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Abstract

Neuronal development is coordinated by the interplay of extrinsic cues and

intrinsic factors. These extrinsic cues act through multiple intracellular signaling

pathways to regulate the cytoskeleton machinery of the neuron that is essential

during neuronal morphogenesis. Recent evidence identifies the ubiquitin protea-

some system (UPS) as a crucial cell-intrinsic regulator of neuronal development.

The Skp1-Cullin1-F-box protein (SCF) E3 ubiquitin ligase and in particular the

substrate-recruiting adaptor subunit F-box proteins have emerged as essential mod-

ulators of diverse aspects of neuronal development including progenitor proliferation,

migration, axon and dendrite growth and synaptogenesis. In this study, I identified

the brain-enriched centrosomal F-box protein FBXO31-SCF as a novel regulator

of neuronal morphogenesis both in vitro and in the developing cerebellum. While

my study identifies FBXO31-SCF as a regulator of axonal identity, I also find that

FBXO31-SCF promotes of axon and dendrite growth in neurons. To gain mechanis-

tic insight into the FBXO31-regulated phenotypes, I uncovered the polarity protein

Par6c as a novel interaction partner and a bona fide substrate of FBXO31. Fur-

ther analysis revealed that FBXO31-SCF acts upstream of polarity complex protein

Par6c to regulate axon growth but not dendrite growth in neurons. Taken together,

my study gives a systematic insight into FBXO31-regulated events in developing

neurons and thus introduces the E3 ubiquitin ligase FBXO31-SCF as a key regula-

tor of neuronal development.
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Somewhere, something incredible is

waiting to be known.

Carl Sagan

1. Introduction

1.1 Neuronal development

The mammalian brain is composed of billions of neurons and glial cells that

act together in a fine-tuned network. Neurons are highly specialized cells with a po-

larized morphology consisting of two structurally and functionally distinct domains

- axon and dendrites. Neurons make synaptic connections to relay the informa-

tion. This flow of information occurs unidirectionally from dendrite to cell body

to axon. Here, synaptic inputs from the connected neurons are integrated by den-

drites, resulting in generation of an action potential at the cell soma. This is further

propagated along the axon to the target cells. While neurons play an important

role in information transfer, glial cells provide a supporting framework for neurons.

Both neurons and glia are generated from a common pool of precursor cells in the

developing brain. These neural precursor cells proliferate by symmetric division and

subsequently undergo asymmetric division to generate neurons and glia. During

neuronal development, neurons undergo dramatic changes in their morphology. Im-

mature neurons derived from the precursor cells migrate over long distances to reach

their final target. During the process of migration, neurons become polarized with

distinct leading and trailing processes that eventually differentiate into dendrites

and axon, respectively. These processes are further refined and fine-tuned enabling

the integration of an individual neuron into the functional network. The phases of

neuronal development and morphogenesis are elaborated in the subsequent sections.

1



1.1 Neuronal development 2

1.1.1 Progenitor proliferation and differentiation

During early embryonic development, the neuroectoderm gives rise to the neu-

ral tissue. As a result of neural induction, precursors are generated from the ec-

toderm under the control of diffusible neural inducers including chordin, noggin,

follistatin and cerberus (Lamb et al., 1993; Hemmati-Brivanlou et al., 1994; Sasai

et al., 1995; Biben et al., 1998; Streit and Stern, 1999). These cells undergo elon-

gation as neuroepithilial cells along the embryonic axis and form the neural tube,

which later differentiates into brain and spinal cord.

As neurogenesis proceeds, neuroepithilial cells undergo massive proliferation

to generate more precursor cells by symmetric divisions. These progenitors are

polarized into apical and basal domains with their nuclei undergoing interkinetic

movement along the apico-basal axis during cell division (Götz and Huttner, 2005).

Neuroepithilial progenitors give rise to radial glial cells (RGCs). Recently, it has

been shown that the RGCs are the major source of neurons during development

(Malatesta et al., 2000; Noctor et al., 2001, 2002; Anthony et al., 2004). RGCs span

the width of the entire developing cortex with their soma remaining close to the

apical/ventricular surface and a long radial process maintaining contact with the

basement membrane of the pial surface (Cameron and Rakic, 1991). These divide

asymmetrically to generate another RGC and an intermediate precursor cell (IPC)

or a neuron. These IPC undergo another round of symmetric division to generate

two neurons. These immature neurons then migrate along the processes of the radial

glial cell to reach their final destination (Fishell and Kriegstein, 2003).

1.1.2 Neuronal migration

Coordinated neuronal migration is a major hallmark of the developing brain.

Newly generated neurons migrate from ventricular zone to their final position under

the influence of secreted guidance cues. In the developing cortex, the neurons mi-

grate along radial glial cells from the sub-ventricular zone towards the cortical plate
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in an inside-out manner with newly arriving cells migrating radially past the existing

neurons. In contrast, in the developing cerebellum, granule neurons migrate from

the germinal zone in the external granule layer towards the internal granule layer

(Hatten, 1999). The migration of neurons is achieved by the extension of cellular

protrusions in the direction of migration referred to as the leading process, followed

by nuclear movement in the direction of migration. This glial-guided neuronal mi-

gration is mediated by several cell-adhesion molecules such as integrins, neuregulins

and astrotactins (Fishell and Hatten, 1991; Anton et al., 1997, 1999; Solecki, 2012).

Besides the cell-adhesion molecules, neuronal migration is also regulated by

several extrinsic cues including growth factors such as NGF (nerve growth factor),

BDNF (brain-derived neurotrophic factor), FGF (fibroblast growth factor) and se-

creted molecules such as slits, netrins, semaphorins and reelin (Marin, 2003; Casazza

et al., 2007; Lai Wing Sun et al., 2011). At the marginal zone, the Cajal-Retzius

cells secrete reelin that upon binding to its receptor activates downstream signaling

cascade, which induces neurons to settle at their appropriate cortical layers (Soriano

and Del Ŕıo, 2005). The reeler mouse mutants show a cortical lamination defect with

the neurons aligned in an outside-in fashion (Hatten, 1999). As a result of consorted

action of these secreted molecules, neurons migrate to their final destinations.

1.1.3 Neuronal polarity

Neuronal polarization is fundamental to formation of two structurally and

functionally distinct domains in the neurons - axons and dendrites. Many studies

have implicated various signaling cascades controlled by extracellular signals that

lead to cytoskeletal remodeling and localization of specific proteins in one of the

compartments. Cultured hippocampal neurons have been widely used to study the

signaling cascades that guide neuronal polarization in vitro. These neurons dis-

play specific morphological characteristics that were first described by Dotti and

colleagues (Dotti et al., 1988). At stage 1, neurons display intense lamellipodial

and filopodial-protrusions, which leads to emergence of multiple neurites (Stage 2 ).
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Stage 3 represents a critical step when the neuronal symmetry breaks and one neu-

rite grows rapidly to become the axon while other neurites acquire dendritic identity.

Stage 4 is characterized by rapid growth of axon and dendrites, while stage 5 in-

volves terminal differentiation of neurons and formation of dendritic spines (Craig

and Banker, 1994; Barnes and Polleux, 2009) (Figure 1.1).

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Lamellipodial
and filopodial
protrusions

Multiple immature
neurite extension

Breaking of
neuronal symmetry:
axon specification

Axon and dendrite
outgrowth and

branching

Spine morphogenesis,
synapse formation

Figure 1.1: Stages of neuronal polarization in vitro. Schematic representation of neuronal

polarization in vitro. Soon after plating, the neurons develop lamellipodial/filopodial protrusions

(stage 1) that leads to emergence of several immature neurites (stage 2). At stage 3, neuronal

symmetry breaks and one neurite grows rapidly to form the axon (red) whereas other neurites

acquire dendritic identity. Stage 4 is characterized by rapid axon and dendrite growth. In stage

5, the neurons are terminally differentiated with dendritic spines and synapses. Modified from

(Polleux and Snider, 2010).

This morphological compartmentalization of neurons into distinct domains is

governed by several extrinsic cues including growth factors and secreted molecules

such as BDNF, neurotrophins, TGFβ and Wnt (Zhang et al., 2007; Yi et al., 2010;

Cheng et al., 2011). The information from these cues is relayed via several intracel-

lular signaling pathways that converge on the key mediators of neuronal polarity -

PI3K/GSK3β and par polarity complex (Arimura and Kaibuchi, 2007). While both

these mediators lead to cytoskeletal remodeling, the par polarity complex has been

well studied for its role in establishment of neuronal polarity.
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The par complex was first identified in a genetic screen based on asymmetric

divisions occurring in the C. elegans zygotes (Kemphues et al., 1988). The study

identified six par genes whose mutations showed an abnormal cleavage pattern and

subsequent studies identified the molecular functions of these par proteins. Par1

and Par4 encode serine/threonine protein kinases (Morton et al., 1992; Guo and

Kemphues, 1995). Par2 has a RING finger domain that may act in the ubiquitination

pathway (Levitan et al., 1994). Par3 and Par6 contain PDZ domains suggesting

their role as scaffolding proteins (Etemad-Moghadam et al., 1995; Watts et al.,

1996). Par5 is a member of 14-3-3 family that binds to phosphorylated serines

and threonines (Morton et al., 2002). Tabuse and colleagues identified the seventh

member of the par gene family encoding atypical protein kinase C (PKC-3) (Tabuse

et al., 1998). RNAi-induced knockdown of PKC-3 in the C. elegans embryos induced

lethality including defects in early symmetric divisions that were similar to par-like

phenotypes.

The Par/aPKC complex primarily comprises Par6 (Par6α, Par6β and Par6γ),

Par3 and aPKC (PKCι and PKCζ). Par6 proteins are structurally similar and form

a complex with Par3 and aPKC. They consist of three conserved domains: The

N-terminal Phox/Bem1 (PB1) domain that binds to other PB1 domain containing

proteins such as aPKC, the Cdc42/Rac interaction-binding (CRIB) motif that binds

to Cdc42 or Rac GTPases in their active, GTP-bound state and the PDZ domain

that binds to other proteins such as Par3. Aside from the PB1 domain, aPKCs

harbour a catalytically active kinase domain at the C-terminus which mediates the

phosphorylation of several proteins including Par3 (Assémat et al., 2008).

The function of the par protein complex in epithelial and neuronal cell polarity

is highly conserved among species (Shin et al., 2006). The first evidence confirm-

ing the role of the par complex in neuronal polarity was illustrated in hippocampal

neurons (Shi et al., 2003). Par6 is a predominant centrosomal protein and as neu-

rons polarize, Par6 together with Par3 is selectively enriched at the tip of future

axon (Solecki et al., 2004, 2009; Mori et al., 2009; Cheng et al., 2011). Disruption
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of the polarized distribution of either Par6 or Par3 impairs axon specification in

hippocampal neurons. Since then, there has been mounting evidence that supports

the role of the Par6/Par3/aPKC complex in neuronal polarity (Shi et al., 2004;

Nishimura et al., 2005; Schwamborn et al., 2007; Vohra et al., 2007; Yi et al., 2010).

The primary defect in neuronal polarization caused by disrupting the function of the

par complex is the failure of neurites to differentiate into either axons or dendrites.

Neuronal polarity defects manifest in various ways including no axon or dendrite

formation, multiple axons or multiple dendrites with no axon.

1.1.4 Axon/Dendrite growth and guidance

Once neuronal polarity is established, the axonal process grows rapidly un-

der the influence of extracellular factors that are required for gene transcription

and cytoskeletal assembly (Lentz et al., 1999; Goldberg et al., 2002; Ozdinler and

Macklis, 2006). Several extrinsic factors namely NGF, BDNF, FGF, NCAM (neural

cell adhesion molecule) and N-cadherin have been well characterized for triggering

several intracellular signaling pathways in axon growth control (Bixby and Harris,

1991; Zhou and Snider, 2006). Axon growth is simultaneously facilitated by its

guidance to the target and integration into the functional circuitry. The axonal

guidance and pathfinding is regulated by several guidance cues including netrins,

slits, semaphorins, ephrins, hedgehog, Wnt and TGFβ, which are highly conserved

amongst various species (Tessier-Lavigne and Goodman, 1996; Araújo and Tear,

2003; Huber et al., 2003; Evans and Bashaw, 2010). These guidance cues act pri-

marily on the growth cones of the axon. The leading edge of the axon growth cone

is a motile structure that constantly undergoes remodeling and is enriched with the

cytoskeletal protein actin (Dent and Gertler, 2003; Lowery and Van Vactor, 2009).

Actin assembly is the key process that controls steering of the growth cones. While

the attractants promote actin polymerization in the growth cones, the repellents

decrease the polymerization of actin. Actin assembly is itself regulated by several

RhoGTPases - Cdc42/Rac1/RhoA and their downstream effectors.
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Besides axons, dendrites also undergo constant growth and pruning in order to

establish synaptic contacts with their target synapses. Dendrites are highly branched

structures, that form depending on the neuronal cell type most elaborate arbors.

The complex dendritic structure is also regulated by several extrinsic cues such

as BDNF, notch, slits and Wnt that allow dendritic growth as well as retraction

(Kim and Chiba, 2004; Dijkhuizen and Ghosh, 2005). In addition, the growth and

refinement of the dendritic tree are strongly influenced by synaptic activity and

calcium signaling (Zhang and Poo, 2001). As dendrites mature, they form functional

synapses with their partner axon. Thus, appropriate morphogenesis of individual

neurons at different stages of development is crucial for their integration into the

functional network.

1.2 Ubiquitin Proteasome System (UPS)

As introduced in the previous sections, extrinsic cues including growth factors,

guidance proteins and other extracellular cues regulate the overall design of the neu-

ronal shape as well as fine structural elements by mediating cellular responses that

directly influence cytoskeletal dynamics. Accumulating evidence also supports the

role of cell-intrinsic mechanisms in neuronal morphogenesis (Frank and Tsai, 2009;

de la Torre-Ubieta and Bonni, 2011). These mechanisms are primarily inherited

pathways that operate largely independent of the cellular environment and orches-

trate neuronal responses to extrinsic cues. The regulation of gene expression by

transcription factors represents a major mode of cell-intrinsic control of neuronal

morphogenesis (Chédotal and Rijli, 2009; Moore et al., 2011). Transcription factors

govern entire sets of developmental programs by inducing or repressing gene ex-

pression both spatially and temporally. Besides transcription factors, the ubiquitin

proteasome system has recently emerged as an important cell-intrinsic regulator of

neuronal morphogenesis (Frank and Tsai, 2009; Yang et al., 2010).
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The ubiquitin proteasome system is the major pathway for the control of intra-

cellular protein degradation, first described in rabbit reticulocytes by Hershko and

colleagues (Hershko et al., 1979). This spatial and temporal control of protein degra-

dation is fundamental to cellular physiology including cell cycle regulation, various

developmental programs and responses to external cues. Protein degradation by the

UPS occurs via sequential activity of three enzymes namely E1 ubiquitin-activating

enzyme, E2 ubiquitin-conjugating enzyme and E3 ubiquitin ligase, eventually lead-

ing to ubiquitination of the target protein, which is recognized by the 26S proteasome

for degradation (Hershko and Ciechanover, 1998).

Ubiquitin is a highly conserved 76 amino acid protein that is activated for

conjugation in an ATP-dependent manner by the E1 ubiquitin-activating enzyme,

which catalyzes a thioester linkage between the C-terminal glycine residue in ubiq-

uitin and a cysteine residue in the E1 ubiquitin-activating enzyme. The activated

ubiquitin is linked to the E2 ubiquitin-conjugating enzyme by a transesterification

reaction. Finally, a specific E3 ubiquitin ligase recruits the E2-Ub conjugate and

the substrate to mediate the transfer of ubiquitin from the E2 to the substrate.

Ubiquitin forms an isopeptide bond with the target lysine residue of the substrate

(Hershko and Ciechanover, 1998) (Figure 1.2). Conjugation of ubiquitin chains can

occur via different lysine residues in ubiquitin. Lysine 48-linked polyubiquitination

is often associated with proteasomal degradation, while lysine 63-linked polyubiqui-

tin chains represent a non-proteolytic modification of proteins. Ubiquitin can also

be conjugated through other lysine residues including Lys6, Lys11, Lys27, Lys29

and Lys33 (Ikeda and Dikic, 2008). Although all lysine residues in ubiquitin have

been shown to participate in chain formation, only a few studies have addressed

their biological significance. Whereas Lys63-linked polyubiquitin chain formation is

involved in DNA repair and signal transduction (Spence et al., 1995; Kerscher et al.,

2006), Lys11 and Lys63 mixed linkage chains function as a signal for internalization

of MHC I (major histocompatibility complex class I) through its interaction with

epsin 1 (Goto et al., 2010).
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Figure 1.2: The ubiquitin proteasome system (UPS). Ubiquitin is activated by E1 ubiquitin-

activating enzyme in an ATP-dependent manner. Activated ubiquitin is then linked to the E2

ubiquitin-conjugating enzyme that associates with the specific E3 ubiquitin ligase. Activated ubiq-

uitin is transferred from E2 conjugating enzyme to the substrate either directly or through an E3

ubiquitin ligase resulting in either mono-, di- or polyubiquitination of the substrate. While polyu-

biquitinated substrates are directed to the 26S proteasome for degradation, mono- and diubiqui-

tination affect protein interaction, localization and activation. Deubiquitinating enzymes replenish

ubiquitin to the cellular pool of ubiquitin.

The most remarkable feature of the UPS is the large number of E3 ubiquitin lig-

ases. With more than 600 E3 ubiquitin ligases encoded by the human genome, they

outnumber the family of protein kinases (Cohen and Tcherpakov, 2010). Although

E3 ligases confer substrate specificity, individual E3 ligases can recruit more than

one substrate (Peters, 2006). Conversely, individual substrates may be targeted by

more than one E3 ligase (Kanie et al., 2012). E3 ligases have been classified mainly

into two families: the HECT domain E3 ligases and the RING domain E3 ligases.

The HECT (Homologous to the E6AP C-terminus) E3 ligases form a thiol

ester intermediate with activated ubiquitin. The HECT domain (approximately 350



1.2 Ubiquitin Proteasome System (UPS) 10

amino acids) binds the E2-Ub intermediate and accepts ubiquitin at a conserved

cysteine residue. This ubiquitin is then transferred to the substrate by covalent

linkage. HECT E3 ligases are involved in cancer progression, cardiovascular and

neurological disorders (Pickart and Eddins, 2004). For example, HECT E3 ligase

NEDD4-1 (neuronal precursor cell expressed and developmentally downregulated

protein 4-1) targets PTEN (Phosphatase and tensin homolog) and Rap2 (Wang

et al., 2007; Kawabe et al., 2010). While NEDD4-1 mediates polyubiqutination and

degradation of tumor suppressor PTEN to regulate tumorogenesis, it brings about

ubiquitination of Rap2A to promote dendrite growth. The HECT E3 ligase Smurf1

controls cell polarity and axon growth by targeting Rho GTPase RhoA for degrada-

tion (Wang et al., 2003; Cheng et al., 2011). In addition to refinement of neuronal

circuitry, the HECT ligases have been well-studied in context of neurodevelopmental

disorders. A mutation in the Ube3a gene encoding E3 ubiquitin ligase E6AP is asso-

ciated with Angelman syndrome characterized by developmental delays, intellectual

disability and speech impairments (Mabb et al., 2011). E6AP has been implicated

in synapse development and maintenance (Dindot et al., 2008; Greer et al., 2010;

Margolis et al., 2010).

The RING (Really Interesting New Gene) E3 ligases are characterized by the

presence of a RING domain that consists of a short motif rich in cysteine and his-

tidine residues, which coordinate two zinc ions (Pickart and Eddins, 2004). These

RING E3 ligases act as monomers or form a multimeric complex to mediate ubiq-

uitination and degradation of the target protein. The multimeric RING ligases

Anaphase Promoting Complex (APC) and Skp1-Cullin1-F-box protein (SCF) com-

plex have been characterized primarily for their function in cell cycle progression and

maintenance (Peters, 1998). Both APC and SCF are discussed in the subsequent

sections.
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1.3 Anaphase Promoting Complex (APC)

APC is a 1.5 MDa multimeric RING E3 ligase complex that is composed of

at least 12 subunits including the cullin protein APC2 and the RING-finger protein

APC11 (Peters, 2006) (Figure 1.3). APC2 and APC11 form the catalytic part of

the substrate that can mediate ubiquitination in vitro with reduced substrate speci-

ficity (Tang et al., 2001). The APC activity is stimulated in a cell-cycle dependent

manner upon binding to the activator proteins Cdc20 or Cdh1. While the association

of APC with Cdc20 is required for its activity during early mitosis, Cdh1 associates

with APC during late mitosis and G1 phase (Harper et al., 2002; Peters, 2002). Be-

sides stimulating the activity of the core complex, Cdc20 and Cdh1 confer substrate

specificity to the complex. For example, during early mitosis, Cdc20-APC targets

cyclin B1 and securin for degradation to initiate metaphase-to-anaphase transition.

Meanwhile, Cdh1-APC targets other APC substrates including mitotic cyclins and

Cdc20 to exit the mitotic cycle. During G1, Cdh1 promotes degradation of the the

F-box protein and SCF complex subunit Skp2 to prevent premature entry into the

S-phase (Hu et al., 2011).

Both APC coactivators - Cdh1 and Cdc20 - contain a C-terminal WD40 do-

main that mediates the interaction of APC to the substrates. Cdh1 and Cdc20 me-

diate recognition and recruitment of substrates harboring D-box (destruction box)

or KEN box recognition motifs (Peters, 2006). While most substrates harboring

these degrons are recruited to the APC complex for ubiquitination, some proteins

harboring these degrons are not degraded by APC. For example, although Emi1

harbors a D-box domain, it acts as a pseudosubstrate of Cdh1 and inhibits APC

activity by competing with other Cdh1 substrates (Miller et al., 2006).

1.3.1 APC in neuronal development

In 1999, Gieffers and colleagues described the expression and ligase activity

of Cdh1, a crucial cell cycle regulator, in the post-mitotic neurons (Gieffers et al.,
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Figure 1.3: The anaphase promoting complex (APC). The APC complex consists of at least

12 different subunits including the scaffolding protein APC2 and the RING-finger protein APC11.

