corner.

This, however, did not seem to affect their behaviour. For

example, animals that were pre-exposed to 13 kHz and then

conditioned to the same frequency were run in several replications

together with other mice that were pre-exposed to other

frequencies. The amount of latent inhibition observed in the mice

pre-exposed to 13 kHz was the same irrespective of the pre-

exposure frequencies that cohabiting mice heard.

Stimuli consisted of 30 ms pure tone pips, with 5 ms rise/fall

linear slopes, repeated at a rate of 3 Hz. Tones were presented in

the corner throughout the visit. All tone pips presented within a

given visit had the same frequency. For the main experiments (in

Jerusalem), sounds were played at a fixed intensity of 70 dB SPL.

For the replications in Göttingen, we used a roving-intensity

paradigm (See Text S1).

Throughout the duration of the experiment, one frequency (i.e.

6670 Hz) was always ‘safe’: when this frequency was presented

during a visit, the mice could access the ports and drink water

without an associated negative outcome. At some point within the

training, a different tone frequency was associated with an air puff.

Frequency Tuning in the Behaving Mouse
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The purpose of the training was to get the mice to learn this

association.

Discrimination
The aim of this experiment was to train mice to discriminate

between tones of two different frequencies. Initially, these were

two well separated tones (1 octave apart). We then explored the

capacity of the mice to discriminate between progressively more

similar tones, by moving the conditioned tone closer in frequency

to the safe tone, in order to establish the just-noticeable difference

(JND). We ran 3 replications of the discrimination task. The first

one was run in Jerusalem using 9 mice, 7–8 weeks old at the time

of testing, that heard a 6670 Hz as safe tone and 13340 Hz as

conditioned tone. The other two were run in Goettingen (See Text

S1). The choice of frequencies was based on ABR threshold

measurements (Jackson Laboratories phenotype database) which

showed large increase in thresholds between 16 and 32 kHz.

Therefore, we avoided using frequencies above 16 kHz. The

detailed protocol was as follows (see Figure 2):

Habituation phase (7 days): Immediately after the transponder

implantation, mice were placed into the Audiobox. During this

phase the doors giving access to the water within the corner

remained constantly open and no sound was presented during the

visits.

Safe-only phase (4 days): Once the mice had learned to access

the water and were drinking freely, the doors were closed and only

opened when the mouse nose-poked into the port. At the same

time, every visit to the corner was coupled, for the duration of the

visit, with the presentation of the safe sound (tone pips).

Introduction of a conditioned tone at 5% probability (3 days):

The conditioned tone was now presented in 5% of the visits. These

visits will be termed ‘conditioned visits’. They occurred on the 11th

visit out of every 20. Mice didn’t seem to predict the appearance of

a conditioned visit in Jerusalem, as reflected in the lack of change

in the behaviour in the safe visits around conditioned visits. As in

the safe-only phase, a train of tone pips was presented during the

visit. The presence of the conditioned tone had a behavioural

significance: a nose-poke during the presentation of the condi-

tioned tone resulted in the delivery of an aversive air-puff, through

a tube located on the ceiling of the corner, and the doors that gave

access to the water did not open. The remaining visits were as

during the safe-only phase.

Conditioned tone at 10% probability (3–5 days): The condi-

tioned tone was played in 10% of the visits. They occurred on the

6th visit out of every 10.

Conditioned tone at 17% probability (3 days): The conditioned

tone was played in 17% of the visits (randomly once every 6 visits).

Once discrimination at DF of 100% was stable with 17%

conditioned visits, we began to lower the frequency of the

conditioned tone. The safe tone remained constant in 83% of

visits. The conditioned tone was reduced every two to three days

from 13340 Hz (1 octave, DF = 100%), progressively down to

6803 (DF = 2%) in the first experiment run in Jerusalem (see

Table 1 below for detailed description of all JND tones used).

Finally, the frequency of the conditioned tone was brought back

up to a DF of 20% to ensure that the mice remained under

stimulus control.

Generalization gradients for frequency
The aim of this experiment was to establish generalization

gradients for pure tones in the mouse using the latent inhibition

paradigm. For this purpose, different mice were pre-exposed to

frequencies that were different, similar or identical to the

subsequent conditioned frequency. After the pre-exposure ended

all mice were conditioned to the same conditioned frequency and

latent inhibition was measured as a function of the pre-exposure

frequency heard. Latent inhibition was quantified by the reduction

of the efficacy of conditioning during the first few conditioned tone

presentations, before the mice learned to reliably avoid nose-

poking during presentations of the conditioned frequency.

In total, 89 naı̈ve mice were used for the generalization

paradigm. Transponder implantation, habituation (4 days), and

safe-only phase (11 days), were run as described for the 2-tone

discrimination. Following the safe-only phase, training consisted of

the following stages (see Figure 2):

Pre-exposure phase (5 days): The pre-exposed tone was now

played in 17% of the visits (randomly once every 6 visits). This

tone did not have behavioural significance and a nose-poke in

these visits resulted, like in the safe visits, in the opening of the

doors and access to water. The remaining 83% visits were

associated with the safe tone as before.

The pre-exposure tone had one of the following frequencies:

3335 Hz (2 octaves below 13340 Hz, 9 mice), 5609 (1.25 octaves

below, 4 mice), 7932 Hz (0.75 octave below, 8 mice), 9433 Hz (0.5

octave below, 14 mice), 11218 Hz (0.25 octave below, 16 mice),

Figure 1. Apparatus. Schematic of the Audiobox and (insert) photo of the corner (from www.tse-systems.com, with permission). The attenuated
box in divided in two chambers, one contains the corner with the two bottles of water and the tweeter behind. A corridor connects this box to the
home-cage where food is available ad libitum.
doi:10.1371/journal.pone.0091676.g001
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13340 Hz (equal to the conditioned tone, 31 mice), or 15864 Hz

(0.25 octave above, 7 mice). Generally 2 or 3 groups of pre-

exposure visits were run simultaneously, and often one of these

groups was the group pre-exposed to the frequency that was

conditioned later, 13340 Hz.

Conditioned phase (5 days): This phase was identical for all

mice, irrespective of their pre-exposure frequency. The pre-

exposure visits were replaced by conditioned visits, also with a

probability of 17%. For all mice, the conditioned tone had a

frequency of 13340 Hz. During this phase, the conditioning tone

had a behavioural significance: a nose-poke resulted in the delivery

of an air-puff and the doors were not opened. The remaining 83%

of the visits were safe visits. All the mice used in this report had at

least 24 hours of conditioning.

