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Abstract 
Anxiety disorders and substance abuse, including benzodiazepine use disorder (BUD), 

frequently occur together. Treatment of anxiety disorders unfortunately still includes 

benzodiazepines, and patients with an existing co-morbid BUD or a genetic susceptibility for 

BUD may be put at risk of adverse treatment outcomes. The identification of genetic 

predictors for anxiety disorders, and especially for BUD, could aid the selection of the best 

treatment option and improve clinical outcomes. The brain specific angiogenesis inhibitor I-

associated protein 3 (Baiap3) is a member of the mammalian uncoordinated 13 (Munc13) 

protein family of synaptic regulators of neurotransmitter exocytosis, with a striking 

expression pattern in amygdalae, hypothalamus and periaqueductal gray. Deletion of Baiap3 

in mice leads to enhanced seizure propensity and increased anxiety, the latter being more 

pronounced in female than in male animals. We hypothesized that genetic variation in human 

BAIAP3 may also be associated with anxiety. Using a phenotype-based genetic association 

study, we identify two human BAIAP3 single nucleotide polymorphism risk genotypes (AA 

for rs2235632, TT for rs1132358) that show a significant association with anxiety in women 

and, surprisingly, with benzodiazepine abuse in men. Returning to mice, we find that male, 

but not female Baiap3 KO mice develop tolerance to diazepam more quickly than control 

animals. Analysis of cultured Baiap3 KO hypothalamus slices reveals an increase in basal 

network activity and an altered response to diazepam withdrawal. Thus, Baiap3/BAIAP3 is 

gender-specifically associated with anxiety and BUD, and the analysis of Baiap3/BAIAP3 

related functions may help elucidate mechanisms underlying the development of both 

disorders. 
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INTRODUCTION 
 

Anxiety disorders have high lifetime prevalence rates (1) and exhibit a remarkable 

comorbidity with substance use disorders (SUD) (2-4). This association worsens treatment 

outcomes for both conditions (5), and represents a significant burden on individuals and 

society. Both anxiety disorders and SUD are complex disorders that arise from a combination 

of genetic influence and environmental factors. To improve upon established treatment 

options, which include pharmacological as well as cognitive-behavioral therapies (6, 7), a 

more detailed picture of the etiology of these disorders would be instrumental. Estimates of 

heritability from twin and family studies are in the range of 20%-40% across the different 

anxiety disorders (8, 9), and in the range of 40%-70% for the major SUD (10). Recent studies 

point to the involvement of a large number of genes with relatively small effect sizes for both 

anxiety disorder (11, 12) and SUD (13-15). Although the interaction between anxiety 

disorders and SUD is likely bi-directional and varies by the type of anxiety (16), genetically 

determined anxiousness personality traits may make the development of an addiction more 

likely (2, 17-19). The recommended first-line pharmacological treatments of anxiety 

disorders are selective serotonin or serotonin/norepinephrine reuptake inhibitors and the 

calcium channel modulator pregabaline (6). However, primary care physicians often still 

prescribe benzodiazepines, which rank among the most frequently abused prescription 

medications (National Institute on Drug Abuse [http://www.nida.nih.gov]), to patients 

suffering from anxiety disorders (20). Identifying genetic risk markers would advance our 

understanding of the biology of anxiety and benzodiazepine abuse, and would be a valuable 

step in improving treatment options for these complex diseases. 

 

In addition to human family, twin and genome wide association studies, animal models are 

employed to study the genetic basis and neural circuitries of anxiety and addiction. For both 

animals and humans, anxiety is an adaptive defensive response to threatening stimuli 

necessary for the survival of the species, whereas anxiety disorders are an extreme and 

maladaptive manifestation of normal anxiety (21). Somatic anxiety symptoms are mediated 

by the release of specific neurotransmitters and neuropeptides. The selection of candidate 

genes that are being investigated in animal studies is still largely driven by hypotheses of the 

neural circuitries and neurotransmitter systems thought to be involved in mediating fear and 

anxiety (22). Using a candidate gene approach, we investigate the involvement of the brain 
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specific angiogenesis inhibitor I-associated protein 3 (Baiap3), which is highly expressed in 

brain regions involved in processing fear, such as the amygdalae, hypothalamus and 

periaqueductal gray, in behavioral phenotypes relevant for human psychiatric disorders. 

 

Baiap3 is a member of the mammalian uncoordinated 13 (Munc13) family of synaptic 

regulators of neurotransmitter exocytosis (23-25). Baiap3 has a unique and striking 

expression pattern (Allen Brain Atlas [http://mouse.brain-map.org/]) in brain regions such as 

the central, medial and basomedial amygdaloid nuclei, the hypothalamus and the 

periaqueductal gray, that are involved in regulating autonomic functions, and that are also 

critical in processing fearful stimuli and mediating anxiety related behaviors (26, 27). The 

cellular function of Baiap3 is currently unknown, however, all other Munc13 members are 

regulators of vesicle exocytosis in various cell types (28). In the brain, Munc13-1 and 

Munc13-2 are essential for membrane fusion of synaptic vesicles containing classical 

neurotransmitters, such as glutamate or γ-aminobutyric acid (GABA) (25). Munc13-4, a non-

neuronal Munc13 isoform most closely related to Baiap3 at the sequence level, is involved in 

exocytosis in cells of the hematopoietic system (29, 30). 

 

To explore the function of Baiap3, we combined the behavioral analysis of Baiap3 knockout 

(KO) mice with a phenotype-based genetic association study (PGAS) of the human BAIAP3 

gene, using the previously described Göttingen Research Association for Schizophrenia 

(GRAS) database (31, 32). Employing this 2-pronged approach, we identify Baiap3 as the 

first genetic risk marker for anxiety and benzodiazepine abuse in both mice and humans. 
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MATERIALS AND METHODS. 
 

Animals 

All experiments were approved by the local Animal Care and Use Committee. The first 3 

coding exons of the murine Baiap3 gene were preplaced with a neomycin resistance cassette 

through homologous recombination in embryonic stem cells (129/ola) (Supplementary 

FigureS1A). Baiap3 mutant mice of mixed 129/ola;C57Bl6/N background were backcrossed 

for 7 more generations to C57Bl/6N, all experiments were done with WT and KO littermates 

of the resulting generation 8. After weaning, mice were group-housed in standard plastic 

cages (N=5 per cage) and maintained in a temperature-controlled environment (21±2°C) on a 

12h light/dark cycle with food and water ad libitum, unless stated otherwise.  

 

Drugs Used in Animal Experiments 

Two classical benzodiazepines, positive allosteric modulators of GABA type A receptors 

(GABAAR) were used: (I) the long-acting benzodiazepine diazepam (Ratiopharm GmBH, 

Germany) was suspended in saline containing polysorbate80 for intraperitoneal (i.p.) 

injection, (II) the short-acting benzodiazepine midazolam (Ratiopharm GmBH, Germany) 

was added to 2% sucrose solution for oral administration. Antagonists used were: (I) 

flumazenil (Sigma-Aldrich Chemie GmBH, Germany), routinely applied in the clinic to 

counteract benzodiazepine overdoses, was dissolved in saline containing polysorbate80 and 

HCl, and (II) pentylenetetrazole (PTZ) (Sigma-Aldrich Chemie GmBH, Germany), a non-

competitive GABA antagonist with epileptogenic properties was dissolved in saline for i.p. 

injection.  

 

Phenotypical Characterization of Baiap3 KO Mice 

Behavioural characterization of naïve Baiap3 KO mice and their WT littermates of both 

genders began at the age of 8 weeks and was performed in following order: elevated plus-

maze, open field, light/dark box, hole board, rotarod and exposure to a fear conditioning 

chamber to assess novelty-induced freezing behavior. Mouse numbers of all individual 

experiments are given in figure legends. 
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Elevated Plus-Maze 

The mouse was placed in the central platform, facing an open arm of the plus-maze. Behavior 

was recorded over 5min by an overhead video camera. A PC equipped with ‘Viewer’ 

software (Biobserve, Bonn, Germany) was used to calculate the time each animal spent in 

open versus closed arms. The proportion of time spent in open arms (natural aversion) was 

used as fear equivalent.  

 

Open Field 

Spontaneous activity in open field was tested in a grey Perspex arena (120cm in diameter, 

25cm high), virtually divided into 3 zones: central, intermediate and peripheral. The mouse 

was placed in the center and the test started when the mouse reached the wall. Over 7min, the 

mouse was allowed to freely explore the open field. Behavior was recorded by a PC-linked 

overhead video camera and calculated using ‘Viewer’ software. Readouts were: velocity, 

distance traveled, time spent in each zone and initial latency to reach the wall. 