The co-activators - Cdh1 or Cdc20 - bind to the substrates harboring D-box or KEN box motifs to

recruit them to the APC core. Cdc27/APC3 binds to Cdh1 or Cdc20 and Doc1/APC10 is essential

for substrate recognition and the processivity of the complex. The other subunits including Cdc16,

Cdc23, APC1, APC4 and APC5 are involved in protein interactions. Modified from (Peters, 2006).

1999). Since then, several reports have attributed Cdh1 function in neuronal devel-

opment (summarized in Table 1.1). Cdh1 has emerged as a prominent regulator of

axon growth in neurons (Konishi et al., 2004). It suppresses axon growth by target-

ing SnoN, Id2 and Smurf1 for degradation (Lasorella et al., 2006; Stegmüller et al.,

2006; Kannan et al., 2012). The degradation of SnoN by Cdh1-APC in neurons is

regulated by the TGFβ-Smad2 pathway. Accordingly, TGFβ-Smad2 signaling re-

stricts axon growth. In this context, SnoN, a negative regulator of TGFβ signaling,

associates with transcriptional co-activator p300. Both SnoN and p300 are required

for the regulation of Ccd1. Ccd1, an actin-binding protein, localizes to the axon

terminals and loss-of-function studies suggest that Ccd1 mediates SnoN-dependent

axon growth in granule neurons (Stegmüller et al., 2006, 2008; Ikeuchi et al., 2009).

Simultaneously, Cdh1-APC activation results in degradation of another transcrip-

tion factor Id2 to regulate axon growth (Lasorella et al., 2006). Id2 D-box mutant,

which is resistant to Cdh1-APC-mediated degradation, enhances axon growth in

granule neurons and overcomes the myelin inhibitory signals for growth. In the
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cytoplasm, Cdh1-APC targets the E3 ubiquitin ligase Smurf1 for degradation to

suppress axon growth (Kannan et al., 2012). Smurf1 in turn promotes axon growth

by targeting the small GTPase RhoA for degradation (Cheng et al., 2011).

Aside from its axon growth-suppressing function, Cdh1-APC also modulates

synaptic strength and plasticity. Cdh1-APC regulates the expression of GluR1 sub-

unit of the AMPA receptor by proteasomal degradation (Fu et al., 2011). Downreg-

ulation of GluR1 and reduction in glutamatergic transmission is mediated by Eph4-

Cdh1-APC-dependent signaling in response to prolonged activity at the synapse. In

invertebrates, Fzr1, the Drosophila homologue of mammalian Cdh1, has also been

shown to regulate synapse development by mediating ubiquitination of Lipirin-α

(van Roessel et al., 2004). Lipirin-α interacts directly with Dlar, a receptor tyrosine

phosphatase, to modulate synaptic bouton number, underscoring the role of Cdh1

in synapse formation.

Moreover, recent work by Silies and Klämbt has shown that glial migration

in Drosophila along the axon is regulated by Cdh1-APC (Silies and Klämbt, 2010).

They report that Drosophila Cdh1/Fzr is essential for establishment of graded ax-

onal distribution of the immunoglobulin superfamily cell adhesion molecule Fasci-

clin2 (Fas2). In Drosophila motor neurons, Fas2 interacts homophilically with glial

Fas2 and glial migration is initiated along axonal segments with lower levels of Fas2,

but stalls in axonal domains with high levels of Fas2. Thus, Cdh1-APC has emerged

as an important mediator in coordinating the migration of neuronal and glial cells

during development.

An emerging role of Cdh1-APC is in learning and memory. Garcia-Higuera

and colleagues found deficits in the neuromuscular coordination and memory in

the Cdh1 conditional knockout (Cdh1+/-;Sox2-Cre) animals shown by the tightrope

test and the novel-object recognition test, respectively (Garćıa-Higuera et al., 2008).

Moreover, conventional Cdh1 heterozygous animals show impairment in late-phase

long term potentiation (L-LTP) that is evoked by multiple high-frequency stimu-

lation in Schaffer collateral-CA1 synapses. In concordance with these findings the
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animals show deficits in contextual fear memory, a hippocampus-dependent task (Li

et al., 2008). The requirement of Cdh1-APC in higher cognitive functions is further

supported by the memory deficits observed in the APC2 knockouts (Kuczera et al.,

2011). These knockout animals show impairment in spatial memory and extinc-

tion of fear memories. Defective fear extinction, in particular, is a characteristic of

anxiety disorders such as phobia or post-traumatic stress disorder (PTSD).

Table 1.1: APC activators Cdh1 and Cdc20 in neuronal development

Activator
Neuronal

substrate
Function Reference

Cdh1 SnoN Axon growth (Stegmüller et al., 2006)

Id2 Axon growth (Lasorella et al., 2006)

Smurf1 Axon growth (Kannan et al., 2012)

Skp2 Neuronal differentiation (Harmey et al., 2009)

GluR1 Synaptic plasticity
(Juo and Kaplan, 2004;

Fu et al., 2011)

Cyclin B1 Neuronal survival (Almeida et al., 2005)

Lipirin-α Synaptic size and activity (van Roessel et al., 2004)

Cdk5 Neuronal cell cycle (Zhang et al., 2012)

Fascicilin2

(putative)
Glial migration (Silies and Klämbt, 2010)

Pfkfb3 Glycolysis
(Herrero-Mendez et al.,

2009)

Cdc20 Id1 Dendrite growth (Kim et al., 2009)

NeuroD
Presynaptic

differentiation
(Yang et al., 2009)

Besides Cdh1, Cdc20-APC is also present in post-mitotic neurons, where it

plays a role in dendritic morphogenesis (Kim et al., 2009; Puram et al., 2011).

Knockdown of Cdc20 impairs the formation of dendritic arbors in granule neurons
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(Kim et al., 2009). Cdc20 is a centrosome-associated protein that is activated by

interaction with HDAC6. This interaction of Cdc20-APC with HDAC6 drives the

differentiation of dendrites in post-mitotic neurons. Phosphorylation of Cdc20-APC

by CaMKIIβ leads to its dissociation from the centrosome and to retraction of den-

drites (Puram et al., 2011). Cdc20 also triggers the degradation of the transcription

factor NeuroD2 to promote presynaptic differentiation (Yang et al., 2009). The

NeuroD2 target gene Complexin2 encodes for a regulator of synaptic vesicle fusion

and thus mediates the ability of NeuroD2 to suppress presynaptic differentiation

(Huntwork and Littleton, 2007). In summary, both coactivators of the APC, Cdh1

and Cdc20, have emerged as important regulators of neuronal development.

1.4 Skp1-Cullin1-F-box protein (SCF) complex

The SCF complex is another multimeric RING E3 ligase that plays an essential

role during cell cycle and is structurally related to the APC complex. This com-

plex is composed of the scaffolding protein Cullin (Cul), S-phase kinase associated

protein 1 (Skp1), the RING domain containing protein Rbx1/Roc1 and an inter-

changeable component, the F-box protein, that binds to Skp1 and Cul1 through its

F-box domain (Zheng et al., 2002) (Figure 1.4). F-box proteins are responsible for

substrate recognition. There are sixty-nine F-box proteins identified in humans that

serve as adaptors of the SCF complex and thus provide the basis for a large number

of substrate-specific ubiquitination pathways (Kipreos and Pagano, 2000).

F-box proteins have been classified into three subfamilies: those with WD40

domains (FBXWs), those with leucine-rich repeats (FBXLs) and those that harbor

other domains (FBXOs) (Kipreos and Pagano, 2000; Jin et al., 2004). Notably, only

a minority of the sixty-nine F-box proteins has been well-characterized. The best-

studied F-box proteins are FBXW1 and FBXW11 (also referred to as β-TrCP1 and

β-TrCP2, respectively), which act as key players in cell cycle regulation (Frescas and

Pagano, 2008). Both FBXW1 and FBXW11 have similar substrate specificities and
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Figure 1.4: The Skp1-Cullin1-F-box protein (SCF) complex. The SCF complex consists of

the scaffolding protein Cullin1, S-phase-associated protein kinase 1 (Skp1), RING finger protein

Rbx1 and the adaptor protein F-box protein. F-box proteins bind to Skp1 and Cul1 through their

F-box domains and recruit substrates for ubiquitination.

frequently function redundantly (Guardavaccaro et al., 2003; Shirogane et al., 2005).

During cell cycle transition, β-TrCP acts as both positive and negative regulator of

the cell cycle by inducing the degradation of Cdc25A (cell division cycle 25A), Wee1a

and Emi1 (a pseudosubstrate of APC) (Frescas and Pagano, 2008). An alteration in

FBXW1 or FBXW11 activity contributes to unrestrained proliferation and cancer

(Branzei and Foiani, 2008). Another F-box protein, FBXL1 (also referred to as

SKP2), also plays a crucial role in cell cycle progression where FBXL1 ubiquitinates

the tumor suppressor p27 phosphorylated at Thr187 by Cdks (Tsvetkov et al., 1999).

Besides regulating p27 levels, FBXL1 also mediates the degradation of several cell

cycle and oncogenic proteins including cyclin E, cyclin D1, myc and BRCA2 (Frescas

and Pagano, 2008).

1.4.1 SCF complex in neuronal development

As outlined earlier, the SCF complex has been largely studied in cell cycle

regulation. The quest for neuronal F-box proteins has only recently begun and has
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revealed important functions of F-box proteins in the brain including neurogenesis,

neuronal migration, axon growth, dendritic patterning and synaptogenesis (summa-

rized in Table 1.2).

The F-box proteins FBXW1 and FBXW11 (β-TrCP1 and β-TrCP2, respec-

tively), in agreement with their role in cell cycle, regulate proliferation and differ-

entiation of neural progenitors. FBXW1 and FBXW11 interact with and facilitate

degradation of β-catenin, a downstream mediator of Wnt signaling. In the canonical

Wnt pathway, the binding of the ligand Wnt to its receptor Frizzled causes activation

of Disheveled (Dvl) that in turn inhibits GSK3β activity. This results in transloca-

tion of β-catenin into the nucleus, where its binding to the LEF/TCF transcription

complex activates Wnt responsive genes. In absence of Wnt, active GSK3β phos-

phorylates β-catenin that is recognized by β-TrCP for degradation (Hart et al., 1999;

Latres et al., 1999). GSK3β activity is inhibited by DISC1 (disrupted in schizophre-

nia 1), which also plays a critical role in progenitor proliferation. This inhibition

of GSK3β activity by DISC1 in the progenitor leads to stabilization of β-catenin

that promotes proliferation (Mao et al., 2009). Besides regulating β-catenin stabil-

ity, β-TrCP also mediates the degradation of REST (repressor element 1 silencing

transcription factor) to promote neurogenesis. REST is a DNA-binding protein that

recognizes motifs in the promoter of many neuronal genes. REST acts together with

the co-repressor CoREST to silence genes in non-neuronal cells (Ballas and Mandel,

2005; Ooi and Wood, 2007). A recent study by Westbrook and colleagues found

that REST is polyubiquitinated and degraded in neural stem cells by βTrCP1 to

promote neurogenesis (Westbrook et al., 2008).

Moreover, the C. elegans homologue of β-TrCP, Lin-23 was originally identified

to restrain cell proliferation in response to developmental cues (Kipreos et al., 2000).

It was later identified as a cytoplasmic protein that is essential for axon growth

(Mehta et al., 2004). Null alleles of Lin-23 gene and a point mutation in the C-

terminal tail of the protein both show a defect in axon outgrowth. In addition to

axon outgrowth-regulating function, Lin-23 regulates the abundance of glutamate



1.4 Skp1-Cullin1-F-box protein (SCF) complex 18

receptor subunit GLR1 in the ventral nerve cord of C. elegans. Lin-23-mediated

regulation of GLR1 abundance results from degradation of the β-catenin homologue,

BAR-1 (Dreier et al., 2005).

Similar to βTrCP, neural differentiation is also promoted by another F-box

protein FBXW7. FBXW7 is a cell cycle regulator that targets substrates including

Notch1, c-jun, c-myc, cyclin E and mTor for degradation (Welcker and Clurman,

2008). In the context of neural stem cell differentiation, FBXW7 has been shown

to promote ubiquitination and degradation of Notch1. Notch signaling is triggered

by the intercellular interaction of the ligands delta-like (DLL) or jagged and the

Notch receptor. This interaction results in the activation of γ-secretase that acts

on the intracellular domain of Notch receptor to generate NICD (notch intracellular

domain) protein. NICD then translocates into the nucleus to activate the bHLH

(basic helix loop helix) family of transcriptional repressors, which inhibit neuronal

differentiation into neurons (Pierfelice et al., 2011). By promoting the degradation

of Notch1, FBXW7 drives neuronal differentiation. Genetic loss of FBXW7 in the

neural progenitors in the conditional knockout FBXW7 f/f;Nestin-Cre (FBXW7∆N)

mouse results in decreased neurogenesis and impaired differentiation. This block in

neural differentiation is alleviated by downregulation of Notch in FBXW7∆N back-

ground (Hoeck et al., 2010). Besides its role in neuronal differentiation, FBXW7 is

identified as a crucial regulator of neuronal migration of granule neurons and thus

cerebellar development. FBXW7 conditional knockout mice (FBXW7 ∆Cb), with

FBXW7 inactivated in the cerebellar anlage, showed a reduced cerebellar size, re-

duced Purkinje cell number and aberrant progenitor cell migration. In these mice,

Notch1 and N-terminally phosphorylated c-Jun levels are also upregulated. More-

over, deletion of c-jun, a substrate of FBXW7, rescued the Purkinje cell number

and arborization in the FBXW7 ∆Cb background, suggesting an important role for

FBXW7 in cerebellar development (Jandke et al., 2011).

The primary knowledge of F-box proteins regulating neuronal differentiation

and migration is derived from studying FBXW1/FBXW11 and FBXW7, that form
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the conventional SCF complex. Recent genetic evidence implicates the F-box pro-

tein FBXO45 in neuronal migration. FBXO45 is a brain-abundant F-box protein

that forms an atypical ubiquitin ligase with the RING domain protein PAM (pro-

tein associated with myc) instead of Rbx1/Roc1. FBXO45 knockout animals show

neuronal migration defects in the brain and the spinal cord. The migration defects

in the FBXO45 -/- animals were established by BrdU-pulse labeling, which showed

an impaired migration of the cortical neurons (Saiga et al., 2009). Further analysis

of the FBXO45 -/- mice revealed the requirement of FBXO45 in formation of axon

tracts and neuromuscular junctions. Impaired formation of neuromuscular junction

supports the requirement of FBXO45 in regulating synaptic function. In this con-

text, Tada and colleagues have identified that FBXO45 triggers the degradation

of Munc13-1, a synaptic vesicle-priming factor, to regulate synaptic activity (Tada

et al., 2010). This is further supported by a study in C. elegans. Fsn-1, the ho-

mologue of FBXO45, is located at the pre-synaptic site where it targets receptor

tyrosine kinase ALK (anaplastic lymphoma kinase) and stabilizes synapse formation

(Liao et al., 2004). Another F-box protein, FBXL20 (SCRAPPER), localized at the

presynaptic membrane, induces degradation of RIM1 (Rab3-interacting molecule),

a vesicle priming protein (Yao et al., 2007). In scrapper -knockout neurons, RIM1

has a longer half-life and thus an altered synaptic activity is observed with increased

frequency of excitatory postsynaptic currents.

Adding to this small family of F-box proteins regulating neuronal morphology,

FBXW8 has been the only identified F-box protein regulating dendrite growth in

neurons. FBXW8 is localized at the golgi complex and associates with Cul7 where

it targets the golgi protein Grasp65 for degradation (Litterman et al., 2011). Thus,

only a selected number of F-box proteins have been studied in the context of neu-

ronal development and an even lesser number have been associated with neurological

disorders, which are discussed in the next section.
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Table 1.2: F-box proteins in neuronal development

F-box pro-

tein

Subcellular

localization

Neuronal

substrate
Function Reference

FBXW1/

FBXW11
Cytoplasm β-catenin

Progenitor

proliferation
(Mao et al., 2009)

(βTrCP1/

βTrCP2)
Cytoplasm REST

Neural

differentiation

(Westbrook et al.,

2008)

Lin-23 Cytoplasm ? Axon growth
(Mehta et al.,

2004)

Synapse Bar-1 Synaptic activity
(Dreier et al.,

2005)

FBXW7 Cytoplasm Notch
Neural

differentiation

(Hoeck et al.,

2010)

Cytoplasm c-jun
Neuronal

migration

(Jandke et al.,

2011)

FBXW8 Golgi complex Grasp65 Dendrite growth
(Litterman et al.,

2011)

FBXL20

(SCRAP-

PER)

Synapse RIM Synaptogenesis (Yao et al., 2007)

FBXO45 ? ?
Neuronal

migration
(Saiga et al., 2009)

Synapse Munc13-1 Synaptogenesis (Tada et al., 2010)

Fsn-1 Synapse ? Synaptogenesis (Liao et al., 2004)

1.4.2 SCF complex in neurodegenerative disorders

Since ubiquitin ligases play a crucial role in neuronal development, a dys-

regulation of the UPS in the nervous system is often associated with neurological

disorders (Mabb et al., 2011). Recently, the SCF complex has been implicated in
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Alzheimer’s disease (AD), Parkinson’s disease and schizophrenia (summarized in

Table 1.3). Alzheimer’s disease is characterized by progressive memory loss and

severe brain atrophy as a result of deposition of β-amyloid (Aβ) plaques (Huang

and Mucke, 2012). Aβ is derived from sequential cleavage of amyloid precursor pro-

tein (APP) by BACE1 and γ-secretase. Inhibition of the proteasome system results

in accumulation of BACE1 (Qing et al., 2004). BACE1 has been identified as a

substrate of FBX2-SCF (Gong et al., 2010). Overexpression of FBX2 in primary

neurons derived from transgenic mice (Tg2576) showing AD phenotype, promoted

BACE1 degradation and reduced β-amyloid production. Another F-box protein

FBXO7, a member of the PARK family of proteins, has been associated with early-

onset parkinsonism. Mutations in the FBXO7 gene in three families are associated

with an early-onset parkinsonian phenotype including rigidity, tremor and dystonia

(Di Fonzo et al., 2009; Paisán-Ruiz et al., 2010).

Another prominent neurological disorder, schizophrenia, is characterized by

hallucinations, delusions and disorganized speech resulting in social or occupational

dysfunction (Ouzir et al., 2012). Recently, two F-box proteins were associated with

schizophrenia. While Chen and colleagues identified an association of FBXL21 with

schizophrenia in an Irish family (Chen et al., 2008), Narayan and colleagues report

a decrease in expression of F-box protein FBXO31 in schizophrenic patients with

short-term illness (Narayan et al., 2008). Besides its association with schizophrenia,

FBXO31 has also been linked to microcephaly and intellectual impairment (But-

ler et al., 2012). A 265 kb contiguous gene deletion was identified in chromosome

16q24.3 in a patient with clinical symptoms including microcephaly, intellectual im-

pairment and distichiasis. The deletion includes C16ORF95, FBXO31, MAP1LC3B

and ZCCHC14. Whereas ZCCHC14 and C16ORF95 encode uncharacterized pro-

teins, MAP1LC3B is homologous to rat Map1lc3 gene that encodes microtubule-

associated proteins 1A/1B light chain 3B. Conditional inactivation of Map1lc3 gene

impairs autophagy resulting in neurodegeneration in mice (Hara et al., 2006; Ko-

matsu et al., 2006). FBXO31 encodes F-box protein FBXO31 that forms an SCF
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complex (Kumar et al., 2005). Although FBXO31 expression is enriched in the brain

(Kumar et al., 2005), its function in the nervous system has not been described.

Table 1.3: F-box proteins in neurodegenerative diseases

F-box

protein

Subcellular

localization

Neuronal

substrate

Neurodegene-

rative disease
Reference

FBXO2 ? BACE1
Alzheimer’s

disease
(Gong et al., 2010)

FBXL2 ? ?
Alzheimer’s

disease

(Watanabe et al.,

2012)

FBXO7 ? ?
Parkinson’s

disease

(Di Fonzo et al.,

2009; Paisán-Ruiz

et al., 2010)

FBXL21 ? ? Schizophrenia (Ouzir et al., 2012)

FBXO31 ? ? Schizophrenia
(Narayan et al.,

2008)

1.5 Aim of the study

F-box proteins were initially identified as regulators of cell cycle. Interestingly,

these cell cycle proteins are also present in the post-mitotic cells such as neurons,

suggesting a function beyond cell cycle. Given that 69 F-box proteins have been

identified in mammals, only a few have been investigated in context of the devel-

oping brain. FBXO31 was identified as a cell cycle regulator, where it induces the

degradation of cyclin D1 and mediates G1 to S phase transition (Kumar et al., 2005;

Santra et al., 2009). Besides its role as a cell cycle regulator, FBXO31 has been pro-

posed to act as a breast tumor and hepatocellular carcinoma suppressor (Kumar

et al., 2005; Huang et al., 2010). While FBXO31 is enriched in the brain (Kumar

et al., 2005), its functions in the nervous system remains elusive.
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The aim of the current study was to investigate the role of FBXO31 in neu-

ronal development. The first task was to study the localization of this protein to

provide an insight into its probable function in neurons. Next, gain-of-function and

loss-of-function approaches were used to evaluate the role of FBXO31 in neuronal

morphogenesis. To gain mechanistic insight into the phenotypes observed, novel

interaction partners and substrates of FBXO31 were identified and further investi-

gated for their role in neuronal morphogenesis. Taken together, this study is the

first to systematically investigate the role of FBXO31-SCF complex in neurons.



Science is simply common sense at

its best.

Thomas Huxley

2. Materials and Methods

2.1 Materials

2.1.1 Antibodies

Primary antibodies used in this study are listed in Table 2.1. The anti-

bodies were obtained from DakoCytomation (Carpinteria, CA, USA), Invitrogen

(Darmstadt, Germany), Millipore (Billerica, MA, USA), NeuroMab (Davis, CA,

USA), Novus Biologicals (Cambridge, UK), Santa Cruz (Santa Cruz, CA, USA),

and Sigma-Aldrich (Munich, Germany). Fluorophore-coupled (Cy2 or Cy3) and

peroxidase-conjugated antibodies (anti-mouse IgG and anti-rabbit IgG) were pur-

chased from Dianova (Hamburg, Germany).

