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Abbreviations 

Protein abbreviations 

Official 
Symbol 

Name 
Other designations, 

notes 
Calb1 Calbindin D-28K, calbindin D28 
Calb2 Calretinin, Calbindin2 CR 
Camk2a calcium/calmodulin-dependent protein kinase II alpha CamkII subunit alpha 
Canx Calnexin Cnx 
Creb1 cAMP responsive element binding protein 1  

Dab2ip disabled homolog 2 (Drosophila) interacting protein  
Dgkz diacylglycerol kinase zeta  
Diap1 diaphanous homolog 1 Dia1 

Dlg2 disks large homolog 2 
PSD-93, Psd93, Chapsyn-
110 

Dlg4 disks large homolog 4 PSD-95, Psd95 
Eea1 early endosome antigen 1  
Egf Epidermal growth factor  

Gad1 glutamic acid decarboxylase 1 
EP10, GAD25, GAD44, 
GAD67 

Gad2 glutamic acid decarboxylase 2 GAD65 

Golgb1 Giantin, golgi autoantigen, golgin subfamily b, macrogolgin 1 Gm6840 
Grb2 growth factor receptor-bound protein 2  
Gria1 glutamate receptor, ionotropic, AMPA1 (alpha 1)  GluR1, GluA1, GluRA 

Gria2 glutamate receptor, ionotropic, AMPA2 (alpha 2) 
GluR2, GluA2, GluR-B, Glur-
2 

Gria3 glutamate receptor, ionotrophic, AMPA 3 
GluR3, GLUR3, GluA3, 
GluR-3 

Grin1 glutamate receptor, ionotropic, NMDA1 (zeta 1) NR1, Nmdar, NMDAR1,  
Grin2a glutamate receptor, ionotropic, NMDA2A (epsilon 1) NR2A, NMDAR2A 
Grin2b glutamate receptor, ionotropic, NMDA2B (epsilon 2) NR2B, NMDAR2B 
Gripap1 GRIP1 associated protein 1 GRASP-1 
Hras1 Harvey rat sarcoma virus oncogene1 H-Ras, Ha-ras, Hras-1, Hras 
Iqgap IQ motif containing GTPase activating protein several isoforms 

Kndc1 kinase non-catalytic C-lobe domain (KIND) containing 1 VKIND 
Kras v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog Kras2, Ki-ras, Kras-2 
Ksr1 kinase suppressor of ras 1  

Map2 microtubule associated protein 2  

Map2 microtubule-associated protein 2 MAP2R, Mtap2 
Map2k Mitogen activated protein kinase kinases several isoforms 

Map2k1 Mitogen activated protein kinase kinase 1 Mek1 
Map2k2 Mitogen activated protein kinase kinase 2 Mek2 

Mapk 
Mitogen activated protein kinases, initially also known as Map2 
kinase 

Erk, several isoforms 

Mapk1 Mitogen activated protein kinase 1 Erk2, p42 Mapk 
Mapk14 Mitogen activated protein kinase 14 p38a 
Mapk2 Mitogen activated protein kinase 2 Erk1, p44 Mapk 
Mll1 myeloid/lymphoid or mixed-lineage leukemia ALL-1 
Mllt4 myeloid/lymphoid or mixed-lineage leukemia 4  Afadin 
Mras muscle and microspikes RAS M-Ras, R-Ras3 
Nf1 Neurofibromin1  
Nras neuroblastoma ras oncogene N-Ras 
Pi3k Phosphoinositide-3 kinase  
Pi3kc phosphatidylinositol 3-kinase catalytic p110, several isoforms 
Pi3kr regulatory subunit of Pi3k p85, several isoforms 
Plce phospholipase C-  several isoforms 

Pld Phospholipase D several isoforms 

Pvalb Parvalbumin PV, Pva, Parv, Pvalb 
Ralbp1 Ral binding protein 1  

Ralgds Ral guanine nucleotide dissociation stimulator  
Rap1a Ras related protein 1a Rap1 
Rapgef1 Rap guanine nucleotide exchange factor (GEF) 1 C3G, Grf2 

Rapgef2 Rap guanine nucleotide exchange factor (GEF) 2 
CNrasGEF, nRap-GEF, PDZ-
GEF 

