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Abstract

Mice overexpressing proteolipid protein (PLP) develop a leukodystrophy-like disease involving cytotoxic, CD8+ T-
lymphocytes. Here we show that these cytotoxic T-lymphocytes perturb retrograde axonal transport. Using fluorogold
stereotactically injected into the colliculus superior, we found that PLP overexpression in oligodendrocytes led to
significantly reduced retrograde axonal transport in retina ganglion cell axons. We also observed an accumulation of
mitochondria in the juxtaparanodal axonal swellings, indicative for a disturbed axonal transport. PLP overexpression in the
absence of T-lymphocytes rescued retrograde axonal transport defects and abolished axonal swellings. Bone marrow
transfer from wildtype mice, but not from perforin- or granzyme B-deficient mutants, into lymphocyte-deficient PLP mutant
mice led again to impaired axonal transport and the formation of axonal swellings, which are predominantly located at the
juxtaparanodal region. This demonstrates that the adaptive immune system, including cytotoxic T-lymphocytes which
release perforin and granzyme B, are necessary to perturb axonal integrity in the PLP-transgenic disease model. Based on
our observations, so far not attended molecular and cellular players belonging to the immune system should be considered
to understand pathogenesis in inherited myelin disorders with progressive axonal damage.
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Introduction

An important consequence of many myelin disorders is the

degeneration of axons. Although it is well established that myelin

and glial perturbation often leads to axon damage, the mechan-

isms involved are not yet entirely understood. Early trans-

plantation studies performed in the peripheral nervous system

using nerve segments from trembler mice unequivocally demon-

strated that glial cells can locally influence axonal properties

including axonal transport [1]. Other studies in the central

nervous system on mice deficient in PLP or 29, 39 -cyclic

nucleotide 39-phosphodiesterase also showed that mutant myeli-

nating cells impair retrograde axonal transport [2] or cause

features indicative of defective axonal transport [3], revealing

a tight link beween the molecular integrity of myelinating glial cells

and maintenance of axons [4,5].

Importantly, most studies focussing on glia-related axon

transport impairment were considering a two-cell scenario,

comprising an abnormal myelinating glial cell and the axon

directly affected by glial abnormalities by mainly unknown

mechanisms. Using mice overexpressing PLP and serving as

a model for X-linked spastic paraplegia type-2 [6,7] our

laboratory recently identified cytotoxic T-lymphocytes as

mediators of primarily gliogenic neural damage [8,9,10,11].

However, it was not investigated whether the low-grade

inflammation also affected axonal transport.

In the present study, we specifically investigated the impact of

neuroinflammation on retrograde axonal transport, a reliable

parameter for examining axonal integrity [2,12,13,14]. Of note,

impaired axonal transport is also a pathological feature of various

adult onset neurodegenerative diseases like Alzheimer’s disease,

Huntington’s disease, motor neuron diseases or Parkinson’s disease

[15,16,17,18] and, interestingly, these disorders have often been

found as being associated with inflammation of pathogenic

relevance [19,20].

We found that in PLP overexpressing mutants, the presence of

functional cytotoxic T-cells is mandatory for glia-induced impair-

ment of retrograde axonal transport and that this pathogenic effect

is mediated by perforin and granzyme B. This finding substantially

extends our knowledge about the pathomechanisms underlying

primarily gliogenic axon perturbation.
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Results

Compounds of the Adaptive Immune System Reduce the
Efficacy of Retrograde Transport in PLP-tg Mice
To investigate whether axonal transport is impaired in PLP

overexpressing (PLP-tg) mice and, eventually, whether the

immune system is involved in this potential perturbation, we first

analyzed the axonal transport by retrograde labeling of retina

ganglion cells (RGCs) after injection of fluorogold into the

colliculus superior. 6 days after tracer injection, we counted 22%

less labeled RGCs in the PLP-tg mutants compared to wt mice

(p,0.05) (Figure 1A, B). Interestingly, when the time period for

retrograde axonal transport was extended from 6 to 14 days, the

reduction of labeled RGCs in PLP-tg mutants dropped to 11%

and was no longer statistically significant (Figure 1C). This

amelioration by an extended time period indicates that in the

mutants, the efficacy of retrograde axonal transport was sub-

stantially reduced, and that axonal transection cannot be the

major reason for the reduced number of labeled RGCs.