2.1.2 Chemicals, Enzymes and Kits

Chemicals

The chemicals used in the study were primarily obtained from either Sigma-

Aldrich (Munich, Germany), Roth (Karlsruhe, Germany), Merck (Darmstadt, Ger-

many), Applichem (Darmstadt, Germany), GE Healthcare (US), Worthington (UK)

or Th. Geyer (Germany) unless otherwise stated. All the chemicals were either of

analytical purity or cell culture grade.

24
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Table 2.1: Antibodies used in this study : IF (Immunofluorescence), WB (Western blot), r : rabbit

(affinity purified or serum), m : mouse (monoclonal).

Target Application Reference

r -anti-FBXO31 IF (1:400) Novus Biologicals

m-anti-γ-tubulin IF(1:2500) Sigma-Aldrich

m-anti-AnkyrinG (clone N 106/36) IF (1:50) NeuroMab

r -anti-GFP IF (1:1000), WB (1:5000) Invitrogen

m-anti-MAP2 IF (1:1000) Santa Cruz

m-anti-βIIItubulin IF (1:2000) Santa Cruz

m-anti-βgalactosidase IF (1:100) Santa Cruz

m-anti-GFP IF (1:100), WB (1:1000) Santa Cruz

m-anti-myc IF (1:200), WB (1:1000) Santa Cruz

m-anti-Flag IF (1:500), WB (1:1000) Sigma-Aldrich

m-anti-HA WB (1:1000) Santa Cruz

r -anti-ubiquitin WB (1:1000) DakoCytomation

m-anti-ubiquitin WB (1:1000) Santa Cruz

m-anti-ubiquitin Lys48-specific WB (1:1000) Millipore

m-anti-ubiquitin Lys63-specific WB (1:1000) Millipore

Lactacystin, Poly-L-ornithine hydrobromide, N -Ethylmaleimide (NEM) and

Insulin were acquired from Sigma-Aldrich, trypsin from Worthington, albumin frac-

tion V from Applichem and ECL western blotting substrates from ThermoFischer

Scientific. ProteinA-Sepharose beads and Ni-NTA Sepharose beads were purchased

from GE Healthcare and Qiagen, respectively.

Cell culture media and supplements like Dulbecco’s modified eagle’s medium

(DMEM), Hank’s Balanced Salt Solution (HBSS), Basal Medium Eagle (BME),

Neurobasal medium, GlutaMAXTM and Pen-Strep-Glutamine (PSG), B27 supple-

ment and 0.5% Trypsin-EDTA were purchased from GIBCO (Invitrogen, Darm-
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stadt, Germany). Poly-L-Lysine (PLL) and goat serum were obtained from Sigma-

Aldrich. Calf serum was purchased from Hyclone (Germany), Fetal bovine serum

from Biochrom (Germany) and horse serum from PAA (Cölbe, Germany), respec-

tively.

Consumables were purchased from Falcon (Becton Dickinson Labware Europe,

Le Pont De Claix, France) and Eppendorf (Eppendorf AG, Hamburg, Germany).

Culture dishes (6 cm and 10 cm) and plates (6-well, 12-well and 24-well) were ob-

tained from Greiner Bio-One (Greiner Bio-One GmbH, Frickenhausen, Germany).

Buffers and Solution

The various buffers and solutions used in the study are listed in Table 2.2.

Table 2.2: Buffers and solutions used in the study

Buffers and solutions Ingrediants

Phosphate buffer saline

(PBS)

137 mM NaCl, 10 mM KCl, 20 mM Na2HPO4, 20 mM

KH2PO4 pH 7.4

TritonTM X-100 Lysis

Buffer

150 mM NaCl, 50 mM Tris-HCl pH 7.5, 1 mM EDTA,

1% TritonTM X-100

Co-IP buffer
150 mM NaCl, 20 mM Tris-HCl pH 7.4, 1 mM EDTA,

1% Nonidet P-40, 10% glycerol

RIPA buffer
150 mM NaCl, 50 mM Tris-HCl pH 7.5, 1% sodium de-

oxycholate, 1% Nonidet P-40, 0.1% SDS

2x YT media 10 g/L Yeast, 16 g/L Tryptone, 5 g/L NaCl

BL21-Lysis buffer
10 mM Tris-HCl pH 7.9, 10% glycerol, 0.5 M NaCl, 0.1%

Nonidet P-40, 5 mM β-mercaptoethanol, 1 mM PMSF

BC 100 buffer
20 mM Tris-HCl pH 7.9, 20% glycerol, 100 mM KCl, 5

mM β-mercaptoethanol, 0.5 mM PMSF

Running buffer 25 mM Tris base, 190 mM glycine, 0.1% SDS

Transfer buffer 20 mM Tris base, 153 mM glycine, 20% methanol

Upper buffer 0.5 M Tris-HCl pH 6.8, 0.4% SDS
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Lower buffer 1.5 M Tris-HCl pH 8.8, 0.4% SDS

5x SDS-sample buffer
12.5 mL upper buffer, 10 mL glycerol, 2 g SDS, 1 mL

β-mercaptoethanol, bromophenol blue in 25 mL H2O

Annealing buffer
100 mM potassium acetate, 30 mM HEPES-KOH pH 7.4,

2 mM magnesium acetate

2x HBSS buffer
4 g NaCl, 117.5 mg KCl, 95 mg Na2HPO4.7H2O, 675 mg

Glucose, 2.5 g HEPES-free acid in 250 mL water

2x TAE 80 mM Tris-acetate, 2 mM EDTA pH 8.5

4% Paraformaldehyde 4 g PFA, 4 g sucrose in 100 mL PBS

Mowiol-mounting

medium

6 g glycerol AR, 2.4 g Mowiol 4-88 (Calbiochem), 6 mL

H2O, 12 mL 0.2 M Tris-HCl pH 8.5

HHGN
1x HBSS, 2.5 mM HEPES pH 7.5, 35 mM glucose, 4 mM

NaHCO3

BME + Insulin 35 mM glucose, 1X PSG, 10 µg/mL insulin in BME

Enzymes

The enzymes used in the study are listed in Table 2.3 along with their appli-

cation. Enzymes were purchased from Fermantas (St. Leon-Rot, Germany), New

England Biolabs (NEB GmbH, Frankfurt, Germany), Promega (Mannheim, Ger-

many) and Roche (Basel, Switzerland).

Table 2.3: Enzymes used in this study

Enzyme Application Reference

Restriction enzymes DNA digest NEB

T4 DNA ligase ligation of DNA fragments Fermentas

Pfu DNA polymerase polymerase chain reaction Fermentas

Taq DNA polymerase polymerase chain reaction Promega

Lambda protein phosphatase 5′ phosphate removal NEB

T4 polynucleotide kinase 5′ phosphorylation NEB
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Kits

The commercially available kits used in this study are listed in Table 2.4. The

kits were used according to the manufacturer’s guidelines.

Table 2.4: Commercial kits used in this study

Kit Application Reference

NucleoSpin Plasmid kit DNA isolation, small scale Macherey-Nagel

NucleoBond R○ Xtra EF DNA isolation, medium scale Macherey-Nagel

NucleoSpin Extract II kit DNA extraction from agarose gels Macherey-Nagel

Nucleospin R○ Gel DNA extraction from gel Macherey-Nagel

and PCR Clean-Up and PCR clean up

Pierce R○ ECL substrate western blotting ThermoFischer

Bio-Rad Protein Assay protein quantification Bio-Rad

2.1.3 Mammalian cell lines and bacterial strains

The mammalian cell lines and the bacterial strains used in the study are indi-

cated in Table 2.5.

Table 2.5: Cell lines and bacterial strains employed in the study

Cells Description

HEK 293T human embryonic kidney 293T

Neuro-2a mouse neuroblastoma cell line

E. coli DH5α
F- Φ80lacZθ(lacZYA--argF)U169 recA1 endA1 hsdR17

(rk
-, mk

+ phoA supE44 thi -1 gyrA96 relA1 λ-

E. coli BL21 F- dcm ompT hsdS (rB- mB-) gal [malB+]K-12(λS)
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2.1.4 Softwares used in the study

The softwares used in the study for image acquisition, image processing, data

quantification, plotting of data and statistical analysis are listed in Table 2.6.

Table 2.6: List of softwares used in the study

Software Application Source/Manufacturer

NIS-Element
Image-acquisition

and analysis
Nikon

ImageJ Image analysis http://rsbweb.nih.gov/ij/

Imaris 7.4.2 Image analysis Bitplane

GraphPad Prism 5.0c Statistical analysis GraphPad Software, Inc.

WinGlow Luciferase assay Berthold Technologies

2.2 Methods

2.2.1 Molecular biology and biochemical methods

Molecular Cloning

Molecular cloning was performed using standard methods of restriction diges-

tion, ligation and transformation into competent E.coli DH5α. The transformed

bacteria were plated and grown on 2xYT-agar plate with desired antibiotic. The

clones were screened via restriction digestion of plasmid obtained by ‘mini-prep’

followed by sequencing. The plasmid DNA was obtained using ‘midi-prep’ kits for

positive clone with correct sequences. DNA primers and sequencing results were

provided by AGCT lab (Central facility at the Max Planck Institute of Experimen-

tal Medicine, Göttingen, Germany).

http://rsbweb.nih.gov/ij/
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Protein determination

Protein concentration was determined using the standard Bradford method.

Protein standards were prepared in the range of 5–15 µg using bovine serum albumin

(BSA, Fermentas). The standards were further diluted in solution containing 200

µL bradford solution (Bio-Rad) and 800 µL H2O. The absorbance of the samples

was measured at 595 nm wavelength using a spectrophotometer (Amersham Bio-

sciences). From the standard curve (linear trace), unknown protein concentrations

for the test samples were determined.

SDS-PAGE and Western blotting

Samples were separated on 8-10% denaturing Tris-SDS polyacrylamide gel elec-

trophoresis system. The resolving gel contained 8-10% acrylamide/bis-acrylamide

(37.5:1, Th. Geyer), 375 mM Tris-HCl (pH 8.5), 0.1% SDS, 0.05% ammonium per

sulphate (APS) and 0.005% TEMED (N’, N’, N’, N’-Tetramethyethylenediamine);

and the stacking gel had 4% acrylamide/ bis-acrylamide (37.5:1, Th. Geyer), 125

mM Tris-HCl (pH 6.8), 0.1% SDS, 0.05% ammonium per sulphate (APS) and 0.005%

TEMED. The samples were boiled in SDS-sample buffer for 5 min at 95℃ before

loading. For each gel, 3 µL of pre-stained protein ladder (Fermentas) was loaded

into one of the lanes. Electrophoresis of protein samples was carried out in running

buffer at constant current for 1 hr.

Proteins were transferred onto Protran BA85 membranes (VWR, Germany)

via a semi-dry procedure in the transfer buffer. For the transfer, 40 mA current

was applied for 1 hr in a Bio-rad PowerPac 1000 blotting system. The membranes

were then blocked with 4% non-fat dried milk powder (Granovita GmbH, Germany)

dissolved in PBST (0.1% Tween-20 in PBS), for 30 min followed by overnight in-

cubation in primary antibodies (diluted appropriately in PBST). Following primary

antibody incubation, blots were washed three times, 10 min each, in PBST and

then incubated with secondary antibodies (peroxidase conjugated, diluted 1:5000 in

4% milk in PBST) for 1 hr at RT. Afterwards, blots were washed three times with
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PBST (10 min each). Finally, protein bands were detected on X-ray films (High per-

formance Hyperfilms, Thermo Scientific, Pierce) using enhanced chemiluminescence

(ECL, Thermo Scientific, Pierce) as a substrate for peroxidase on kodak imaging

station.

2.2.2 RNA interference

Generation of vector-based RNAi constructs

The RNAi constructs targeting three different regions of FBXO31 are listed

in Table 2.7. The constructs were generated by sub-cloning an inverted repeat into

pBlueScript/U6 at the ApaI site. Each of 40-nucleotide-long inverted repeats, sep-

arated by 9-nucleotide loop containing HindIII restriction site, was inserted down-

stream of U6 promoter. EcoRI restriction site was inserted downstream of antisense

strand to provide blunt end for ligation with the vector while the ApaI restriction

site provided the sticky end. The sense strand of the hairpin was homologous to a

20-nucleotide region in the target FBXO31 mRNA (coding sequences 669-689; 832-

852 and 979-999 from the start codon of the human sequence and targets rat, mouse

and human FBXO31 genes). U6/Par6c RNAi construct was generated in a similar

manner against a previously described target sequence (Zhang and Macara, 2008)

listed in Table 2.7. U6/Cdh1 RNAi plasmid was kindly provided by Dr. Judith

Stegmüller with a previously described target sequence (Konishi et al., 2004).

Table 2.7: short-hairpin RNA used in this study

RNAi Targeting region Targeting sequence (5′ - 3′)

FBXO31 RNAi#1 669-689 bp AGGATGAGTTCTCCACCAAGT

FBXO31 RNAi#2 832-852 bp CAGTCAGTACGACAACTGCCT

FBXO31 RNAi#3 979-999 bp CAGGGGCACCAAGATCACGGG

Par6c RNAi 638-656 bp ATGAGATCCTCGAGGTCAA

Cdh1 RNAi 300-320bp GGGTGCCGGCATCGAGAAGGT



2.2 Methods 32

Annealing of primers

Annealing of sense and antisense primer pairs (2 µL each) was carried out by

diluting the primers (2 µL each of 50 pmol/µL) in 46 µL of annealing buffer. The

annealing of primer pairs was carried out as shown in Table 2.8.

Table 2.8: Annealing of primers

Temperature Time

95◦C 4 min

4◦C 10 min

Slow cool 0.1◦C/sec

Phosphorylation of oligos

20 µL of annealed oligos was mixed with 5 µL of 10x PNK buffer, 10U of

polynucleotide kinase (PNK) and ATP to a final concentration of 1 mM in a 50 µL

kinase reaction incubated at 37◦C for 30 min. 10 µL of phosphorylated oligo was

used for ligation.

Preparation of U6/pBS vector and ligation

5 µg of pBS/U6 vector was digested with ApaI for 1 hr at 37◦C and the

linearized vector was purified using the gel extraction columns (NM kit). The lin-

earized plasmid was then incubated with T4 DNA polymerase at 12◦C for 15 min

to generate blunt ends. This was followed by digestion of the vector with EcoRI at

37◦C for 1 hr and addition of calf intestinal phosphatase (CIP) for 1 hr to remove 5’

phosphate groups. The vector was purified using column and eluted in 50 µL sterile

water. Subsequently, a 20 µL ligation reaction was set up with 10 µL phosphory-

lated oligos, 1 µL digested vector, 2 µL 10x Ligase buffer and 1 µL T4 DNA ligase.

The reaction was incubated at 16◦C overnight.

Screening for clones

The E.coli DH5α cells were transformed with the ligation mix using the stan-

dard transformation protocol (heat shock). The cells were plated on 2xYT plate
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with 1.5% agar and ampicillin and the plates were incubated at 37◦C overnight.

The colonies were cultured in 2xYT media (supplemented with ampicillin) overnight

and plasmid DNA was isolated from an individual colony. The plasmid DNA was

digested with HpaI enzyme to screen for positive clones. Upon digestion with HpaI,

clones with desired RNAi insert gave a linear band of approximately 3 kbp. The

plasmid DNA from positive clones was submitted for sequencing in the AGCT lab.

2.2.3 Site-directed mutagenesis

Site-directed mutagenesis was performed to generate rescue constructs resis-

tant to degradation by RNAi constructs used in the study. Primers with 4-6 silent

mutations were designed according to the specifications provided in the Quik Change

site-directed mutagenesis manual (Stratagene) and the PCR reaction (10 ng plamid

DNA, 10 pmol forward primer, 10 pmol reverse primer, 10x Pfu DNA polymerase

buffer, 1 µL Pfu DNA polymerase, 25 mM dNTP in 50 µL reaction) was set as

shown in table Table 2.9.

The samples were then incubated on ice for 2 min followed by addition of

DpnI to the reaction mix for 1 hr at 37◦C. 1-2 µL of reaction mix was used to

transform E.coli DH5α competent cells, plated on 2xYT-agar plate and incubated

overnight at 37◦C. The clones were sequenced to confirm the mutations in the vector.

Table 2.9: Site-directed mutagenesis PCR

Temperature Time

95◦C 3 min

95◦C 30 sec

55◦C 30 sec

72◦C 500 bp/min - 18 cycles

72◦C 5 min
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2.2.4 Quantitative analysis of gene expression

RNA isolation and cDNA synthesis

P6, P12 and 4-month-old adult wistar rats were anaesthetized in a CO2 cham-

ber and sacrificed. Different tissue samples including cortex, hippocampus, cere-

bellum, olfactory bulb, heart, lung, liver, kidney and spleen were isolated, rapidly

frozen in liquid N2 and stored at -80◦C. Total RNA was extracted from approxi-

mately 30-40 mg of tissue using Trizol reagent. 3 µg of total RNA of each tissue

sample was used for cDNA synthesis with the SuperScript double strand cDNA syn-

thesis kit according to instruction manual. Polymerase chain reaction (PCR) was

performed for housekeeping gene β-actin to confirm faithful reverse transcription.

Quantitative PCR

qPCR was performed on Roche Lightcycler with the primer pairs indicated in

Table 2.10. The FBXO31 levels were normalized to β-actin and represented relative

to the cortex values for each age group.

Table 2.10: Primers for quantitative PCR

Primer Sequence (5′ - 3′)

FBXO31 sense CCACTGTTTTAGAATCCATCTGATGGA

FBXO31 anti-sense ACTTGGTGGAGAACTCGTCCC

β-actin sense CTTCCTCCCTGGAGAAGAGC

β-actin anti-sense ATGCCACAGGATTCCATACC

2.2.5 Biochemical assays

Cell lysis

HEK 293T cells (90% confluent) or cerebellar granule neurons (5 x 106 cells

per well) were grown in 6-well plates for the desired time periods. After aspirating

off the medium, cells were washed once with PBS and scraped in 100-300 µL of
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lysis buffer (Table 2.2) supplemented with fresh protease inhibitors (1 mM DTT, 1

µg/mL pepstatin, 3 µg/mL aprotinin and 1 µg/mL leupeptin) on ice and further

incubated for 30 min on ice. Following incubation in the lysis buffer, the samples

were centrifuged (pre-cooled bench top centrifuge, Eppendorf, Germany) at 13,000

rpm for 10 min. The supernatant was collected in a fresh tube and protein concen-

tration was determined using bradford assay (2.2.1).

Co-immunoprecipitation

Transfected HEK 293T cells were washed with PBS and lysed in coimmuno-

precipitation (co-IP) buffer (Table 2.2) supplemented with fresh protease inhibitors

(1 mM DTT, 1 µg/mL pepstatin, 3 µg/mL aprotinin and 1 µg/mL leupeptin). The

cell lysates were incubated on ice for 30 min and centrifuged at 13,000 rpm for 10

min at 4◦C. The supernatant was transferred to fresh tube and total protein amount

was estimated using Bradford reagent. 1 mg of total protein lysate was incubated

with 0.2-0.8 µg of antibody for 2 hrs at 4◦C on rotor. 30 µg of total protein lysate

was separately boiled with SDS-sample buffer and used as input. 20 µL of Protein

A Sepharose beads (GE Healthcare), equilibrated with 1:1 co-IP buffer, was added

to the cell lysate and incubated for 1 hr at 4◦C on rotor. The lysate was then cen-

trifuged at 13,000 rpm for 1 min and the pellet containing the beads was washed

three times with lysis buffer. The final wash was done with PBS. The sample was

spun down and the PBS was carefully removed. The protein bound to beads was

eluted by boiling the samples in SDS-sample buffer at 95◦C for 5 min. The samples

were subjected to analysis by SDS-PAGE and western blotting.

Cell-based ubiquitination assay

Transfected HEK 293T cells were lysed in co-IP buffer supplemented with

fresh protease inhibitors (1 mM DTT, 1 µg/mL pepstatin, 3 µg/mL aprotinin and

1 µg/mL leupeptin) and 10 mM NEM. The cell lysates were incubated on ice for 30

min, centrifuged and the supernatant was transferred to a fresh tube. Total protein
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concentration was estimated using the Bradford assay and 1 mg of total protein

lysate was used for co-immunoprecipitation with the first antibody for 2 hrs at 4◦C.

30 µg of lysate from each sample was boiled separately with SDS-sample buffer to

serve as input. 20 µL of Protein-A sepharose beads, equilibrated in co-IP buffer, was

added to the lysates and incubated for 1 hr at 4◦C. The samples were centrifuged

at 13000 rpm at 4◦C for 1 min and the pellet was washed with lysis buffer and

PBS as described earlier. The beads were then boiled with SDS-sample buffer and

the samples were analyzed with SDS-PAGE and western blotting by probing with

anti-ubiquitin antibody.

26S proteasome inhibition

Cerebellar granule neurons were treated with vehicle (DMSO) or lactacystin

(5 µM) 10 hrs prior to lysis at DIV 3. Transfected cerebellar granule neurons (DIV

2) were treated with vehicle (DMSO) or lactacystin (5 µM) 10 hrs prior to lysis at

DIV 6. The neurons were lysed in lysis buffer and equal amounts of protein were

analyzed by SDS-PAGE and western blotting.

Luciferase assay

Expression plasmid encoding Renilla-Par6c and Renilla-Cyclin D1 fusion pro-

teins were generated by Dr. Judith Stegmüller by cloning Renilla sequence upstream

of Par6c and Cyclin D1, respectively, in pCMVmyc vector. HEK 293T cells were

cultured on 24-well plate and transfected (3 wells/condition) with 2 µg of control

vector or FBXO31 together with 0.1 µg Renilla-Par6c and 0.1 µg SV40 firefly lu-

ciferase (pGL3 promotor) expression plasmid. The cells were lysed 2 days after

transfection with 100 µL well of passive lysis buffer. The lysates were rocked for 20

min, centrifuged at 13000 rpm for 10 min and supernatant was transferred to fresh

tube. 30 µL of lysates per condition were loaded on a 96-well plate in triplicates and

the plate was subjected to dual-luciferase assay with firefly and renilla substrates in

the luminometer. Sabrina Galinski assisted in obtaining firefly and renilla luciferase
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activity readings using WINGLOW software. The values were exported to Microsoft

Excel for further analysis. The ratio of renilla to firefly activity indicated normalized

protein expression of the respective constructs.