Rapgef3 Rap guanine nucleotide exchange factor (GEF) 3 Epac1 

Rasa1 RAS p21 protein activator 1 
p120GAP, Rasa, RasGAP, 
GAP1 

Rasa2 RAS p21 protein activator 2 mGAP1, GAP1m 

Rasa3 RAS p21 protein activator 3 
GapIII, GAP1(IP4BP), R-Ras 
GAP 

Rasa4 RAS p21 protein activator 4 Capri 
Rasal1 RAS protein activator like 1 (GAP1 like) MRASAL 
Rasal2 RAS protein activator like 2 NGAP 
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Protein abbreviations (continued) 

Official 
Symbol 

Name 
Other designations, 

notes 

Rasgrf1 Ras guanyl releasing factor 1 
Cdc25, Grf1, GNRB, P140 
RAS-GEF, P190. Ras-GRF1 

Rasgrf2 Ras guanyl releasing factor 2 GRF2, Ras-GRF2 
Rasgrp1 Ras guanyl releasing protein 1 Caldag-GEFII 

Rasgrp2a1 Ras guanyl releasing protein 2, isoform a 
Caldag-GEFI, shorter 

Rasgrp2 isoform 

Rasgrp2b1 Ras guanyl releasing protein 2, isoform b 
Rasgrp2, longer Rasgrp2 
isoform 

Rasgrp3 Ras guanyl releasing protein 3 Caldag-GEFIII 
Rasgrp4 Ras guanyl releasing protein 4 Caldag-GEFIV 
Rassf Ras association domain-containing several isoforms 

Rin1 Ras interaction/interference protein-1  
Rras Harvey rat sarcoma oncogene, subgroup R R-Ras 
Rras2 related RAS viral (r-ras) oncogene homolog 2 TC21 

Slc17a7 
solute carrier family 17 (sodium-dependent inorganic phosphate 
cotransporter), member 7  

Sos son of sevenless homolog (Drosophila) two isoforms 

Syngap1 synaptic Ras GTPase activating protein 1 homolog  
Syp Synaptophysin several isoforms 

Tiam1 T-cell lymphoma invasion and metastasis-1  
Wasl Wiskott-Aldrich syndrome-like N-WASP 
Wnt2 wingless-related MMTV integration site 2 Mirp, Irp 

Bold words indicate the names/symbols used throughout the text; 1 = designation used in this study. 

 

General abbreviations 

Abbreviation Full designation 
 approximately 
 standard deviation 
μ mean 
μL micro-liter 
A area 
aa amino acid 

ACSF artificial cerebro-spinal fluid 
AMPAR [alpha]-amino-3-hydroxyl-5-methyl-4-isoxazolepopionic acid sensitive receptor 

AZ active zone 
bp basepairs 
CA “Cornu ammonis” (horn of ammon) 
cKO conditional KO 
cKO conditional knock-out 

cv coefficient of variation 
DAG diacylglycerol 
DG dentate gyrus 
DIV day in-vitro 
DKO double KO 

DMEM Dulbecco’s modified eagle medium 
DNA desoxyribonucleotide acid 

E embryonal stage 
EM electron microscopy / electron microscope 
ER endoplasmatic reticulum 
FBS fetal bovine serum 

fEPSP field excitatory postsynaptic potential 
FRET fluorescent resonance energy transfer 
G12V Glycine to Valine mutation at aaposition 12 
GABA -Aminobutyric acid  (4-aminobutanoic acid) 
GAP GTPase activating protein 
GDP guanosine-diphosphate 
GEF guanine exchange factor 
GS goat serum 

GTP guanosine-5’-triphosphate 
i.e. it est (“that is”) 
IP3 inositol-trisphosphate 
kb kilo-basepairs 
KO knock out, synonym for the functional disruption of a gene in an organism 

L-DOPA L-3,4-dihydroxyphenylalanine ((S)-2-amino-3-(3,4-dihydroxyphenyl) propanoic acid) 
LTD long-term depression 
LTP long-term potentiation 

mEPSC mini excitatory postsynaptic currents 
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General abbreviations (continued) 

Abbreviation Full designation 
mRNA messenger ribonucleic acid 
NCC sodium chloride transporter 

NMDAR N-methyl-D-aspartic acid sensitive receptor 
nr. number 
NT neurotransmitter 
P postnatal stage 
P perimeter 