Quantifying performance: d’ and C
Discrimination performance was quantified by the standard

measures from signal detection theory, the discriminability (d’) and

the Criterion (C) [12]. Both refer to a hypothetical internal

decision variable that determines whether the mouse should nose-

poke or not. Conceptually, this decision variable is large when the

mouse has a good indication that it should not nose-poke, and is

small otherwise. Thus, the decision variable is assumed to have a

larger mean when the conditioned tone is played than when the

safe tone is played, and to have a Gaussian distribution around the

corresponding mean with the same variance for both tones. Under

these assumptions, d’ is a measure of the distance between the

means of the decision variable at presentations of the conditioned

sound and safe sounds, in units of the common standard deviation.

It is calculated as

d 0~Z(HR){Z(FAR)

where Z(p), p[[0 1], is the inverse of the cumulative Gaussian

distribution, HR is the hit rate, where a hit is the correct avoidance

of a nose-poke in a conditioned visit, and FAR is the false alarm

rate, where a false alarm is the avoidance of a nose-poke in a safe

visit. C is the ‘threshold’: the value of the decision variable above

which the animal avoids nose-pokes, measured in units of the

common standard deviation of the decision variable, with C = 0

corresponding to the mid-point between the two means. C is a

measure of the strategy used for the discrimination and its optimal

value is affected by the costs of both misses and false alarms. With

the same d’, a mouse might prefer to be conservative, and to miss

Figure 2. Paradigm. A. Schematic of the discrimination training protocol. The horizontal axis of the box represents time and the vertical axis
represents the percentage of visits that were safe (white) or conditioned (black to light grey). B. Left: schematic of the training protocol of the latent-
inhibition group, pre-exposed to 13340 Hz and conditioned to 13340 Hz. Right: same, for the groups pre-exposed to a frequency that was different
13340 Hz.
doi:10.1371/journal.pone.0091676.g002

Table 1. Sequence of conditioned frequencies used for JND assessment.

Conditioned tone (% w respect to safe, Hz)

Safe tone (Hz) Df 100% Df 40% Df 20% Df 15% Df 10% Df 7% Df 4% Df 2%

6670 13340 9433 8004 7670 7337 7137 6937 6803

doi:10.1371/journal.pone.0091676.t001
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more safe visits rather than incorrectly nose-poke in a conditioned

visit, or to be less conservative and drink more in safe visits, taking

the risk that it would make more errors on conditioned visits. C = 0

corresponds to an observer that gives equal weights to misses and

to false alarms. C is calculated as

C~{0:5 � (Z(HR)zZ(FAR))

Negative values of C indicate that the mouse is more

conservative (in our case, nose-poking less often on both safe

and conditioned visits) than the unbiased observer, while positive

values indicate that it is less conservative.

Since both d’ and C cannot be calculated when either the hits or

the false alarms reach levels of 100% or 0%, in the few cases where

this happened we used 95% and 5% respectively for these

calculations. This manipulation reduced d’ slightly, and therefore

our d’ estimates are conservative.

Results

Using a novel behavioural apparatus, the Audiobox (New

Behavior and TSE), in which mice live for the duration of the

experiment while performing the task ad libitum, we first explored

the capacity of C57BL/6JOlaHsd mice to discriminate frequencies

of pure tones, characterizing their just noticeable differences

(JNDs). Using the same general task contingencies, we then

measured their ability to generalize across frequencies in an

auditory latent-inhibition paradigm. One mouse died after

anaesthesia and another was removed because it did not drink

in the corner during the initial phases of training.

Fast learning of the discrimination task
Frequency discrimination was tested in a memory-based design.

In each trial, mice were presented with one frequency only, and

had to decide whether to nose-poke or not. Thus, they could not

rely on within-trial same vs. different judgements. This design

made it possible to compare discrimination with generalization,

which was also memory-based and included single-frequency

trials. However, this task was also harder than standard frequency

discrimination tests, which usually present the two frequencies

during the same trial [7]. In consequence, we expected to find

rather poor thresholds for tone discrimination.

Contrary to our expectations, in the main experiment, mice

learned to discriminate between the two tones (6670 Hz and

13340 Hz) quickly and reliably, as indicated by the high

percentage of conditioned visits without nose-pokes, calculated

as the mean value across mice in blocks of 24 hours (Figure 3a).

While the mean percentage of safe visits without nose-pokes

remained at around 30% throughout, already in the first day of

conditioning the percentage of conditioned visits without nose-

pokes was around 60%. This increased to 90% by day two

(Figure 3a, conditioning phase). There was a significant difference

between the level of nose-poking in safe and conditioned visits

during the conditioning phase (3-way ANOVA on tone frequency

x day x mouse, main effect of frequency F(1,178) = 931.82,

p,0.01), and discrimination was borderline significant already on

day 1 (F(1,16) = 4.35, p = 0.053).

Mice, in fact, learned the discrimination between their first and

second conditioned visits. In their first conditioned visit, all the

mice but one (8/9) nose-poked, getting in consequence an air-puff

(11% no nose-pokes). Already from the second conditioned visit,

however, almost all mice (8/9) refrained from nose-poking. This

increase in performance from visit 1 to visit 2 was significant

(p,0.02, Fisher’s exact test, one-tailed). Figure 3b shows the

number of mice that avoided a nose-poke in each of the first 7

conditioned visits, starting with the first visit in which each mouse

nose-poked and received an air-puff. Since only 5% of the visits

were conditioned initially, mice received an average of 4

conditioned visits on the first day. As a result, the first conditioned

visit with a nose-poke had a substantial contribution to the average

daily performance of the animals in the first day of conditioning, as

seen in Figure 3a. Learning, however, was not quite over with the

first conditioned visit, since the behaviour of the mice in the

subsequent safe visits was affected as well. In the first few safe visits

following the first conditioned visit (Figure 3b, grey circles), mice

refrained more than usual from nose-poking. This suggests that

mice were more cautious following their first experience of an air

puff. However, this cautious behaviour was over within 7 visits,

before the second conditioned visit occurred. To illustrate the level

of discrimination that was acquired during these few trials, we

calculated for each mouse the d’ using the hit rate for three

conditioned visits that followed the first exposure to an air-puff,

and the false alarm rate from the safe visits that immediately

followed each of these three conditioned visits. Mean hit or false

alarm rates of 0 or 1 were conservatively modified to 0.05 or 0.95,

respectively. Six out of the nine mice had a d’ above 2 and the

mean d’ was 1.7960.40. Thus, unsurprisingly, the high discrim-

ination performance apparent in the average across mice can also

be demonstrated in the behavioural performance of the individual

mice.