 

Hole Board 

The hole board apparatus (TSE, Bad Homburg, Germany) for measuring exploratory activity 

consisted of a 50cm×50cm×35cm transparent Perspex chamber with a non-transparent floor 

raised above the bottom of the chamber. The floor had 16 equally spaced holes, 2.4cm in 

diameter, fitted with a light barrier sensor (8mm below floor). Mice were allowed to explore 

the chamber for 5min and the number of explored holes (head dips) was recorded.  

 

Rotarod  

This test for motor function, balance and coordination consists of a rotating drum (Ugo 

Basile, Comerio, Varese, Italy), accelerated from 4-40 revolutions per minute over 5min. 

Each mouse was placed individually on a drum and the latency of falling from the drum was 

recorded using a stop-watch. To assess motor learning, the test was repeated 24h later.  

 

Novelty Induced Fear Response  

To assess novelty induced fear response (indicated by freezing behavior), a chamber designed 

for training and testing of context fear conditioning was used. Mice were placed inside the 

chamber and allowed to explore the chamber freely for 2min, during which time no 

additional stimulus was presented (equivalent to the assessment of baseline freezing of the 

fear conditioning paradigm). Duration of freezing behavior, defined as the absolute lack of 
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movement (excluding respiratory movements), was recorded by a video camera and a PC 

equipped with ‘Video Freeze’ software (MED Associates, St. Albans, Vermont, USA).  

 

Pentylenetetrazole-Induced Seizures  

Seizure activity was induced in wakeful mice using a single i.p. injection of PTZ (50 mg/kg 

body weight (b.w.)) (33). After injection of the compound, the mouse was placed in a small, 

clear home cage and closely observed for 30min. Latencies to focal (partial clonic), 

generalized (generalized clonic) and maximal (tonic-clonic) behavioral seizures were 

recorded. Furthermore, 4 phases in the continuum of behavioral response to i.p. PTZ injection 

were defined as follows: 1. Hypoactivity (progressive decrease in motor activity until the 

animal came to rest in a crouched or prone position with the abdomen in full contact with the 

cage bottom). 2. Partial clonus (clonus seizure activity affecting face, head, and/or forelimb 

or forelimbs). 3. Generalized clonus (sudden loss of upright posture, whole body clonus 

involving all four limbs and tail, rearing and autonomic signs). 4. Tonic-clonic (maximal) 

seizure (generalized seizure characterized by tonic hindlimb extension – also associated with 

death). Finally, latencies to partial clonus (PC), generalized clonus (GC), and tonic-clonic 

(TC) seizures were summed to assign a seizure score to each mouse, used as a quantitative 

trait measure for mapping according to the following equation: Seizure score = [(0.2)x(1/PC 

latency) + (0.3)x(1/GC latency) + (0.5)x(1/TC latency)]x1000.  The weighting factors (0.2, 

0.3 and 0.5) in the equation were included as a means of incorporating a measure of the 

progressive nature of the PTZ-induced seizure phenotype into the severity rating because 

generalized clonus is regarded as a more significant event than partial clonus, and tonic hind 

limb extension as the most severe component of the phenotype. Therefore, the seizure score 

reflects the degree of progression of the seizure phenotype in each mouse (33). 

 

Diazepam Dependence, Tolerance and Withdrawal 

The mice received injections of diazepam (5mg/kg b.w. i.p.) for 10 consecutive days. 

Rotarod test was performed 30min after each diazepam injection for 7 days, with baseline 

rotarod training performed for 2 days prior to starting injections. On day 11, diazepam 

withrawal was induced by flumazenil (15mg/kg b.w. i.p.), followed by injection of PTZ 

(50mg/kg b.w. i.p.) to induce withdrawal-related seizures. Seizure induction by PTZ (50 

mg/kg b.w. i.p.) was also performed on drug-naïve mice. 
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Midazolam Oral Self-Administration and Behavior Testing in the Addicted State  

To induce benzodiazepine dependence as prerequisite for oral self-administration (document 

of addiction), group-housed mice received midazolam (Ratiopharm GmbH, Germany) in 2% 

sucrose (to reduce the bitter taste), instead of drinking water. Midazolam concentration was 

increased weekly, starting from 0.005mg/ml until the maximum concentration of 0.05mg/ml 

was reached after 10 weeks. A respective control group received 2% sucrose only. One set of 

midazolam mice was then exposed to a midazolam preference test: For this purpose, mice 

were first switched to single-housing with continued supply of midazolam (0.05mg/ml) for 2 

weeks. For the preference test, every mouse had a choice of two bottles containing either 

midazolam (0.05mg/ml) in 2% sucrose or 2% sucrose alone for another 2 weeks. The relative 

consumption of midazolam solution was calculated. The other set of mice (midazolam and 

control mice) stayed group-housed and underwent automated home cage observation using 

the LABORASTM system (Metris, Hoofddorp, Netherlands). The LABORASTM system is a 

fully automated system for continuous behavior recognition and tracking in small rodents. 

For habituation before testing, mice were temporarily put in single cages similar to the 

LABORASTM cage in the testing room for 2 consecutive nights (17.00-9.00). On the day of 

testing, Makrolon type 3 cages (840cm2), filled with a 2cm layer of bedding used during the 

habituation phase, were placed on each triangular sensor platform (95x75x75cm). Food and 

sucrose solution with midazolam (addicted group) or 2% sucrose (control group) were 

provided ad libitum. Prior to each session, LABORASTM was calibrated using the calibration 

procedure and reference weights supplied by Metris. Movements during nighttime (18.00–

9.00h) were recorded and distinguished as separate behavioral patterns by the LABORASTM 

software. Locomotion duration and scratching frequency during dark phase (20.00-8.00) was 

analyzed. 

 

Statistical Analysis 

Behavioral data were analyzed separately for males and females by Mann-Whitney U test and 

2-way ANOVA including posthoc Bonferroni testing, where applicable, using Prism4 

(GraphPad Software, San Diego, CA, USA). Significance level was set to p<0.05. All data 

are presented as mean±s.e.m.  
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Human Sample 

 

Schizophrenic Patient Sample 

The schizophrenic patient sample (N=1086) was recruited across 23 sites throughout 

Germany in the cross-sectional GRAS study and most comprehensively phenotyped (31, 32). 

The study has been approved by the Ethics Committee of the Georg-August-University, 

Göttingen, Germany, and the review boards of participating centers, and complies with the 

Declaration of Helsinki. Patients fulfilling Diagnostic and Statistical Manual of Mental 

Disorders IV (DSM-IV) criteria for schizophrenia or schizoaffective disorder were included 

in the analyses regardless of their disease stage (acute, chronic, residual, or remitted). Almost 

all patients are of European Caucasian descent (Caucasian 94.7%; other ethnicities 1.9%; 

unknown 3.4%). 

 

Healthy Control Sample 

Voluntary blood donors (N=1142) recruited following the national guidelines for blood 

donation were included for case-control analysis (31, 32). Also the majority of control 

subjects are of European Caucasian ethnicity (Caucasian 97.8%; other ethnicities 2%; 

unknown 0.2%). 

 

Sociodemographic and Clinical Variables 

Sociodemographic data (age, years of education, level of unemployment), information on 

SUD (summarizing abuse and dependence based on the DSM-IV criteria for alcohol and 

cannabis) and clinical variables describing disease severity were used to characterize the 

sample. Clinical variables included Positive and Negative Syndrome Scale (PANSS) positive 

scale as a measure of positive symptom severity (34) as well as chlorpromazine equivalents 

to estimate the relative dose of antipsychotic medication, and global assessment of 

functioning (GAF) scale (DSM-IV) as a measure of impairment of psychological, social and 

occupational functioning. 

 

Target Variables 

The dichotomous DSM-IV BUD diagnosis (summarizing abuse and dependence) as well as 

the quantitative anxiety composite score were our target variables. The anxiety composite 

score is based on the aggregation of 4 anxiety-related variables: (1) Brief Symptom Inventory 

(BSI) subscale anxiousness; (2) State-Trait Anxiety Inventory (STAI) subscale trait anxiety; 
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(3) STAI subscale state anxiety; and (4) anxiety item of the PANSS general psychopathology 

subscale (Supplementary FigureS2). 

 

DNA Extraction and Normalization 

Genomic DNA was purified from whole blood using JETQUICK Blood and Cell Culture 

DNA Spin Kit (Genomed GmbH, Loehne, Germany) according to the manufacturer’s 

protocol. DNA aliquots were stored at -80°C. For further analyses, DNA was normalized to 

50ng/µl with an automated robotic platform (Microlab Star, Hamilton, Bonaduz, 

Switzerland). Each sample was analyzed with a 0.8% agarose gel for quality control. 