PC12 pheochromocytoma cell line nr. 12 
PCR polymerase chain reaction 
PFA paraformaldeyde 
PIP2 phosphatidyl inositol-bisphosphate 
PPF paired-pulse facilitation 
PSD postsynaptic density 
PT plasma-targeting domain 
r restriction value 

Ras rat sarcoma 
Ras-GTP GTP bound Ras G protein 

ROI region of interest 
SER smooth endoplasmatic reticulum 
SLE Systemic lupus erythematosis 
slm stratum lacunosum moleculare 

small G protein small GTP/GDP binding protein 
so stratum oriens 
sp stratum pyramidale 
sr stratum radiatum 

SuPT suppressor of plasma targeting domain 
TCR T-cell receptor 
TTX Tetrodotoxin 
WT wild-type 
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I. Summaries 

I.1. English Summary  

Ras signaling pathways are known to regulate neuronal development and 

function. Ras G proteins have been implicated in the differentiation of neurons, e.g. in 

dendrite and dendritic spine morphogenesis, and in processes such as the regulation 

of synaptic transmission and plasticity. The effects of neuronal signaling by Ras G 

proteins appear to be highly pleiotropic, and in the past, the complexity of Ras 

signaling has led to substantial controversies in the field of Ras signaling research. 

To contribute to a better understanding of Ras signaling in neurons, I investigated the 

role of Rasgrp1, a protein that regulates signaling by Ras G proteins. 

Rasgrp1 is a Ras guanyl-nucleotide exchange factor (GEF) that is highly 

expressed in the hippocampus. Although the neuronal roles of other Ras GEFs and 

also of several Ras GTPase activating proteins (GAPs) have been investigated in the 

past, the neuronal function of Rasgrp1 has not been studied so far. The results 

presented in this study show that Rasgrp1 deficient mice exhibit an increase in basal 

synaptic transmission. This increase in transmission is caused by an enhanced 

postsynaptic sensitivity, which, in turn, most likely results from an increase in PSD-95 

expression at the postsynapse and a consequent increase in glutamate receptor 

function. The effects of Ras signaling appear to be not only regulated by mere 

activation and inactivation but also by the location, at which the regulation of Ras G 

proteins takes place. The present study shows that Rasgrp1 is exclusively expressed 

in pyramidal neurons, where it primarily localizes to the Golgi apparatus.  

Taken together, this is the first study to provide evidence for a specific neuronal 

function of Rasgrp1. It shows that Rasgrp1 rather selectively controls postsynaptic 

sensitivity at glutamatergic synapses. In terms of Ras signaling in general, the 

present study shows that selective perturbation of individual Ras control pathways is 

a very useful tool to dissect the pleiotropic effects of Ras function in neurons.  
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I.2. Zusammenfassung 

Seit Längerem ist bekannt, dass die Signaltransduktion durch Ras Proteine an 

der neuronalen Entwicklung und Funktion beteiligt ist. Ras Proteine spielen sowohl 

eine wichtige Rolle in der Differenzierung von Neuronen, z.B. in der Morphogenese 

von Dendriten und dendritischen Dornen, als auch in der Regulation der 

synaptischen Transmission und Plastizität. Die direkte Aktivierung von Ras Proteinen 

hat eine Vielzahl von möglichen Effekten zur Folge, was die experimentelle 

Erforschung von spezifischen Funktionen der Ras Signalwege sehr erschwert und in 

der Vergangenheit immer wieder zu kontroversen Ergebnissen geführt hat. Die 

vorliegende Studie untersucht das Protein Rasgrp1, das die Aktivierung von Ras 

Proteinen reguliert.  

Rasgrp1 ist ein Ras Guanyl-Nucleotid Austausch Faktor (englisch: guanly-

nucleotide exchange factor, GEF) und wird in hohem Maße im Hippocampus 

exprimiert. Viele andere GEFs und auch GTPase aktivierende Proteine (GAPs), die 

Ras Proteine regulieren, wurden schon auf ihre neuronale Funktion hin untersucht. 

Im Gegensatz dazu wurde die Funktion von Rasgrp1 bis jetzt noch nicht erforscht. 