Most mice continued to nose-poke occasionally during condi-

tioned visits (suffering in consequence an air puff), although at a

low rate. Their behaviour suggested that they noticed the different

frequency: when mice nose-poked during a conditioned visit, the

latency to nose-poke was usually longer than the latency to nose-

poke in safe visits. Figure 3c shows the mean latency to nose-poke

(averaged across mice) for a range of visits lengths separately for

the three groups of visits: visits prior to the conditioning phase, safe

visits during conditioning, and conditioned visits (also during the

conditioning). We performed an Analysis of Covariance (AN-

COVA) of the data presented in Figure 3c (latency as a function of

group, with visit length as a covariate). There was a main effect of

group (F(2,484) = 332, p,0.01) and of visit length (F(1,484) = 74,

p,0.01). Most importantly, there was a significant interaction

between the two (F(2,484) = 496, p,0.01). Thus, the slopes of the

latency as a function of visit length were different in the different

groups. Post-hoc comparisons showed that for the conditioned

visits, the slope of the latency as a function of visit length was 0.95

(almost 1, as expected, since the latencies were essentially equal to

visit length), which was significantly different (p,0.01) from the

slopes for the safe visits before conditioning started (0.005) and

after conditioning started (0.02); these last two were not different

from each other. The interaction was due to the fact that prior to

conditioning as well as during safe visits in the conditioning phase,

the average latency to nose-poke for any visit length was never

larger than 3 seconds (white and light grey points). In the

conditioned visits, on the other hand, the latency to nose-poke was

essentially the duration of the visit itself. Presumably, in these visits

the mouse was uncertain and refrained from nose-poking for a

while, then decided to nose-poke nevertheless and terminated the

visit immediately following the air puff. Overall, these data

indicate that the ability of mice to discriminate between the two

frequencies might have been underestimated by the percentage of

visits without nose-pokes.

Visits followed a clear circadian rhythm during all phases, with

a peak in activity around midnight, as expected from nocturnal

animals (see Figure 3d, black line). Activity was low during the

Frequency Tuning in the Behaving Mouse
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light hours and the ratio of visits with nose-pokes decreased slightly

during the second half of the light cycle with respect to the other

three 6-hour blocks (data not shown). Mice often made more than

one nose-poke per visit, usually 1–5, but never more than a dozen

(Figure 3e). Visit length showed a bimodal distribution with a

sharp peak at 1 second (very short visits) and a broad peak at

around 20 seconds (Figure 3f, left and centre panels, black bars).

Visits without nose-pokes constituted about 30% of all safe

visits. They were also distributed unevenly throughout the day

(Figure 3d, grey line, note the lower count number) with a peak at

around midnight. They were generally 1 or 2 seconds in length

and never more than 10 seconds (white bars in Figure 3f). Given

that a mouse stayed in the corner for more than 3 seconds, the

probability of nose-poking was very high. Thus, most of the 30%

safe visits with no nose-poking were also the very short visits.

The structure of safe visits was unaffected by the introduction of

conditioning visits (Fig. 3d, data shown only for the safe visits that

happened during the conditioned phase). There was no significant

change in the distribution of nose-pokes in safe visits (3-way

ANOVA of probability for N nose-pokes/visit on phase x N x

Figure 3. Main discrimination. A. Mean daily performance expressed as the fraction of visits without nose-pokes for the habituation and safe visits
(white) and the conditioned visits (grey). B. Single trial performance analysis: # mice that avoided nose-poking (n = 9) during the initial 7 conditioned
visits starting with the first visit in which each mouse was punished (dark grey), the 7 safe visits that immediately followed habituation (white), and
the initial 7 safe visits after the 1st punished conditioned visit (light grey). C. Left panel: Mean latency to nose-poke as a function of visit length for the
safe visits before (white) and during (light grey) conditioning and for the conditioned visits (dark grey). The x axis is linear up to visit length of 10
seconds and logarithmic thereafter. Right panel: mean nose-poke latency per phase and type of visits (colour coding as before). D. Circadian rhythm
of visits with (black) and without (grey) nose-pokes in the habituation, safe visits during conditioning and conditioned visits; mean counts. E. Mean
distribution of nose-pokes per visits for the different types of visits as in D. F. Mean distribution of visit duration for all visits (black) and visits without
nose-pokes (white) for the different types of visits as in D. The x axis is linear up to visit length of 10 seconds and logarithmic thereafter.
doi:10.1371/journal.pone.0091676.g003
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mouse, main effect of phase: F(1,110) = 2.56, p = 0.11; see

Figure 3e, middle panel), nor in the distribution of safe visit

durations for visits both with (3-way ANOVA of probability for

visit duration d on phase x d x mouse, main effect of phase:

F(1,399) = 2.11, p = 0.15) and without (F(1,399) = 3.74, p = 0.053;

Figure 3f, middle panel) nose-pokes, following the introduction of

conditioned visits. There was also no change in the latency to first

nose-poke (Figure 3c). The average number of safe visits each day

was 6165 and 6766 for the safe only and the conditioning phases

respectively.

The conditioned visits differed from the safe visits in several

aspects. For example, in the rare cases a mouse did nose-poke in

one of the conditioned visits, it usually did so only once (Figure 3e,

right panel). The bimodal distribution of visit length observed in

the safe visits was not present in the conditioned visits (Figure 3f,

right panel), with long visits being almost absent from the

conditioned visit distribution. There was, in fact, a significant

difference between the distribution of durations of visits in the safe

and conditioned visits in the conditioning phase (3-way ANOVA

of probability of visits duration d on phase x d x mouse, main

effect of phase: F(1,399) = 13.99, p,0.01), with the conditioned

visits being shorter on average (2.7 s vs 13.2 s). Conditioning also

had an effect on the latency to nose-poke in the few visits in which

there was a nose-poke, as discussed above (Figure 3c). The

circadian pattern, on the other hand, was not affected by

conditioning (Figure 3d, right panel). A one-way ANOVA on

the normalized number of visits across the 24 hour circadian cycle

yielded no significant difference between the habituation phase,

the safe visits of the conditioning phase and the conditioned visits

of the conditioning phase (F(2,69) = 0.03, p = 0.97).

The same analyses, performed for the replications in Göttingen,

are reported in the Text S1 and in Figure S1. All the observations

reported above were reproduced with these additional groups of

mice. The distribution of visit duration was slightly shifted in the

Göttingen replications, with the number of short visits peaking at a

duration of 3 seconds.