Additionally, we counted the number of RGCs in flat mount

preparations using histochemical (Nissl) staining. In both PLP-wt

mice and PLP-tg mice, a comparable number of RGCs was

detectable (Figure 1D), indicating that the oligodendrogliopathy

did not lead to considerable neuronal cell death. Thus, in the PLP-

tg mice, the efficacy of retrograde axonal transport was sub-

stantially reduced, but axonal transection was minor.

Next, we examined the efficacy of retrograde axonal transport

in PLP-tg RAG-12/2 mice that lack functional T-and B-

lymphocytes (but not NK cells) due to a null mutation in the

recombination activating gene (RAG)-1 [8]. In the tracing

experiments with a transport time of 6 days, we found more

retrogradely labeled RGCs in the PLP-tg RAG-12/2 mice than

in immune-competent PLP-tg mutants (PLP-tg RAG-1 wt), with

values similar to those obtained by PLP-wt mice (Figure 1A, B).

Then we investigated whether perforin and granzyme B, the

typical cytotoxic mediators of CD8-positive T-lymphocytes, also

disturb retrograde axonal transport. We created chimeric mice by

bone marrow transplantation from either perforin- or granzyme B-

deficient mutants into PLP-tg RAG-1-deficient mice. We found

that in PLP-tg mutants with T-lymphocytes lacking perforin or

granzyme B, the number of retrogradely labeled RGCs was at the

level of wt mice (Figure 1E), showing that perforin and granzyme

B are important mediators of perturbation of retrograde axonal

transport in the myelin mutants. Of note, the T-lymphocytes

lacking perforin or granzyme B invaded the mutant CNS to

a similar degree as in genuine PLP-tg mice (not shown). Control

transplantation experiments with wt bone marrow led to a re-

duction of retrogradely labeled RGCs comparable to PLP-tg

RAG-1 wt mice (Figure 1E).

Juxtaparanodes are Perturbed in Immunocompetent
PLP-tg Mice
Using Bielschowsky’s silver impregnation, axon enlargements/

swellings were identified as correlates of axonal perturbation in

PLP-tg mice (Figure 2A). Furthermore, RAG-1-, perforin- and

granzyme B-deficiency caused a significant reduction of such

abnormalities compared to immune-competent PLP-tg mice

(Figure 2A).

We now further characterized the axonal abnormalities within

optic nerves of 3 PLP-tg mice by electron microscopy to determine

their relative positions along the myelin sheath. The majority of

axonal enlargements was located at the juxtaparanodal region

distal to the node of Ranvier with regard of the retina ganglion cell

bodies (Figure 2B, C). Typically, there was a substantial accumu-

lation of mitochondria. Sometimes, the mitochondria appeared

though as if they would ‘‘plug’’ the axon constriction at the

transition between the paranode and the juxtaparanode

(Figure 2C). The mitochondria, furthermore, often showed

morphological alterations, ranging from almost normal appear-

ance to contorted structures reminiscent of mitochondria fused to

lysosomes (Figure 2C, D).

Dynein Protein Level is Increased in PLP-tg Mice
Dynein is the major motorprotein mediating the retrograde

axonal transport. Because of the impaired retrograde axonal

transport in PLP-tg mice, we therefore analyzed the protein levels

of dynein in triton-soluble extracts of PLP-tg mouse optic nerves.

Western blot analysis showed an increase of dynein protein level in

PLP-tg mouse optic nerve compared to extracts from optic nerves

of PLP-wt mice. RAG-1 deficiency led to dynein levels comparable

to those seen in PLP-wt mice in PLP-tg mice (Figure 2E, F).

CD8+ T-lymphocytes Contact Juxtaparanodal Regions
where they Acquire an Elongated Shape
To further investigate whether there is a spatial relationship

between CD8+ T-lymphocytes and juxtaparanodal regions, we

performed double immunofluorescence using antibodies against

CD8 and Caspr2. Indeed, we often observed a close association

between CD8+ T-lymphocytes and Caspr2+ profiles in all

genotypes investigated. In PLP-tg mice, we found approximately

4-fold more CD8+ T-lymphocyte-to-juxtaparanode contacts in

relation to the number of juxtaparanodes than in PLP-wt mice

(0.25% vs 0.06%, p,0.05) (Figure 3A). Additionally, confocal

microscopy revealed that in PLP-tg mice, 41.3% 611.6% of all

CD8+ T-lymphocytes in the optic nerve sections are attached to

the juxtaparanodes. Of note, CD8+ T-lymphocytes remote to

Caspr2+ profiles were mostly rounded, whereas CD8+ T-

lymphocytes at juxtaparanodal regions preferentially displayed

an elongated shape (Figure 3B, C). As a quantitative measure, this

was reflected by a higher form factor (representing a more

rounded shape, see Materials and Methods) in the former group

and by a lower form factor of T-lymphocytes associated with

Caspr2+ profiles (Figure 3B–D). Interestingly, the elongated,

attaching T-lymphocytes often displayed protrusions from one end

of the cell body that contacted the juxtaparanode (Figure 3C).

