
Dissociation of accumulated genetic risk and disease
severity in patients with schizophrenia
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Genotype–phenotype correlations of common monogenic diseases revealed that the degree of deviation of mutant genes from
wild-type structure and function often predicts disease onset and severity. In complex disorders such as schizophrenia, the
overall genetic risk is still often 450% but genotype–phenotype relationships are unclear. Recent genome-wide association
studies (GWAS) replicated a risk for several single-nucleotide polymorphisms (SNPs) regarding the endpoint diagnosis of
schizophrenia. The biological relevance of these SNPs, however, for phenotypes or severity of schizophrenia has remained
obscure. We hypothesized that the GWAS ‘top-10’ should as single markers, but even more so upon their accumulation, display
associations with lead features of schizophrenia, namely positive and negative symptoms, cognitive deficits and neurological
signs (including catatonia), and/or with age of onset of the disease prodrome as developmental readout and predictor of disease
severity. For testing this hypothesis, we took an approach complementary to GWAS, and performed a phenotype-based genetic
association study (PGAS). We utilized the to our knowledge worldwide largest phenotypical database of schizophrenic patients
(n41000), the GRAS (Göttingen Research Association for Schizophrenia) Data Collection. We found that the ‘top-10’ GWAS-
identified risk SNPs neither as single markers nor when explored in the sense of a cumulative genetic risk, have any predictive
value for disease onset or severity in the schizophrenic patients, as demonstrated across all core symptoms. We conclude that
GWAS does not extract disease genes of general significance in schizophrenia, but may yield, on a hypothesis-free basis,
candidate genes relevant for defining disease subgroups.
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Introduction

In complex disorders lacking clearly identifiable disease-
causing factors, such as schizophrenia, the overall genetic
risk is often 450%1 but genotype–phenotype relationships
are obscure. Recent genome-wide association studies
(GWAS) on schizophrenia, building on very large cohorts of
cases and controls, have uncovered and replicated a risk for
several single-nucleotide polymorphisms (SNPs). Among the
10 ‘top hits’, reaching genome-wide significance in different
populations after multiple-testing correction (even though with
low odds ratios), are markers in the major histocompatibility
complex region and in TCF4, ZNF804A and NRGN genes.2–6

The biological relevance of these SNPs, however, for
phenotypes or severity of schizophrenia has remained
unclear.

All current GWAS data on schizophrenia rely on endpoint
diagnosis only and do not allow for genotype–phenotype
correlations. In an approach complementary to GWAS, we
employed the ‘top-10’ schizophrenia-associated SNPs that
have emerged as genome-wide significant from several
GWAS, and explored their potential contribution to the
disease phenotype, including positive and negative symp-

toms, cognitive deficits and neurological signs (including
catatonia), and age of onset of the prodrome as develop-
mental readout and predictor of disease severity. For this
phenotype-based genetic association study (PGAS), we
utilized the GRAS (Göttingen Research Association for
Schizophrenia) Data Collection.7,8

Materials and methods

Schizophrenic patients. The GRAS study was approved
by the Ethics Committees of the Georg-August-University of
Göttingen and of participating centers, and comprises at
present 1041 patients with confirmed Diagnostic and Statis-
tical Manual of Mental Disorders, fourth edition (DSM-IV)9

diagnosis of schizophrenia (82.2%) or schizoaffective
disorder (17.8%), examined between 2005 and 2010 in 23
collaborating centers all over Germany (Supplementary
Table 1).7,8

Healthy subjects. Healthy subjects for the case–control
study were blood donors (n¼ 1144), recruited according to
national guidelines for blood donation.7 Comparable to the
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patient population (Caucasian 95.5%; other ethnicities 1.8%;
unknown 2.7%), almost all controls were of European–
Caucasian descent (Caucasian 97.8%; other ethnicities 2%;
unknown 0.2%).