Just-noticeable differences (JND)
In the main experiment, once the mice achieved a stable

discrimination performance between tones that were one octave

apart, we lowered the conditioned frequency every three days,

bringing it progressively closer to the safe tone frequency. The goal

was to find the smallest frequency difference at which the animals

could perform the task (just-noticeable difference, JND). As the

conditioned frequency was lowered (Figure 4a), the mean

percentage of conditioned visits without nose-pokes decreased

(presumably because the mice decided that the safe tone was

presented and nose-poked in consequence), and the mean

percentage of safe visits without nose-pokes increased (presumably

because the mice decided that the conditioned tone was presented

and refrained from nose-poking). A 3-way ANOVA with DF x

conditioned versus safe visits x mouse resulted in a main effect of

DF: F(7,344) = 7.9, p,0.01; a main effect of conditioned versus

safe visits: F(1,344) = 1.9, p,0.01; and a significant interaction:

F(7,344) = 23.48, p,0.01. Some mice could discriminate between

frequencies that were as close as 2% apart, and although the

difference between safe and conditioned visits without nose-pokes

was not very large at that point (63% vs. 47%), it was significant (1-

way ANOVA on condition x animals, main effect of conditioned

versus safe visits: F(1,8) = 11.6, p,0.01). When we moved the

conditioned frequency back up to 20% above the safe frequency,

performance returned to normal, indicating that the reduction in

discrimination performance was not due to a loss of stimulus

control.

The development of frequency discrimination in time is studied

in Fig. 4c. Each panel corresponds to one DF. The performance

(as a percentage of mice without nose-pokes) in the first

conditioned visit together with the subsequent 4 safe trials is

presented first (leftmost dark grey circle), followed by the average

performance in conditioned visits 2 to 4 (centre dark grey circle),

and in conditioned visits 11 to 20 (rightmost dark grey circle). Each

of these is followed by the average performance in the following

four safe visits (light grey circles). The leftmost panel, for DF of

100%, begins when the probability of appearance of a conditioned

tone is already 17%, i.e. 8 days into the conditioning. The

performance in this panel represents, therefore, a learned

behaviour (in contrast with the data in Fig. 3, which document

behaviour at the initial presentations a conditioned tone). On the

other hand, the next panel, DF of 40%, presents performance from

the first presentation of the corresponding conditioned tone. It

shows that once the animals knew the task, they immediately

avoided nose-poking when confronted with new tones. Presum-

ably, they learned to generalize across tones that were different

from the safe tone at 6670 Hz. Simultaneously, they continued to

nose-poke in safe visits at approximately the normal rate, even if

these visits directly followed a conditioned visit. This pattern held

for DFs as small as 10% and 7%, breaking down only at DFs equal

or smaller than 4%.

In conditioned visits in which the animal nose-poked, the mean

latency to nose-poke across mice became shorter as the

discrimination became more difficult (Figure 4d). In the easiest

condition used here, DFs of 100%, the latency to nose-poke in

conditioned visits was larger than for safe visits. In the most

difficult condition (frequency difference of 2%), the average

latency to nose-poke was shorter, and not significantly different

from the response latency to the safe tone (F(1,16) = 0.87;

p = 0.36). This reduction is consistent with the possibility that at

least some nose-pokes at very small frequency differences occurred

because the conditioned frequency was mistaken for the safe one.

Nevertheless, a 2-way ANOVA of latencies (factors: condition (safe

vs. conditioned) x DF) resulted in a significant effect of safe versus

conditioned tone (F(1,143) = 40.3, p,0.01), no effect of DF

(F(8,143) = 1.47, p = 0.17), and no interaction (F(8,143) = 0.55;

p = 0.81). It is possible that the large and consistent difference in

latency between safe and conditioned tones at all DFs except

possibly 4% and 2% swamped the effects of DF on latency in this

analysis.

Correct discrimination between two cues takes place when there

is both high avoidance of the conditioned stimulus (hits) and low

avoidance of the unconditioned stimulus (low level of false alarms).

The d’ value (see Methods) takes into account the rates of both hits

and false alarms. The threshold for successful discrimination is

often considered to be the frequency difference at which d’ equals

1. In our case, the average d’ (across animals, Figure 4e) measured

for the behaviour during the second day of each phase was around

1 for conditioned frequencies with a DF of 7%–15% above the safe

frequency, and was below 1 for DF of 4% and below. This

positions the JNDs at 7% (Figure 4e). In fact, almost half the mice

(4/9, 44%) had d’.1 at DF of 4%. We calculated the threshold for

each individual mouse and found that on average individual d’ was

1 or above for DFs of 7.6%61.45 (mean 6 standard error). This

was mainly due to mouse number 3 who had a d’ above 1 only for

a DF of 100%. The other mice had on average d’ that was 1 or

above for DFs of 5.4%61.25. Figure S2 displays the psychometric

functions of all mice.

This way of calculating d’, however, underestimated the ability

of the mice to discriminate between two tones. The reason is that

throughout the experiment, mice did not nose-poke in about 30%
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of the safe visits. Since most of the visits without nose-pokes were

very short (see Figure 3f), we also analysed the data while

removing from the analysis any visit that was shorter than 1

second. Short visits represent 18% of all safe visits and 30% of

conditioned visits. Most of them did not have nose-pokes (94% and

97%, respectively). They most likely represent visits that were

made by the mice in a moment of high activity without an aim to

drink. Removing these short visits (Figure 4f) had a large effect on

the percentage of safe visit without nose-pokes (compare with

Figure 4b), but not so much on the conditioned visits, in which

visits without nose-pokes could also have durations above 1

second. In general mean d’ values increase when either the

Figure 4. Main JNDs. A. Mean daily performance in fraction of visits without nose-pokes for the safe (white) and conditioned visits (grey) across
phase, starting with the last 3 days of DF of 100%. The frequencies used were 6670 Hz for the safe tone and 6803, 6937, 7137, 7337, 7670, 8004, 9433,
and 13340 Hz for the conditioned tone at DFs of 2, 4, 7, 10, 15, 20, 40, and 100% respectively. B. Mean performance as a function of DF for safe (white)
and conditioned (grey) visits. C. Single trial performance in % mice that avoid nose-poking during the 1st 3 conditioned visits (dark grey), and the 1st
3 safe visits (light grey that follow each of the conditioned visits). D. Mean nose-poke latency as a function of delta F for safe (white) and conditioned
(grey) visits. E. Mean d’ and C calculation as a function of DF. F. The same as in B after removal of visits of 1 second or less duration. G. Mean d’ and C
as in E but without visits of 1 second or less duration.
doi:10.1371/journal.pone.0091676.g004
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number of hits increases or the number of false alarms decreases.

In consequence, removing the short visits led to an increase in d’

values (Figure 4g), which were clearly larger than 1 for DFs of 4%

and above. At DF of 4%, and 7%, the percentage of mice with d’

above 1 was 89% and 78% respectively. Even for DF of 2%, 3/9 of

the mice (33%) had a d’ above 1.We calculated the threshold for

each individual mouse and found that on average d’ was 1 or

above for DFs of 4.1%61.35.