Discussion

In the present study, we could unequivocally demonstrate that

lymphocytes mediate axonal perturbation in PLP overexpressing

mutant mice. As typical for cytotoxic T-lymphocytes this

impairment was most likely mediated by perforin and granzyme

B. These findings do not only identify some elements of the basic

mechanisms of axon perturbation in PLP mutants, but also

demonstrate that at least in the present mutant, glial perturbation

alone is not sufficient for robust axon impairment, but needs the

involvement of a ‘‘third‘‘ cellular component, the immune cell.

This is clearly reflected by normal, wild-type-like efficacy of axonal

transport in the presence of the glial mutation, but in the absence

of lymphocytes or when lymphocytic effector cells are molecularly

impaired.

Our study strongly suggests that reduced retrograde labeling in

the optic system is mediated by impaired retrograde axonal

transport per se, rather then by complete axonal transection which

would lead to a reduced number of labeled retina ganglion cell

bodies as well. Of note, in a related mutant, simultaneous

injections of axonal tracers into the superior colliculus (retrograde

transport) and the retina (anterograde transport) identified double-

T-Cells Impair Axonal Transport in a Myelin Mutant

PLoS ONE | www.plosone.org 2 August 2012 | Volume 7 | Issue 8 | e42554



T-Cells Impair Axonal Transport in a Myelin Mutant

PLoS ONE | www.plosone.org 3 August 2012 | Volume 7 | Issue 8 | e42554



labeled axonal bulbs reflecting axonal continuity in the presence of

axonal abnormalities and impaired retrograde axonal transport

[21]. For the present study, there are at least two arguments

strongly favouring the continuity of the vast majority of retina

ganglion cell axons. First, extention of the time period for

retrograde axonal transport leads to a substantial increase of

retrogradely labeled neuronal cell bodies in the PLP mutants. This

shows that, in the PLP mutants, axons transport the tracer with

a reduced efficacy and need extended time periods to generate

detectable labeling levels in some cell bodies. Reciprocally, if

reduced numbers of labeled retinal ganglion cell bodies would

have been caused predominantly by axonal transection, it is

unlikely that extended time periods for retrograde axonal transport

would have elevated the number of labeled cell bodies in the

retina. Second, as a more indirect argument, retinal ganglion

neurons are highly susceptible to cell death when axons are

completely transected, either mechanically [22,23] or by neuroin-

flammation [12]. In our study, we could neither find a significant

reduction of retina ganglion cells nor pyknotic cell nuclei by

histological stainings, suggesting that axonal continuity is mostly

preserved in the PLP mutants. Thus, in the PLP mutants, axons

appear morphologically altered [8], but not entirely transected.

This has important implications for therapies aimed at rescuing

injured axons, because it demonstrates the potential reversibility of

such axonal changes [24].

To further elucidate the nature of disturbed retrograde axonal

transport in PLP overexpressing mice we investigated the motor

protein for retrograde transport in optic nerve lysates. A significant

increase of dynein protein level was detected in PLP-tg mouse

optic nerves compared to PLP-wt mice. Similar results with

elevated dynein levels have been observed in PLP-null mice that

also show disturbed axonal transport [2]. It has been suggested

that raised dynein protein levels might reflect an accumulation of

dynein-linked retrogradely moving organelles [2]. This is in line

with our finding that juxtaparanodal axonal swellings with

morphologically-altered mitochondria were located predominant-

ly on the distal side of the node of Ranvier (in regard to the retina).

Accumulation of mitochondria or other cell organelles in axonal

abnormalities are often a correlate for disturbed axonal transport

[2,25,26,27] thus suggesting a link between the impaired

retrograde axonal transport and the formation of the juxtapar-

anodal swellings and increase in dynein protein levels. These

features were nearly restored in the absence of RAG-1 in PLP-tg

mice suggesting a central role of adaptive immune cells in

axonopathic changes in the respective mutants.