 

Genotyping 

The 3 selected SNPs (rs11648169, rs2235632, rs1132358) of BAIAP3 were analyzed using 

Simple Probes (TIB Molbiol, Berlin, Germany) and called using the LightCycler® 480 

Genotyping Software implemented in the LightCycler® 480 system (Roche, Mannheim, 

Germany). The reaction mixture (10µl) was prepared with 20ng of DNA in 384 well plates 

following the standard protocol (Roche). In each run, 8 positive controls (hgDNA, Bioline, 

Luckenwalde, Germany) and negative water blanks were included for quality and internal 

control purposes. Of the GRAS patients, a total of N=1082 (99.63%) were successfully 

genotyped for BAIAP3 SNP1 (C/G) rs11648169, N=1086 (100%) for BAIAP3 SNP2 (G/A) 

rs2235632, and N=1069 (98.43%) for BAIAP3 SNP3 (C/T) rs1132358, and included in the 

analyses. Of the healthy control subjects, all N=1142 were successfully genotyped for SNP1, 

SNP2 and SNP3 of the BAIAP3 gene. 

 

Statistical Analyses 

For all analyses, statistical significance was set to 0.05. Statistical analyses of human data 

were performed using SPSS for Windows version 17.0. Group differences in categorical and 

continuous variables were assessed using Chi2 or Mann-Whitney U tests; in cases of normal 

distribution of the continuous variable, T-tests were performed. Anxiety score composition 

was done using z-standardized mean subscale scores (BSI anxiousness, STAI trait anxiety, 

STAI state anxiety) or, in case of PANSS anxiety, a z-standardized single item, organized 

such that higher values represent higher symptom severity. Intercorrelations and internal 

consistency of the anxiety composite score was calculated using Pearson's correlation 

coefficient and Cronbach's α (35). In the GRAS sample, the following items or scales were 

incomplete: BSI anxiousness 7.5% missing, STAI trait anxiety 20.2%, STAI state anxiety 
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21.6%, and PANSS anxiety 3.2%. If all 4 anxiety variables were available, the mean was 

calculated for each respective subject as individual anxiety composite score. In case of 

missing data, a linear regression based multiple imputation model (10 iterations) of missing 

data was applied, if at least 3 out of the 4 variables per subject were available. For the 190 

individuals with imputed values, the final anxiety composite score represents the mean of 10 

imputed values for the missing item, increasing the availability of the anxiety score from 

N=771 to N=961 schizophrenic subjects (36). Analysis of covariance (adjusted for age, 

PANSS positive subscale score, and chlorpromazine equivalents) was used to analyze the 

effect of SNP genotypes on the standardized anxiety composite score. For the phenotype-

genotype association analyses (including peripheral  blood  mononuclear  cells, PBMCs, see 

below) of the BAIAP3 SNP rs2235632, G carriers (GG and AG) were aggregated and 

contrasted with individuals homozygous for the A allele, and in case of SNP rs1132358, C 

carriers (CC and TC) were aggregated and contrasted with TT individuals. SNP 11648169 

was excluded from further analyses since it yielded no statistically significant effects. 

 

In Vitro Analyses 

 

Immunofluorescence Analysis 

Brains were perfusion-fixed, and organotypic hypothalamus slices immersion fixed in 4% 

paraformaldehyde in phosphate buffer (pH 7.4). Brains were post-fixed for 1 hour, 

cryoprotected with 30% sucrose and frozen. For immunofluorescence analysis, free-floating 

brain sections of 40μm thickness or organotypic sections of 300μm thickness were incubated 

in primary antibodies for 72h followed by incubation with IgG-coupled Alexa Fluor 488, 

Alexa Fluor 555 and Alexa Flour 633 dyes (Invitrogen, Germany) for 24h. Rabbit and guinea 

pig antibodies to Baiap3 were raised to a purified fragment (amino acids 617-973) containing 

the munc homology domains (MHD)-1 and MHD-2 domains of mouse Baiap3. Commercial 

primary antibodies used were rabbit- and guinea pig-anti-vesicular glutamate transporter 1 

(VGLUT1), rabbit- and guinea pig-anti-VGLUT2, rabbit- and guinea pig-anti-vesicular 

inhibitory amino acid transporter (Viaat), mouse anti-Gephyrin (mAB7a) (all from Synaptic 

Systems, Germany), and mouse anti-postsynaptic density protein 95 (PSD-95) (clone K28/48, 

NeuroMab). False color images of brain sections and organotypic slices were obtained with a 

fluorescence stereomicroscope (Leica FluoCombi IIITM) and an ApoTomeTM fluorescence 

microscope (Axio Imager Z1, Zeiss), respectively. 
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Hypothalamus Slice Culture  

Organotypic hypothalamus slices of 300μm thickness from postnatal day (P)5 and P6 mice 

were prepared in Hank’s balanced salt solution (24020-091, Invitrogen, Germany) with 20% 

glucose and 1mM kynurenic acid (Sigma-Aldrich, Germany) (pH 7.4), using a McIlwain 

Tissue Chopper. Slices were cultured in 6-well plates on confetti cut from 0.45μm filters 

(FHLC04700, Millipore, Germany) that were placed 0.4μm Millicell cell culture inserts 

(PICM03050, Millipore, Germany) for 5 days using a mixture of 41% Earle’s Basal Medium 

Ealge (BME) (F0225, Biochrom, Germany), with 25% Earle’s Balanced Salt Solution 

(1.8mM CaCl2,  1mM NaH2PO4, 0.8mM MgSO4, 116mM NaCl, 26.2mM NaHCO3, 5.4mM 

KCl, 5mM Glucose), 20% heat inactivated horse serum, 10% H2O, 25mM 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) (Biochrom, Germany), 28mM 

Glucose, 1mM GlutaMAXTM (35050, Invitrogen, Germany), 1μg/ml Insulin, 88μg/ml 

ascorbic acid, 0.25% MEM Vitamine Solution (K0373 Biochrom, Germany) and 0.5% MEM 

Amino Acids (K0363, Biochrom, Germany). On day 5 in vitro, the cultures were switched to 

a medium with identical components but containing 5% horse serum, 55% BME, 2mM 

GlutaMAXTM and 10μM diazepam, diluted 1:6000 from a 60mM stock solution in 

dimethylsulfoxide (DMSO) or DMSO alone. The CO2 concentration was 5% and medium 

changes were done on the day after culture and every 48h after that. 

 

Electrophysiological Analyses 

Organotypic slices containing the ventromedial hypothalamus were transferred to the 

recording chamber between DIV10 and DIV17. Recordings were started after a 30min 

recovery time, the extracellular recording solution contained 120mM NaCl, 26mM NaHCO3, 

1mM KH2PO4, 2mM KCl, 20mM glucose, 2mM MgCl2, 2mM CaCl2 and 250nM flumazenil. 

Cells were whole-cell voltage clamped at -70mV or -20mV or recorded in current clamp 

mode with an EPC 10 USB Double (HEKA, Germany) under control of the Patchmaster 2.52 

program (HEKA, Germany). All analyses were performed using MiniAnalysis (Synaptosoft, 

USA). Recordings of miniature inhibitory postsynaptic currents (mIPSCs) were performed in 

presence of 1μm tetrodotoxin (Tocris, Germany) and 10μm 2,3-dioxo-6-nitro-1,2,3,4-

tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) (Tocris, Germany), with an 

intracellular solution containing 100mM KCl, 50mM K-gluconate, 10mM HEPES, 0.1mM 

EGTA, 0.3mM GTP, 4mM ATP and 0.2% Biocytin. Action potentials and sponanous 

inhibitory postsynaptic currents (IPSCs) were recorded with an intracellular solution 
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containing 20mM KCl, 130mM K-Gluconate, 10mM HEPES, 0.1mM EGTA, 0.3mM GTP, 

4mM ATP and 0.2% biocytin. Action potentials analyzed were from the first minute of a 

2min recording, membrane potentials were measured after setting the current injection to 0pA 

at the end of the recording. IPSCs were recorded for 5min after switching the cell to a 

holding potential of -20mV and waiting for 1min. Statisticial analyses were performed using 

GraphPad Prism5.  

 

Analysis of BAIAP3 mRNA Levels in PBMCs 

PBMCs from 121 patients were isolated using the standard Ficoll-Paque Plus isolation 

procedure (GE Healthcare, Munich, Germany). For RNA isolation, the miRNeasy Mini Kit 

(Qiagen, Hilden, Germany)  was  used.  A  total  of  1μg RNA, a mixture of oligo dT, hexamer 

primers, dNTPS (10mM each) and SuperScriptIII (200U, Invitrogen) were used for 

transcription into cDNA (20μl reaction). The  mixture  was  incubated  for  10min  at  25°C, 

45min at 50°C, followed by 45min at 55°C.  For the quantitative reverse  transcriptase 

polymerase  chain  reaction  (qRT)‐PCR,  a  1:10  dilution  of  the cDNA was used  and 3 

replicate  experiments  per  sample  were  performed;  5μl Power SYBR  mix  (Applied 

Biosystems) and 1pmol of each primer were added. BAIAP3 qRT‐PCR primers used were: 

5'-AGCTGGGCCCACCGCATCTCT -3'  with 5'-CTCGGCAGGCACGGAAAAGTAG -3', 

and 5′-CTGACTTCAACAGCGACACC-3′  with 5′-TGCTGTAGCCAAATTCGTTGT-3′. 