The criterion C (see methods) was also affected by the change in

DF, independently of whether it was measured with (Figure 4e) or

without (Figure 4g) short visits. Either way, the criterion (averaged

across mice) became more conservative as DF decreased and the

decision became harder, increasing overall by about half a

standard deviation unit. The increase is expected when the cost

of misses (nose-poking in conditioned visits) is higher than the cost

of false alarms (not drinking in safe visits). The criterion increased

with the removal of short visits, as expected given that the

proportion of visits with nose-pokes increased with the removal of

the short visits.

Two replications of the discrimination experiment were

conducted in Göttingen (See Text S1 and Figure S3). They

reproduced all the major results reported here, in spite of small

differences in the d’ values, which were somewhat lower for each

DF.

Generalization
To test generalization across frequencies we used the latent

inhibition paradigm in a new group of naı̈ve mice. To elicit latent

inhibition, a pre-exposure phase was introduced between the safe-

only phase and the conditioned phase. The pre-exposure phase

consisted of 83% safe visits (6670 Hz) that did not differ from

previous safe visits and 17% pre-exposure visits in which another

tone frequency was used as an additional safe frequency that was

not associated with any aversive outcome: the mouse could nose-

poke and obtain water as in any other safe visit. This frequency

varied between 3335 Hz and 15864 Hz in different experimental

groups (but was always the same within group); we will use the

terms ‘pre-exposure frequency’ and ‘pre-exposure visits’ below to

refer to visits in which this additional frequency was presented.

Subsequent to the pre-exposure phase, all mice were conditioned

at 13340 Hz, irrespective of their pre-exposure frequency.

The introduction of the pre-exposure frequency alone had no

effect on the behaviour (Figure 5a for 3335 Hz, 5b for 13340 Hz)

and mice continued to avoid nose-poking on average in about 30–

40% of both the safe and the pre-exposure visits. This was

expected given that the pre-exposure visits were not behaviourally

different from the safe visits.

When mice that have been pre-exposed to 3335 Hz were

conditioned to 13340 Hz (Figure 5a), they learned to avoid nose-

poking in conditioned visits already on day 1, with an average of

83% of conditioned visits without a nose-poke. There was also a

small and temporary increase in the mean rate of safe visits

without nose-pokes, suggesting that the mice became more

conservative in their decision to nose-poke.

In contrast, pre-exposing mice to the 13340 Hz tone elicited

latent inhibition of the conditioned response once conditioning

started (Figure 5b), with only 70% of conditioned visits (averaged

across mice) without nose-pokes over the first 24 hours. The effect

was more pronounced in the first 6 hours; these fast changes in

behaviour during the first day will be analysed below. By day 2 of

conditioning, the mice pre-exposed to 13340 Hz reached a

performance level of 90% (averaged across mice). In addition to

the latent inhibition, there was a noticeable effect on the

performance in the safe visits. After the beginning of conditioning,

these mice, like those pre-exposed to 3335 Hz, increased the

number of safe visits without nose-pokes. This generalization of the

conditioning to the safe tone was more long lasting than the latent

inhibition, and suggests the use of a more conservative criterion in

the decision to nose-poke in this group, even when exposed to the

safe tone.

Frequencies other than 13340 Hz also elicited latent inhibition.

Figure 5c shows the average rate of visits without nose pokes in the

last day of pre-exposure and for 5 days of conditioning for all pre-

exposure frequencies, superimposed on the same data for the

group pre-exposed to 3335 Hz (light grey circles). Pre-exposure

frequencies close to 13340 Hz elicited latent inhibition – for

example, the rate of conditioned visits without nose pokes in the

first day of conditioning was essentially the same for pre-exposure

frequency of 11218 Hz as for pre-exposure frequency of

13340 Hz. Furthermore, the generalization of the conditioning

to the safe tone was also apparent for frequencies close to

13340 Hz. This increase was longer lasting than the latent

inhibition itself.

We analysed in detail the way learning progressed through the

first day of conditioning in three groups: mice pre-exposed to

3335 Hz (n = 9), to 11218 Hz (n = 16), and to 13340 Hz (n = 31;

Figure 5d). The percentage of mice that nose-poked in each of the

first 10 conditioned visits was analysed using a 2-way ANOVA

(factors: pre-exposure frequency x visit number). We chose 10

trials because this is the least number of trials at which one group

achieved reasonable performance in the conditioned visits (at least

75% of the mice avoided nose-poking in 3 consecutive visits).

There was a significant effect of group (F(2,18) = 3.7; p = 0.046)

and a significant effect of visit number (F(9,18) = 5.6; p,0.01). To

identify the cause for the significant group effect, a post-hoc paired

t-test on the percent of mice that nose-poked in each of the first 10

trials of the groups pre-exposed to 3 kHz and to 13 kHz resulted

in a significant difference (t(9) = 2.49; p = 0.03). The first day of

conditioning had a group mean of 106, 104.5 and 124.6 visits for

each group respectively. Of these, an average of 19.2, 16.1 and

20.3, respectively, were conditioned. Thus, a small difference in

the number of conditioned visits without nose-pokes had a strong

impact on the overall performance.

We showed above that in the simple conditioning task (without

pre-exposure) mice learned the discrimination with a single

exposure to the conditioning frequency. There are two reasons

that might explain why in the generalization task learning was

slower, even in the group pre-exposed to 3335 Hz. In the simple

conditioning task used for measuring frequency discrimination, the

conditioned tone was first presented in only 5% of visits, and not

17% as in the present task. We know (data not shown) that

increasing this probability leads to a decrease in the number of hits

as well as an increase in the number of false alarms, which might

be the reason why in the current task the best group needed about

4 trials to learn the discrimination. Alternatively, since the mice

have already been exposed to two safe tones they might generalize

some of that learning to any new frequency, in which case the

slower learning is really a component of the latent inhibition which

is common to all pre-exposure frequencies.

Figure 5e shows a trial-by-trial analysis of the generalization of

conditioning to the safe frequency, conducted on the average

performance across mice. In the initial safe visits of this phase, the

increase in the percentage of mice that did not nose-poke was

apparent for all pre-exposure frequencies, but it was longer lasting

in the group pre-exposed to 13340 Hz, in which this form of

generalization lasted several days (see Figure 5b). Even when

testing as many as the first 100 safe visit after conditioning began,

an ANOVA on the percentage of animals that nose-poked in each
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visit across the three behavioural groups (group x sequential visit

number) revealed an effect of group (F(2,198) = 59.9; p,0.01) but

no effect of sequential visit number (F(99,198) = 0.73; p = 0.96). A

post-hoc two sample t-test comparing the group pre-exposed to

3 kHz and that pre-exposed to 13 kHz revealed a significant effect

of group (t(99) = 210.8; p,0.01).