Since in our study, juxtaparanodes appeared to be most

susceptible for changes mediated by the cytotoxic T-lymphocytes,

we investigated the possible association of these structures. Indeed,

T-lymphocytes in direct vicinity to juxtaparanodes were detectable

and, most interestingly, preferentially displayed a spindle-like

shape at this location. We do presently not know the significance of

this constant observation, but it is worthwhile to speculate that

increased adhesion to a possible target structure might lead to the

maximal cell contact extension between lymphocytes and the

juxtaparanode resulting in the elongated shape of the lymphocytes.

Interestingly, this phenomenon has been observed also in perforin-

and granzyme B-deficient myelin mutants suggesting that this cell-

cell interaction is independent of the cytotoxic features of the

lymphocytes. Whether typical axo-glial molecules, which can even

serve as antigens in multiple sclerosis [28], are functionally

involved in this interaction, remains to be resolved.

Our basic finding that cytotoxic lymphocytes with their

respective cytotoxic agents are essential for impaired retrograde

axonal transport is reminiscent of the pathomechanisms described

in Theiler’s virus-related model of demyelination [29,30,31,32].

However, in contrast to the Theiler’s virus model, in PLP

transgenic mice MHC class I immunoreactivity is only detectable

on the mutant oligodendrocytes [8]. This might have substantial

consequences for the respective pathomechanisms. For the

Theiler’s virus model, it is assumed that the virus-mediated

demyelination exposing the MHC class I-positive axolemma is an

important prerequisite for the formation of an immunological

synapse between lymphocytes and MHC class I-positive axons

and, thus eventually, for the immune attack by the cytotoxic T-

cells [29,30,31,32]. In the PLP mutant, in which MHC I-restricted

T-cell receptors play a crucial role for neural damage [10],

cytotoxic T-cells might only be able to attack the MHC class I-

positive oligodendrocytes, since the molecule is not detectable on

axons [8]. Paradoxically, in the PLP mutants, myelin often

remains intact over wide stretches of the internodes whereas the

axons show shrinkage or swelling causing periaxonal vacuoles [8]

and axonal enlargements [10], respectively. This scenario

resembles pathological features seen in MOG-EAE, where the

immunological attack against the target cell, the oligodendrocyte,

is transmitted to the axon without major local damage to myelin

[24,33]. How the glial-related attack is transmitted to the axonal

partner and whether the spindle-shaped lymphocytes (see above)

directly attaching to the juxtaparanodes are the cytotoxic

mediators is presently not clear.