The following cycling profile was run on the LightCycler480 system (Roche):  preheating  at 

95°C  for  10min;  45  cycles  of  95°C  for  15s, 60°C for  1min. Cycle threshold (CT) values of 

BAIAP3 were standardized to CT values of GAPDH. 
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RESULTS 

 
Generation of Baiap3 KO Mice 

Baiap3 shares the basic domain structure of other Munc13 isoforms, with two munc-

homology domains flanked by two C2 domains but lacks the N-termini contained in Munc13-

1,-2- and -3 (23). The murine Baiap3 gene contains 33 coding exons that span 8.7kb. We 

generated Baiap3 KO mice by homologous recombination in embryonic stem cells, replacing 

the first 3 coding exons with a neomycin selection cassette (Supplementary FigureS1A). 

Baiap3 KO mice are viable, fertile and indistinguishable from their wildtype (WT) littermates 

in the home cage. In WT brain, the expression pattern of Baiap3 protein analyzed by 

immunofluorescence staining largely matches the distribution of Baiap3 mRNA published in 

the Allen Brain Atlas [http://mouse.brain-map.org/]. Baiap3 protein is prominently expressed 

throughout the hypothalamus and in the central, medial and basomedial amygdaloid nuclei, 

as well as in the paraventricular nucleus of the thalamus (Figure1). Strong expression is 

further detected in the septum, bed nucleus of the stria terminalis, midbrain including the 

periaqueductal gray and inferior colliculus, and brain stem including the parabrachial nucleus 

and nucleus tractus solitarius (Figure1). Baiap3 immunoreactivity appears punctate, but does 

not seem to localize to either glutamatergic or GABAergic pre- or post-synapses to a 

significant degree (Supplementary FigureS1C-G). Adult Baiap3 KO mice lack any detectable 

expression of Baiap3 protein by immunofluorescence and Western blot analysis (Figure1B, 

Supplementary FigureS1B). Western blot analysis of brains taken from newborn Baiap3 KO 

animals revealed the presence of a weak band that most likely corresponds to Baiap3 protein 

expressed from a start codon present in coding exon 4, however, this putative truncated 

Baiap3 product is barely detectable by the age of 3 weeks and not present in adult animals 

(Supplementary FigureS1B).  

 

Novelty-Induced Anxiety in Baiap3 KO Mice 

The striking expression pattern of Baiap3 in the amygdala and other brain regions involved in 

processing fear piqued our interest, and we chose to assess whether the genetic deletion of 

Baiap3 led to any detectable behavioral alterations. We subjected Baiap3 KO mice and WT 

littermates of both genders to a battery of standard behavioral tests (Figure2A-L; 

Supplementary FigureS3A-J). In the open field, both male and female Baiap3 KO mice 

showed an increased latency to reach the wall upon release in the center zone (Figure2A,B). 
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Female but not male KO mice also made fewer visits to the center (Figure2C,D), and spent 

significantly more time in the periphery (Figure2E,F). When placed in a novel chamber (fear-

conditioning box), both male and female KO mice showed an increased novelty induced 

freezing response (Figure2K,L). Taken together, these findings are indicative of a heightened 

novelty-induced anxiety level in Baiap3 KO animals, with a more pronounced effect noted in 

females. In contrast, classical tests, measuring anxiety in the context of an inherent conflict 

between a protected and a more anxiogenic area, i.e. elevated plus-maze and light/dark box, 

did not reveal any genotype differences (Figure2G-J). Furthermore, the distance traveled 

(motor activity) in open field and elevated plus-maze (Supplementary FigureS3A-D), 

exploratory behavior (hole board; Supplementary FigureS3E,F) motor learning and 

coordination (rotarod; Supplementary FigureS3G,H) and body weight (Supplementary 

FigureS3I,J) were not affected by genotype.  

 

BAIAP3 is a Risk Marker for Anxiety in Women 

To explore the possibility of an association of genetic variability in the human BAIAP3 gene 

with specific biological readouts, we made use of the GRAS database of schizophrenic 

patients (31, 32). Our hypotheses regarding Baiap3/BAIAP3 function were based on the 

anxiety phenotype observed in Baiap3 KO mice, and on the prominent expression of Baiap3 

in brain regions involved in processing fearful stimuli as well as in SUD. We selected 3 

single nucleotide polymorphisms (SNPs) in the BAIAP3 gene: rs11648169 (C/G, intronic), 

rs2235632 (G/A, intronic) and rs1132358 (C/T, coding sequence, synonymous Asp1040Asp) 

(Supplementary FigureS4A) from public databases [http://www.ncbi.nlm.nih.gov/ 

projects/SNP/; http://browser.1000genomes.org; http://hapmap.ncbi.nlm.nih.gov/]. The 

selection of SNPs was based on (I) a high minor allele frequency (MAF≥0.36) distribution 

within the European Caucasian population [http://www.ncbi.nlm.nih.gov/SNP/], to increase 

the power to detect genetic effects, (II) the potential for functional consequences. The last 

criterion could only partially be fulfilled; the exonic SNP rs1132358 (C/T, Asp1040Asp, 

synonymous) might potentially affect mRNA structure or stability. All SNPs fulfilled Hardy-

Weinberg-equilibrium criteria, both in cases and in controls (p>0.05). A construction of 

haplotype blocks of the 3 SNPs revealed a similarly high degree of linkage disequilibrium 

between them in the GRAS sample (Supplementary FigureS4B) and in healthy controls 

(Supplementary FigureS4C). Case-control analysis of genotype frequencies of the 3 SNPs did 

not reveal any significant differences, indicating that the selected genetic variation in BAIAP3 

is not associated with schizophrenia risk (Supplementary FigureS4D). We subsequently used 
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the PGAS approach (32), to analyze the 3 SNPs for association with specific phenotypic 

readouts relevant for anxiety disorders and SUD. For this, an anxiety composite score was 

constructed using 4 anxiety relevant variables (Supplementary FigureS2), which showed a 

significant association with only 2 of the 3 selected SNPs (as expected because of the high 

linkage disequilibrium between both markers and their similar MAFs) for women but not for 

men (Table1). SNP rs11648169 was excluded from further analyses since it yielded no 

statistically significant effects. 

 

BAIAP3 is a Risk Gene for Benzodiazepine Abuse in Men 

Because anxiety disorders and SUD often occur together, and BAIAP3 is expressed in brain 

regions relevant for emotionality and drug dependence, we also screened for a possible 

association between genetic variation in BAIAP3 and SUD. The same risk genotypes (AA for 

rs2235632, TT for rs1132358) that were associated with anxiety in women, showed a 

statistically significant association with benzodiazepine use disorder (BUD) in men (Table1). 

Even though there was a similar tendency for women (BUD associated with 7.0%/7.7% in 

AA/TT genotypes versus 4.7%/4.6% in G/C carrier status), it did not reach statistical 

significance, perhaps due to the lower numbers of females as compared to males in the 

GRAS sample. The genotype frequencies of rs2235632 and rs1132358 did not differ between 

men and women in the GRAS sample (rs2235632–GG/AG/AA: men 25.1%/49.1%/25.8%; 

women 28.3%/46.3%/25.5%; rs1132358–CC/TC/TT: men 26.1%/49.4%/24.5%; women 

29.8%/46.9%/23.3%), and none of these 2 SNPs was associated with disease-related or 

sociodemographic control variables (Table1).  

 

For the purpose of an association analysis of the relevant BAIAP3 genotypes (GG/AG/AA in 

rs2235632 and CC/TC/TT in rs1132358) with BUD, the GRAS sample delivers an ideal, 

nearly experimental setting: The distribution of these genotypes among benzodiazepine users 

versus non-users is highly comparable, allowing the identification of risk genotypes leading 

to BUD (Supplementary TableS1). Most importantly, the benzodiazepine dose was equal 

across all genotypes (Supplementary TableS1). Hence, the BAIAP3 risk genotypes (AA for 

rs2235632, TT for rs1132358) appear to confer a specific genetic risk of developing BUD 

given equal dose and likelihood of exposure. Interestingly, neither alcohol nor cannabis abuse 

were found to be associated with the 2 SNPs, pointing to a specific benzodiazepine link with 

the selected BAIAP3 genotypes (Table1). 
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To determine whether the identified risk genotypes are associated with altered expression of 

BAIAP3, we analyzed the mRNA levels of BAIAP3 in PBMCs obtained from 121 subjects by 

qRT-PCR. We found a statistically significant association of the BAIAP3 risk genotypes (AA 

for rs2235632, TT for rs1132358) with lower BAIAP3 mRNA levels in PBMCs of male 

individuals, which is at least partially comparable to a gene dose reduction or KO situation. 