Latent inhibition was therefore quantified by the rate of visits

without nose-pokes during the first day of conditioning. The

frequency tuning curve of latent inhibition is displayed in

Figure 6a. From day 1 of conditioning, all animals faced the

same behavioural contingencies: 13340 Hz was used as the

conditioned frequency and was presented in 17% of the visits,

while 6670 Hz tones were used in the remaining, safe, visits.

Differences between the groups are, therefore, due to the

differences in the frequencies used during the pre-exposure stage,

before conditioning started. A 2-way ANOVA on the fraction of

Figure 5. Latent inhibition. A. Mean daily performance (% visits without nose-pokes) of mice pre-exposed to 3335 Hz. White dots are habituation
or safe visits and grey dots are the remaining 17% of visits (pre-exposure or conditioned visits). B. As in A for mice pre-exposed to 13340 Hz. C. As in A
but showing only the last day of the pre-exposure phase and 5 days of conditioning for all the pre-exposure frequencies used, except for the groups
pre-exposed to 3335 Hz, whose performance during conditioning appears in all plots as light grey circles. D. Performance in the single visits for the
1st 12 conditioned visits after pre-exposure to 3335 Hz (white), 11218 Hz (light grey), or 13340 Hz (dark grey). E. The same as in D for the 1st 100 safe
visits, in blocks of 5 trials, that followed the first conditioned visits.
doi:10.1371/journal.pone.0091676.g005
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visits without nose-pokes (factors: pre-exposure frequency and visit

type) showed no main effects of pre-exposure frequency

(F(6,164) = 1.78; p = 0.10), but a significant main effect of visit

type (F(1,164) = 128.86; p,0.01). Most importantly, there was a

highly significant interaction between pre-exposure frequency and

visit type (F(6,164) = 5.4; p,0.01). Focusing on the conditioned

visits only, a one-way ANOVA revealed a significant effect of pre-

exposure frequency on the percentage of visits without nose-pokes

(F(6,82) = 3.87; p,0.01). Post-hoc comparisons (Tukey’s honestly

significant difference) showed that frequencies between 7932 Hz

and 15864 Hz elicited significant latent inhibition of the condi-

tioning to the 13340 Hz tone, while frequencies outside this range

did not.

Latent inhibition was transient: the effect was very pronounced

during the 6 hours following the first conditioned visit (Figure 6b,

black) but had practically disappeared after 12 hours (light grey).

Interestingly, it was slightly more pronounced in the group pre-

exposed to 11218 Hz than in the group pre-exposed to 13340 Hz

itself, even though the generalization to the safe tone was stronger

for a pre-exposure frequency of 13340 Hz. We performed an

Analysis of Covariance on the conditioned visits without nose-

pokes as a function of pre-exposure frequency (Figure 6b), with

time (consecutive 6 hour periods) as a covariate. There was a

significant effect of time (F(1,203) = 45, p,0.01), due to the

progress of the learning process. The rate of visits without nose

pokes decreased on average by about 10% for each 6 hour blocks.

Importantly, there was a main effect of pre-exposure frequency

(F(6,203) = 4, p,0.01) on the percentage of visits without nose-

pokes. No significant interaction was found. Post-hoc comparisons

showed that the percentage of visits without nose-pokes was lower

at 11.2 and 13.4 kHz than at the other frequencies. Thus, during

the initial 6 hours of conditioning, latent inhibition represented a

reduction in mean performance of 19.5% for the group pre-

exposed and conditioned to 13 kHz and of 26.8% for the group

pre-exposed to 11 kHz relative to the group pre-exposed to

3.3 kHz. By the 18th hour after the beginning of conditioning the

performance was reduced only by 12.5% and 7.3%, in the two

groups respectively relative to the group pre-exposed to 3.3 kHz.

The effect that conditioning had on the safe visits (generaliza-

tion to the safe tone; Figure 6a, dark grey dots) also depended

significantly on the pre-exposure frequency (one-way ANOVA on

pre-exposure frequency, F(6,82) = 3.46; p,0.01), although it could

be observed to a certain extent at all pre-exposure frequencies used

(compare dark and light grey circles in Figure 6a). As discussed

above, it was substantially longer-lasting than the latent inhibition

itself.

We performed signal detection analysis on the behaviour of the

groups pre-exposed to 3335 Hz, 11218 Hz and 13340 Hz.

Animals pre-exposed to 3335 Hz had no LI and the least

generalization to the safe tone, animals pre-exposed to

11218 Hz had strong LI and mild generalization to the safe tone,

and animals pre-exposed to 13340 Hz had LI and strong

generalization to the safe tone. We measured d’ and C (see

Methods) with and without short visits, similarly to the analysis for

the frequency discrimination experiment. Figures 6c and d show

the percentage of conditioned (left) and safe (right) visits without

nose-pokes in 6 hour intervals from the beginning of conditioning.

These are compared with the average behavioural performance

during the pre-exposure phase (pre; for the conditioned visits we

used the pre-exposure visits which were not conditioned and

should not behave differently from the safe visits during that

phase). The first time points on these figures display data already

shown in Figures 5d and 5e, except that here the time resolution is

coarser and the data covers a longer period of time.

Both the LI and the generalization to the safe tone are readily

apparent in Figure 6c (as in Figure 5d). LI is evident in the longer

time it took the groups pre-exposed to 11218 and 13340 Hz to

reach the level of conditioning (nose-poke avoidance) of the group

pre-exposed to 3335 Hz. Only after 12 hours of conditioning did

all the groups reach the same performance level for the

conditioned tone. The generalization to the safe tone was larger

in the group pre-exposed to 13 kHz and long lasting when present

(as in Figure 5e). Since conditioning begun with the dark phase,

the block starting at 18 hours after start of conditioning coincide

with the light phase, and, therefore, with low activity (see number

of trials for each period in Figure 6c). This pattern of lower nose

poking during the second half of the light cycle was also observed

in the mice that underwent discrimination training, as described

above. Removing the short visits from the analysis (Figure 6d) had

a strong effect on the safe visits (right panel) with the generalization

to the safe tone disappearing in all but the group pre-exposed to

13 kHz.