The primary defect of PLP transgenic mice clearly resides in

mutant oligodendrocytes. Axonal pathology, on the other hand, is

strongly reduced on the RAG-12/2 background, but unlike the

absence of lymphocytes not completely abolished [8]. Thus,

secondary axonal swellings and periaxonal vacuoles in a primary

glial disease can – at a low level - principally exist also independent

of invading cytotoxic T-lymphocytes, which therefore emerge as

Figure 1. Retrograde transport is impaired in PLP-tg mutants, but reconstituted in the absence of the adaptive immune system and
its cytotoxic molecules perforin and granzyme B. A) Retina flat mounts (middle region) from 10 months-old wild type (PLP-wt), PLP-tg (PLP-tg
RAG-1 wt) and immune-deficient PLP-tg (PLP-tg RAG-12/2) mice after 6 days of retrograde axonal transport of fluorogold. Different cell sizes and
fluorogold intensity of labeled RGCs are visible. Note that in immune-competent PLP-tg mice, less retrogradely labeled RGCs are detectable than in
PLP-wt, where nearly all RGCs are retrogradely labeled. In immune-deficient PLP-tg mice, the number of labeled RGCs is comparable to that of PLP-wt
mice. B) Quantification of retrogradely labeled RGCs of PLP-wt (n = 5), PLP-tg RAG-1 wt (n = 5) and PLP-tg RAG-12/2 (n = 5) mice. In comparison to
PLP-wt mice, less RGCs were labeled in PLP-tg mice. In PLP-tg RAG-12/2 mice, a similar number of RGCs was labeled as in PLP-wt mice. C) Relative
reduction of retrogradely-labeled RGCs of PLP-tg (n = 5) in comparison to PLP-wt (n = 4) mice, dependent on the time period for retrograde axonal
transport. The extention of the time period for retrograde transport of fluorogold from 6 to 14 days leads to a drop of reduced retrograde labeling of
RGCs, indicating that retrograde axonal transport, rather than the continuity of the axons, is impaired. *significant reduction of labeled RGCs in
comparison to wt mice (p,0.05). D) Quantification of Nissl-stained RGCs of PLP-wt (n = 5), PLP-tg RAG-1 wt (n = 5) and PLP-tg RAG-12/2 (n = 5) mice.
Note that the number of Nissl-stained RGCs is not reduced in the PLP-tg mutants, as opposed to retrogradely labeled RGCs (Figure 1B). E)
Quantification of retrogradely labeled RGCs (6 days period for retrograde axonal transport) of PLP-wt (n = 5), PLP-tg RAG-1 wt (n = 5) and PLP-tg RAG-
12/2mice reconstituted with bone marrow (BM) from either wild type mice (PLP-tg RAG-12/2 wt BM, n = 5), perforin- (PLP-tg RAG-12/2 Perforin -,
n = 4) or granzyme-B-deficient mice (PLP-tg RAG-12/2 GzmB -, n = 4). Note that lack of either cytotoxic perforin or granzyme B leads to
a reconstitution of retrograde axonal transport to PLP-wt level.
doi:10.1371/journal.pone.0042554.g001
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Figure 2. The occurrence of axonal swellings depend on lymphocytes, cytotoxic perforin or granzyme B and are located at
juxtaparanodal aspects. A) Number of axonal swellings (Bielschowsky’s silver impregnation, optic nerve) in PLP-wt (n = 3), PLP-tg RAG-1 wt (n = 4),
PLP-tg RAG-12/2 (n = 5) mice and in PLP-tg mice devoid of cytotoxic perforin (n = 3) or granzyme B (n = 3). RAG-1 deficiency and lack of cytotoxic
perforin or granzyme B in PLP-tg mice leads to a significant reduction of axonal swellings (p,0.05, one-sided student’s t-test). B) Quantification of
axonal swellings in 3 PLP-tg RAG-1 wt mice by electron microscopy displays that the majority of these abnormalities are located at the
juxtaparanodal region while only few abnormally organized structures are located at other domains of the myelinated fiber. Note that the paranode
is not abnormally organized. C, D) Electron microscopy of PLP-tg mouse optic nerves identifies abnormal juxtaparanodal and internodal profiles,
containing mitochondria (asterisks), often with an appearance reminiscent of degeneration. An axonal swelling in an undefined region is marked by
an ‘‘U’’. N: Node of Ranvier; P: Paranode; J: Juxtaparanode; I: Internode. E, F) Western blot analysis of optic nerves of PLP-wt, PLP-tg RAG-1 wt and PLP-
tg RAG-12/2 mice. E) In this example with one individual for each genotype, dynein levels are elevated in PLP-tg RAG-1 wt mice compared to PLP-
wt. RAG-1 deficiency leads to dynein levels in PLP-tg mice comparable to those found in PLP-wt mice. ERK1/2 was used as loading control. F)
Quantitative Western blot analysis using densitometry and 3–5 individuals per genotype confirm the elevated dynein levels in PLP-tg RAG-1 wt mice
compared to PLP-wt. RAG-1 deficiency leads to dynein levels in PLP-tg mice comparable to those found in PLP-wt mice.
doi:10.1371/journal.pone.0042554.g002

Figure 3. CD8+ T-lymphocytes contact juxtaparanodes where they acquire a spindle-shaped form. A) Relative number of CD8/Caspr2
contacts in PLP-wt (n = 6) and PLP-tg (n = 5) mouse optic nerves. In PLP-tg mice, significantly more CD8+ T-lymphocyte-to-juxtaparanode contacts are
visible than in the PLP-wt mice. B, C) Double immunofluorescence in mouse optic nerve for CD8+ T-lymphocytes (red) and Caspr2+ juxtaparanodal
regions (green). Cell nuclei are stained blue with DAPI. T-lymphocytes devoid of cell contact to Caspr2+ structures are preferentially rounded (B) while
T-lymphocytes attached to Caspr2+ structures are spindle shaped (C). D) Dot-plot showing form factor values of individual T-lymphocytes in PLP-wt,
PLP-tg and PLP-tg mice without perforin or granzyme B. At least 16 Caspr2-associated and not-associated T-lymphocytes were investigated in each
genotype (n = 2–3). Independent of the genotype, CD8+ T-lymphocytes display a low form factor representing a spindle-like shape when associated
with the juxtaparanodal region.
doi:10.1371/journal.pone.0042554.g003
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substantial ‘amplifiers’ of diseases. The cytotoxic attack by perforin

and granzyme B might alter the subcellular organisation of

oligodendrocytes causing impairment of normal diffusion and

transport processes within cytosolic channels of myelin, hypoth-

esized to play an important role in the oligodendroglial support of

axon function [4].