This result is not found in women, possibly due to the lower numbers available for analysis 

(Supplementary FigureS5). However, these findings could also support the interpretation that 

the effects of BAIAP3 risk alleles are gender-specific.  

 

Male Baiap3 KO Mice Show Faster Development of Tolerance to Benzodiazepines 

Based on the identification of human BAIAP3 risk genotypes for benzodiazepine abuse in 

male patients, we tested Baiap3 KO and WT littermates of both genders in experimental 

paradigms of chronic benzodiazepine administration to assess the development of tolerance, 

dependence, and withdrawal (Figure3A). The baseline performance of each mouse in the 

rotarod test was established on 2 consecutive days of rotarod training. No significant 

genotype-dependent differences were detected in baseline performance (Supplementary 

FigureS3G,H). Benzodiazepine dependence in Baiap3 KO and WT mice of both genders was 

then induced with daily diazepam injections (5mg/kg i.p.) for 10 consecutive days. To 

monitor the development of tolerance to diazepam, motor performance on rotarod at 30min 

after each injection was evaluated over the first 7 days of diazepam treatment. Rapid 

development of tolerance to daily diazepam injections was apparent in both genders and 

genotypes by an increase of the latency of falling from rotarod over the course of 7 days 

(Figure3B,C). Here, male Baiap3 KO mice performed significantly better than their WT 

littermates (Figure3B), whereas no such difference was detected for females (Figure3C). 

Thus, male Baiap3 KO mice show faster development of tolerance to diazepam.  

 

Baiap3 KO Mice Have an Increased Seizure Propensity  

To evaluate whether Baiap3 genotype would affect the propensity for diazepam withdrawal-

related seizures, the susceptibility to pentylenetetrazole (PTZ)-induced seizures was first 

evaluated in diazepam-naïve mice. The seizure response of Baiap3 KO mice of both genders 

to PTZ (50mg/kg i.p.) was higher than in WT animals, with the difference just failing to 

reach significance in males (Figure3D,E). To assess the effect of genotype on benzodiazepine 

withdrawal, the diazepam antagonist flumazenil (15mg/kg i.p.) was injected on day 11, after 

10 days of daily diazepam treatment, immediately followed by PTZ injection (50mg/kg i.p.) 
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to trigger withdrawal seizures (Figure3A). Upon flumazenil induced diazepam withdrawal, 

the response to PTZ in male Baiap3 KO and WT mice did not differ appreciably from the one 

found in diazepam-naïve mice of both genotypes (Figure3F). In contrast, the genotype-

dependent differences in diazepam-naïve females regarding seizure scores disappeared under 

conditions of diazepam withdrawal (Figure3G), which could be explained by a ceiling effect. 

Thus, female and male Baiap3 KO mice are more seizure-prone than their WT littermates, 

and this propensity is not further increased by benzodiazepine withdrawal.  

 

Drug Self-Administration and Basic Behaviors Do Not Differ Between Baiap3 

Genotypes upon Chronic Addiction  

To assess whether Baiap3 KO mice, once addicted, would also be more likely to orally self-

administer benzodiazepines, we performed an experiment on chronic midazolam addiction, 

where self-application was assessed after forced long-term exposure to escalating doses of 

midazolam (Supplementary FigureS6). We detected no genotype or gender differences in the 

clear preference for midazolam. Moreover, no genotype effects on body weight or basic 

behavior in the chronically addicted state were noted (Supplementary FigureS6). These data 

indicate that the Baiap3 genotype gender-specifically affects the development of tolerance, 

i.e. drug abuse at an early stage. In chronic addiction, genotype effects are no longer 

detectable. 

 

Lack of Homeostatic Adaptation to Diazepam in Baiap3 KO Hypothalamus Slices 

One hypothesis regarding predisposition to the development of addiction at the cellular level 

is an altered response to the addiction-inducing substance and its withdrawal. Since Baiap3 

KO mice showed an increased seizure propensity and an altered development of tolerance to 

diazepam, we investigated whether lack of Baiap3 leads to a measurably altered response to 

diazepam treatment and withdrawal in neurons in vitro. Since Baiap3 expression is highest in 

the hypothalamus, we cultured organotypic hypothalamus slices prepared from male P5/P6 

Baiap3 KO and WT animals in the presence of either 10μM diazepam or vehicle (DMSO), 

and recorded from neurons in the ventromedial hypothalamus in the presence of the diazepam 

antagonist flumazenil to mimic diazepam withdrawal conditions in vitro. We hypothesized 

that diazepam treatment would lead to a homeostatic adaptation in the GABAAR mediated 

miniature inhibitory postsynaptic currents (mIPSCs) (Figure4A) that would become apparent 

under diazepam withdrawal conditions. Although we observed no diazepam treatment 

dependent differences that reached statistical significance, there was a significant genotype-
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dependent effect under diazepam withdrawal conditions. Here, WT mIPSC amplitudes were 

27% smaller (Figure4B) and rise times 13% longer than in KO neurons (Figure4C), which is 

suggestive of a homeostatic adaptation to diazepam treatment in WT but not in KO slices. No 

significant differences in mIPSC decay times and frequencies were observed (Supplementary 

TableS2). Since the sudden withdrawal of diazepam should lead to an increase in overall 

network activity, we recorded action potential (AP) frequencies in ventromedial 

hypothalamus slices in the presence of flumazenil. Surprisingly, KO slices already showed 

significantly higher AP frequencies than WT slices under control conditions, with no further 

increase under diazepam withdrawal conditions. By contrast, in WT slices we observed a 

significant increase in AP frequency under diazepam withdrawal conditions compared to 

vehicle treated WT slices (Figure4D). There was no significant difference in the resting 

membrane potentials (Figure4E), AP rise times, decay times and half-widths (Supplementary 

TableS2). Inhibitory postsynaptic currents (IPSCs) were recorded in the same cells at a 

holding potential of -20mV to be able to isolate spontaneous GABAAR mediated currents 

without drug application. In WT slices we observed a significant effect of diazepam 

withdrawal, with an increase in IPSC amplitude and frequency compared to vehicle treated 

WT slices (Figure4F,G), which is in keeping with the overall higher firing rate, and which 

was not apparent in KO slices. In summary, these data show that neurons in Baiap3 KO 

hypothalamus slices have higher AP firing rates, likely consistent with the higher seizure 

propensity found in vivo, and that Baiap3 KO slices show no obvious homeostatic adaptation 

to diazepam treatment and withdrawal. 
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DISCUSSION 
 

In this study, we identify 2 human BAIAP3 risk genotypes that are associated with anxiety in 

women and benzodiazepine use disorder (BUD) in men. We further show that Baiap3 

deficiency in mice leads to (I) elevated seizure propensity (II) increased anxiety in both 

genders, with a more pronounced effect in females, and (III) to a faster development of 

tolerance to benzodiazepines in male mice. In vitro analysis of hypothalamic slices revealed 

an increase in neuronal baseline activity in the absence of Baiap3. Withdrawal from chronic 

benzodiazepine application in vitro results in a genotype-specific response pattern. 

 

To the best of our knowledge, no other genetic risk marker that is associated with anxiety and 

benzodiazepine abuse has been reported to date. We are aware that, pending replication in 

non-schizophrenic individuals, we cannot be sure that our findings can be applied to the 

general population. In spite of this limitation, our findings suggest a role for BAIAP3 and 

potential interaction partners in the development of anxiety and drug dependence. 

 

Unfortunately, similar data from samples of equally well phenotyped healthy individuals or 

even other disease groups are not available. This is particularly true with regard to 

benzodiazepine abuse, since short-term exposure is a primary goal of controlled and 

medically surveyed indications. Even looking at other rare situations of long-term exposure 

(e.g. intractable epilepsies), a homogeneous sample comparable to the GRAS collection 

would be difficult to imagine. In the GRAS sample, there are no differences between BAIAP3 

genotypes regarding benzodiazepine exposure or daily dose (in case of exposure). This 

constellation allowed us to analyze the specific genetic risk of developing BUD in a setting 

close to an experimental condition.  