We derived d’ and C from these data. In animals pre-exposed to

3335 Hz, the average d’ was close to threshold value of 1 already

during the first 6 hours of conditioning and improved fast during

the following 18 hours (Figure 6e, left). Discrimination, measured

through d’ values, was worse for pre-exposure frequencies closer to

the conditioned frequency, as expected, reaching a minimum in

mice pre-exposed to 13340 Hz. These mice showed a mean d’ of

essentially 0 during the first 6 hours of conditioning, reflecting

their identical behaviour in the presence of either conditioned or

safe tones. The mice reached d’.1 only during the 2nd day of

conditioning, when the generalization to the safe tone had partially

subsided. Removing visits shorter than 1 second (Figure 6f, left),

had, as expected, little effect on the values measured over the pre-

exposure phase but increased the values of d’ during conditioning,

because the main effect of removing the short visits was a decrease

in the number of safe (or pre-exposure) visits without nose-pokes.

There was still a distinct delay in the increase of d’ in the mice

exposed to 13340 Hz.

The criterion C (see Methods) showed the largest change

following the transition from pre-exposure to conditioning, and a

more gradual change thereafter (Figure 6e). During the pre-

exposure phase values of C were high because the number of nose-

pokes was high for both pre-exposure and safe visits. Immediately

after the start of conditioning, the number of nose-pokes decreased

in both conditioned and safe visits, leading to a lower criterion that

reflected this more conservative behaviour. Removing the short

visits from the analysis (Figure 6f) led to an overall increase in C

values during conditioning because of the increase in the

proportion of safe visits with nose-pokes, but did not affect the

overall pattern of change. C remains largely negative (conserva-

tive), as expected from a higher cost for nose-pokes in conditioned

visits than from failures to nose poke in safe visits.

Discussion

Using a novel behavioural paradigm, we measured both

discrimination and generalization for pure tone frequency in

C57BL/6J mice. Discrimination thresholds (d’ = 1) were 4%-7%,

although mice could discriminate significantly above chance

frequencies as close as 2% apart. In spite of these small

discrimination thresholds, mice generalized spontaneously over a

range of at least 0.5 octave. Thus, mice generalize over frequencies

that are easily discriminable.

The Audiobox allows training and testing in the animal living

quarters, where animals live in groups and handling is minimized

to the weekly cleaning. The mice were neither food- nor
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water-deprived: performing the task ensured their access to water.

This setting makes it possible for each mouse to develop a

spontaneous pattern of behaviour. We saw, for example, very clear

circadian rhythms with their activity, peaking around midnight.

Mice made numerous visits to the corner but did not nose-poke in

about one third of the safe visits. This behaviour presumably

reflects their natural curiosity and may be characteristic of each

strain or genetic background. It most probably does not reflect lack

of motivation: the visits without nose-pokes were short and often

occurred after a period of inactivity but sometimes also occurred

between visits with nose-pokes. These short visits are presumably a

feature of tasks in which performance is ad libitum. Since they

Figure 6. Behavioural tuning curve of latent inhibition. A. Mean performance (% visits without nose-pokes) on the first day of conditioning
across pre-exposure frequencies for the conditioned visits (dark grey) and safe visits (mid grey). Small light grey dots represent the performance on
the safe visits on the last day of the pre-exposure phase, for comparison. B. The same as in A for the conditioned visits only, in blocks of 6 hours (color
coded) for the first 18 hours after the start of conditioning. C. Mean percentage visit without nose-pokes for conditioned (left) and safe (right) visits, in
blocks of 6 hours for mice pre-exposed to 3335, 11218 or 13340 Hz. The lines with numbers are the number of conditioned (left) and safe (right) visits
per time block for each of the three groups (color-coded as for dots) D. The same as in C, but removing from the analysis visits that were 1 second or
less in duration. E. Mean d’ values (left) and C (right) calculated using the same conditions as in C. F. As E but removing visits that were 1 second or
less in duration.
doi:10.1371/journal.pone.0091676.g006
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represent a problem for estimating the true level of false alarm

rates in these tasks, future strategies could be devised to reduce

these visits for studies that require low levels of false alarms.

C57BL\6J mice carry a mutation in the Ahr1 gene that leads to

age-related hearing loss [13]. By about 3 months of age hearing

thresholds start to deteriorate, initially only for high frequencies

but with time for progressively lower frequencies [14–15]. For the

ages (,14 weeks) and frequencies (,16 kHz) used in this study, we

did not expect any relevant hearing loss [14,16–17]. The oldest

mice used here finished their training when they were 14 weeks old

but reached levels of discrimination comparable to those of the

young mice. Thus, age-related hearing loss did not affect the

conclusions of this study.

Mice learned to discriminate between two frequencies that were

one octave apart between their first and second conditioned visits.

They achieved discrimination thresholds that were comparable or

only slightly larger than other thresholds obtained in rodents. In

highly-trained mice, frequency discrimination thresholds are at

3% for frequencies around 8 kHz [18,8], and at 2.4% in young

mice for frequencies around 16 kHz [19]. In rats, values vary

between 6% [20] and 3% [3]. Typically, in these studies different

tone frequencies were presented within the same trial and animals

responded to the change in tone frequency. In contrast, our

paradigm did not allow the mice to compare between the safe and

the conditioned tone within the same trial. The thresholds we

measured required comparison with a memory trace of the safe

tone, and therefore presumably represent the acuity of an internal

representation of the frequency axis. Nevertheless, perceptual

acuity was only slightly affected.

Mice learned to discriminate frequencies very quickly by

comparison with other operant auditory protocols: significant

frequency discrimination was observed already on the first day of

conditioning. Admittedly, conditioning occurred after 7 days in

the Audiobox. In contrast, NMRI mice trained with a go/no-go

paradigm required about 600 trials to reach asymptotic perfor-

mance [21], and CBA/CaJ mice may need several weeks to learn

a go/no-go tone/no-tone discrimination [22]. It is plausible that

the continuous and ad-libitum training in the home cage is at least

partially responsible for the fast learning we observed. Indeed, it

has been shown previously that differences in housing conditions

and training paradigms can lead to differences in auditory

thresholds [11,23–24,2] for review.

Mice spontaneously categorized all new tone frequencies as

dangerous once they learned the paradigm. This is reflected in

Figures 5b, 6b and 6d: mice tended to avoid nose-pokes to new

frequencies from their first presentation. This category had

surprisingly steep boundaries, as reflected in the good frequency

JND we report.

Despite their relatively small JND, mice generalized across a

wide frequency band (half an octave) of pre-exposure frequencies,

as judged by the level of latent inhibition in the response to 13 kHz

induced by the pre-exposure to frequencies ranging between 3 and

16 kHz for different groups of mice. A similar generalization has

been shown before in the rabbit using the eyelid classical

conditioning, and tones as predictive stimuli [25–26], although

animals in these studies received more pre-exposure trials than our

mice (.1000 and 450 presentations, respectively). Lengthening

the pre-exposure period leads to an increase in the level of latent-

inhibition in rats [27].