Alternatively, it is possible that a ‘‘spillover’’ of perforin and

granzyme(s) from invading T-cells is a collateral damage and

bystander effect that directly perturbs axon functions, as hypoth-

esized for experimental ex vivo models [34,35,36]. In this context, it

is striking that released granzyme B can damage neurons via

interaction with the neuronal mannose-6-phosphate-receptor

[37,38] which is not only located on neuronal somata and

dendrites, but also on axons [39]. In this model, the antigen-

specific cytotoxic attack to glial cells would release perforin/

granzyme B to diffuse along the myelinated fiber, eventually

binding to axonal mannose-6-phosphate receptor at the nodes of

Ranvier. This could lead to endocytosis of the granzyme B-

mannose-6-phosphate receptor-complex and release of granzyme

B into the axoplasm by a perforin-dependent process [38]. Once

granzyme B has been transfered into the cytoplasm, it could

promote reorganization of microtubules [40] or mitochondrial

damage [38] leading to impaired retrograde axonal transport.

Why, however, axonal changes are predominantly seen at

juxtaparanodes rather than at the node proper, can presently

not be explained by this model.

Irrespective of the exact pathomechanism, blocking inflamma-

tion in this model might be beneficial for the preservation of axon

transport and for the maintenance of the integrity of critical axonal

compartments, such as the juxtaparanode with its pivotal

physiological functions [41]. Of note, many neurological disorders

are associated with impaired retrograde axonal transport and

impaired axonal transport itself may also have a pathogenic

impact so that improvement of axonal transport might be

a therapeutic target to ameliorate disease [15,16,17,18,42,43].

Based on our findings, one way to improve axonal transport might

be to attenuate inflammation. Our study has therefore clear

implications also for the development of treatment strategies in the

group of inherited myelin disorders and possibly other neurode-

generative disorders that have an inflammatory component and

are marked by progressive impairment of axon function.

Materials and Methods

Ethics
Animal experiments were approved by the Regierung von

Unterfranken Wuerzburg.

Animals
10 months old heterozygous PLP overexpressing mice (PLP-tg;

PLP-tg RAG-1 wt) of the line 66 and PLP-tg RAG-12/2mutants

were examined. Perforin-deficient mice were kindly provided by

T. Hünig (Wuerzburg). Granzyme B2/2 mice were obtained

from the Jackson Laboratory (Bar Harbor, ME). All investigated

mice were on a C57BL/6 background and were kept in our

animal facility under barrier conditions.

Bone marrow transplantation from wt, perforin- or granzyme B-

deficient donor mice into 8 weeks old PLP-tg RAG-12/2

mutants (hosts) and control of successful transplantation were

performed as described before [10]. Hosts were sacrificed after 8

months of survival.

Retrograde Labeling of Retina Ganglion Cells (RGCs)
Mice were anesthetized (intraperitoneally, Ketamin/Rompun)

and placed into a stereotactic frame. RGCs were retrogradely

labeled with 1.5 ml fluorogold (4% in 0.9% saline; Fluorochrome

Inc., Englewood, Colorado). Injections were given into both

colliculi superiores using stereotactic coordinates (bregma 3.6 mm

caudally, 0.6 mm laterally, and 1.75 mm ventrally). After 6 or 14

days, mice were perfused with 0.9% saline and retinae were

prepared as whole mounts (four retinal leafs) and immersion-fixed

in 4% PFA/PBS (409). For quantification of RGCs, 12 digital

images were acquired per retina (inner, middle, outer region of the

flattened retina), corresponding to locations at 1/6, 3/6 and 5/6 of

the retinal radius. All retrogradely labeled RGCs were quantified

independent of size.