Die Ergebnisse meiner Studie zeigen, dass genetische Deaktivierung von Rasgrp1 in 

Mäusen zu erhöhter synaptischer Transmission führt. Diese Erhöhung lässt sich auf 

eine verstärkte postsynaptische Effizienz zurückführen, die höchstwahrscheinlich von 

einer verstärkten Exprimierung von PSD-95 an der Postsynapse und einer damit 

verbundenen, erhöhten Funktion von Glutatmat-Rezeptoren herrührt. Die Effekte von 

Ras Signaltransduktionswegen werden nicht nur durch die bloße Aktivierung oder 

Inaktivierung von Ras Proteinen reguliert, sondern in einem zunehmend beachteten 

Maße auch durch den Ort in der Zelle, an dem diese Regulation auftritt. Meine 

Ergebnisse zeigen, dass Rasgrp1 ausschließlich in den Pyramidenzellen des 

Hippocampus exprimiert wird. In den Pyramidenzellen wird Rasgrp1 hauptsächlich 

am Golgi- Apparat detektiert. 

Diese Studie enthält die ersten Beweise für eine spezifische neuronale Funktion 

von Rasgrp1. Sie zeigt, dass Rasgrp1 selektiv die postsynaptische Sensitivität an 

glutamatergen Synapsen reguliert. Diese Studie zeigt, dass die selektive 

Veränderung der Regulation von Ras eine hilfreiche Methode ist, um die vielfältigen 

Effekte der Ras Signaltransduktion in Neuronen verstehen zu können. 
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II. Introduction 

II.1. Neurons 

The nervous system has to achieve three tasks to function: First, to set itself up 

during development, second, to reliably integrate input signals into information that 

can be stored and third, to generate output signals.  

In early development, neuronal progenitors arise from epithelial cells, proliferate 

and subsequently differentiate into many types of nerve cells. These neurons are the 

smallest autonomous units of the nervous system. Neurons typically consist of a 

soma and thin processes called neurites, which extend far into the surrounding area. 

In early neuronal development, these neurites grow out of the soma. They 

differentiate into the relatively thick dendrites that receive signals, and a thinner 

neurite that sends signals and that is called axon. The sent signal is actively 

conducted through the axon and is called action potential. Depolarization of an 

axonal segment leads to opening of voltage-gated ion channels at adjacent sites, 

resulting in depolarization of the next segment. To transmit signals from one to 

another cell, neurons form synapses in later stages of development. The sending 

side of the synapse is called presynapse and is represented by a small bouton 

formed at the tip of the axon. When the action potential reaches the presynaptic 

bouton, voltage gated calcium channels open and increasing calcium concentration 

within the bouton triggers vesicle fusion and neurotransmitter release. The most 

abundant neurotransmitter in the brain is glutamate. glutamate passively diffuses 

from the presynaptic sites to the receiving cell. The highest concentration of 

glutamate receptors is found at small, but highly specialized compartments, called 

spines. These small protrusions that decorate the dendrites of the receiving cell 

represent the postsynapse. Upon binding of Glutamate, the receptors open and allow 

Sodium to enter the cell. Upon this influx of cations, the cell depolarizes locally. This 

electrical signal propagates as the depolarization passively spreads through the 

dendrites. Spine shape, dendrite caliber and branching influence signal propagation 

as it travels to the soma.  In the soma, final integration of all incoming signals takes 

place. If the resulting depolarization passes a certain threshold, a new action 

potential is generated in an all-or-none fashion.  

Postsynaptic spines, dendrites, the soma, the axon and presynaptic boutons 

represent highly specialized compartments that are part of the complex morphology 

of neurons. In fact, without knowledge of ion channels or biophysical properties of the 
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membrane, careful observation of this complex morphology has led to the first ideas 

on how a single nerve cells could transmit signals and thereby contribute to the 

function of the nervous system (Golgi, 1873; Purkyn , 1838; Ramón y Cajal, 1888). 

Later, in times of modern neuroscience, changes in morphology such as in 

postsynaptic spine shape could be correlated to information processing and storage. 

By now, many molecular cues involved in the development, morphogenesis, signal 

transmission and information storage are known.  

One superfamily of proteins involved in all of these processes is the superfamily 

of small G proteins. 