The behavioural tuning curve of latent inhibition was asym-

metrical, narrower for frequencies above the conditioned tone.

Although the asymmetrical shape, as well as the precise half-width

of the behavioural tuning curve of latent inhibition, could result

from the presence and position of the safe tone 1 octave below the

conditioned tone, this is unlikely. Indeed, the generalization

tuning-curves in the studies of Siegel [25] and Solomon and

Moore [26] were also asymmetrical around the conditioned tone

(on a logarithmic scale) and steeper towards the higher frequen-

cies, although no safe tone was used. In these studies the width of

the behavioural tuning curve for LI generalization was at least 1

octave in the Siegel study [25], which uses frequencies between 0.5

and 4 kHz with 1 kHz resolution; and at least half octave in the

Solomon and Moore study [26], using pure tones between 4 and

10 kHz with a resolution of 4 kHz. These widths are comparable

to ours.

Tuning curve widths of half an octave are not uncommon in

C57Bl/6 mouse nerve fibres for similar frequency ranges and for

lower intensities than those used here [28–30]. Similarly,

psychoacoustical measurements in mice suggest rather wide

peripheral channels [31], which may span over half an octave

[32]. It is commonly accepted that the bandwidth of the peripheral

channels roughly corresponds to that of auditory nerve fibres [33],

although the properties of the peripheral channels are determined

only at the level of the inferior colliculus [34]. The small frequency

differences that can be discriminated by mice are therefore an

example of hyperacuity, which is usually associated with integra-

tion of information across multiple peripheral sensors, although it

could potentially be achieved by using the steep high-frequency

slopes of the tuning curves of selected auditory nerve fibers [29];

see [35]. On the other hand, the shape of the behavioural tuning

curve of the latent inhibition is suggestively similar to the stylized

tuning curve of auditory nerve fibres and to responses in inferior

colliculus, where neurons with wide and asymmetrical tuning

curves have been recorded [36], and where perceptual categori-

zation has been suggested to occur [34,37]. Thus, our results may

suggest that generalization is determined by the tuning width of

the peripheral filters, either through categorization processes in the

inferior colliculus, or through an internal comparison between the

level of activation of the auditory midbrain to the conditioning and

the pre-exposed frequency. Such an account would require the

existence of a memory trace of the excitation pattern evoked by

the pre-exposure frequency, presumably stored in higher brain

areas such as auditory cortex. These speculations may be directly

tested by recording neuronal responses in the auditory midbrain.

In addition to the latent inhibition, we also observed an increase

in the number of ‘false alarms’ - safe visits without nose-pokes.

This increase was particularly prominent in the group pre-exposed

to the conditioned frequency itself. This generalization of the

‘cautiousness’ to the safe tone was, unlike latent-inhibition itself,

long lasting, and was due to reduced discriminability (d’) between

the two tones, rather than a more conservative threshold for nose

poking (C). Thus, the generalization to the safe tone could reflect,

in part, the stress levels of the animals, who learned to avoid the

conditioned tone but were left with the impression that apparently

safe stimuli might turn nasty without warning: ‘He who was

scalded with boiling water is cautious with cold’.

We show that mice can be trained to perform auditory

discriminations of different complexity quickly, reliably, and with

minimum handling. This might prove useful in behaviourally

characterizing the growing number of mice with auditory system-

related mutations [38]. Most importantly, the difference in the

width of the behavioural tuning curve due by task design opens a

door to study the link between perception and cognition.

Supporting Information

Figure S1 Discrimination (Göttingen replications). A–D

is for the mice that begun with 9 weeks of age. A. Mean daily
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performance expressed as the fraction of visits without nose-pokes

for the habituation and safe visits (white and light grey) and the

conditioned visits (black and dark grey) for the group that had

6670 Hz as safe and the group that had 13340 Hz as safe. B.

Single trial performance analysis across all mice: # mice that

avoid nose-poking (n = 18) during the 1st 7 conditioned visits

starting with the first visit in which each mouse received an air-puff

because it nose-poked (dark grey), the very 1st 7 safe visits after

habituation (white), and the 1st 7 safe visits after the 1st punished

conditioned visit light grey). C. Mean distribution of nose-pokes

per visits in the habituation, safe visits during conditioning and

conditioned visits. D. Mean distribution of visit duration for all

visits (black) and visits without nose-pokes (white) in the

habituation, safe visits during conditioning and conditioned visits.

The x axis is linear up to visit length of 10 seconds and logarithmic

thereafter. E–F is for the mice that begun with 5–6 weeks of age.

E. Mean daily performance expressed as the fraction of visits

without nose-pokes for the habituation and safe visits (white and

light grey) and the conditioned visits (black and dark grey). B.

Single trial performance analysis across all mice: # mice that

avoid nose-poking (n = 6) during the 1st 7 conditioned visits

starting with the first visit in which each mouse received an air-puff

because it nose-poked (dark grey), the very 1st 7 safe visits after

habituation (white), and the 1st 7 safe visits after the 1st punished

conditioned visit light grey).

(TIF)

Figure S2 Individual JNDs (Jerusalem replications). A.

Individual psychometric curves for the 9 mice used in Jerusalem as

a measure of d’ values for each DF used. B. The mean

psychometric curve (dark) is plotted over a background of

individual psychometric curves (light gray). The horizontal and

vertical dotted lines represent the level for a d’ of 1 and a DF of

10%, respectively.

(TIF)

Figure S3 JNDs (Göttingen replications). A–C is for mice

that begun with 9 weeks of age and D–F for mice that begun with

5–6 weeks of age. A and D. Mean daily performance in fraction of

visits without nose-pokes for the safe (white) and conditioned visits

(grey) across phase, starting with the last 3 days of DF of 100%. B

and E. mean d’ as a function of DF with (grey) and without (white)

removal of visits of 3 seconds or less duration. C and F. percentage

mice that avoid nose-poking in the first 20 conditioned visits and

subsequent safe visits in each of the phases, where the 100% phase

begins with the lasts 3 days of conditioning at DF of 100%. The

first dark grey data point is the first conditioned trial in that phase,

the second grey point is the mean performance in conditioned

trials 2 to 10, and the third grey point is the mean performance in

trials 11 to 20. The light grey points are the 4 safe visits that follow

each conditioned trial.

(TIF)

Table S1 Sequence of conditioned frequencies used for
JND assessment in the Göttingen replications.
(DOCX)

Text S1 Description of Göttingen discrimination and
JND replications.
(DOCX)
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