Purification of FBXO31 antigen

To generate the FBXO31 antigen, FBXO31 coding sequence (1224 -1521 bp en-

coding 100 aa at C-terminus) was PCR amplified from wild-type BL/6 mouse cDNA

and cloned into pET3a expression vector. E. coli BL21 cells were transformed with

pET3a/FBXO31 expression plasmid and grown on 2xYT-agar plate with ampicillin.

Single colony was isolated, grown overnight in 50 mL 2xYT medium (supplemented

with 50 µg/mL ampicillin) and appropriate volume was transferred to 1 L of fresh

2xYT to obtain an O.D. of 0.1. The culture was further incubated at 37◦C to an

O.D. of 0.6, induced with 0.5 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG)

and grown for additional 3 hrs. The cells were harvested by centrifugation and the

pellet was lyzed in 20 mL BL21-lysis buffer with freshly added 1 mM PMSF by

sonication. After centrifugation for 30 min at 37,000 rpm, the cleared lysate was

incubated with 250 µL Ni-NTA Sepharose beads (Qiagen) and 1 mM imidazole and

incubated overnight at 4◦C on rotor. The sample was centrifuged at 4000 rpm and

beads were incubated with 5 mL BC100 buffer with 20 mM imidazole for 30 min

at 4◦C on rotor. The sample was centrifuges again and 2.5 mL BC100 buffer with

40 mM imidazole was added to the beads. The beads were inbucated on rotor for

30 min at 4◦C. In the last step, beads were washed in 250 µL BC100 with 200 mM

imidazole and the protein was eluted. The samples were subjected to analysis by

SDS-PAGE as described previously.

2.2.6 Cell culture

HEK 293T cell culture

HEK 293T cells were grown in DMEM medium (4.5 g/L glucose; [-] glu-

tamine; [-] pyruvate, GIBCO) supplemented with 10% FBS (Biochrom) and 1%
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GlutaMAXTM (Invitrogen) in 10 cm culture dishes. The cells were split when the

plate was approximately 90% confluent. The cells were washed once with PBS af-

ter removing the media and 2 mL of 1x TE (10 mM Trypsin pH 8.0 and 1 mM

EDTA) was added to the cells. The plate was incubated at 37◦C for 2 min. The

adhering cells were removed by adding 8 mL of serum-supplemented DMEM and

the cells were pipetted up and down several times to obtain single-cell suspension.

The cell suspension was centrifuged at 800 rpm for 5 min and then the pellet was

resuspended in 5 mL of serum-supplemented DMEM. The cells were then plated on

either 24-well plate or 6-well plate or 10 cm dish to obtain desired confluency.

Cerebellar granule neuron culture

Cerebella were isolated from postnatal day 6 (P6) wistar rat pups in HHGN

medium (10x HBSS [-] calcium [-] magnesium, GIBCO; 2.5 mM HEPES pH 7.3;

0.35 M glucose and 0.04 M NaHCO3) on ice. Meninges and large blood vessels were

removed under the dissection microscope (Nikon) using fine forceps. The cerebella

were then transferred to 50 mL conical tubes and washed three times with HHGN

medium. After last wash, 5 mL of TDn (50 mg Trypsin (Worthington) and 0.5 µg

DNase in 5 mL HHGN) was added and incubated in the water bath for 10 min

at 37◦C followed by 10 min incubation at room temperature. The cerebella were

again washed three times with HHGN media to remove TDn followed by addition

of DnB (0.4 µg DNase in 4 mL BME). The cerebella were triturated to obtain a

homogenous suspension and were kept on ice for 5 min. The supernatant was trans-

ferred to a fresh 50 mL conical tube. The pellet was re-triturated with fresh DnB

to get single-cell suspension. Both suspensions were mixed and centrifuged at 800

rpm for 5 min. The pellet was resuspended in final volume of 20 mL Cbc medium

(Basal Eagle Medium [-] Glutamine (GIBCO); 10% calf serum (Hyclone); 1% PSG

(GIBCO) and 25 mM KCl). Cells were counted using a hemocytometer. The cells

were plated on 12 mm coverslips pre-coated with polyornithine in 24-well plate at

density of 8 x 105 cells/coverslip. For a 6-well plate, the cells were plated at a density
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of 30 x 106 cells/plate. To prevent the proliferation of non-neuronal cells, the cells

were treated with 10 mM anti-mitotic agent cytosine-b-D-arabinofuranoside (AraC)

at day in vitro 1 (DIV 1). 35 µL of 1 M glucose was added per mL of conditioned

media at DIV 3 to replenish the carbon source in the medium.

Hippocampal neuron culture

Hippocampal neurons were prepared from hippocampi isolated from E18 wis-

tar rat embryos. The hippocampi were collected in 1x HBSS medium (BME [-]

calcium [-] magnesium, GIBCO) and were washed three times with 1x HBSS media.

After washes, the hippocampi were incubated in 1.8 mL 1x HBSS with 200 µL TE

at 37◦C for 10 min. They were again washed thrice with 1x HBSS followed by trit-

uration in plating media (DMEM [+] 4.5 g/L glucose [+] glutamine [+] pyruvate

(GIBCO); 10% fetal bovine serum; 1% PSG and 12.5 µM glutamate) with freshly

added DNase (2 µg/µL). The cells were centrifuged at 800 rpm for 5 min. The

pellet was resuspended in 5 mL of plating media and the cells were counted using

a hemocytometer. The cells were plated poly-L-lysine coated 12 mm coverslips at a

density of 1 x 105 cells/coverslip. The plating media was replaced by growth media

(Neurobasal medium (GIBCO); 2% B27 supplement (Invitrogen); 1% PSG) at DIV

1 to prevent cell death due to excitotoxicity.

2.2.7 Transfection of primary and secondary cells

Transfection of HEK 293T cells

HEK 293T cells were transfected using the modified calcium phosphate trans-

fection protocol described previously (Konishi et al., 2004). To prepare the DNA-

calcium phosphate precipitate for one well of a 6-well plate, 0.1-2 µg of plasmid DNA

construct together with 50 ng GFP expression construct (C1-GFP) was diluted in

90 µL of sterile water. To this DNA mix, 10 µL of 2.5 M CaCl2 was added. The

DNA-calcium phosphate solution was buffered by adding 100 µL of 2x HBSS buffer.
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The solution was mixed well to obtain a homogenous DNA precipitate mix that was

incubated at RT for 5 min. 200 µL of DNA precipitate was added gently to the

cells and the plate was slowly rocked to mix the medium. The cells were incubated

in the humidified-CO2 incubator at 37◦C for 2-4 days and thereafter lysed for bio-

chemical experiments. Transfection efficiency was monitored by checking for GFP

fluorescence using the Nikon epifluorescence microscope (Nikon).

Transfection of primary neurons

Cerebellar granule neurons (CGNs) and hippocampal neurons were transfected

using a modified calcium phosphate transfection protocol as described in previous

section. CGNs were transfected at DIV 0 (8 hrs after plating) whereas the hippocam-

pal neurons were transfected at DIV 1 for morphological assays. The conditioned

media was collected from the primary neurons in a fresh conical tube and incu-

bated at 37◦C in the water bath. The neurons were washed twice with pre-warmed

DMEM (GIBCO) and after second wash 500 µL of DMEM was added per well of a

24-well plate. The serum-deprived neurons were incubated in a humidified chamber

at 37◦C for 45 min. During this time, DNA precipitate was prepared. 1-2 µg of

plasmid DNA construct together with 0.2 µg of GFP expression plasmid and 0.3 µg

of pro-survival factor Bcl-xL was diluted in 18 µL of sterile water. 2 µL of 2.5 M

CaCl2 was added and mixed to the DNA solution which was then buffered with 20

µL of 2x HBSS. The DNA-calcium phosphate precipitate was incubated for 5 min

at RT and then was added to the serum-deprived cells for 18 min. The cells were

then washed twice with DMEM, replaced with conditioned media and incubated in

humidified-CO2 chamber.

2.2.8 Immunocytochemistry

Primary neurons were cultured on 12 mm coverslips and transfected as de-

scribed in section 2.2.7. At specified time-points, they were fixed with 4% PFA for

10 min and permeabilized with 0.4% TritonTM- X100 in PBS. The neurons were
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blocked with serum-supplemented BME for 30 min and incubated with primary an-

tibody for 1 hr. The coverslips were washed with PBS and incubated with Cy2-

or Cy3-conjugated secondary antibodies for 30 min. The cells were later incubated

with the DNA dye Hoechst 33258 (bis-Benzimide) diluted in PBS to stain the nuclei.

Epifluorescence microscope (Nikon) was used to detect the fluorescent signal and to

capture the images.

For endogenous FBXO31 staining, the cells were washed twice with PBS and

then fixed with ice-cold methanol for 5 min at -20◦C. The cells were washed again

with PBS several times to remove methanol followed by blocking in 10% goat serum

diluted in PBS for 30 min. Rabbit anti-FBXO31 antibody (Novus Biologicals, 1:400)

was diluted in PBS with 1% goat serum and added to cells for 1 hr. The cells were

washed with PBS and incubated with goat anti-rabbit Cy2 (Dianova), diluted in

PBS with 1% goat serum, for 45 min. The cells were incubated with Hoechst 33258

to stain the nuclei, washed with PBS and mounted using mowiol. For co-localization

analysis, the images were captured using laser scanning confocal microscope (Leica).

2.2.9 Survival assay for cerebellar granule neurons

CGNs were prepared as described previously and transfected at DIV 2 using

modified calcium phosphate transfection protocol. 2 µg of U6 control plasmid or

U6/FBXO31 RNAi plasmids together with 0.2 µg of β-galactosidase encoding plas-

mid was used for transfection. The cells were fixed at DIV 6 using 4% PFA and

stained with mouse monoclonal anti-β-galactosidase antibody (Santa Cruz). Num-

ber of living and dead cells were counted by assessing for integrity of neuronal arbors

and morphology of the nucleus in a blinded-manner.

2.2.10 In vivo electroporation

Electroporation of P4 wistar rat pups was carried out as described previously

(Konishi et al., 2004). For one P4 rat pup, 3-4 µL of plasmid DNA (4 µg/µL control
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U6 vector or U6/FBXO31 RNAi encoding vector co-expressing GFP together with

1 µg/µL Bcl-xL) was used for electroporation. The pups were anaesthetized using

isofluorane in a closed chamber and the cerebellum was detected against a bright

light source. The plasmid DNA-containing solution diluted in PBS with 0.3% fast

green was injected into the cerebellar cortex using a Hamilton syringe (Hamilton

Company) with a 30-gauge needle. Electrical pulses (160-170 V, 50 ms pulses, 950 ms

pulse intervals, 5 pulses) were applied using ECM 830 square wave electroporator

(Harvard Apparatus). Following electrical stimulation, the pups were allowed to

recover under infra red light source and then placed back into the cage with the

mother. The pups were sacrificed 5 days after electroporation at P9 and GFP-

positive cerebella were screened using upright epifluorescence microscope (Zeiss).

GFP-positive cerebella were fixed in 4% PFA overnight and then transferred to 30%

sucrose solution. After the cerebella had completely sunk into the 30% sucrose

solution, they were embedded in O.C.T compound (TissueTek; Sakura) with 30%

sucrose in 1:1 ratio using embedding moulds. Coronal sections (40 µm) of cerebellum

were cut on cryostat (Leica). All sections were collected on SuperFrost Ultra Plus

slides (Thermo Fisher Scientific) and the GFP-positive sections were processed for

immunohistochemistry.

2.2.11 Immunohistochemistry

The electroporated cerebella were sectioned coronally (40 µm) using the cryo-

stat (Lecia). The sections were mounted on SuperFrost Ultra Plus slides. After

air-drying the slides, they were washed with PBS twice and GFP-positive sections

were screened using the epifluorescence microscope (Nikon). Sections were blocked

in 10% goat serum in PBS with 0.4% TritonTM X-100 for 30 min at RT. The sections

were washed with PBS and incubated with anti-mouse GFP antibody (1:100; Santa

Cruz) diluted in 1% goat serum in PBS-0.4% TritonTM X-100 overnight at 4◦C. The

slides were then washed three times with PBS for 10 min each. Secondary antibody

(goat anti-mouse Cy2; 1:1000) diluted in 1% goat serum in PBS-0.4% TritonTM X-
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100, was added for 2 hrs at RT. The slides were subsequently washed three times

with PBS and incubated with Hoechst 33258 for 10 min. The slides were washed

twice with PBS and dipped in water to remove salt precipitates. Mowiol-mounting

media was spread over the glass slide and 50 x 36 mm glass coverslip was gently put

over the sections. Confocal microscopic images of fixed cell samples were acquired

with Leica DMIRE2 microscope with a 40x oil-immersion objective.

2.2.12 Morphometry

To analyze axon and dendrite morphology of cultured primary neurons, indi-

vidual neurons were imaged randomly in a blinded-manner using a 20x objective

of Nikon epifluorescence microscope with a CCD camera. The axon length or total

dendrite lengths were traced and measured manually using NIS element software

(Nikon) or ImageJ software. Statistical tests (t-test/ANOVA) were performed using

GraphPad Prism 5.0c software and the values were represented as mean ± SEM.

For in vivo assays, laser scanning confocal microscope (Leica) was used to ac-

quire images in Z-stack in a blinded-manner. The images were analyzed using Imaris

software (Bitplane) for measurement of dendrite lengths in 3D and for neuronal mi-

gration by counting the fraction of cells in external granule layer (EGL), molecular

layer (ML) and internal granule layer (IGL). Statistical test was performed using

GraphPad Prism 5.0c software and the values were represented as mean ± SEM.

2.2.13 Statistical tests

All statistical tests were performed using GraphPad Prism 5.0c software. For

comparison of two groups unpaired t-test was used whereas for comparison of three

or more groups one-way Analysis of Variance (ANOVA) followed by Bonferroni post-

hoc test was used. Two-way ANOVA was used to compare three or more groups

with multiple parameters followed by Bonferroni post-hoc test. Errors are displayed

as standard error of mean (SEM).
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3. Results

3.1 FBXO31 is a centrosomal E3 ubiquitin ligase

3.1.1 Widespread expression of FBX genes

As a preliminary screen to identify the candidate F-box protein (FBX) for my

study, I started by studying the expression of FBX genes in mouse tissue. To de-

termine the brain-specific or brain-enriched expression of FBX genes, RT-PCR was

performed from different tissues of the P20 mouse including cortex, cerebellum, hip-

pocampus, heart, lung, liver, spleen and kidney. Among the sixty-nine known F-box

proteins, I focused on the eighteen that show an expression in the brain according

to the ALLEN brain atlas. RT-PCR profiling revealed a widespread expression pat-

tern of the selected FBX genes. Although, many FBX genes were highly expressed

in the brain (FBXO2, FBXO9, FBXO18, FBXO21, FBXO31, FBXW2, FBXW5,

FBXW7, FBXL11 and FBXL19 ), none of them seemed to have brain-specific ex-

pression pattern (Figure 3.1).

3.1.2 FBXO31 is brain-enriched F-box protein

Among the above-mentioned F-box proteins, FBXO31 is shown to be highly

expressed in the human brain (Kumar et al., 2005). Given that the expression of

FBXO31 has not been verified in rats, I sought to characterize FBXO31 expression

in various tissues including cortex, cerebellum, hippocampus, heart, lung, liver,

spleen and kidney using quantitative RT-PCR. Together with my colleague Nicola

Schwedhelm-Domeyer, I collected tissue samples from P6, P12 and 4-month-old

44



3.1 FBXO31 is a centrosomal E3 ubiquitin ligase 45

FBXO2

FBXO3

FBXO9

FBXO11

FBXO18

FBXO22

FBXO25

FBXO21

FBXO20

FBXO31

FBXO44

FBXW2

FBXL19

FBXL11

FBXL5
FBXL3

FBXW7

FBXW5

- c
D

N
A

C
or

te
x

K
id

ne
y

S
pl

ee
n

Li
ve

r

Lu
ng

H
ea

rt

H
ip

po
ca

m
pu

s

C
er

eb
el

lu
m

Figure 3.1: Expression of various FBX genes in tissues of adult mouse. RT-PCR analysis

of various FBX genes in P20 mouse tissues including cortex, cerebellum, hippocampus, heart,

lung, liver, spleen and kidney. The FBX genes show widespread expression in different tissues

isolated from P20 mouse. RNA from indicated tissues was reverse-transcribed into cDNA, which

was subjected to PCR.

adult rats and subjected them to qRT-PCR. Consistent with the previous data, I

found FBXO31 expression to be relatively enriched in brain as compared to the

other tissues analyzed (Figure 3.2).
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Figure 3.2: Quantitative PCR analysis of FBXO31 expression in rat tissues. qPCR analysis

of FBXO31 expression in various tissues of P6 rat pup (A), P12 rat pup (B) and 4-month-old

adult rat (C). Data was normalized to β-actin and the values indicated are relative to cortex for

each group. Nicola Schwedhelm-Domeyer and I isolated the tissues, extracted the RNA and

synthesized the cDNA. Nicola Schwedhelm-Domeyer performed the qPCR.

3.1.3 FBXO31 is localized at the centrosome

To gain insight into the functions of FBXO31 in the nervous system, I first

characterized its sub-cellular localization in neurons. I subjected the cultured cere-

bellar granule neurons and hippocampal neurons as well as HEK 293T cells to im-

munocytochemistry with the FBXO31 antibody. I found FBXO31 to be localized
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Figure 3.3: FBXO31 is localized at the centrosome. Cultured cerebellar granule neurons, hip-

pocampal neurons and HEK 293T cells were immunostained with anti-FBXO31 and anti-γ-tubulin

antibodies. The cells were counterstained with the DNA dye bis-benzamide Hoechst 33258. Ar-

rows indicate centrosome. Scale bar equals 5 µm.

at the centrosome. This finding was confirmed by co-localization analysis with the

centrosomal marker γ-tubulin (Figure 3.3).

To confirm the specificity of the FBXO31 staining, I generated a recombinant

FBXO31 protein fragment encoding amino acids 408-507 of the mouse FBXO31

against which the commercially available anti-FBXO31 antibody was generated. I

verified the antigen-antibody interaction by immunoblotting and found a specific

band at the expected size (Figure 3.4A). I further confirmed the specificity of the

immunostaining in hippocampal neurons by antigen-antibody competition, whereby

the antibody was pre-incubated with the antigen for 1 hr prior to immunostaining
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Figure 3.4: Validation of FBXO31 antibody. (A) 500 ng of recombinant Flag-FBXO31 408-

507, purified from bacteria was validated by immunoblotting with anti-FBXO31 and anti-Flag an-

tibody. FBXO31 antigen was detected at expected size of 11 kDa. (B) Hippocampal neurons

cultured from E18 rat embryos were immunostained with anti-FBXO31 antibody with or without

pre-incubation with recombinant FBXO31 antigen 408-507. Arrows indicate centrosome. Scale

bar equals 10 µm. The FBXO31 antigen was purified by Nicola Schwedhelm-Domeyer.

of the neurons. Using antigen-antibody competition, I could no longer detect the

centrosomal localization of FBXO31 (Figure 3.4B), confirming FBXO31 as a cen-

trosomal protein.

To determine the centrosomal-targeting region in FBXO31, I generated var-

ious GFP-tagged deletion mutants of FBXO31 along with my colleague Nicola

Schwedhelm-Domeyer (Figure 3.5). I transfected the HEK 293T cells with these

deletion mutants together with a plasmid encoding a predominant-centrosomal pro-

tein DISC1 and subjected the cells to immunostaining. I found that while FBXO31

WT, ∆F, ∆1, ∆2 and ∆4 co-localizes with DISC1 at the centrosome, FBXO31 ∆3

localizes to the nucleus and FBXO31 ∆5 freely diffuses in the cytoplasm (Figure

3.6). Therefore, I concluded that the region comprising of amino acid 60-274 in

FBXO31 is responsible for its centrosomal localization.
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Figure 3.5: FBXO31 deletion mutants and their localization. Schematic representation of

deletion mutants of FBXO31 evaluated for their centrosomal localization.

3.2 Functional characterization of F-box protein

FBXO31 in the nervous system

FBXO31 has been previously reported to play a role in the regulation of cell

cycle by inducing the degradation of cyclin D1 and hence mediating the transition

from G1 to S phase (Kumar et al., 2005; Santra et al., 2009). Although, FBXO31

is enriched in the brain (Kumar et al., 2005), its function in the nervous system

remains elusive.

In this study, I sought to investigate the function of FBXO31 in the nervous

system. Since our lab specializes in studying cell-intrinsic programs that regulate

axon growth, I addressed the function of FBXO31 in axon and dendrite growth

regulation in neurons by loss-of-function and gain-of-function approaches.

3.2.1 FBXO31 loss-of-function inhibits axon and dendrite

growth in cerebellar granule neurons

Validation of FBXO31 RNAi constructs

To investigate the role of FBXO31 in the neurons, I used an RNAi approach

and generated three short-hairpin RNAi plasmids directed against different regions

of FBXO31. The target sequences were homologous in human, rat and mouse
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Figure 3.6: 60-274 aa region is required for centrosomal localization of FBXO31. HEK

293T cells transfected with Flag-DISC1 and various GFP-FBXO31 deletion mutants were im-

munostained with anti-Flag and anti-GFP antibodies. The cells were counterstained with Hoechst

33258. Scale bar equals 10 µm.
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FBXO31

F-box1 1620 bp

human  666bp  5’...GAAGGATGAGTTCTCCACCAAGTGCA...3’
rat  291bp  5‘...GAGGGATGAGTTCTCCACCAAGTGTA...3’
mouse  624bp  5’...GAGGGACGAGTTCTCCACCAAGTGTA...3’

FBXO31 RNAi#1             GGATGAGTTCTCCACCAAGT
  

human  829bp  5’...ACCAGTCAGTACGACAACTGCCTGAC...3’
rat  451bp  5‘...ACCAGTCAGTACGACAACTGCCTGAC...3’
mouse  787bp  5’...ACCAGTCAGTACGACAACTGCCTGAC...3’

FBXO31 RNAi#2 AGTCAGTACGACAACTGCCT
  

human  979bp  5’...GCCAGGGGCACCAAGATCACGGGCGA...3’
rat  451bp  5‘...GCCAGGGGCACCAAGATCACGGGCGA...3’
mouse  787bp  5’...GCCAGGGGCACCAAGATCACGGGCGA...3’

FBXO31 RNAi#3  AGGGGCACCAAGATCACGGG

#1 #2 #3

amino acids              K     D     E     F     S      T     K     C

amino acids            T     S     Q     Y     D     N     C     L

amino acids            A      R   G     T     K      I      T     G      D

Figure 3.7: Targeting regions of FBXO31 short-hairpin RNAs. Short-hairpin FBXO31 RNAi

were generated targeting three different regions of FBXO31 gene (indicated as green line). The

target sequences were homologous in human, rat and mouse.