 

II.2. Small G Proteins 

Small G proteins (small GTP/GDP binding proteins, also designated G proteins 

in this text) can be found in a guanosine-5’-triphosphate (GTP) bound and in a 

guanosine-diphosphate (GDP) bound state. In the GTP bound state, they bind to 

effectors and thereby activate molecular signaling cascades. Their activity is 

terminated, when GTP is hydrolyzed to GDP by an intrinsic GTPase activity 

(Ehrhardt et al., 2002; Stryer et al., 2002). The superfamily of small G proteins 

comprises of more than 150 proteins (Bernards, 2006) that are structurally classified 

into five families. These five families are the Ras, Rho, Rab, Arf and Ran families.  

In the classical view, Ras family G proteins signal via the Mitogen-activated-

protein-kinase-kinase (Map2k1, also known as “Mapk/Erk kinase”, Mek), the 

Phosphoinositide-3 kinase (Pi3k) or the Ral guanine nucleotide dissociation 

stimulator (Ralgds) pathways to function in proliferation, differentiation and apoptosis 

by regulating gene expression (Takai et al., 2001).  

Rho family G proteins regulate cytoskeletal rearrangements through actin 

binding proteins such as Wasl (Wiskott-Aldrich syndrome-like, also known as N-

WASP) and Diap1 (diaphanous homolog 1, also known as Dia1). In this way, they 

function in the formation of stress fibers, lamellipodia and other morphological 

processes. In addition, they also regulate gene expression and signal via Pi3k (Takai 

et al., 2001). Rab family G proteins function in protein sorting, intracellular vesicle 

trafficking, targeting, docking and fusion. Their mechanism is to activate effectors that 

directly influence vesicular membrane shape, vesicle tethering or vesicle motility. 

(Stenmark, 2009; Takai et al., 2001). By similar mechanisms, Arf G proteins function 

in intracellular trafficking, in particular in vesicle budding from endomembranes, in 
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endocytosis, but also in cytoskeletal reorganization (Takai et al., 2001). Ran family 

proteins make up the smallest family of small G proteins and mediate 

nucleocytoplasmic transport (Takai et al., 2001). 

Modern views (Goldfinger, 2008; Helmreich, 2004; Karnoub and Weinberg, 

2008) of small G protein signaling pay more attention to downstream processes are 

distinct from the canonical pathways, to spatial and temporal dynamics and finally, to 

cross talk between G proteins within one or different families.  

 

II.2.1. Complexity of the Ras Family of Small G Proteins 

The Ras family of small G proteins (not to be mistaken for the Ras superfamily) 

controls proliferation, cell migration, adhesion, apoptosis, differentiation and cell 

function (Goldfinger, 2008) and contains at least 36 members (Karnoub and 

Weinberg, 2008). Hras, the first small G protein discovered (DeFeo et al., 1981; 

Harvey, 1964), and its close relatives Nras and Kras form their own subfamily and 

share the same effector binding region (Goldfinger, 2008). H-, N- and Kras are also 

known as the “classical Ras proteins” or the “p21 Ras proteins”. The genes encoding 

these proteins were discovered in rats that developed sarcoma (a cancer of the 

connective or supportive tissue) upon retroviral infection. In these tumors, the ras 

genes (rat sarcoma) were found to be mutated. Later findings indicated, that the ras 

genes are mutated in many human tumors and subsequently led to intensive 

research on these genes (Karnoub and Weinberg, 2008). 

In the literature the Ras family is further divided into the Mras/Rras, Ral, Rit, 

Rap and Rheb subfamilies. These subfamilies encompass only half of the Ras 

proteins found, the other members found in databases can be grouped into Rem, 

Rerg, Diras/Rasd and Nkiras families. It is important to note that the most intensely 

investigated Ras proteins belong to the Ras and Rap subfamilies. While data on 

neuronal functions of the Rras/Mras, Ral and Rheb subfamilies are slowly emerging, 

the vast majority of Ras G proteins still await neurobiological attention.  

 

II.2.2. The Classical Ras Signaling Cascade 

The first findings indicating a neuronal involvement of the classical Ras G 

proteins came from experiments using the pheochromocytoma cell line (PC12). 

Overexpression of Hras, Nras or infection with the Kirsten murine sarcoma virus led 

to neuronal differentiation of these cells, which was recognized by the outgrowth of 
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neurites and cessation of cell division (Bar-Sagi and Feramisco, 1985; Guerrero et 

al., 1986; Noda et al., 1985). This function in neurite outgrowth was later verified on 

primary chick embryonic neurons, using overexpression of constitutively active Ras 

constructs (Borasio et al., 1989).  