 

Importantly, the present study was purely hypothesis-driven. Our hypotheses for performing 

a human phenotype-based genetic association study of BAIAP3 were based on the anxiety 

phenotype we observed during basic behavioral characterization of Baiap3 KO mice as well 

as on the distinctive Baiap3 expression pattern in brain, which includes regions relevant for 

addictive behaviors. We find that in humans, female carriers of the homozygous BAIAP3 risk 

genotypes (AA for SNP rs2235632; TT for SNP rs1132358) are more likely to meet criteria 

for an anxiety disorder, whereas male carriers of the same risk genotypes are more likely to 
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fulfill criteria for BUD. Neither SNP was associated with schizophrenia in our case-control 

analysis. Furthermore, no associations with SUD other than BUD were observed. In general, 

both genetic linkage and candidate gene studies suffer from lack of replicability (12). 

However, in our study, the parallel identification of a gender specific association of 

BAIAP3/Baiap3 with anxiety and an altered response to benzodiazepines in both mice and 

men, lends strong support to a causal link between BAIAP3 and the observed phenotypes.  

 

As for other genetic variations associated with anxiety disorders (11, 12) or SUD (13-15), the 

impact of BAIAP3 genotypes on anxiety disorders or BUD is likely to be small. However, the 

observed effects and their gender specificity (across 2 species) are intriguing. While we 

currently have no mechanistic insight into this gender specificity, part of the explanation may 

lie in the fact that Baiap3 is expressed in sexually dimorphic brain regions such as the 

hypothalamus, amygdala and the bed nucleus of the stria terminalis (37, 38).  

 

Given the higher prevalence of both anxiety disorders and BUD in women (9, 39) the present 

findings were surprising at first glance, but the similarity of gender differences in mice and 

humans underlines their significance, encouraging follow-up work on this gender effect. 

Admittedly, the gender effects in humans may ultimately turn out to be less prominent, since 

the total number of individuals with benzodiazepine abuse in the GRAS sample is low, 

resulting in moderate significance levels only for men.  It cannot be excluded, that in a larger 

sample, an association of BUD with the genotypes investigated here might reach significance 

for women as well. Furthermore, research focusing on gender differences and social 

desirability in self-reported anxiety suggests an underreporting of fear and distress in men 

(40-42). Therefore, our use of 3 self-reported measures in the calculation of the anxiety 

composite score might partly explain the lack of association of the BAIAP3 risk genotypes 

with anxiety in men. Nevertheless, gender differences in BAIAP3/Baiap3 genotype-

phenotype associations most likely exist and are worth pursuing. 

 

Benzodiazepines are positive allosteric modulators of GABAAR and thus enhancers of 

inhibitory GABAergic neurotransmission. Their sedative, anti-convulsive and amnesic 

effects are largely mediated by the GABAARα1 subunit, the anxiolytic effect by the α2 

subunit and muscle relaxation by α2, α3 and α5 subunits (43). To date, no specific risk 

association of these obvious candidate genes has been identified. At present we have no 

evidence that would suggest that Baiap3 interacts with GABAAR subunits. However, the 
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increased seizure propensity observed in Baiap3 KO mice of both genders, which is already 

apparent without prior diazepam treatment and withdrawal, is indicative of an altered balance 

of excitatory and inhibitory systems. Our comparison of neuronal firing rates in 

hypothalamus slices under baseline and diazepam withdrawal conditions uncovered an 

increase in basal network activity in the absence of Baiap3. This finding was unexpected, and 

although presently limited to the hypothalamus, is consistent with the increased seizure 

propensity observed in vivo. Even though we do not know whether the seizures observed in 

our PTZ-induction model originate in the subcortical regions that express Baiap3, subcortical 

epileptogenesis with origins in the hypothalamus is a feature seen in hypothalamic 

hamartomas (44), and the amygdala, which also expresses Baiap3, is known to play a key 

role in epileptogenesis (45). Interestingly, the human BAIAP3 gene is located on chromosome 

16p13.3, which has been linked to electroencephalographic traits of idiopathic epilepsy 

syndromes (46, 47). We would thus argue that further investigation of BAIAP3 as a candidate 

gene for epilepsy-related phenotypes is warranted. Since we found that Baiap3 did not co-

localize with markers of GABAergic or glutamatergic pre- and post-synapses to a significant 

degree (Supplementary FigureS1C-G), the increased seizure propensity in Baiap3 KO mice 

of both genders and the altered response to benzodiazepines in males is unlikely to be due to 

a direct effect of Baiap3 at GABAergic or glutamatergic synapses.  

 

The neuronal circuitry underlying the addictive properties of benzodiazepines is much less 

well understood than their molecular mechanism of action. Unlike many other addictive 

substances, benzodiazepines do not appear to increase dopamine levels in the nucleus 

accumbens (48-50), although electrophysiological studies suggest that benzodiazepines 

increase firing of dopaminergic neurons in the VTA through disinhibition of these neurons 

via inhibition of nearby inhibitory interneurons (51, 52). Additional mechanisms, such as 

neuroendocrine responses to benzodiazepine treatment, may play a critical role in the 

development of BUD (53). Furthermore, since expression of Baiap3 in both the VTA and in 

the nucleus accumbens is low (Allen Brain Atlas [http://mouse.brain-map.org/]), a direct 

effect Baiap3 on the mesolimbic dopamine pathway does not appear be the most likely 

explanation for the observed interaction between Baiap3 genotypes and the response to 

benzodiazepines. Instead, our findings support the interpretation that the altered response to 

benzodiazepines could be a consequence of a local or global change in neuronal excitability. 

Since all other members of the Munc13 protein family have been shown to be regulators of 

SNARE-mediated exocytosis (25, 29), Baiap3 may regulate the release of one or more 
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modulatory neurotransmitters or neuropeptides that influence the balance between 

GABAergic and glutamatergic neurotransmission. Baiap3-immuoreactivity appears punctate 

(Supplementary FigureS1C-G) and may localize to peptidergic release sites, some of which 

may also contain VGLUT2 or Viaat. Although we presently cannot exclude the possibility 

that Baiap3 might have a post-synaptic function, given what is know about the function of all 

other members of the Munc13 protein family, we think that a pre-synaptic function is more 

likely. We can furthermore not exclude the possibility that alterations in the hypothalamic-

pituitary-adrenal axis may play a role in the anxiety phenotype or the altered response to 

benzodiazepines seen in Baiap3 KO mice. We are currently investigating whether Baiap3 is 

involved in regulating exocytosis of dense core vesicles and/or intracellular trafficking events 

that could influence neuropeptide release or extrasynaptic GABAARs.  

 

 

CONCLUSION 
 

To conclude, BAIAP3 had not previously been considered as a candidate gene for either 

psychiatric disorders or epilepsy. Our study links BAIAP3/Baiap3 genotypes to anxiety and 

an altered response to benzodiazepines in both mice and men, and thus strongly argues for an 

involvement of BAIAP3 in these neuropsychiatrically relevant phenotypes. The identification 

of human genetic variations that influence the risk for the development of pathological 

phenotypes as well as the response to pharmacological treatments may pave the way for more 

efficient treatments with fewer side effects. Rodent models are usually only imperfect 

representations of human psychiatric conditions, however, the simultaneous identification of 

Baiap3 as a biomarker for anxiety and the response to benzodiazepines in mouse and man, 

suggests that Baiap3 KO mice will be a valuable tool in further elucidating the genetic, 

physiological and neuroanatomical underpinnings of anxiety disorders and BUD.  
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Figure Legends 

 

Figure 1. Immunofluorescence analysis of Baiap3 expression in mouse brain. (A) Sagittal 

brain section of adult Baiap3 WT mouse stained with rabbit-anti-Baiap3 antibody (B) 

Sagittal brain section of adult Baiap3 KO littermate showing the absence of Baiap3 

immunoreactivity. Please note that the signal observed in the hippocampus of both WT and 

KO brain is non-specific background staining. (C) Coronal brain section of adult WT mouse 

stained for Baiap3 with a corresponding coronal diagram, adapted from the mouse Paxinos 

brain atlas (Bregma -1.46). (PB) parabrachial nucleus, (NTS) nucleus tractus solitarius, (Hi) 

hippocampus, (SC) superior colliculus, (IC) inferior colliculus, (PAG) periaqueductal gray, 

(LS) lateral septum, (Th) thalamus, (Hy) hypothalamus, (BST) bed nucleus of the stria 

terminalis, (PV) paraventricular thalamic nucleus, (DM) dorsomedial hypothalamic nucleus, 

(VMH) ventromedial hypothalamic nucleus, (Arc) arcuate nucleus, (Ce) central amygdaloid 

nucleus, (BLA) basolateral amygdaloid nucleus, anterior part, (BMA) basomedial 

amygdaloid nucleus, anterior part, (ME) medial amygdaloid nucleus, (ACo) anterior cortical 

amygdaloid nucleus. Scale bars equal 1 mm.  