Phenotyping. Comprehensive interviews, testing and
clinical ratings were conducted by an invariable team of
trained examiners (psychiatrists and psychologists) using the
‘GRAS Manual’.7,8 Diagnoses of schizophrenia/schizo-
affective disorders were based on the structured clinical
interview for DSM-IV (SCID),10 substantiated by information
from medical records/discharge letters of all the patients.
Psychopathological state, symptom severity and functional
outcome were evaluated by clinical ratings (positive and
negative syndrome scale (PANSS)11 and global assessment
of functioning (GAF).9) Neuropsychological testing (subtest
3 of Leistungsprüfsystem,12 Trail-Making Test,13,14 Verbal
Learning and Memory test15) including pre-morbid intelligence
(Mehrfachwahl-Wortschatz-lntelligenz test-B16) and neuro-
logical examination (Cambridge Neurological Inventory17)
yielding respective composite scores, are described in detail
elsewhere.7,8

Genotyping. SNP genotyping was performed with
SimpleProbes (TIB Molbiol, Berlin, Germany) on
LightCycler480 (Roche, Mannheim, Germany). All markers
fulfilled the Hardy–Weinberg equilibrium.

Statistical methods. PGAS : Phenotype data were
standardized to be normally distributed with expectation
zero and variance one, and presented such that higher
values always indicate better performance. Expected values
of univariate and multivariate phenotypes were analyzed with
linear models (Rv2.12.0), covariate adjusted and tested for
additive effects of GWAS risk alleles with single-locus
models (Table 1) and with a 10-loci model (Table 2). The
latter simultaneously estimates for all the 10 loci regression
coefficients with number of respective GWAS risk alleles.
To assess statistical significance, the commonly used
Bonferroni correction was employed; however, raw
P-values are given.

Results

First, we proved in a case–control study (cases n¼ 1041;
healthy controls n¼ 1144) that the GRAS population (for
patient characteristics see Supplementary Table 1) provides a
‘genetic data matrix’ that essentially replicates the GWAS
results (Table 1, upper part). In fact, screening of the 10
genome-wide hits resulted in a significant association of
markers rs6913660, rs13211507 and rs3131296 in the major
histocompatibility complex region (chromosome 6), and
marker rs2312147 in chromosome 2 (VRK2 gene) with an
increased risk for the disease. Due to the smaller sample size
compared with the GWAS studies, leading to lower power
(power 70–90% for the SNPs found to reach allelic P-values
p0.05, average power of 43% over all markers), not all SNPs
turned out to be significantly associated with the schizo-
phrenia risk. Nevertheless, all of them exhibit the same
direction of association as reported in GWAS.2–6 In fact, the

GRAS sample has been included in a recent large GWAS
follow-up study.6

We next conducted PGAS single-locus and PGAS multi-
locus quantitative association analyses. In both the proce-
dures we searched for the hypothesized association of
markers with the lead symptoms of schizophrenia including
developmental readouts/disease severity, both in the form of
a composite construct (multivariate phenotype) and of its
components separately (individual phenotypes), that is,
positive and negative symptoms (PANSS), cognitive deficits
(composite of executive function, reasoning, verbal learning
and memory) and neurological signs (including catatonia),
and/or with the age of onset of the disease prodrome.
We further hypothesized that, if the markers were disease
specific, they should not be associated with the schizo-
phrenia-unrelated, general disease control variables.
Hence, such variables referring to symptoms that are not in
any way specific for schizophrenia were also included
PANSS general psychopathology (depression, anxiety and
others), global assessment of functioning and pre-
morbid intelligence (basic cognitive capabilities of an indivi-
dual before disease onset) (Tables 1 and 2; Supplementary
Table 2).