FBXO31 sequences (Figure 3.7). To validate the FBXO31 RNAi constructs (#1,

#2 and #3), HEK 293T cells were transfected with either the empty control vec-

tor or with FBXO31 RNAi construct together with myc-tagged FBXO31 expression

plasmid. The cells were lysed after 4 days and the cell lysates were subjected to

immunoblotting with the myc antibody. While FBXO31 levels were not altered with

FBXO31 RNAi#2, the levels of FBXO31 were significantly reduced with FBXO31

RNAi#1 and #3 as compared to control (Figure 3.8).
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mycFBXO31

FBXO31 RNAi

+ + + +_

_

_

#1 #2 #3

_72 kDa

28 kDa

mycFBXO31

14-3-3β

_

Figure 3.8: Validation of FBXO31 RNAi constructs. Lysates from HEK 293T cells, transfected

with mycFBXO31 together with control or FBXO31 RNAi #1, #2 or #3 plasmids, were probed with

anti-myc antibody. 14-3-3β served as a loading control.

FBXO31 knockdown reduces axon and dendrite growth in cerebellar

granule neurons

As a first approach to characterize the function of FBXO31 in neurons, I trig-

gered FBXO31 knockdown in neurons and assessed them for changes in morphology.

Cerebellar granule neurons were transfected 8 hrs after plating with control vector or

FBXO31 RNAi plasmids together with Bcl-xL and GFP-encoding plasmids. While

GFP served as a marker for transfected neurons, Bcl-xL, a Bcl-2 family member,

inhibits neuronal apoptosis. Both GFP and Bcl-xL have been shown to have no

effect on neuronal morphology in cultured neurons (Konishi et al., 2004). The neu-

rons were fixed at DIV 4 and analyzed for axon and dendrite growth as described in

materials and methods. I found that there was a significant reduction of axon and

dendrite lengths with FBXO31 RNAi#1 and #3 as compared to control. The axon

and dendrite lengths of neurons transfected with FBXO31 RNAi#2 did not change

as compared to control-transfected neurons (Figure 3.9).
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Figure 3.9: FBXO31 knockdown reduces axon and dendrite growth in cerebellar gran-

ule neurons. (A) Representative images of cerebellar granule neurons transfected with control,

FBXO31 RNAi#1, #2 or #3 plasmids together with GFP and Bcl-xL plasmids at DIV 0 and ana-

lyzed at DIV 4. Arrowheads indicate cell bodies. Scale bar equals 50 µm. (B) Quantification of

axon lengths of granule neurons as shown in (A). A total of 539 cells were analyzed in 3 inde-

pendent experiments. Control : 272.0±11.57 µm; FBXO31 RNAi#1: 145.7±9.18 µm; FBXO31

RNAi#2: 310.1±15.43 µm; FBXO31 RNAi#3: 167.1±7.28 µm. Values indicate mean±SEM

(one-way ANOVA, ***p<0.001). (C) Quantification of total dendrite lengths of granule neurons

as shown in (A). A total of 526 neurons were analyzed in 3 independent sets of experiments.

Control : 119.7±7.96 µm, FBXO31 RNAi#1: 43.97±4.19 µm, FBXO31 RNAi#2: 137.2±9.41 µm,

FBXO31 RNAi#3: 70.56±6.3 µm. Values indicate mean±SEM (one-way ANOVA, ***p<0.001).

Further, to rule out the off-target effects of RNAi on neuronal morphology, I

generated a myc-tagged FBXO31 rescue mutant (FBXO31-Res) that is resistant to

RNAi by introducing silent mutations into the FBXO31 targeting region (Figure

3.10A). To validate the FBXO31 rescue mutants, HEK 293T cells were transfected

with wild-type FBXO31 or FBXO31-Res plasmids together with FBXO31 RNAi#1
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plasmid. The cells were lysed four days after transfection and the lysates were

subjected to immunoblotting. As demonstrated previously, there was a significant

decrease in FBXO31 WT levels upon FBXO31 knockdown but the levels of FBXO31-

Res did not change upon expression of FBXO31 RNAi plasmid, thereby confirming

that FBXO31-Res is resistant to RNAi-mediated degradation (Figure 3.10B).

FBXO31 RNAi#1       G GAT GAG TTC TCC ACC AAG T
FBXO31-Res          5’ C CAG ATT GTG AAG AAG GAT GAA  TTT TCA ACA  AAG TGC AAC CAG ACG G 3’
  

 D     E      F      S      T      K

mycFBXO31 WT

mycFBXO31 RM

+

+

+_

_

_

_72 kDa

28 kDa

mycFBXO31

14-3-3β

FBXO31 RNAi _ + +__

_ _ +

__

A

B

Figure 3.10: Generation and validation of FBXO31-Res plasmid. (A) Using site-directed

mutagenesis, silent mutations were introduced into the FBXO31 RNAi#1 targeting region to gen-

erate FBXO31-Res plasmid. (B) HEK 293T cells were transfected with control, mycFBXO31

WT or mycFBXO31-Res expression plasmids together with FBXO31 RNAi#1 or control plasmids.

Cell lysates were immunoblotted for FBXO31 with anti-myc antibody. 14-3-3β served as a loading

control.

Having generated the FBXO31-Res plasmid, I carried out the rescue exper-

iments in which I transfected the neurons with either control or FBXO31 RNAi

plasmid together with FBXO31-Res expression plasmid at DIV 0. The neurons

were assessed for axon and dendrite growth at DIV 4. As observed previously, there

was a significant decrease in axon and dendrite growth upon FBXO31 knockdown,

which was partially rescued upon expression of FBXO31-Res (Figure 3.11).

To examine whether FBXO31 knockdown affects neuronal survival, my col-

league Chaitali Mukherjee transfected the neurons at DIV 2 with empty vector con-

trol or FBXO31 RNAi plasmids together with transfection marker β-galactosidase
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Figure 3.11: FBXO31-Res reverses the FBXO31 RNAi phenotype on axon and dendrite

growth in cerebellar granule neurons. (A) Representative images of cerebellar granule neurons

transfected with control, FBXO31 RNAi#1 or FBXO31 RNAi#1 and mycFBXO31-Res plasmids to-

gether with GFP and Bcl-xL expression plasmids at DIV 0 and analyzed at DIV 4. Arrowheads in-

dicate cell bodies. Scale bar equals 50 µm. (B) Quantification of axon lengths of granule neurons

as shown in (A). A total of 296 cells were analyzed in 3 independent sets of experiments. Control :

246.0±8.3 µm; FBXO31 RNAi#1: 147.1±7.33 µm, FBXO31 RNAi#1+FBXO31-Res: 216.1±7.93

µm. Values indicate mean±SEM (one-way ANOVA, *p<0.05, ***p<0.001). (C) Quantification

of total dendrite lengths of granule neurons as shown in (A). A total of 291 cells were analyzed

in 3 independent sets of experiments. Control : 119.8±8.91 µm, FBXO31 RNAi#1: 40.65±3.89

µm, FBXO31 RNAi#1 + FBXO31-Res: 80.17±6.43 µm. Values indicate mean±SEM (one-way

ANOVA, ***p<0.001).

but without the Bcl-xL expression plasmid. Neurons were fixed at DIV 6 and

assessed for apoptotic neurons characterized by fragmented axons and pyknotic

nucleus. Chaitali Mukherjee found that while FBXO31 RNAi#1 and #2 (non-
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functional) slightly increase neuronal apoptosis, FBXO31 RNAi#3 did not show

any change as compared to control neurons (Figure 3.12), suggesting a rather sub-

ordinate role of FBXO31 in neuronal survival.
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Figure 3.12: FBXO31 regulates neuronal survival. Cerebellar granule neurons were trans-

fected with control, FBXO31 RNAi#1, #2 or #3 plasmid together with β-gal expression plasmid

at DIV 2 and analyzed for neuronal survival at DIV 6. A total of 1585 cells were analyzed. Per-

centage of apoptotic neurons - Control : 26.93±0.63; FBXO31 RNAi#1: 36.37±0.74; FBXO31

RNAi#2: 32.6±0.83; FBXO31 RNAi#3: 28.19±0.53. Values indicate mean±SEM (one-way

ANOVA, *p<0.05, **p<0.01, ***p<0.001, n.s.=not significant). The survival assay was performed

by Chaitali Mukherjee.

3.2.2 FBXO31 gain-of-function promotes axon and dendrite

growth in cerebellar granule neurons

Besides the loss-of-function approach to assess the role of FBXO31 on axon

and dendrite growth, I asked whether FBXO31 overexpression would result in the

opposite effect on axons and dendrites. In order to test this, I transfected the

neurons with the mycFBXO31 expression plasmid or with corresponding empty
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vector control at DIV 0 and analyzed the neurons three days later for their axon

and dendrite lengths. I found that overexpression of FBXO31 significantly increases

axon and dendrite length (Figure 3.13).
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Figure 3.13: FBXO31 overexpression promotes axon and dendrite growth in cerebellar

granule neurons. (A) Representative images of cerebellar granule neurons transfected with

control or myc FBXO31 plasmids together with GFP and Bcl-xL at DIV 0 and analyzed at DIV

3. Arrowheads indicate cell bodies. Scale bar equals 50 µm. (B) Quantification of axon lengths

of granule neurons as shown in (A). A total of 274 neurons were analyzed in 3 independent

sets of experiments. Control : 159.5±5.1 µm and mycFBXO31 WT : 229.9±7.69 µm. Values

indicate mean±SEM (unpaired t-test, ***p<0.001). (C) Quantification of total dendrite lengths of

granule neurons as shown in (A). A total of 261 neurons were analyzed in 3 independent sets of

experiments. Control : 98.37±7.28 µm and mycFBXO31 WT : 194.5±10.11 µm. Values indicate

mean±SEM (unpaired t-test, ***p<0.001).

F-box proteins are known to form functional ubiquitin ligase complex by as-

sociating with their partners Skp1 and Cul1 via the highly conserved F-box domain

(Kipreos and Pagano, 2000). FBXO31 has been previously reported to associate

with Cul1 and Skp1 through its F-box domain (Kumar et al., 2005). I asked if the

association of FBXO31 with Skp1 and Cul1 and thus its ligase activity is required for

its effect on axon and dendrite growth in neurons. I used mycFBXO31 ∆F construct

(generously provided by Dr. Raman Kumar and Prof. David Callen, University of

Adelaide, Australia) in which F-box domain has been deleted thereby disrupting its
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association with Skp1 and Cul1 (Kumar et al., 2005). To confirm the specificity

of FBXO31 ∆F mutant, I transfected HEK 293T cells with GFP-FBXO31 WT or

∆F plasmids together with mycSkp1 plasmid and respective control vectors. The

cell lysates were subjected to immunoprecipitation with anti-GFP antibody and im-

munoblotted for Skp1 and Cul1. While I observed an interaction of FBXO31 WT

with Skp1 and Cul1, this interaction was lost with FBXO31 ∆F mutant (Figure

3.14), suggesting that FBXO31 ∆F is ligase-dead mutant.

mycSkp1

GFP-FBXO31 + +_

+ +_
+ +_

+ +_

GFP-FBXO31 WT (90 kDa)
GFP-FBXO31 ∆F (85 kDa)

mycSkp1 (18 kDa)

Cul1 (85 kDa)

GFP
mycSkp1

Cul1

IgGH

co-IP Input

IP: anti-GFP
IB: anti-myc, anti-Cul1

Cul1-Nedd8

Figure 3.14: FBXO31 ∆F does not form a functional SCF complex. HEK 293T cells were

transfected with GFP-FBXO31 WT or ∆F plasmids together with mycSkp1 and respective con-

trol vectors. The cell lysates were subjected to immunoprecipitation with anti-GFP antibody and

probed for Skp1 and Cul1.

Next, I transfected neurons at DIV 0 with either control or FBXO31 WT or

FBXO31 ∆F expression plasmid and analyzed them at DIV 3 for their axon and

dendrite lengths. As previously observed, I found a significant increase in axon and

dendrite length of the neurons expressing wild-type FBXO31, while there was no

change in either the axon or the dendrite length of the neurons expressing FBXO31

∆F as compared to the control neurons (Figure 3.15).



3.2 Functional characterization of F-box protein FBXO31 in the nervous system 59

0

100

200

300

Ax
on

 le
ng

th
/n

eu
ro

n 
(µ

m
)

*** ***

C
on

tro
l

m
yc

FB
X

O
31

 W
T

m
yc

FB
X

O
31

 ∆
F

0

100

200

300

To
ta

l d
en

dr
ite

 le
ng

th
/n

eu
ro

n 
(µ

m
)

C
on

tro
l

m
yc

FB
X

O
31

 W
T

m
yc

FB
X

O
31

 ∆
F

*** ***

Control mycFBXO31 WT mycFBXO31 ΔF

A

B C

Figure 3.15: FBXO31-SCF ligase activity is essential for axon and dendrite growth in cere-

bellar granule neurons. (A) Representative images of cerebellar granule neurons transfected

with control, mycFBXO31 WT or mycFBXO31 ∆F together with GFP and Bcl-xL at DIV 0 and

analyzed at DIV 3. Arrowheads indicate cell bodies. Scale bar equals 50 µm. (B) Quantification

of axon lengths of granule neurons as shown in (A). A total of 381 neurons were analyzed in 3 in-

dependent sets of experiments. Control : 195.4±6.03 µm, mycFBXO31 WT : 245.6±8.17 µm and

mycFBXO31 ∆F : 179.5±5.72 µm. Values indicate mean±SEM (one-way ANOVA, ***p<0.001).

(C) Quantification of total dendrite lengths of granule neurons as shown in (A). A total of 341 neu-

rons were analyzed in 3 independent sets of experiments. Control : 125.7±7.94 µm, mycFBXO31

WT : 240.4±11.07 µm and mycFBXO31 ∆F : 119.7±8.63 µm. Values indicate mean±SEM (one-

way ANOVA, ***p<0.001).
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3.2.3 FBXO31 loss-of-function reduces axon and dendrite

growth in hippocampal and cortical neurons

To test whether the effect of FBXO31 on axon and dendrite growth is specific

to CGNs or whether it is a general mechanism of axon and dendrite growth control

in different neuronal subtypes, I used cultured hippocampal and cortical neurons

isolated from E18 rat embryos. These neurons were transfected at DIV 1 with either

empty vector control or FBXO31 RNAi#1 plasmid. Neurons were analyzed for their

axon and dendrite lengths at DIV 5. As observed with CGNs, I found a significant

decrease in axon and dendrite growth in both hippocampal neurons (Figure 3.16A-

C) and cortical neurons (Figure 3.16D-F) upon FBXO31 knockdown as compared

to control neurons, suggesting a general mechanism of FBXO31 effect on neuronal

morphogenesis.

3.2.4 FBXO31 regulates the establishment of axon-dendrite

polarity in neurons

The establishment of axon-dendrite polarity in neurons is a tightly regulated

process. Besides extrinsic cues that regulate neuronal polarization, intrinsic cues

particularly E3 ubiquitin ligases including Smurf1, Smurf2, Siah and TRIM32 have

been reported to regulate neuronal polarization (Schwamborn et al., 2007, 2009;

Famulski et al., 2010; Cheng et al., 2011). Therefore, I asked if FBXO31 plays a

role in neuronal polarization.

3.2.4.1 FBXO31 overexpression leads to a polarization defect in cere-

bellar granule neurons

While characterizing the function of FBXO31 in axon and dendrite growth in

CGNs, I also observed FBXO31 knockdown neurons that are not polarized. There-

fore, to test whether FBXO31 plays a role in neuronal polarization, I analyzed

cerebellar granule neurons that were transfected with FBXO31 WT plasmid or con-
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Figure 3.16: FBXO31 knockdown reduces axon and dendrite growth in hippocampal and

cortical neurons. (A) Representative images of cultured hippocampal neurons transfected with

control or bi-cistronic FBXO31 RNAi#1/CMV-GFP plasmid together with Bcl-xL at DIV 1 and an-

alyzed at DIV 5. Arrowheads indicate cell bodies. Scale bar equals 50 µm. (B) Quantification of

axon lengths of hippocampal neurons as shown in (A). A total of 190 neurons were analyzed in 3

independent sets of experiments. Control : 516.1±33.29 µm and FBXO31 RNAi#1: 342.1±21.04

µm. Values indicate mean±SEM (unpaired t-test, ***p<0.001). (C) Quantification of total dendrite

length of hippocampal neurons as shown in (A). A total of 184 neurons were analyzed. Control :

431.8±24.35 µm and FBXO31 RNAi#1: 252.6±17.28 µm. Values indicate mean±SEM (unpaired

t-test, ***p<0.001). (D) Representative images of cultured cortical neurons transfected with con-

trol or FBXO31 RNAi#1 together with GFP and Bcl-xL expression plasmids at DIV 1 and analyzed

at DIV 5. Arrowheads indicate cell bodies. Scale bar equals 50 µm. (E) Quantification of axon

lengths of cortical neurons as shown in (D). A total of 147 neurons were analyzed in 3 independent

sets of experiments. Control : 640.7±51.54 µm and FBXO31 RNAi#1: 355.6±23.49 µm. Values

indicate mean±SEM (unpaired t-test, ***p<0.001). (F) Quantification of total dendrite lengths of

hippocampal neurons as shown in (D). A total of 164 neurons were analyzed in 3 independent

sets of experiments. Control : 556.3±88.79 µm and FBXO31 RNAi#1: 205.7±20.35 µm. Values

indicate mean±SEM (unpaired t-test, ***p<0.001).
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trol vector at DIV 0 and fixed at DIV 3. I measured the ratio of the longest to

the second longest process length and defined neurons as non-polarized if the ratio

of longest to second longest process length was less than 2. While I found 18% of

control neurons to be non-polarized, approximately 38% of FBXO31-overexpressing

neurons were not polarized (Figure 3.17) .
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Figure 3.17: FBXO31 regulates neuronal polarization in cerebellar granule neurons. (A)

Representative images of cerebellar granule neurons transfected with control or mycFBXO31

WT plasmid together with GFP and Bcl-xL expression plasmids at DIV 0 and analyzed at DIV

3. The neurons were defined as polarized when the longest process was at least twice as long

as the second longest process. Arrowheads indicate cell bodies. Scale bar equals 50 µm. (B)

Quantification of percentage of non-polarized neurons as shown in (A). A total of 256 neurons

were analyzed in 3 independent sets of experiments. Percentage of non-polarized neurons -

Control : 18.0±0.47 and mycFBXO31 WT : 36.76±3.9. Values indicate mean±SEM (unpaired

t-test, **p<0.01).

3.2.4.2 FBXO31 regulates neuronal polarity in hippocampal neurons

Hippocampal neurons are well-established for studying neuronal polarization

in vitro. Their development in culture has been divided into different stages based

on the morphology as described in the introduction. I therefore took advantage of
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hippocampal neurons to ask if FBXO31 indeed has a role in neuronal polarization.

Axons harbor the axon initial segment (AIS), which is characterized by the pres-

ence of AnkyrinG (AnkG). AnkG is responsible for organization of the AIS and thus

maintenance of neuronal polarity. I transfected cultured hippocampal neurons with

control, FBXO31 WT or FBXO31 ∆F plasmids together with plasmids encoding

GFP and Bcl-xL at DIV 1. Neurons were fixed at DIV 7 and immunostained for

GFP and AnkG. I observed a multiple-axon phenotype in neurons that were ex-

pressing FBXO31 WT but not in FBXO31 ∆F or control conditions (Figure 3.18),

suggesting that FBXO31 regulates neuronal polarity.

Besides the gain-of-function approach, I also asked if loss of FBXO31 in neu-

rons would induce a no-axon phenotype. To test this hypothesis, I transfected hip-

pocampal neurons with control vector or FBXO31 RNAi#1 plasmid. The neurons

were fixed at DIV 6 and immunostained for GFP and AnkG. I observed a no-axon

phenotype upon knockdown of FBXO31 (Figure 3.19).

3.2.5 FBXO31 promotes dendrite growth and neuronal mi-

gration in developing cerebellum

Cerebellar granule neurons are born in the external granule layer (EGL) of

the cerebellum where they migrate tangentially as bipolar cells until they reach

the molecular layer (ML). The cell body of the granule neurons then migrates ra-

dially into the internal granule layer (IGL) extending a bifurcating axon into the

ML that forms, together with other axons, the parallel fiber bundle. Given that

FBXO31 regulates CGN development in vitro, I asked if FBXO31 has a function in

the developing cerebellum in vivo.