Classical Ras proteins moved into the neurobiological spotlight when they were 

found as the missing piece in a molecular signaling cascade that governs long-term 

potentiation (LTP). It had already been known that LTP requires influx of calcium ions 

into the cell and ultimately depends on activation of gene expression (Davis and 

Squire, 1984). The effectors most downstream in this cascade, mitogen-activated 

kinases (Mapk, also known as “Extracellular signal regulated kinases”, Erk) were 

found to be phosphorylated and activated by NMDAR (N-methyl-D-aspartic acid 

sensitive receptor) stimulation (Bading and Greenberg, 1991). In 1992, Ras was 

found to be involved in Mapk phosphorylation and activation, although it was clear 

that Ras itself could not phosphorylate Mapk (Leevers and Marshall, 1992; Wood et 

al., 1992). Next, proof was provided for Ras binding of the Raf kinase, which 

subsequently leads to phosphorylation and activation of Map2k (Vojtek et al., 1993; 

Warne et al., 1993; Zhang et al., 1993). One year later it was discovered that Map2k 

phosphorylates Mapk (Rosen et al., 1994), completing the Ras/Raf/Map2k/Mapk 

cascade. In neurons, a putative involvement of this cascade in a calcium sensitive 

pathway had been hypothesized earlier (Bading et al., 1993). Finally, evidence was 

provided for the phosphorylation and activation of Mapk1 upon electrophysiological 

LTP induction (English and Sweatt, 1996) and Ras proteins acquired a prominent 

position in the molecular machinery of LTP formation (Finkbeiner and Greenberg, 

1996). 

 

II.3. Controversies in the Research of Neuronal Ras Signaling 

Since publication of the findings described above, research on neuronal Ras 

signaling has led to many controversies. In this regard, one experimental system in 

particular appears to have given rise to most of the controversies in the field. 

Extensive research on Ras signaling is conducted using activated mutants of Ras 

proteins. The activated mutated protein is able to bind GTP, but unable to hydrolyze 

it to GDP and therefore remains in a constitutively active state (Karnoub and 

Weinberg, 2008). The corresponding frequently used Glycine to Valine mutation at 

amino acid (aa) position 12 (G12V) is normally found in oncogenic Hras. 
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Endogenous G12V forms of H-, N-, and Kras can be found in almost every human 

tumor, implying that normally, Ras activity in cells is very tightly controlled.  

Circumventing this control was thought to facilitate investigation of Ras proteins 

and their effects in neurons. In addition to the commonly used overexpression of 

exogenous G12V Hras in cultured cells and organotypic cultures, two independent 

research groups generated two very similar mouse models to investigate 

endogenously expressed G12V Hras. Both the “Synras mouse” (Arendt et al., 2004; 

Heumann et al., 2000; Seeger et al., 2004) and the “RasG12V mouse” (Kushner et al., 

2005) selectively express G12V Hras in postmitotic neurons, the time point of 

expression being controlled by the Synapsin1 or the Camk2a promoter, respectively. 

Strikingly, not only the phenotypes of these mice differ significantly in most aspects 

studied so far. Also the results of these gain-of-function studies cannot be correlated 

to the results from a loss-of-function study performed by knocking out Hras (Manabe 

et al., 2000). In the following, I will recollect these and other findings that question the 

validity of the model systems used and the conclusions concerning Ras signaling in 

neurons that were drawn based on them. 

 

II.3.1. Ras Signaling and Morphology 

The most controversial results of the characterization of the Synras and the 

RasG12V mice concern the findings on postsynaptic morphology. The Synras mice 

were found to have an increased cortical volume (  15 %) that results from general 

neuronal hypertrophy (Heumann et al., 2000). In an extensive sequence of 

morphological studies, soma size, dendritic size and diameter, dendritic complexity 

and spine density were found to be significantly increased in this mouse model (Alpar 

et al., 2003; Arendt et al., 2004; Gärtner et al., 2005; Holzer et al., 2001; Seeger et 

al., 2003). Also axonal diameters (but not the numbers of axons) were found to be 

increased. However, no gross morphological changes were observed in RasG12V 

mice, in particular any increase of dendritic spine density. Moreover, a detailed EM 

study did not reveal any abnormalities in postsynaptic morphology. The only 

consistent finding was a significantly increased number of docked synaptic vesicles 

at presynaptic active zones (AZ) (Kushner et al., 2005; Seeger et al., 2004). In 

addition, no obvious effect on neuronal morphology was observed in Hras KO mice 

(Manabe et al., 2000), but detailed analyses, as performed in the other studies are 

lacking. 
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Although early pioneering studies indicated an involvement of H-, N- and Kras 

in neurite outgrowth of PC12 cells (Bar-Sagi and Feramisco, 1985; Guerrero et al., 