With 41000 patients, the single-locus analysis found
none of the schizophrenia phenotypes, neither individual
nor multivariate, significantly influenced by any of the markers
after multiple-testing correction by Bonferroni (Table 1).
We thus wondered whether—instead of single genotypes—
the ‘genetic load’ of a patient, that is, the accumulation of risk
genotypes, would give us a clearer signal regarding the
contribution of genetic risk to disease phenotype and severity.
As illustrated in Figure 1, the composite severity score, built on
the basis of the five core symptom variables (see inset),
shows an essentially equal distribution of schizophrenia
severity from the lowest to the highest genetic load group.
As more symptoms do not necessarily reflect more
severe disease and certain symptom groups may better
associate with genetic load, all five variables were considered
separately, too. But again, for the 10 top hits of GWAS, none
of the schizophrenia symptom groups was dependent
regarding its severity on the increase in the ‘genetic load’
(Supplementary Table 2, and Supplementary Figure 1). This
becomes evident when the composite score data are
presented alternatively as percentage severity over all the
genetic load groups; there is no tendency of an increase
in severe cases with an increase in the number of risk
markers (Supplementary Figure 2). Interestingly, grouping the
distribution of accumulated risk genotypes in the Icelandic
GWAS sample (n¼ 582 schizophrenic individuals) yields a
pattern of overall risk distribution that is comparable to that
of the GRAS database (Supplementary Figure 3), further
supporting the validity of our sample for the PGAS approach to
the GWAS hits.

We now pursued the question whether better insight into the
phenotypical contribution of the GWAS hits could be obtained
by performing a multilocus additive joint model analysis. This
analysis weighs each marker according to its estimated
relative importance as a risk genotype. Also this approach
failed to uncover statistically significant associations after
multiple-testing correction. Close to significance are two
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associations, one between the marker rs3131296 in NOTCH4
(chromosome 6) and prodromal onset (developmental
readout), the other between rs12807809 in chromosome 11
(near NRGN gene) and severity of the neurological signs
(Table 2). In fact, when ignoring the multiple-testing issue, the
latter marker which has a relatively low odds ratio in our case–
control study (OR 1.13 here and 1.15 in the GWAS study of
Stefansson et al. 5), shows several association ‘signals’ that
make it attractive for follow-up in future subgroup analyses.
However, this marker did not associate with the cognition of
schizophrenic subjects in a recent study.18

Discussion

How can the overall negative result regarding the phenotypi-
cal significance of basically all GWAS ‘top-10’ genotypes be
explained? First, in clear contrast to monogenic diseases,19

the genetic risk for schizophrenia may not simply be reflected

by phenotypical disease severity or by core symptoms of the
disease. Here, an array of environmental risk factors that
cannot easily be controlled for might also have a modulating
role.20 Second, the genotype –to phenotype translation may
only be visible and valid for a relatively small subgroup of
individuals, but still leads to significant (even though low)
genetic risk odds ratios in very large GWAS samples.
Third, one risk genotype may partly ‘neutralize’ another one,
resulting in risk reduction upon combination rather than
accumulation of the genetic load. This latter, seemingly
paradox interaction is supported by the observation that the
few effects on phenotypes found here in marker rs12807809
(chromosome 11; near NRGN) unexpectedly go into the
opposite direction (risk genotype shows less severity). Fourth
and finally, we cannot rule out that for some analyses the
GRAS sample may not have enough power to detect the
(certainly weak if any) phenotypical consequences of the ‘top
10’ GWAS hits. In this context, however, the general question