To address this, Dr Judith Stegmüller and I electroporated P4 rat pups with

either bicistronic U6φ/CMV-GFP control or FBXO31 RNAi#1/CMV-GFP plas-

mids. The pups were sacrificed at P9 and the cerebella were analyzed for in vivo

function of FBXO31. I analyzed the CGNs for their total dendrite length in 3D

using Imaris software (Bitplane). As seen earlier in vitro, I found that FBXO31
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Figure 3.18: FBXO31 gain-of-function promotes multiple axon-phenotype in hippocampal

neurons. (A) Representative images of cultured hippocampal neurons transfected with control,

FBXO31 WT or FBXO31 ∆F plasmids together with GFP and Bcl-xL expression plasmids at DIV 1

and analyzed at DIV 7. The neurons were immunostained with anti-GFP and anti-AnkG antibod-

ies. Arrows indicate AIS. Scale bar equals 10 µm. (B) Quantification of percentage of neurons

with one or more axons in hippocampal neurons as shown in (A). A total of 169 neurons were

analyzed in 3 independent sets of experiments. Percentage of neurons with one axon - Control :

86.47±0.92; mycFBXO31 WT : 54.32±0.58 and mycFBXO31 ∆F : 87.37±0.34. Percentage of

neurons with ≥2 axons - Control : 13.53±0.92, mycFBXO31 WT : 45.68±0.58 and mycFBXO31

∆F : 12.63±0.34. Values indicate mean±SEM (two-way ANOVA, ***p<0.001).
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Figure 3.19: FBXO31 knockdown induces no-axon phenotype in hippocampal neurons.

(A) Representative images of cultured hippocampal neurons transfected with control or FBXO31

RNAi#1/CMV-GFP together with Bcl-xL at DIV 1 and analyzed at DIV 6. Neurons were immunos-

tained with anti-GFP and anti-AnkG antibodies. Note the loss of AnkG staining at the AIS in

FBXO31 RNAi#1 condition. Arrows indicate AIS. Scale bar equals 10 µm. (B) Quantification of

percentage of neurons with 0, 1 or ≥2 axons in hippocampal neurons as shown in (A). A total of

121 neurons were analyzed in 3 independent sets of experiments. Percentage of neurons with

no axon - Control : 1.75±1.75 and FBXO31 RNAi#1: 56.51±8.88; percentage of neurons with

one axon - Control : 88.22±1.25 and FBXO31 RNAi#1: 41.82±8.41; percentage of neurons with

≥2 axons - Control : 10.02±2.61 and FBXO31 RNAi#1: 1.67±1.67. Values indicate mean±SEM

(two-way ANOVA, ***p<0.001, n.s.=not significant).
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knockdown neurons have shorter dendrite lengths as compared to control vector

electroporated neurons in the developing cerebellum (Figure 3.20). I was unable to

measure the axon lengths as they fasciculate in the molecular layers as untraceable

fibers. Besides a reduction in dendrite lengths upon FBXO31 knockdown, I also

observed that while most of the control vector electroporated neurons migrate into

the IGL, about 50% of FBXO31 knockdown neurons stall in the ML/EGL and do

not migrate into the IGL (Figure 3.21A,B). This suggests a role of FBXO31 in

migration of CGNs in developing cerebellum. I also measured the distance of the

cell body of individual neurons from the pial surface to estimate their extent of

migration. I found that a large proportion of CGNs fails to migrate under FBXO31

knockdown condition as compared to control (Figure 3.21A,C).
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Figure 3.20: FBXO31 knockdown decreases dendrite growth of cerebellar granule neu-

rons in vivo. (A) Representative confocal images of cerebellar granule neurons from rat pups

electroporated with control or FBXO31 RNAi#1/CMV-GFP plasmids together with Bcl-xL at P4 and

analyzed at P9. Total dendrite lengths were analyzed in 3D using Imaris software. Arrows indicate

dendrites and arrowheads indicate axons of granule neurons. Scale bar equals 50 µm. (B) Quan-

tification of total dendrite lengths of granule neurons as shown in (A). A total of 84 neurons were

analyzed from three pups each for control and FBXO31 RNAi#1. Control : 619.8±23.8 µm and

FBXO31 RNAi#1: 423.4±30.03 µm. Values indicate mean±SEM (unpaired t-test, ***p<0.001).

The in vivo electroporations were done by Dr. Judith Stegmüller, while I assisted her with the

electroporation and further processed the cerebella.
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Figure 3.21: FBXO31 promotes neuronal migration of cerebellar granule neurons in devel-

oping cerebellum in vivo. (A) Representative confocal images of coronal sections of cerebella

from rat pups electroporated with control or FBXO31 RNAi#1/CMV-GFP plasmids together with

Bcl-xL at P4 and analyzed at P9. IGL=internal granule layer, ML=molecular layer, EGL=external

granule layer. Scale bar equals 50 µm. (B) Quantification of percentage of granule neurons in

different layers of cerebellum as shown in (A). A total of 3637 neurons were counted from three

pups each for control and FBXO31 RNAi#1. Percentage of cells in different layers: EGL - Control :

9.52±1.13 and FBXO31 RNAi#1: 5.07±1.44; ML - Control : 9.29±1.81 and FBXO31 RNAi#1:

43.82±1.19; IGL - Control : 81.83±0.97 and FBXO31 RNAi#1: 51.11±2.36. Values indicate

mean±SEM (two-way ANOVA, ***p<0.001, n.s.=not significant). (C) Quantification of distance

migrated from pial surface for granule neurons as shown in (A). A total of 681 neurons were an-

alyzed from three pups each for control and FBXO31 RNAi#1. Percentage of granule neurons:

Control - 0-30: 6.49±1.68; 30-60: 14.76±0.84; 60-90: 17.16±4.47; 90-120: 28.88±3.53; 120-

150: 18.39±1.1; 150-180: 9.02±3.83; >180: 5.28±3.55; FBXO31 RNAi#1 - 0-30: 5.53±1.04;

30-60: 46.93±1.54; 60-90: 19.22±4.07; 90-120: 17.8±3.89; 120-150: 7.59±2.8; 150-180:

2.62±0.51; >180: 0.29±0.29. Values indicate mean±SEM (two-way ANOVA, ***p<0.001). The

in vivo electroporations were done by Dr. Judith Stegmüller while I assisted her with the electro-

poration and further processed the samples.
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3.3 Par6c is a substrate of FBXO31-SCF in con-

trol of axon growth

In the previous section, I observed an important role of FBXO31 during the

development of the neurons both in vitro and in vivo. In order to delineate the

mechanism underlying the phenotypes observed with FBXO31, I screened for can-

didates, as interaction partners and putative substrates, localized at the centrosome

owing to the centrosomal localization of FBXO31.

3.3.1 FBXO31 interacts with Par/aPKC complex

The par polarity complex consists of Par6 protein (Par6α, Par6β and Par6γ),

atypical protein kinase C (PKCι and PKCζ) and Par3 (Assémat et al., 2008). This

is a key complex crucial to progenitor proliferation, neuronal polarization, axon ex-

tension, neuronal migration and synapse formation (Solecki et al., 2004; Zhang and

Macara, 2006, 2008; Costa et al., 2008; Famulski et al., 2010; Yi et al., 2010; Cheng

et al., 2011). The Par6/aPKC complex is primarily localized at the centrosome

(Solecki et al., 2004; Kodani et al., 2010). It acts together with Cdc42 and Rac1 to

regulate neuronal polarization, axon extension and migration. Given that FBXO31

is also localized at the centrosome, I asked if members of the Par6/aPKC complex

interact with FBXO31.

FBXO31 interacts with Par6α and Par6β

To study the interaction of FBXO31 with Par6, I performed co-immunoprecipi-

tation assay. HEK 293T cells were transfected with mycPar6c and Flag-FBXO31

expression plasmids or respective control plasmids. The cells were lysed two days

after transfection, immunoprecipitated with anti-Flag antibody and immunoblot-

ted with anti-myc antibody. I found that FBXO31 associates with Par6c (Figure

3.22A). To confirm the specificity of this interaction, I performed a reciprocal co-

immunoprecipitation where I immunoprecipitated with anti-myc antibody and im-
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munoblotted with anti-Flag antibody. With the reciprocal co-immunoprecipitation,

I was able to detect specific interaction of Par6c with FBXO31 (Figure 3.22B).
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Figure 3.22: FBXO31 interacts with Par6c. (A) Cell lysates of HEK 293T cells, transfected with

Flag-FBXO31 and mycPar6c expression plasmids or respective control vectors, were subjected

to immunoprecipitation with anti-myc antibody and immunoblotted for Par6c. Inputs represent 5%

of total cell lysates prior to immunoprecipitation. (B) Cell lysates of HEK 293T cells, transfected

with Flag-FBXO31 and mycPar6c expression plaids or respective control vectors, were subjected

to immunoprecipitation with anti-myc antibody and immunoblotted for FBXO31. Inputs represent

5% of total cell lysate prior to immunoprecipitation. IgGH=immunoglobulin heavy chain.

To further characterize this interaction, my colleague Nicola Schwedhelm-

Domeyer and I generated various myc-tagged deletion mutants of Par6c (Figure

3.23B) and performed co-immunoprecipitation assay of these deletion mutants with

GFP-FBXO31. HEK 293T cells were transfected with GFP-FBXO31 or control

plasmid together with mycPar6c WT or Par6c deletion mutants. The cells were

lysed after two days and the lysate was subjected to immunoprecipitation with anti-

myc antibody and immunoblotted with anti-GFP antibody. I found that FBXO31

interacts with Par6c-(161-346) and with Par6c-PDZ domain but not with Par6c-(1-

160) and Par6c-(251-346) (Figure 3.23A,B). Therefore, I concluded that FBXO31

interacts with the PDZ domain of Par6c.
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Figure 3.23: Par6c-PDZ domain interacts with FBXO31. (A) Lysates of HEK 293T cells,

transfected with GFP-FBXO31 together with mycPar6c WT or various deletion mutants, were

subjected to immunoprecipitation with anti-myc antibody and probed for FBXO31. Inputs repre-

sent 30 µg of total protein lysate prior to immunoprecipitation. (B) Schematic of interaction of

various Par6c deletion mutants with FBXO31. Par6c deletion mutants were generated by Nicola

Schwedhelm-Domeyer and me.

Since Par6c and Par6b share a high sequence homology in their PDZ domain

(Figure 3.24), I asked if Par6b also interacts with FBXO31. I transfected HEK

293T cells with mycPar6b and GFP-FBXO31 expression plasmids and respective

control plasmids for co-immunoprecipitation assay. Cells were lysed and the lysates

Par6c 
PB1 PDZCRIB 3461

Par6b 
372

Figure 3.24: Par6c and Par6b share a high sequence similarity in their PDZ domains.

Schematic showing sequence homology between PDZ domains of Par6c and Par6b. PB1, CRIB

and PDZ domains are highly conserved between Par6c and Par6b.
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were subjected to immunoprecipitation with anti-myc antibody and immunoblotted

with anti-GFP antibody. I found that FBXO31 also interacts with Par6b (Figure

3.25).
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Figure 3.25: FBXO31 interacts with Par6b. Cell lysates of HEK 293T cells, transfected with

GFP-FBXO31 and mycPar6b or mycPar6c expression plasmids together with respective control

plasmids, were subjected to immunoprecipitation with anti-myc antibody and immunoblotted for

FBXO31. Inputs represent 30 µg of total protein lysate prior to immunoprecipitation.

FBXO31 interacts with aPKC

Besides Par6, I also examined if aPKC (PKCι and PKCζ) interacts with

FBXO31. I transfected the HEK 293T cells with mycFBXO31 and wild-type and

dominant negative (DN) form of HA-PKCι or HA-PKCζ and respective control vec-

tors. Upon immunoprecipitation with anti-HA antibody and immunoblotting with

anti-myc antibody, I found FBXO31 to interact with both the WT and DN form of

PKCι (Figure 3.26A) and PKCζ (Figure 3.26B).

FBXO31 does not interact with Par3b

I also tested the interaction of FBXO31 with another member of Par/aPKC

complex - Par3b, a protein phosphorylated by aPKC. I transfected the HEK 293T

cells with Flag-FBXO31 and mycPar3b and respective controls, immunoprecipitated

the lysates at DIV 2 with anti-Flag antibody and immunoblotted with anti-myc
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Figure 3.26: FBXO31 interacts with PKCι and PKCζ. (A) Lysates of HEK 293T cells, trans-

fected with mycFBXO31 and HA-PKCι WT or DN and respective control vectors were subjected

to immunoprecipitation with anti-HA antibody and immunoblotted for FBXO31. Inputs represent

5% of total protein lysate prior to immunoprecipitation. (B) Lysates of HEK 293T cells transfected

with mycFBXO31 and HA-PKCζ WT or DN and respective control vectors were subjected to im-

munoprecipitation with anti-HA antibody and immunoblotted for FBXO31. Inputs represent 5% of

total protein lysate prior to immunoprecipitation.

antibody. I did not find any interaction of FBXO31 with Par3b (Figure 3.27), sug-

gesting that FBXO31 interacts only with the core members of Par/aPKC complex,

namely Par6 and aPKC.
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Figure 3.27: FBXO31 does not interact with Par3b. Lysates of HEK 293T cells, transfected

with Flag-FBXO31 and mycPar3b plasmids and respective control vectors, were subjected to

immunoprecipitation with anti-Flag antibody and immunoblotted for Par3b. Inputs represent 5% of

the total cell lysate set aside prior to immunoprecipitation. IgGH=immunoglobulin heavy chain
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3.3.1.1 Par6c but not PKCζ is degraded by the ubiquitin proteasome

system in granule neurons

Next, I tested whether Par6c and aPKC are degraded in a proteasome-dependent

manner in the cultured cerebellar granule neurons. I transfected the neurons with

mycPar6c expression plasmid at DIV 0 and treated the cells with a proteasome

inhibitor lactacystin or vehicle, 10 hr prior to lysis at DIV3. The lysates were

immunoblotted with anti-myc antibody. I found a significant increase in levels of

mycPar6c upon inhibition of the proteasome with lactacystin suggesting that Par6c

is degraded in a proteasome-dependent manner in the CGNs (Figure 3.28A).

I also analyzed whether PKCζ is degraded in a proteasome-dependent man-

ner. For this, I treated the cultured cerebellar granule neurons at DIV 2 with 10

µM lactacystin or vehicle DMSO for 10 hrs and probed the lysates with anti-PKCζ

antibody. Unlike Par6c, I did not find any change in the levels of PKCζ upon treat-

ment with lactacystin suggesting that while Par6c undergoes proteasome-dependent

degradation in CGNs, PKCζ does not (Figure 3.28B).
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Figure 3.28: Par6c but not PKCζ is degraded in a proteasome-dependent manner in cere-

bellar granule neurons. (A) Cultured cerebellar granule neurons were transfected with mycPar6c

together with GFP and Bcl-xL plasmids at DIV 0 and were treated with vehicle or 10 µM lactacystin

for 10 hrs prior to lysis at DIV 3. Neuronal lysates were immunoblotted for Par6c. 14-3-3β was

used as a loading control. (B) Cultured cerebellar granule neurons were treated with vehicle or

10 µM lactacystin for 10 hrs prior to lysis at DIV 3. Cell lysates were immunoblotted for PKCζ.

Smurf1 and 14-3-3β served as positive control and loading control, respectively.
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3.3.1.2 FBXO31 regulates the stability of Par6c

Since I observed Par6c to be degraded in a proteasome-dependent manner, I

asked whether FBXO31 regulates Par6c stability. To test this, I transfected HEK

293T cells with mycPar6c plasmid together with Flag-FBXO31 expression plasmid

or empty vector control. I also transfected HEK 293T cells with mycPar6c together

with FBXO31 RNAi plasmid or with U6 empty vector control. The cells were

lysed at DIV 2 and DIV 4 respectively and probed with anti-myc antibody to de-

tect the levels of Par6c. I observed that with FBXO31 overexpression, Par6c levels

were downregulated (Figure 3.29A), whereas with FBXO31 knockdown, Par6c lev-

els were significantly upregulated (Figure 3.29B). These experiments suggest that

Par6c is regulated by the E3 ubiquitin ligase FBXO31-SCF.
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Figure 3.29: FBXO31 regulates the stability of Par6c. (A) HEK 293T cells were transfected

with mycPar6c expression plasmid together with control or Flag-FBXO31. Two days after transfec-

tion the cell lysates were immunoblotted for FBXO31 and Par6c. 14-3-3β was used as a loading

control. (B) HEK 293T cells were transfected with mycPar6c and mycFBXO31 expression plas-

mids together with control or FBXO31 RNAi#1. The cells were lysed four days after transfection

and the cell lysates were immunoblotted for FBXO31 and Par6c. 14-3-3β was used as a loading

control. (C-D) HEK 293T cells were transfected with Renilla-Par6c (C) and Renilla-CCND1 (D) to-

gether with control or mycFbxo31 WT and SV40 firefly luciferase. The cell lysates were assessed

for Renilla activity using dual-luciferase assay. Histogram indicates mean+SEM (unpaired t-test,

**p<0.01)
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In addition, I performed dual-luciferase assay as another approach to deter-

mine the stability of Par6c upon overexpression of FBXO31. HEK 293T cells trans-

fected with Renilla-Par6c expression plasmid together with mycFBXO31 or empty

vector control and internal control SV40 firefly luciferase were subjected to dual

luciferase assay. The firefly and renilla luciferase substrates and the luminometer

were kindly provided by Dr. Moritz Rossner (Max Planck Institute of Experimental

Medicine, Goettingen, Germany). While I observed 30% reduction in activity of

Renilla-Par6c (Figure 3.29C) upon FBXO31 overexpression as compared to con-

trol, I also observed a 52% decrease in Renilla-Cyclin D1 activity in presence of

FBXO31 (Figure 3.29D). Cyclin D1 is targeted to proteasome for degradation by

FBXO31-SCF (Santra et al., 2009). Taken together, I found that FBXO31 regulates

Par6c levels.

3.3.1.3 Par6c is polyubiquitinated and targeted for proteasomal degra-

dation by FBXO31

To examine whether FBXO31-SCF is responsible for Par6c ubiquitination, my

colleague Nicola Schwedhelm-Domeyer and I carried out cell-based ubiquitination

assay. We expressed Par6c together with control vector, FBXO31 WT or FBXO31

∆F. The lysates were subjected to immunoprecipitation for Par6c and immunoblot-

ted with ubiquitin antibody. While we found a sparse ubiquitination of Par6c in

control and FBXO31 ∆F conditions, wild-type FBXO31 potently stimulates polyu-

biquitination of Par6c (Figure 3.30).

To confirm that the polyubiquitination of Par6c contributes to its proteaso-

mal turnover, we examined the linkage of the polyubiquitination chain associated

with Par6c. Ubiquitin chains can be assembled via different lysines in ubiquitin.

Ubiquitin chains that are linked via lysine 48 (K48) are well known to trigger the

degradation of proteins, while K63-linkage of ubiquitin represents a non-proteolytic

modification. In further cell-based ubiquitination assays, we found that FBXO31

triggered the assembly of a K48-linked but not K63-linked polyubiquitin chain of
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Figure 3.30: Par6c is polyubiquitinated by FBXO31-SCF. Lysates of HEK 293T cells, trans-

fected with GFP-Fbxo31 WT or ∆F together with mycPar6c plasmid and respective control vec-

tors, were subjected to immunoprecipitation with anti-myc antibody and immunoblotted with the

ubiquitin antibody. Nicola Schwedhelm-Domeyer and I performed the cell-based ubiquitination

assays.

Par6c (Figure 3.31A & B), suggesting a degradation-inducing modification of Par6c

by the E3 ubiquitin ligase FBXO31-SCF. Collectively, these data indicate that Par6c

is targeted for proteasomal degradation by FBXO31-SCF.

3.3.2 Par6c acts as a suppressor of axon growth but not

dendrite growth

Par6/aPKC complex is a key regulator of neuronal polarity (Shi et al., 2003;

Nishimura et al., 2005; Schwamborn et al., 2007; Yi et al., 2010; Cheng et al., 2011).

I asked if Par6c, in addition to its role in polarity, has axon or dendrite growth-

regulating functions.
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Figure 3.31: Par6c polyubiquitination by FBXO31-SCF is K48-linked and not K63-linked.

(A) Lysates of HEK 293T cells, transfected with GFP-FBXO31 and mycPar6c plasmids and re-

spective control vectors, were subjected to immunoprecipitation with anti-myc antibody and im-

munoblotted with K48-specific anti-ubiquitin antibody. (B) Lysates of HEK 293T cells, transfected

with GFP-FBXO31 and mycPar6c expression plasmids and respective control vectors, were sub-

jected to immunoprecipitation with anti-myc antibody and probed with K63-specific anti-ubiquitin

antibody. Nicola Schwedhelm-Domeyer and I performed the cell-based ubiquitination assays.

3.3.2.1 Par6c gain-of-function suppresses axon growth but not dendrite

growth in neurons

Since FBXO31 regulates Par6c levels, I reasoned that overexpression of Par6c

might phenocopy the FBXO31 RNAi phenotype. In order to test this, I transfected

granule neurons with control or Par6c expression plasmid at DIV 0 and analyzed

the neurons for axon and dendrite growth three days later. Indeed, I found that

Par6c overexpression resulted in shorter axons whereas dendrite growth was not

affected (Figure 3.32A-D). I also observed that a large population neurons were

not polarized upon Par6c overexpression (Figure 3.32E), which is consistent with

the previous role of Par6c in neuronal polarity (Shi et al., 2003; Cheng et al., 2011).
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Figure 3.32: Par6c acts as an axon growth suppressor. (A) Representative images of cere-

bellar granule neurons transfected with control or mycPar6c WT plasmids together with GFP and

Bcl-xL plasmids at DIV 0 and analyzed at DIV 3. Arrowheads indicate cell bodies. Scale bar

equals 50 µm. (B) Quantification of axon lengths of granule neurons as shown in (A). A total

of 231 neurons were analyzed in 3 independent sets of experiments. Control : 196.3±5.47 µm

and mycPar6c WT : 177.3±6.62 µm. Values indicate mean±SEM (unpaired t-test, *p<0.05). (C)

Quantification of longest dendrite length of granule neurons shown in (A). A total of 160 neurons

were analyzed in 3 independent sets of experiments. Control : 67.67±3.77 µm and mycPar6c WT :

71.71±4.25 µm. Values indicate mean±SEM (unpaired t-test, n.s.=not significant). (D) Quan-

tification of second longest dendrite length of granule neurons as shown in (A). A total of 160

neurons were analyzed in 3 independent sets of experiments. Control : 26.91±2.59 µm and myc-

Par6c WT : 32.22±3.8 µm. Values indicate mean±SEM (unpaired t-test, n.s.=not significant). (E)

Quantification of non-polarized neurons for granule neurons shown in (A). A total of 226 neurons

were analyzed from 3 independent sets of experiments. Percentage of non-polarized neurons

- Control : 20.36±2.64 and mycPar6c WT : 38.71±3.18. Values indicate mean±SEM (unpaired

t-test, *p<0.05).
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3.3.2.2 Par6c loss-of-function promotes axon but not dendrite growth

Validation of Par6c RNAi construct

To further investigate the effect of Par6c loss-of-function in neurons, I gener-

ated a Par6c RNAi plasmid using the targeting region described before (Zhang and

Macara, 2008). To validate the Par6c RNAi construct, HEK 293T cells were trans-

fected with either empty control vector or with Par6c RNAi plasmid together with

mycPar6c plasmid. The cell lysates were subjected to immunoblotting for Par6c. I

observed a significant reduction in Par6c levels with respect to control (Figure 3.33).