 

 

Figure 2. Anxiety phenotype in Baiap3 KO mice. (A-F) Open field parameters: (A,B) The 

latency to reach the wall of the open field was significantly increased in Baiap3 KO mice of 

both genders, whereas (C,D)  visits to the center and (E,F) stay in the periphery revealed 

anxiety-like behavior only in females. (G,H) Elevated plus-maze and (I,J) light/dark box 

revealed no genotype-dependent differences in either gender. (K,L) As readout of unspecific 

novelty-related anxiety, a higher freezing response was found in male as well as female 

Baiap3 KO mice. Numbers tested: males, WT=16-25, KO=16-25; females, WT=18-23, 

KO=10-28. Mann-Whitney U test (A-D, I-L) and 2-way ANOVA (E-H), including 

Bonferroni testing, applied. Mean±s.e.m. presented. 

 

 

Figure 3. Diazepam tolerance and withdrawal in Baiap3 KO and WT mice. (A) Experimental 

design scheme. (B) Male diazepam-treated Baiap3 KO mice showed significantly faster 

improvement of performance on the rotarod, consistent with a more rapid development of 

tolerance to diazepam. (C) Rotarod performance of female mice was comparable between 

WT and KO. (D,E) Diazepam-naïve Baiap3 KO mice display a higher PTZ-induced seizure 
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propensity as compared to WT (significant in females, strong tendency in males). (F,G) 

Flumazenil-induced diazepam withdrawal does not further increase PTZ-induced seizure 

propensity in Baiap3 KO mice. Seizure propensity of female mice became comparable 

between genotypes, pointing to a ceiling effect. Numbers tested: males, WT=25, KO=25; 

females WT=21, KO=23, except for (D) and (E), males, WT=7, KO=7; females, WT=8; 

KO=10. Mann-Whitney U test (D-G) and 2-way repeated measures ANOVA (B,C), 

including Bonferroni, testing applied. Mean±s.e.m. presented. 

 

 

Figure 4. Increased basal network activity and lack of homeostatic adaptation to diazepam 

treatment in Baiap3 KO hypothalamus slices. (A) Sample traces of mIPSC recordings from 

WT and KO hypothalamus slices that were cultured in the presence of diazepam or under 

vehicle control conditions with DMSO. (B) Under diazepam withdrawal conditions, Baiap3 

WT mIPSC amplitudes were significantly smaller than in KO slices, and (C) WT mIPSC rise 

times were longer than in KO slices. (D) Baiap3 WT slices showed an increase in AP 

frequency in response to diazepam withdrawal when compared to DMSO treated WT slices, 

whereas no such increase was apparent for Baiap3 KO slices, which already showed an 

increased AP frequency under DMSO control conditions when compared to WT slices. (E) 

The resting membrane potential was not affected by experimental condition or Baiap3 

genotype. (F) IPSC amplitudes and (G) IPSC frequencies were increased in Baiap3 WT 

slices under diazepam withdrawal compared to DMSO treated WT slices. Mann-Whitney U 

test for AP and IPSC frequencies; Student’s t-test for all other parameters. Mean±s.e.m. 

presented. 
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Wojcik et al Table 1 
Phenotype comparison of GRAS patients sorted by BAIAP3 genotypes 
 

 
 

BAIAP3 
rs2235632 

BAIAP3 
rs1132358 

 

Males (GRAS sample) 
 

G carriers (GG/AG) AA P value 
(F/T/Z/χ2  value) a C carriers (CC/TC) TT P value 

(F/T/Z/χ2 value) a 
 

N=471-538 b N=155-187 b 
 

N=474-538 b N=152-175 b 
 

Target variables   
     Benzo use disorder, No. (%) 

 

11 (2.3) 
 

9 (5.4) .047 (χ2=3.93) 11 (2.3) 9 (5.7) .034 (χ2=4.47) 

     Anxiety composite score, Mean±SD c, d 
 

-0.06±0.74 
 

-0.07±0.70 .499 (F=0.46) -0.07±0.73 -0.05±0.72 .651 (
．．．．．

F
．
=0.21)
．．．．．．

 
Sociodemographic   
     Age (at examination), y, Mean±SD [range] 

 

37.33±12.01 [18-78] 
 

36.17±11.91 [17-75] .225 (Z=-1.21) 37.28±11.96 [18-78] 36.34±12.06 [17-75] .309 (Z=-1.02) 

     Education, y, Mean±SD [range] e 
 

14.17±3.48 [8-28] 
 

14.42±3.70 [8-27] .680 (Z=-0.41) 14.21±3.48 [8-28] 14.32±3.76 [8-27] .853 (Z=-0.19) 

     Unemployment, No. (%) 
 

217 (44.7) 
 

76 (44.7) .990 (χ2=0.00) 214 (44.2) 75 (46.6) .601 (χ2=0.27) 
Substance use   
     Alcohol use disorder according to DSM-IV, No. (%) 

 

221 (42.3) 
 

84 (45.7) .435 (χ2=0.61) 217 (41.6) 82 (47.4) .180 (χ2=1.80) 

     Cannabis use disorder according to DSM-IV, No. (%) 
 

218 (41.8) 
 

83 (45.1) .430 (χ2=0.62) 224 (42.9) 75 (43.4) .919 (χ2=0.01) 
Clinical   
     PANSS positive score, Mean±SD [range] 

 

13.55±6.04 [7-36] 
 

14.02±6.41 [7-38] .427 (Z=-0.79) 13.53±6.03 [7-36] 14.23±6.50 [7-38] .249 (Z=-1.15) 

     Chlorpromazine equivalents, Mean±SD [range] 
 

707.90±694.69 
[0-6324.29] 

 

689.45±568.91 
[0-3238.00] .678 (Z=-0.42) 701.33±688.16 

[0-6324.29] 
712.11±592.75 

[0-3238.00] .424 (Z=-0.80) 

     GAF score, Mean±SD [range] 
 

45.70±16.04 [10-90] 
 

45.35±16.88 [5-90] .862 (Z=-0.17) 45.75±16.05 [10-90] 44.90±16.89 [5-90] .619 (Z=-0.50) 
 

Females (GRAS sample) 
 

G carriers (GG/AG) AA P value 
(F/T/Z/χ2 value) a C carriers (CC/TC) TT P value 

(F/T/Z/χ2 value) a 
 

N=223-269 b N=75-92 b 
 

N=229-273 b N=71-83 b 
 

Target variables   
     Benzo use disorder, No. (%) 

 

12 (4.7) 
 

6 (7.0) .406 (χ2=0.69) 12 (4.6) 6 (7.7) .281 (χ2=1.16) 

     Anxiety composite score, Mean±SD c, d 
 

-0.02±0.77  
 

0.19±0.80 .028 (F=4.91) -0.02±0.78 0.21±0.77 .017 (F=5.81) 
Sociodemographic    
     Age (at examination), y, Mean±SD [range] 

 

42.36±12.92 [18-79]  
 

44.86±12.52 [21-76] .893 (T=1.61) 42.52±12.90 [18-79] 44.49±12.60 [20-76] .221 (T=1.23) 
     Education, y, Mean±SD [range] e 

 

14.56±3.95 [7-31] 
 

14.12±3.54 [8-27] .447  (Z=-0.76) 14.52±3.94 [7-31] 14.13±3.62 [8-27] .454 (Z=-0.75) 

     Unemployment, No. (%) 
 

76 (31.9) 
 

20 (25.0) .243 (χ2=1.37) 74 (30.5) 20 (28.2) .712 (χ2=0.14) 
Substance use    
     Alcohol use disorder according to DSM-IV, No. (%) 

 

59 (22.4) 
 

14 (15.7) .178 (χ2=1.82) 60 (22.4) 13 (16.0) .219 (χ2=1.51) 

     Cannabis use disorder according to DSM-IV, No. (%) 
 

30 (11.4) 
 

8 (9.0) .525 (χ2=0.40) 29 (10.8) 9 (11.1) .941 (χ2=0.01) 
Clinical   
     PANSS positive score, Mean±SD [range] 

 

13.84±6.66 [7-37] 
 

14.41±6.38 [7-33] .288 (Z=-1.06) 13.87±6.69 [7-37] 14.32±6.24 [7-32] .366 (Z=-0.91) 

     Chlorpromazine equivalents, Mean±SD [range] 
 

636.37±776.51  
[0-7375.00] 

 

704.59±762.50 
[0-4370.00] .612 (Z=-0.51) 634.40±771.10 

[0-7375.00] 
718.83±788.67 

[0-4370.00] .616 (Z=-0.50) 

     GAF score, Mean±SD [range] 
 

46.34±19.42 [8-90] 
 