Table 1 GWAS replication and PGAS single-locus quantitative association analysis

Abbreviations: CNI, Cambridge neurological inventory; CI, confidence interval; Chr, chromosome; GAF, global assessment of functioning; GWAS, genome-wide
association studies; MHC, major histocompatibility complex; OR, odds ratio; PGAS, phenotype-based genetic association study; PANSS, positive and negative
syndrome scale; SNP, single-nucleotide polymorphism; SNP ID, SNP identifier.
GRAS sample of schizophrenic patients, n¼1041; healthy control sample, n¼1144. Upper part shows the case–control genetic association study essentially
replicating previous GWAS results. SNPs are presented from left to right in the order of OR (odds ratio). Pearson w2-test and Fisher’s exact test (both two sided) were
used for genotypic and allelic comparisons, respectively. Lower part (PGAS) gives additive effect per copy of GWAS risk allele on expected value of schizophrenia-
relevant quantitative phenotypes. The multivariate phenotype combines five schizophrenia core features (positive PANSS, negative PANSS, cognitive score, total
CNI and prodromal onset). All phenotypes were standardized to zero mean and variance one and presented such that larger values correspond to better performance
(for this purpose, PANSS scores and total CNI were multiplied by �1). General PANSS, GAF and premorbid intelligence were included in the analyses as disease
control variables. The estimate of allele effect is negative if carriers of a GWAS risk variant perform worse. It is positive, if carriers of a GWAS risk variant perform better
with respect to the expected trait value for the schizophrenic sample. Allele effect size on mean trait is quantified relative to trait variability (standard deviation). P-
values below 0.05 were highlighted for optical guidance but are not significant after multiple-testing adjustment.
aCorrected for age: PANSS negative, cognitive score and total CNI (for separate analyses and within multivariate phenotype), GAF.
bCorrected for language problems: pre-morbid intelligence (898 with no language problems and 108 with correction for language problems).
Exploratory exclusion of non-Caucasian subjects from the GRAS sample (n¼ 48; 4.5%) did not qualitatively alter any of the main findings in this Table.
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arises of how much clinical significance a genetic association
may have if several thousand patients are needed to reveal a
tiny effect on disease severity or phenotype. Thus, building on
41000 patients, one would at least have expected some
more signals to pop up (that is, more nominal P-values around
0.05 in the PGAS part of Table 1). In fact, the estimated power
assessed according to Lettre et al.,21 who performed simula-
tions in a similar context (sample size, normally distributed
phenotype), amounts to overall around 80% at the a¼ 0.05
level for the PGAS approach. The presented additive model,
chosen to match our hypothesis of cumulated risk, performed
similarly to a co-dominant one but appeared to be slightly
more powerful.

After all, we note that entirely different genotypes that were
never found to be significantly associated with any schizo-
phrenia risk in GWAS, still may profoundly modulate the
schizophrenic phenotype, for example, of genes encoding
neuregulin-1, complexin 2 or COMT.7,22,23 On the other hand,
GWAS finds may be of general rather than disease-specific
significance. Several studies have for instance suggested
that schizophrenia and affective disorders are on a continuum
of liability. Genetic linkage and association studies have
proposed common disease loci for both the disorders.2,24

Likewise, family studies show that first-degree relatives of
bipolar patients have a higher risk for schizophrenia compared
with first-degree relatives of healthy controls.25,26 Also other
psychiatric diseases like alcoholism or major depression have
been found to be associated with certain schizophrenia risk
genes, for example, DISC1.27 Thus, exploration of many other
phenotypes available in the GRAS database, including
candidate intermediate phenotypes28,29 or those reflecting a
more dimensional approach to the disease,30 might potentially
be interesting. Purpose of the present study, however, was to
cover the lead symptoms of schizophrenia in the first place.

To conclude, GWAS approaches in diseases as complex as
schizophrenia do not lead to the reconstruction of a ‘common

disease mechanism’ or to the discovery of ‘classical disease
genes’, as such genes obviously do not exist. What makes our
study important for the clinician is that we can show, for the
first time, that the combination of a whole battery of genetic
pre-disposing factors (the ‘top 10’ GWAS finds in schizo-
phrenia) in individual patients will not make their schizo-
phrenic phenotype any different or worse than that of those
patients who do not carry these genetic factors. Importantly,
however, GWAS results may guide, on a hypothesis-free
basis, to the identification of totally unexpected candidate
genes involved in certain disease aspects in subgroups of
patients, as they can be defined by PGAS. In order to get
closer to understanding the disorders as complex and
heterogeneous as schizophrenia, GWAS and PGAS will have
to go hand in hand.
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