CD8/Caspr2 Double-Immunohistochemistry
Freshly dissected mouse optic nerves were snap frozen in liquid

nitrogen-cooled isopentane. 10 mm thick longitudinal kryosections

were cut and immersion fixed in 2% PFA/PBS for 10 minutes at

room temperature (RT). After washing in PBS, sections were

incubated in 4% FCS/4% NGS in 0.3% Triton-X-100/PBS for

1 h at RT. Afterwards primary antibodies rat-anti-mouse-CD8

(Chemicon, Temecula, CA) and rabbit-anti-mouse-Caspr2 as

a marker for juxtaparanodes (AB5886; Millipore, Billerica, USA)

diluted in blocking solution were applied for two hours at RT,

followed by incubation with fluorescence-labeled secondary

antibodies (goat-anti-rat-Cy3, Dianova, Hamburg, Germany;

goat-anti-rabbit-Alexa Flour 488, A11008, Invitrogen, Karlsruhe,

Germany). In order to mark cellular nuclei the sections were

incubated with DAPI (Sigma-Aldrich, Munich, Germany;

1:500000) and then embedded in Aqua-Poly/Mount. DAPI

positive CD8+ T-lymphocytes and Caspr2+ profiles were counted

per mm2 in myelinated optic nerve with the confocal microscope

FluoView FV1000 (Olympus, Hamburg, Germany). Every CD8+
T-cell was completely scanned with 1 mm stacks. For the analysis

of association rate, the percentage of CD8+ T-lymphocytes

attatched to juxtaparanodal regions was quantified in relation to

the number of Caspr2+ profiles. Of each cell the stack with the

largest surface area was measured with ImageJ 1.45 (National

Institutes of Health, Bethesda, MD) for area and perimeter.

According to the formula for the form factor ( = 4 p6 cell area/

perimeter2; ref. [44]) values were obtained and compared between

different genotypes. All sections were analysed by the investigator

not being aware of the genotype.

Bielschowsky’s Silver Impregnation
10 mm optic nerve sections were incubated in 20% lead nitrate

for 30 minutes at room temperature, followed by incubation in 4%

formaldehyde (10 sec). Sections were then impregnated in lead

nitrate/ammonium hydroxide solution for 30 seconds. After

washing in distilled water, sections were incubated in 5%

sodiumthiosulfatesolution.

Electron Microscopy
Optic nerves of transcardially perfused mice (4% PFA/2% GA)

were osmificated and embedded in Spurr’s medium. 70 nm

ultrathin sections were counterstained with lead citrate and

examined using Leo 906E electron microscope (Zeiss, Oberko-

chen, Germany), equipped with a ProScan CCD camera

(Lagerlechfeld, Germany).
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Western Blot Analysis
Optic nerves were quickly dissected, snap frozen in liquid

nitrogen and sonicated (Sonoplus HD60, Bandelin electronic,

Berlin, Germany) in 100 ml RIPA lysis buffer (25 mM Tris-HCl,

pH 8, 10 mM Hepes, 150 mM NaCl, 145 mM KCl, 5 mM

MgCl2, 2 mM EDTA, 0.1% SDS, 1% NP-40, 10% Glycerol with

protease inhibitors) per 10 mg tissue. In addition, triton soluble

(membrane protein enriched) and triton insoluble fractions of optic

nerve lysates were prepared according to previously published

protocols [2]. Protein concentration was determined by Lowry

assay (Sigma-Aldrich) and equal amounts of proteins were resolved

by SDS-PAGE, transferred to nitrocellulose membranes and

visualized using Ponceau S (Roth, Karlsruhe, Germany). Mem-

branes were blocked with skim milk and probed with anti-dynein

antibody solution (intermediate chain) overnight at 4uC (Serotec,

Oxford, UK). Incubation with HRP-conjugated secondary anti-

bodies was performed for 1 h at room temperature and detection

of the immune reaction was achieved by use of ECL reagent and

ECL hyperfilm (GE Healthcare Bio-Sciences AB, Uppsala,

Sweden). The resulting signals for motor proteins were normalized

to the amount of the corresponding signal of the loading control

following densitometric quantification using ImageJ software

(National Institutes of Health, Bethesda, MD).

Statistical Analysis
Statistical analysis was performed by using the unpaired two-

tailed student’s t-test for comparison of quantified profiles. For

analysis of axonal swellings a one-tailed student’s t-test was used.

Relative reduction of retrogradely labeled RGCs was determined

by calculating the percentage of RGCs in PLP-tg RAG-1 wt

mouse retinae in relation to the number of RGCs of corresponding

PLP-wt mice.
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