Par6c RNAi +_
mycPar6c WT ++

_

_36 kD

28 kD

mycPar6c

14-3-3β

Figure 3.33: Validation of Par6c RNAi. Lysates of HEK 293T cells transfected with mycPar6c

expression plasmid together with control or Par6c RNAi plasmid was immunoblotted for Par6c.

14-3-3β was used as a loading control.

Par6c knockdown promotes axon growth but does not alter dendrite

growth

To address the question of Par6c loss-of-function on axon or dendrite growth,

I transfected the granule neurons with control or Par6c RNAi plasmid together with

GFP and Bcl-xL at DIV 0 and analyzed the cells four days later. I observed a

significant increase in axon length but no change in the dendrite length upon Par6c

knockdown as compared to control neurons (Figure 3.34A-C). Moreover, I did not

find any change in percentage of non-polarized cells upon Par6c knockdown (Figure

3.34D).

To validate the specificity of Par6c RNAi phenotype and rule out the off-target

effect of Par6c RNAi, I generated Par6c rescue mutants (Par6c-Res) that are resis-

tant to RNAi-mediated degradation (Figure 3.35A). To validate the Par6c rescue
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Figure 3.34: Par6c loss-of-function promotes axon but not dendrite growth. (A) Repre-

sentative images of cerebellar granule neurons transfected with control or Par6c RNAi plasmid

together with GFP and Bcl-xL plasmids at DIV 0 and analyzed at DIV 4. Arrowheads indicate

cell bodies. Scale bar equals 50 µm. (B) Quantification of axon length of granule neurons as

shown in (A). A total of 285 neurons were analyzed in 3 independent sets of experiments. Con-

trol : 300.3±10.41 µm and Par6c RNAi : 402.5±12.61 µm. Values indicate mean±SEM (unpaired

t-test, ***p<0.001). (C) Quantification of total dendrite lengths of granule neurons as shown in

(A). A total of 269 neurons were analyzed from 3 independent sets of experiments. Control :

193.0±11.28 µm and Par6c RNAi : 201.9±8.44 µm. Values indicate mean±SEM (unpaired t-test,

n.s.=not significant). (D) Quantification of percentage of non-polarized granule neurons as shown

in (A). A total of 291 neurons were analyzed in 3 independent sets of experiments. Percentage

of non-polarized neurons - Control : 6.36±1.28 and Par6c RNAi : 9.73±3.13. Values indicate

mean±SEM (unpaired t-test, n.s.=not significant).

mutants, HEK 293T cells were transfected with Par6c WT or Par6c-Res plasmids

together with Par6c RNAi plasmid and respective controls. The cells were lysed

four days after transfection and the lysates were subjected to immunoblotting for
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Par6c. Though there was a significant reduction in Par6c levels upon transfection

with Par6c RNAi, the levels of Par6c-Res did not respond to Par6c RNAi (Figure

3.35B), thereby confirming that Par6c-Res is resistant to RNAi-mediated degrada-

tion.

mycPar6c WT
mycPar6c Res

+
+

+
Par6c RNAi + +__

_ _ +

__

_

_36 kD

28 kD

mycPar6c

14-3-3β

Par6c RNAi                 AT GAG ATC CTC GAG GTC AA
Par6c-Res         5’ TG GCG GTC AGT GAT GAA  ATT CTA  GAA  GTA AAT GGC ATT GAA GTA GCC 3’
  

 E      I       L       E      V A

B

Figure 3.35: Generation and validation of Par6c-Res construct. (A) Silent mutations, as

indicated, were introduced into Par6c RNAi target sequence to generate Par6c-Res construct.

(B) HEK 293T cells were transfected with control, mycPar6c WT or mycPar6c-Res together with

control or Par6c RNAi. Cell lysates were immunoblotted for Par6c. 14-3-3β served as a loading

control.

To establish the Par6c RNAi phenotype on axon and dendrite growth, I trans-

fected granule neurons with control, Par6c RNAi or Par6c RNAi together with

Par6c-Res plasmid at DIV 0. Neurons were analyzed at DIV 4 for their axon and

dendrite lengths. As seen previously, I found that while Par6c knockdown increases

axon length, the expression of Par6c-Res reverses this effect (Figure 3.36A-D).

These results confirm the specific phenotype of Par6c loss-of-function on axon but

not dendrite growth.



3.3 Par6c is a substrate of FBXO31-SCF in control of axon growth 82

Control Control + Par6c RNAi Par6c RNAi +mycPar6c-Res

A

0

100

200

300

400
*** ***

A
xo

n 
le

ng
th

/n
eu

ro
n 

(µ
m

)

C
on

tro
l

C
on

tro
l +

P
ar

6c
 R

N
A

i

P
ar

6c
 R

N
A

i 
+P

ar
6c

-R
es

B
250

200

150

100

50

0

C
on

tro
lTo

ta
l d

en
dr

ite
 le

ng
th

/n
eu

ro
n 

(μ
m

)
n.s. n.s.

C

C
on

tro
l +

P
ar

6c
 R

N
A

i

P
ar

6c
 R

N
A

i 
+P

ar
6c

-R
es

30

20

10

0

n.s. n.s.

%
 o

f n
on

-p
ol

ar
iz

ed
 n

eu
ro

ns

C
on

tro
l

D

C
on

tro
l +

P
ar

6c
 R

N
A

i

P
ar

6c
 R

N
A

i 
+P

ar
6c

-R
es

Figure 3.36: Par6c-Res reverses the Par6c knockdown phenotype in axon growth of cere-

bellar granule neurons. (A) Representative images of cerebellar granule neurons transfected

with control vector, Par6c RNAi plasmid or Par6c RNAi plasmid and mycPar6c-Res together with

GFP and Bcl-xL expression plasmids at DIV 0 and analyzed at DIV 4. Arrowheads indicate cell

bodies. Scale bar equals 50 µm. (B) Quantification of axon length of granule neurons as shown

in (A). A total of 309 neurons were analyzed in 3 independent sets of experiments. Control :

210.6±5.83 µm, Par6c RNAi : 318.7±8.99 µm and Par6c RNAi+mycPar6c-Res: 235.8±8.23 µm.

Values indicate mean±SEM (one-way ANOVA, ***p<0.001, n.s.=not significant). (C) Quantifica-

tion of total dendrite lengths of granule neurons as shown in (A). A total of 255 neurons were ana-

lyzed in 3 independent sets of experiments. Control : 164.5±8.57 µm, Par6c RNAi : 200.0±12.21

µm and Par6c RNAi+mycPar6c-Res: 160.2±14.39µm. Values indicate mean±SEM (one-way

ANOVA, n.s.=not significant). (D) Quantification of percentage of non-polarized granule neurons

as shown in (A). A total of 313 neurons were analyzed in 3 independent sets of experiments.

Percentage of non-polarized neurons - control : 17.05±5.66, Par6c RNAi : 17.07±3.01 and Par6c

RNAi+mycPar6c-Res: 23.59±1.36. Values indicate mean±SEM (one-way ANOVA, n.s.=not sig-

nificant).
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3.3.3 Par6c acts downstream of FBXO31 in control of axon

but not dendrite growth

Since I identified Par6c as a target of FBXO31 and a regulator of axon growth,

I determined if Par6c acts as a downstream component of the FBXO31-SCF path-

way of neuronal morphogenesis. To establish this, I performed an epistasis analysis

and transfected granule neurons with FBXO31 RNAi or Par6c RNAi plasmid or

both plasmids at DIV 0 and analyzed their axon and dendrite lengths at DIV 4.

As demonstrated previously, I found a reduction in axon and dendrite lengths upon

FBXO31 knockdown and an increase in axon length upon Par6c knockdown. Upon

FBXO31/Par6c double knockdown, I observed long axons and short dendrites, sug-

gesting that axonal Par6c phenotype has a dominant effect over FBXO31 phenotype,

while dendritic FBXO31 phenotype prevails (Figure 3.37A-C). This data suggests

that Par6c acts downstream of FBXO31 in control of axon growth but not dendrite

growth.

3.4 FBXO31 interacts with Cdh1-APC in control

of axon growth

Cdh1-APC is a multimeric RING E3 ubiquitin ligase that is composed of sev-

eral subunits including APC2 that serves as scaffolding protein and Cdh1 or Cdc20,

which act as adaptor proteins to recruit the substrates to the complex (Peters,

2006). Cdh1 and Cdc20 recognize substrates harboring destruction box (D-box)

motifs (RxxL) or KEN-box motifs (Peters, 1998). While Cdh1/Cdc20-APC has

been extensively studied in the context of cell cycle regulation, their role in post-

mitotic neurons has only recently been characterized. Cdh1-APC has been identified

as a suppressor of axon growth by regulating the degradation of transcription factors

SnoN and Id2 (Konishi et al., 2004; Lasorella et al., 2006; Stegmüller et al., 2006)
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Figure 3.37: Par6c acts downstream of FBXO31-SCF in axon but not dendrite growth

control. (A) Representative images of cerebellar granule neurons transfected with control vec-

tor, FBXO31 RNAi#1, Par6c RNAi or FBXO31 RNAi#1 and Par6c RNAi plasmids together with

GFP and Bcl-xL expression plasmids at DIV 0 and analyzed at DIV 4. Arrowheads indicate

cell bodies. Scale bar equals 50 µm. (B) Quantification of axon length of granule as neurons

shown in (A). A total of 439 neurons were analyzed in 3 independent sets of experiments. Con-

trol : 269.5±10.19 µm, FBXO31 RNAi#1: 169.9±6.37 µm, Par6c RNAi : 417.5±16.52 µm and

FBXO31 RNAi#1+Par6c RNAi : 344.8±15.39 µm. Values indicate mean±SEM (one-way ANOVA,

***p<0.001). (C) Quantification of total dendrite lengths of granule neurons as shown in (A). A total

of 318 neurons were analyzed in 3 independent sets of experiments. Control : 168.4±11.93 µm,

FBXO31 RNAi#1: 63.28±5.03 µm, Par6c RNAi : 186.8±11.26 µm and FBXO31 RNAi#1+Par6c

RNAi : 53.73±4.86 µm. Values indicate mean±SEM (one-way ANOVA, ***p<0.001).

while Cdc20-APC has been shown to promote dendrite growth and branching by

targeting Id1 for degradation (Kim et al., 2009).

In the analysis of FBXO31 sequence, I identified eight D-box domains (Figure

3.38), which could be potential recognition sites of Cdh1. Moreover, FBXO31 levels
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oscillate during the cell cycle and show a maximum expression from late G2 to early

G1 (Kumar et al., 2005). The timing of FBXO31 destruction is also consistent

with the Cdh1-APC activation during cell cycle (Peters, 2006). Therefore I asked if

FBXO31 could be a substrate targeted for degradation by Cdh1-APC.

FBXO31
F-box

1 539 aaDBM F1

DBM F2

DBM 1
DBM 2

DBM 3
DBM 4

DBM 5
DBM 6

Figure 3.38: D-box motifs and their mutants in FBXO31. Schematic showing eight D-box mo-

tifs, putative recognition site of Cdh1-APC, on FBXO31. Individual D-box motifs with consensus

sequence RxxL were mutated to AxxA by site-directed mutagenesis. (DBM = D-box mutant)

3.4.1 FBXO31 interacts with Cdh1

To investigate FBXO31 as a potential interactor and target of Cdh1, I first

addressed if FBXO31 and Cdh1 interact. For this, I transfected HEK 293T cells with

mycFBXO31 and Flag-Cdh1 plasmids together or with respective control vectors.

The cell lysates were subjected to immunoprecipitation with anti-Flag antibody and

immunoblotted for FBXO31. I found a specific interaction of FBXO31 with Cdh1

(Figure 3.39).

In order to identify the D-box domain responsible for interaction of FBXO31

with Cdh1, I transfected HEK 293T cells with Flag-Cdh1 together with mycFBXO31

WT or with individual D-box mutants (mycFBXO31 DBM F1, F2, 1-6). The cell

lysates were immunoprecipitated with anti-Flag antibody and immunoblotted for

FBXO31. Although I found FBXO31 WT to interact with Cdh1, I also observed all

DBM’s to interact with Cdh1 (Figure 3.40), suggesting that neither of the D-box

motifs is a bona fide one or a combination of various D-box motifs is required, which

needs further investigation.
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Figure 3.39: FBXO31 interacts with Cdh1. HEK 293T cells were transfected with mycFBXO31

and Flag-Cdh1 and respective control vectors. The cell lysates were subjected to immunoprecip-

itation with anti-Flag antibody and immunoblotted for FBXO31. Inputs represent 5% of total cell

lysate prior to immunoprecipitation.
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Figure 3.40: Cdh1 interacts with FBXO31 D-box mutants. (A) Schematic of FBXO31 DBM as

shown in Figure 3.38. (B) HEK 293T cells were transfected with Flag-Cdh1 and mycFBXO31 WT

or different D-box mutants as indicated. The cell lysates were subjected to immunoprecipitation

with anti-Flag antibody and immunoblotted for FBXO31. Inputs represent 5% of total protein lysate

prior to immunoprecipitation.

3.4.2 Cdh1 regulates the stability of FBXO31

To further characterize the interaction of FBXO31 and Cdh1, I examined if

Cdh1 regulates the stability of FBXO31. To test this, Dr. Judith Stegmüller trans-

fected HEK 293T cells with FBXO31 and Cdh1 expression plasmids together with
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Cdh1 RNAi or control plasmid. The cell lystes were immunoblotted for FBXO31.

There was a significant increase in levels of FBXO31 upon knockdown of Cdh1 as

compared to control lysates (Figure 3.41).

GFP-Cdh1

Cdh1 RNAi

14-3-3β

mycFBXO31

+_

72

72

kDa

28

Figure 3.41: Cdh1 regulates stability of FBXO31. HEK 293T cells were transfected with GFP-

Cdh1 and mycFBXO31 together with control or Cdh1 RNAi. The cell lysates were immunoblotted

for FBXO31 and Cdh1.

3.4.3 FBXO31 acts downstream of Cdh1 in control of axon

growth

Cdh1-APC has been previously reported as a suppressor of axon growth in

neurons by targeting SnoN, Id2 and Smurf1 for degradation (Lasorella et al., 2006;

Stegmüller et al., 2006; Kannan et al., 2012). Since I identified FBXO31 as an axon

growth promoter in my study, I investigated if FBXO31 acts downstream of Cdh1-

APC in axon growth regulation. To address this, I performed epistasis analysis and

transfected granule neurons with FBXO31 RNAi or Cdh1 RNAi or both plasmids

and respective control vectors at DIV 0 and analyzed these neurons for their axon

lengths at DIV 4. I found a significant reduction in axon length upon FBXO31

knockdown and as reported earlier by Konishi and colleagues (Konishi et al., 2004),

a significant increase in axon length upon knockdown of Cdh1. In FBXO31/Cdh1

double knockdown conditions, I observed short axon phenotype suggesting that

FBXO31 phenotype prevails (Figure 3.42A,B). This data suggests that FBXO31

acts downstream of Cdh1 in control of axon growth in CGNs.
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Figure 3.42: FBXO31 acts downstream of Cdh1 in control of axon growth in cerebellar

granule neurons. (A) Representative images of cerebellar granule neurons transfected with

control vector, FBXO31 RNAi#1, Cdh1 RNAi or FBXO31 RNAi#1 with Cdh1 RNAi together with

GFP and Bcl-xL expression plasmids. Arrowheads indicate cell bodies. Scale bar equals 50 µm.

(B) Quantification of axon length of granule neurons as shown in (A). A total of 560 neurons

were analyzed in 3 independent sets of experiments. Control : 100.5±4.62 µm, FBXO31 RNAi#1:

59.35±3.13 µm, Cdh1 RNAi : 192.5±11.13 µm, FBXO31 RNAi#1+Cdh1 RNAi : 66.11±3.78 µm.

Values indicate mean±SEM (ANOVA, ***p<0.001).



Science never solves a problem

without creating ten more.

George Bernard Shaw

4. Discussion

Neuronal development is a tightly regulated process that involves an interplay

between extrinsic and intrinsic cues. Extrinsic factors signal via the intracellular

regulators to control cytoskeletal dynamics, which are critical during neuronal de-

velopment. Spatial and temporal regulation of protein turnover by the ubiquitin

proteasome system has emerged as an important cell-intrinsic pathway for the con-

trol of neuronal morphogenesis.

The SCF E3 ubiquitin ligase, in particular the substrate recruiting interchange-

able subunits F-box proteins, have surfaced as modulators of neuronal morphogen-

esis. A quest for the role of F-box proteins in post-mitotic neurons has recently

gained momentum. Although some of the F-box proteins have been implicated in

various stages of neuronal development including progenitor proliferation, neural

differentiation, neuronal migration, axon/dendrite growth and synapotogenesis, the

function of a large number of brain-enriched F-box proteins remains elusive. My

study provides the first evidence for the role of a novel brain-enriched F-box protein

FBXO31 in neurons.

4.1 Role of FBXO31 in neuronal morphogenesis

4.1.1 FBXO31 is a centrosomal E3 ubiquitin ligase

The F-box protein FBXO31 was initially characterized as a breast tumor sup-

pressor and a cell cycle regulator (Kumar et al., 2005; Santra et al., 2009). Kumar

and colleagues identified FBXO31 expression ubiquitous with a pronounced enrich-

89
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ment in the human brain (Kumar et al., 2005). This supports my data showing

relative enrichment of FBXO31 in various regions of the rat brain. Although in

the study, Kumar and colleagues describe FBXO31 as a potential regulator of cell

cycle, they do not ascribe any function of FBXO31 in the nervous system. Given an

enrichment of FBXO31 in brain, I sought to elucidate its function during neuronal

development.

I found FBXO31 to be localized at the centrosome in mitotic cells (HEK 293T

cells) and in post-mitotic hippocampal and cerebellar granule neurons. Centrosome

is the seat for microtubule nucleation and thus co-ordinates the cytoskeletal machin-

ery in the cells (Higginbotham and Gleeson, 2007). Being a signaling hub, regulated

protein turnover at the centrosome seems essential. In this context, E3 ubiquitin

ligases such as Cdh1-APC and Cdc20-APC associate with the centrosome in the

cycling cell to co-ordinate various events during cell cycle transitions (Kallio et al.,

2002; Zhou et al., 2003). In addition to this, essential scaffold proteins of the SCF

complex, Skp1 and Cul1, are also localized at the centrosome during the mitotic

cycle (Freed et al., 1999).

Interestingly, the E3 ubiquitin ligase Cdc20-APC is localized at the centrosome

in neurons and is required for dendrite growth (Kim et al., 2009; Puram et al.,

2011). Another E3 ubiquitin ligase Parkin, associated with Parkinson’s disease, is

also recruited to the centrosome in response to proteasome inhibition (Zhao et al.,

2003; Jiang et al., 2008), suggesting an essential role of centrosomal E3 ubiquitin

ligases in both neuronal development and disease. FBXO31 localization at the

centrosome also suggests its possible function in neuronal morphogenesis that could

have potential implication in neurological disorder. This is discussed further in the

subsequent sections.
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4.1.2 FBXO31-SCF promotes of axon and dendrite growth

in neurons

In neurons, axon and dendrite growth depends on microtubule nucleation at

the centrosome. This is further facilitated by the transport of specific cargos to

either axon or dendrite by molecular motors including dyneins and kinesins (Hi-

rokawa et al., 2010). FBXO31-SCF localization at the centrosome prompted me to

investigate its role in axon and dendrite growth. I found that while FBXO31 knock-

down using an RNAi-approach, reduced axon and dendrite growth, overexpression

of FBXO31 accelerated growth in neurons. In addition, I found that FBXO31-SCF

ligase activity is essential for its effect on both axon and dendrite growth as the

mutant (FBXO31 ∆F) that does not interact with Skp1 and Cul1, does not show

growth promoting phenotype. Thus, centrosomal FBXO31 acts as a promoter of

axon and dendrite growth in neurons.

FBXO31-SCF joins the league of centrosomal E3 ligase Cdc20-APC in the

control of neuronal morphogenesis. Cdc20-APC promotes dendrite growth by ubiq-

uitination of centrosomal protein Id1 (Kim et al., 2009). Cdc20-APC activity at

the centrosome is regulated by phosphorylation at Ser51 by CamKIIβ, which leads

to dispersion of Cdc20 from the centrosome and retraction of the dendrites (Pu-

ram et al., 2011). While Cdc20-APC regulates dendrite elaboration, it does not

affect axon growth (Kim et al., 2009). This suggests a defined role of Cdc20-APC

on neuronal morphogenesis. Unlike Cdc20-APC, FBXO31 regulates both axon and

dendrite growth suggesting a role of FBXO31 in remodeling the overall morphology

of neurons.

Similar to FBXO31, another E3 ubiquitin ligase NEDD4 regulates both axon

and dendrite morphogenesis by targeting different substrates. NEDD4 is a HECT

E3 ubiquitin ligase that is predominantly expressed in retinal ganglion cell growth

cone and inhibits its terminal branching by regulating PTEN levels (Drinjakovic

et al., 2010). PTEN is a negative regulator of the PI3K signaling pathway that

is essential for axon branching. Moreover, decrease in PTEN rescues the axon
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branching defect caused by NEDD4 inhibition. In addition to this, NEDD4-1 also

plays a critical role in dendrite morphogenesis (Kawabe et al., 2010). NEDD4-1

knockout mice show an impaired dendrite development. The complex consisting of

NEDD4-1, the serine/threonine kinase TNIK and Rap2A mediates ubiquitination of

Rap2A. This renders Rap2A effector kinases TNIK and MINK inactive and results

in dendrite growth stimulation. Similar to NEDD4, FBXO31-SCF might target

different proteins to regulate axon and dendrite growth. This question is addressed

in detail later in the discussion.