44.22±17.59 [12-84] .435 (Z=-0.78) 46.22±19.25 [8-90] 44.88±18.07 [12-84] .645 (Z=-0.46) 
 

a For statistical methods, Mann-Whitney U or Chi2 tests and for normally distributed variables T-tests were used. Bolded values, P<.05. 
b Due to missing data, sample sizes vary. 
c Results after multiple imputations (10). 
d ANCOVA with age, positive symptoms (PANSS) and medication status (chlorpromazine equivalent) as covariates. 
e Total years spent in education system; patients currently in school or educational training were excluded. 
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BAIAP3
rs2235632

BAIAP3
rs1132358

Males (GRAS sample) GG AG AA
p value

(χ2 value) a CC TC TT
p value

(χ2 value) a

N=181 N=351 N=187 N=184 N=347 N=175

Receiving benzodiazepines, No. (%) b 22 (12.2) 57 (16.2) 30 (16.0) .427 (χ2 =1.70) 20 (10.9) 57 (16.4) 30 (17.1) .165 (χ2 =3.60)

N=21d N=52d N=30 N=19d N=52d N=30

Benzodiazepine dose, mg, Mean±SD b, c 3.14±4.14 2.64±3.11 3.04±3.31 .833 (χ2 =0.37) 2.95±4.31 2.67±3.11 3.00±3.32 .979 (χ2 =0.04)

Females (GRAS sample) GG AG AA
p value

(χ2 value) a CC TC TT
p value

(χ2 value) a

N=101 N=167 N=92 N=105 N=167 N=83

Receiving benzodiazepines, No. (%) b 28 (27.7) 34 (20.4) 23 (25.0) .363 (χ2 =2.02) 30 (28.6) 34 (20.4) 20 (24.1) .298 (χ2 =2.42)

N=27d N=33d N=21d N=29d N=33d N=18d

Benzodiazepine dose, mg, Mean±SD b, c 2.51±1.51 2.13±2.35 2.33±2.28 .227 (χ2 =2.97) 2.44±1.49 2.08±2.37 2.52±2.40 .234 (χ2 =2.90)

a For statistical methods Chi2 or Kruskal-Wallis test was used. Bolded values, p<.05.
b Refers to benzodiazepines as daily medical treatment.
c Calculation of lorazepam equivalents according to Bezchlibnyk-Butler, K. Z. & Jeffries, J. J. (Eds) (2003) Clinical Handbook of Psychotropic
Drugs (13th ed). Cambridge (MA): Hogrefe & Huber.

D Discrepancies in N due to missing information on benzodiazepine compound or daily dose.

Supplementary Table S1. Benzodiazepine use (%) and dose (lorazepam equivalents) in GRAS patients sorted by BAIAP3 genotypes
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Mann-Whitney U test for mIPSC frequencies and Student’s t-test for all other parameters. Mean±SD presented.

Supplementary Table S2. The mIPSC frequencies and decay times and the AP rise times, decay times and half-
width were not affected by experimental condition or Baiap3 genotype.
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Self-rating

Examiner rating

Cronbach's α = 0.765 (N=771)

PANSS 
(Anxiety) 

PANSS general item 2 [1-7]

STAI 
(Trait anxiety subscale)

20 items [20-80]

STAI 
(State anxiety subscale)

20 items [20-80]

BSI 
(Anxiousness subscale)

6 items [0-24]

r=0.4-0.6

r<0.4

r>0.6

Supplementary Figure S2. Anxiety composite score. Shown are variables composing the anxiety composite 
score, their intercorrelations and internal consistency. Pearson's correlation coefficients and Cronbach’s α given. 
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Supplementary Figure S3. Baiap3 genotype does not affect activity level, exploratory behavior, motor function or body weight. 
(A,B) The distance traveled during a 7min session in the open field and (C,D) 5min session in the elevated plus-maze was 
comparable among genotypes and genders. (E,F) Exploratory behavior measured in the hole board, (G,H) motor coordination 
and learning, evaluated by rotarod, as well as (I,J) body weight were comparable for both genders between Baiap3 KO and WT 
littermates. Numbers tested: males, WT=16-25, KO=16-25; females, WT=18-23, KO=10-28. Mann-Whitney U test (A-F, I,J) and 
2-way repeated measures ANOVA (G,H), including Bonferroni testing, were applied. Mean±s.e.m. presented.
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BAIAP3 (15.8kb, 16p13.3)

a MAF=minor allele frequency in European Caucasian population
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SCZ
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BAIAP3 Genotypic frequencies %
(N numbers)

p value a

(χ2 value)
p value
HWE b

CC GC GG

rs11648169 SCZ        43.2
(467)

44.2
(478)

12.7
(137)

0.792 
(χ2=0.47)

0.395

CON       43.4
(495)

44.9
(513)

11.7
(134)

0.950

GG AG AA

rs2235632 SCZ 26.2
(284)

48.1
(523)

25.7
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0.440 
(χ2=1.64)

0.225

CON 26.6
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50.0
(571)

23.4
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0.971
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rs1132358 SCZ 27.3
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48.6
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24.1
(258)

0.178 
(χ2=3.46)

0.360

CON    28.7
(328)

50.4
(576)

20.9
(238)

0.611

a Comparison of genotype distributions between GRAS sample (SCZ) and healthy controls (CON).
b Hardy-Weinberg-equilibrium.

Supplementary Figure S4. BAIAP3 genotyping strategy and case-control analyses. (A) Location of the selected single nucleotide 
polymorphisms (SNPs) in the BAIAP3 gene. Kb, kilobases. (B) Linkage disequilibrium map for N=1086 schizophrenic and 
schizoaffective patients and (C) Linkage disequilibrium map for N=1142 healthy blood donors indicating a high degree of linkage 
between the 3 selected SNPs in both groups. (D) Case-control comparisons reveal a similar distribution of the BAIAP3 SNP 
genotypes for patients and healthy individuals, thus excluding the selected BAIAP3 markers as risk factors for schizophrenia. U
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Supplementary Figure S5. BAIAP3 mRNA expression in PBMCs. (A) SNP rs2235632: The risk 
genotype AA is associated with lower BAIAP3 mRNA levels in male but not in female patients. (B) 
SNP rs1132358: The risk genotype TT is associated with lower BAIAP3 mRNA levels in male but 
not in female patients. Mann-Whitney U test applied, due to non-normal data distribution (A,B). 
Mean±s.e.m. presented. 

♀

♂

U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F Molecular Medicine

www.molmed.org



WT KO WT KO
0

250

500

750

1000

1250

1500 p= 0.002

Placebo Midazolam

Fr
eq

ue
nc

y 
[#

]

B Self-administration of midazolam

C Self-administration of midazolam

d02 d04 d06 d08 d10 d12 d14

30

40

50

60

70

80

90

100

%
 P

re
fe

re
nc

e 
to

 m
id

az
ol

am

d02 d04 d06 d08 d10 d12 d14

30

40

50

60

70

80

90

100

%
 P

re
fe

re
nc

e 
to

 m
id

az
ol

am WT, p= 0.003
KO, p= 0.003

WT, p= 0.034
KO, p= 0.002

E Body weight G I ScratchingLocomotion

D Body weight F Locomotion H Scratching

A

WT KO WT KO
0

5

10

15

20

25

30

35
p= 0.016

p= 0.024

Placebo Midazolam

[g
]

WT KO WT KO 
0

5

10

15

20

25

30

35

[g
]

MidazolamPlacebo
WT KO WT KO

0

500

1000

1500

2000

2500

3000

Placebo Midazolam

D
ur

at
io

n 
[s

]

WT KO WT KO
0

500

1000

1500

2000

2500

3000

Placebo

D
ur

at
io

n 
[s

]

Midazolam

Figure S6WT KO WT KO
0

250

500

750

1000

1250

1500

Placebo Midazolam

Fr
eq

ue
nc

y 
[#

]

♀

♂

U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F Molecular Medicine

www.molmed.org



Supplementary Figure S6. High oral self-administration of midazolam (as readout of addiction), body weight, and basic 
behaviors in the chronic addicted state are not affected by Baiap3 genotype. (A) Experimental design scheme. (B,C) Baiap3 
KO and WT mice of both genders displayed significant and comparable preference for midazolam over sucrose. (D,E) Chronic 
midazolam intake did not affect body weight of male, but increased that of female mice independently of genotype. (F,G) 
Locomotion duration in LABORASTM remained unaffected across genotypes and genders. (H,I) Scratching frequency in 
LABORASTM tended to be increased upon chronic high-dose midazolam across genotypes and genders. Numbers tested: 
males, WT= 6-8, KO=10-16; females, WT=6-10, KO=10-13, except for (B) and (C), males, WT=8, KO=4; females, WT=5; 
KO=4; 2-way repeated measures ANOVA (B,C) as well as 2-way ANOVA (D-I), including Bonferroni testing, where applicable. 
Mean±s.e.m. presented.
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