In support of the observation that FBXO31 regulates neuronal morphogenesis

in vitro, my in vivo electroporation results underscore a crucial role of FBXO31 in

dendrite development. I observe that RNAi-mediated knockdown of FBXO31 in vivo

results in shorter dendrite length, suggesting an important function of FBXO31-SCF

in the developing brain. The in vivo analysis is limited to dendrite growth as the

assessment of axon growth was not feasible since the axons fasciculate together in

the molecular layer as untraceable fibers.

4.1.3 FBXO31-SCF regulates neuronal polarity

Extracellular cues trigger intracellular signaling cascades that break the initial

neuronal symmetry leading to axon-dendrite polarization. Centrosome-mediated

microtubule reorganization has been implicated in early polarization events in neu-

rons (Higginbotham and Gleeson, 2007). In fact, localization of the centrosome in

the neuron determines the axonal fate of a neurite (Zmuda and Rivas, 1998; de Anda

et al., 2005, 2010). It has also been suggested that the centrosome is coupled with

the Golgi complex at the base of the future axon (de Anda et al., 2005) and thus

promote directed-trafficking of Golgi-derived vesicle (Sütterlin and Colanzi, 2010).

FBXO31-SCF localization at the centrosome prompted me to investigate its

role in neuronal polarization. During my analysis of cerebellar granule neurons for

axon and dendrite growth, I observed a large proportion of non-polarized neurons.

This analysis was largely based on neurite measurements that established a ratio of
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the longest and the second longest process length. As axons undergo rapid elongation

as compared to dendrites, I considered a neuron to be polarized when the length of

longest process was at least twice as long as the second longest process.

Furthermore, molecular examination of hippocampal neurons with the axon

initial segment protein ankyrinG revealed that FBXO31-SCF is required for axonal

specification. While RNAi-mediated knockdown of FBXO31 results in a significant

increase of neurons with no axon, overexpression of FBXO31 promotes a multiple-

axon phenotype. This was again dependent on ligase activity of the FBXO31-

SCF complex, as FBXO31 ∆F did not show a multiple-axon phenotype. These

results provide the first evidence of centrosomal F-box protein regulating neuronal

polarization.

4.1.4 FBXO31-SCF is essential for neuronal migration in

the developing cerebellum

During neuronal migration in the developing cortex or cerebellum, the centro-

some is typically located in front of the nucleus in the direction of migration (Hatten,

1999). Elegant time-lapse imaging by Solecki and colleagues revealed that glial-

guided neuronal migration is a two-step process (Solecki et al., 2004). In the first

step, the leading process extends forward along the substrate, followed by centroso-

mal movement into the leading process. In the second step, the nucleus translocates

towards the centrosome. In this context, the centrosome links the microtubule-based

pulling forces generated within the extending process and the network of micro-

tubules that surrounds the nucleus. A disruption of the microtubule network could

uncouple the centrosomal and nuclear movement resulting in impaired migration of

the neuron. This is observed in neurons from the doublecortin (DCX)-deficient mice

(Koizumi et al., 2006). DCX is a microtubule-stabilizing protein that is localized

at the centrosome and the perinuclear cage (Tanaka et al., 2004). In DCX-deficient

neurons, the forces generated in the leading process by the microtubules that move

the centrosome are uncoupled from the perinuclear cage microtubule-array. This re-
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sults in failed nuclear transport and compromised migration (Koizumi et al., 2006).

Thus, the centrosome and the microtubule network are essential for neuronal mi-

gration.

In my in vivo analysis of the developing cerebellum (performed in collaboration

with Dr. Judith Stegmüller) I found reduced dendritic growth upon FBXO31 knock-

down. I also observed an impaired migration of neurons into the internal granule

layer. The majority of the neurons were stalled in the molecular layer, suggesting

an important role of centrosomal FBXO31-SCF in neuronal migration. Whether

FBXO31 regulates migration by coupling the centrosome and the microtubule net-

work needs further investigation.

4.2 Insights into FBXO31-SCF-regulated neuronal

morphogenesis

4.2.1 Par6 is a novel substrate of FBXO31-SCF in control

of axon growth

The localization of FBXO31 at the centrosome led me to discover members

of the par complex as interaction partners. As discussed in the introduction, the

par polarity complex primarily consists of Par6 (Par6α, Par6β and Par6γ), aPKC

(PKCι or PKCζ) and Par3. In my screen for novel interaction partners, I identi-

fied Par6c (also called Par6α), Par6β, PKCι and PKCζ to interact with FBXO31.

As Par6c represents the major Par6 protein in the nervous tissue (Assémat et al.,

2008), I restricted my investigation to Par6c. Moreover, I did not observe an in-

teraction of FBXO31 with Par3b, suggesting that FBXO31 interacts with the core

members of the polarity complex proteins. I, together with my colleague Nicola

Schwedhelm-Domeyer, also identified Par6c as a novel substrate of FBXO31-SCF.

I found FBXO31-SCF to polyubiquitinate Par6c and target it for degradation via

the 26S proteasome.
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Although Par6, Par3 and aPKC act together in the control of epithelial and

neuronal cell polarity that is highly conserved amongst various species (Wodarz,

2002), recent evidence supports the notion that these players can act independently

of each other. For example, Par6 interacts with aPKC in the control of spine mor-

phogenesis by regulating the activity of p190 RhoGAP (Zhang and Macara, 2008).

This function of Par6/aPKC is independent of Par3. Similarly, the same group

reported the requirement of Par3 for spine morphogenesis in hippocampal neurons

by spatially restricting Rac GEF Tiam1 to dendritic spines. This action of Par3 is

independent of aPKC (Zhang and Macara, 2006). Thus, the interaction of FBXO31

with Par6/aPKC and not Par3 could have a more defined function that would need

further investigation.

Par6c and aPKC are predominant centrosomal proteins. They relay the infor-

mation from the extrinsic cues to cytoskeletal proteins. Par6 directly binds to Rho

GTPases Cdc42 and Rac1 in their active GTP-bound form (Munro, 2006). Binding

of GTP-bound Cdc42 or Rac1 activates the Par/aPKC complex, whoch promotes

the phosphorylation of aPKC target proteins such as Par3 to promote cellular po-

larization (Assémat et al., 2008). Moreover, Par6 also recruits Smurf1 which, in

turn, mediates the degradation of small GTPase and growth inhibitor RhoA. This

facilitates growth by formation of actin-rich filopodia-like protrusions (Wang et al.,

2003). Given that Par6c is degraded by FBXO31-SCF, it remains to be tested

whether the function of FBXO31 is dependent on small GTPases such as Cdc42,

Rac1 or RhoA.

The Par/aPKC complex has been well established for its function in neuronal

polarization (Shi et al., 2003; Nishimura et al., 2004, 2005; Schwamborn et al.,

2007; Yi et al., 2010; Cheng et al., 2011). As the neurons polarize, Par6, Par3 and

aPKC are enriched at the tip of the nascent axon (Shi et al., 2003). During the

establishment of neuronal polarity and axonal identity, an extrinsic signal leads to

local activation of PI3K at the tip of the nascent axon that results in recruitment

of Par3, Par6 and aPKC. Simultaneously, PI3K activates aPKC, which facilitates
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differential regulation of the cytoskeletal dynamics at the growth cone and promotes

axon growth (Shi et al., 2003). Whether FBXO31, Par6c and PI3K act in a pathway

to regulate axon growth needs further investigation.

Other extrinsic cues also converge on the Par/aPKC complex to induce neu-

ronal polarization. For example, BDNF promotes axon growth by recruiting Smurf1

to the growth cone (Cheng et al., 2011). Non-phosphorylated Smurf1 at the tip of

the neurites promotes Par6 ubiquitination. Upon stimulation with BDNF, Smurf1

is phosphorylated by PKA, which induces a switch to promote RhoA degradation

and stabilizes Par6. This stimulates the extension of the nascent axon.

A similar study identified TGFβ as an extrinsic cue that regulates axon speci-

fication and extension by mediating site-specific phosphorylation of Par6c (Yi et al.,

2010). The authors found that TGFβRI and Par6c to colocalize at the growth

cones in undifferentiated neurites, particularly in filopodial protrusions. In presence

of TGFβ, Par6c phosphorylation by TGFβRII recruits Smurf1 to the growth cones,

which in turn promotes the proteasomal degradation of RhoA (Ozdamar et al.,

2005). In this manner, the local inactivation of RhoA promotes axon growth.

While Par6 activity at the growth cone is essential for axon growth, its localiza-

tion at the centrosome is necessary during neuronal migration and axon extension.

At the centrosome, Par6 is involved in the assembly of the peri-nuclear cage along

with an array of microtubules. Overexpression of Par6c results in disruption of the

peri-nuclear cage that causes the centrosomal proteins γ-tubulin and PKCζ to dis-

perse away from the centrosome (Solecki et al., 2004). This inhibits the migration

of granule neurons into the internal granule layer and also results in retardation

of axon growth. Par6 also functions to recruit PCM1 (pericentriolar material 1)

and dynactin subunit p150Glued to the centrosome (Kodani et al., 2010). Deple-

tion of Par6 results in mislocalization of p150Glued and PCM1 that are critical for

microtubule anchoring at the centrosome.

The question that arises is how does localization of Par6c regulate axon growth?

While Smurf1 phosphorylation at the growth cone induces a shift in substrate pref-
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erence from Par6 to RhoA, a stoichiometry of Par6/RhoA level would eventually

determine the extent of axon growth. At the centrosome, Par6 acts as a scaffold

protein and recruits other centrosomal proteins. Here, a restricted activity of Par6c

would be necessary to switch between different developmental stages of neurons -

from polarization to migration to axon growth. In my study, I identify that cen-

trosomal E3 ubiquitin ligase FBXO31-SCF degrades Par6c. Thus, FBXO31-SCF

could provide a necessary check to maintain a balance of the Par6c activity at the

centrosome.

In this context, I performed functional studies with Par6c gain-of-function

and loss-of-function, and identified Par6c as a suppressor of axon growth. While

Par6c overexpression resulted in shorter axons, knockdown of Par6 promoted axon

growth. As expected, Par6c overexpression also resulted in altered polarity. While

Par6c seems to be essential for axon growth, I did not find defects in dendrite growth

with altered levels of Par6c. In addition, my epistasis experiments identify Par6c to

act downstream of FBXO31 in control of axon growth (Figure 4.1). Two inferences

can be made from this observation. First, since Par6c does not regulate dendrite

length, FBXO31 might target other unidentified substrates to regulate dendrite

length. Second, Par6c is not essential for initial morphogenesis of dendrites but is

rather required in the later stages of spine morphogenesis as shown by Zhang and

Macara (Zhang and Macara, 2008). It remains elusive how Par6c is translocated to

the dendrites and what features other than spine development, Par6c is involved in.

Elucidation of the centrosomal FBXO31-SCF/Par6 signaling implies that both

FBXO31-SCF and Par6 may exert functions beyond the control of axonal morpho-

genesis. FBXO31, localized at the centrosome in mitotic cells, oscillates during cell

cycle (Kumar et al., 2005). In response to DNA damage, FBXO31 mediates degra-

dation of cyclin D1 and induces G1 arrest (Santra et al., 2009). Moreover, FBXO31

acts as a breast tumor suppressor, whereas Par6 levels are elevated in breast cancer

(Kumar et al., 2005; Nolan et al., 2008). This scenario points to a conserved pathway

between the cell biology of cancer cells and the axon development in neurons.
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Figure 4.1: FBXO31-SCF promotes axon and dendrite growth in neurons. The E3 ubiquitin

ligase FBXO31-SCF complex is localized at the centrosome in neurons. It promotes polyubiqui-

tination and degradation of Par6c to promote the axon growth. FBXO31-SCF also mediates the

ubiquitination of yet unidentified substrate to regulate dendrite morphogenesis.

4.2.2 FBXO31 is a novel interaction partner of E3 ubiquitin

ligase Cdh1-APC

Cdh1-APC has been previously identified as a suppressor of axon growth.

RNAi-mediated knockdown of Cdh1 in neurons triggers axon growth and disrupts

parallel fiber fasciculation in the developing cerebellum (Konishi et al., 2004). In

the context of axon growth, Cdh1 targets SnoN, Id2 and Smurf1 for degradation

(Lasorella et al., 2006; Stegmüller et al., 2006; Kannan et al., 2012). While recent

evidences provide a mechanistic insight into Cdh1-mediated axon growth regulation,

it is conceivable that Cdh1-APC may act via additional pathways to regulate axon

growth.

In my study, I identified FBXO31 as a novel interaction partner of Cdh1. I

postulated an interaction of FBXO31 with Cdh1, owing to multiple putative D-boxes

on FBXO31. D-boxes are recognition motifs that are recognized by Cdh1 on target

substrates, which are subsequently recruited to the APC complex for ubiquitination
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(Peters, 2006). As FBXO31 harbors eight D-box domains, I hypothesized that Cdh1

interacts with FBXO31 via these D-box domains and targets it for degradation. Un-

like what I expected, the D-box mutants of FBXO31 interact with Cdh1, suggesting

that either the interaction is D-box-independent as none of the putative D-boxes is

a bona fide one, or Cdh1 recognizes FBXO31 via multiple D-boxes. A recent report

provides evidence that Cdh1 recognizes multiple D-boxes in Smurf1 to promote its

degradation (Kannan et al., 2012).

In my epistasis analysis, I also observe FBXO31 to act downstream of Cdh1 in

control of axon growth. Although, it needs to be further verified whether FBXO31

is a substrate of Cdh1, it seems likely that Cdh1 might degrade FBXO31 in control

of axon growth. This is supported by evidence from the cell cycle as Cdh1 and

FBXO31 levels oscillate alternately during cell cycle. FBXO31 levels peak from late

G2 to early G1 with maximum activity during M-phase, whereas Cdh1 is activated

at late anaphase and remains active until G1/S phase transition of the cell cycle

(Kumar et al., 2005; Peters, 2006).

The Cdh1-APC/FBXO31-SCF signaling pathway may provide another check-

point for the control of axon growth and elaboration during neuronal development.

Furthermore, it remains to be tested whether Cdh1-APC/FBXO31-SCF/Par6c act

in a linear pathway of axon growth control and whether this pathway would act in

the parallel system in the biology of cell cycle.

Taken together, my study provides the first insight into the FBXO31-regulated

events during neuronal development and uncovers FBXO31-SCF as a key regulator

of neuronal morphogenesis. Furthermore, my study sets the stage for future research

for the identification of novel substrates and other interaction partners to establish

an FBXO31-SCF controlled signaling network in neurons and cell-cycle regulation.

Interestingly, a recent report by Narayan and colleagues show that FBXO31 levels

are downregulated in schizophrenic patients with short-term illness (Narayan et al.,

2008), implicating a role of FBXO31 in schizophrenia. Therefore, genetic studies
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with systemic or conditional loss of FBXO31 would provide valuable information in

context of neuronal developmental disorders such as schizophrenia.



The important thing in science is

not so much to obtain new facts as

to discover new ways of thinking

about them.

William Lawrence Bragg

5. Summary and Outlook

The formation of an intricate neuronal network requires processes that coor-

dinate proliferation, migration and differentiation of neuronal cells. The incredible

morphological changes observed in neurons as they migrate, extend processes or

form synapses, imply a strictly regulated process of structural organization medi-

ated by intracellular signaling cascades and cytoskeletal remodeling. Recently, the

ubiquitin proteasome system particularly the E3 ubiquitin ligases have surfaced as

essential regulators of neuronal morphogenesis.

My thesis describes the centrosomal E3 ubiquitin ligase FBXO31-SCF as a key

regulator of several aspects of neuronal development. In this study, I used loss-of-

function and gain-of-function approaches to establish a role of FBXO31-SCF in axon

and dendrite growth. I found FBXO31-SCF stimulates both axonal and dendritic

growth. In addition, I demonstrated that FBXO31-SCF regulates axonal identity

of neurons and thus plays a critical role in neuronal polarization. Moreover, my in

vivo results elucidated an indispensible role of FBXO31 in neuronal migration.

In order to gain a mechanistic insight into FBXO31-SCF-regulated events dur-

ing neuronal development, I identified the polarity complex protein Par6c as a novel

interaction partner and a bona fide substrate of FBXO31-SCF. In the functional

assays, I identified Par6c as a suppressor of axon growth whereas it had no effect

on dendrite length. In order to characterize the interaction between FBXO31 and

Par6c, I performed epistasis analysis and identified that FBXO31 acts upstream of

Par6c in the regulation of axon growth. This effect of FBXO31/Par6 pathway was

specific to axon growth and did not affect dendrite length. Although, it needs to be
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tested whether FBXO31-SCF/Par6c pathway would regulate neuronal polarization

and migration, it would be interesting future research to identify novel substrates

of FBXO31-SCF to explain its effect on dendrite development.

In my study, I also found Cdh1-APC, an E3 ubiqutin ligase, as a novel in-

teraction partner and regulator of FXBO31-SCF stability. Cdh1-APC exerts an

inhibitory effect on axon growth by targeting SnoN, Id2 and Smurf1 for degrada-

tion. Epistasis experiments revealed that FBXO31 acts downstream of Cdh1 in

controlling axon growth. While it remains to be verified whether Cdh1-APC targets

FBXO31 for degradation, it would be an exciting area to explore whether Cdh1-

APC/FBXO31-SCF/Par6c act in a linear pathway in regulating axon growth.

Recently FBXO31 has been implicated in schizophrenia where FBXO31 ex-

pression was found to be downregulated in patients with short-term illness. In

future, the use of systemic and conditional knockout animals would provide valu-

able insights into neurodevelopmental disorders such as schizophrenia and may open

up avenues for translational research.
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A. Appendix

Table A.1: List of plasmids used in the study

Plasmid Reference

pCMVmyc/FBXO31 WT and ∆F
Dr. Raman Kumar and Prof. David

Callen, University of Adelaide, Australia

C2-GFP/FBXO31 WT and ∆F

pCMVmyc/FBXO31 DBM1-6

pHACE/PKCι Addgene

pHACE/PKCζ

pKmyc/Par6c

pKmyc/Par3b

pCMVmyc/Skp1 Dr. Judith Stegmüller

Bcl-xL

pCDNA3/Flag-Cdh1

C1-GFP/Cdh1

pBS-U6/Cdh1 RNAi

C2-GFP/FBXO31 ∆1 - ∆5 Generated during the study

pBS-U6/FBXO31 RNAi #1, #2, #3

pBS-U6/FBXO31 RNAi #1/CMVGFP

pCMVmyc/FBXO31-Res

pCDNA3/Flag-FBXO31

pCMVmyc/Par6c

pCMVmyc/Par6b

pCMVmyc/Renilla-CCND1

pCMVmyc/Renilla-Par6c

pBS-U6/Par6c RNAi

pCMVmyc/Par6c-Res

pCMVmyc/Par6c deletion mutants

pCMVmyc/FBXO31 DBM F1, F2
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Table A.2: List of primers used for FBX gene expression study : s (sense), as (anti-sense)

AGCT

no.

Sense/

anti-

sense

Sequence (5’-3’)

PCR

primer

for

14352 s GTACTCGGGTCGCACTGATG FBXO2

14353 as ACAATGCTAGGAGCGCGGGA FBXO2

14354 s GCCATCCCCCGATTCCACAT FBXO3

14355 as GCACAGTCAGTCCTTCCTGC FBXO3

14356 s CCATGTGGGACTGCAGCTGT FBXO9

14357 as CTCTCCAGTGTGCTCCCTGA FBXO9

14358 s CCAGCTACCCCATGCATGAC FBXO11

14359 as CCCGAGCTCTGACATCCTGA FBXO11

14360 s GTGTGGGGCAGTGCAACAAC FBXO18

14361 as GTTCCCTGGCCTGAGGCATT FBXO18

14362 s AATCTGGATTCCCAGCGGCC FBXO20

14363 as ATCACATGGCGGTTGGCCGT FBXO20

14364 s TGTGCACAGCCTGCCTCATG FBXO21

14365 as GCCTGACTCAGCGACCTTGT FBXO21

14366 s ATCTTGGCTGGAGGCCAGGT FBXO22

14367 as AAAGGTGCTCTCAGCGAGGC FBXO22

14368 s ACACGCTACACTTCTGCCGC FBXO25

14369 as CACAGCCACTGGGGTTGTGA FBXO25

14370 s TCACGAGGTGCTGCAGGAGT FBXO28

14371 as GCTTCCAGGCGATCAGACAC FBXO28

14372 s ATGGGCCACCTGCTAAGGAC FBXO31

14373 as AAGTGCATGCTTCCCCCACC FBXO31

14374 s TGTATGCGGCTGCAGGTCCT FBXO41

14375 as GGATTCCTAGGCTCGCCTAG FBXO41

14376 s TGCGTCCAACTCCTGTCGTC FBXO44

14377 as TGTCTGTCCCTGCTCTCCAG FBXO44

14378 s TCAGCCCTGGGTCTGTACCA FBXW2

14379 as GGTTCATGCAGTTGGCTGCC FBXW2

14380 s GCATGGGCCTGTCTCCTGAT FBXW5

14381 as GTGGAGCCTGCAGAACACGA FBXW5

14382 s CTGGGATGTGGAGACAGGGA FBXW7

14383 as ACTCCCGACTGCACACACCA FBXW7

14384 s GCTGGCAGGCCTTGACATCA FBXL11

14385 as GGGAATGTGTCGTTGGCCTC FBXL11

14386 s ACTGAGAGTCGAGGCCGACT FBXL19
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14387 as CCTCCCAACAGGGGGTGAAA FBXL19

14388 s GATAGACGACACCCCAGTCG FBXL3

14389 as TCATCAAGAGGCCGCAACCC FBXL3

14390 s GACTGTAACTGGTGCAGGGC FBXL5

14391 as CAGCAGTGGAAGCTGGTGTC FBXL5
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