1986; Noda et al., 1985), small G proteins of the Rho family have long been regarded 

as the main factors that govern neuronal morphology (McAllister, 2000). The striking 

phenotypic changes seen in the Synras mouse, but also other findings (Jaworski et 

al., 2005; Kumar et al., 2005; Wu et al., 2001), changed this view. Ras signaling 

seems not only to be necessary for postsynaptic development, but also for activity 

dependent changes in spine morphology. Recently, spread of Hras activity from 

stimulated spines to nearby spines was observed, which leads to an increase in 

spine head volume in both (Harvey et al., 2008). 

In addition to the involvement of Ras family proteins in regulating postsynaptic 

morphology, various Ras family G proteins appear to play a role in neuronal 

polarization and in presynaptic development. Hras activity and signaling in axonal 

growth cones leads to symmetry breaking of cultured neurons, axonal outgrowth and 

branching (Fivaz et al., 2008; Yoshimura et al., 2006). Rras localizes exclusively to 

the developing axon and regulates axonogenesis, but does not play a role in dendrite 

morphogenesis (Oinuma et al., 2007; Saito et al., 2009). This is congruent with the 

developmental expression pattern of Rras, which shows a high concentration in 

immature neurons (Oinuma et al., 2007; Saito et al., 2009), but no expression in the 

adult brain (Allen_Mouse_Brain_Atlas, 2009; Nuñez Rodriguez et al., 2006).  

 

II.3.2. Ras Signaling and LTP 

In both the Synras and the RasG12V mouse, LTP was found to be enhanced 

(Arendt et al., 2004; Kushner et al., 2005). Interestingly, KO of Hras has the same 

effect (Manabe et al., 2000). In organotypic slices, overexpression of constitutively 

active Hras leads to a reduction in LTP (Zhu et al., 2002), which was discussed as an 

occluding effect, i.e. basal transmission was too strong to achieve further 

potentiation. In another study that applied overexpression, wild type (wt) Hras led to 

reduced LTP implicating that Hras is a negative regulator of LTP.  

The first electrophysiological study linking Ras signaling to LTP was in fact a 

KO study on Rasgrf1 (also known as cdc25NEF, RasGRF, GRF1), a Ras activator. 

The protein had been identified and cloned by three independent groups (Cen et al., 

1992; Martegani et al., 1992; Shou et al., 1992) and found to activate H- and Nras 

(Shou et al., 1992), but also the Rho family G protein Rac1. After dissection of the 
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Ras/Raf/Map2k/Mapk pathway and the presentation of molecular evidence for its 

involvement in LTP in 1996, the model still lacked a potent calcium sensor that would 

link calcium influx to Ras activation. Rasgrf1 contains an ilimaquinone motif that 

allows regulation by calcium/Calmodulin (Buday and Downward, 2008), making it a 

highly interesting candidate for the role of a calcium sensor in the 

Ras/Raf/Map2k/Mapk pathway.  

Rasgrf1 KO mice show an impaired LTP in the amygdala, but not in the 

hippocampus. In addition to that, the mice exhibit a generally increased basic 

synaptic transmission in both regions (Brambilla et al., 1997). The combined 

phenotypes of increased basic synaptic transmission and impaired LTP were later 

often taken as an indication for an occluding effect, e.g. in the case of studies 

investigating Camk2a (Hayashi et al., 2000) or PSD-95 (officially known as Dlg4) 

(Stein et al., 2003).  

Although the Rasgrf1 KO study is generally cited as evidence for a role of Ras 

proteins as positive regulators in LTP, the findings on basal transmission, the lack of 

an effect in hippocampal LTP and the possibility that Rac1 signaling could effectively 

trigger all the effects observed, are commonly neglected. 

Following the “missing link in LTP” theory, an extensive electrophysiological 

study in 2006 investigated the interplay of Rasgrf1 and Rasgrf2 in the hippocampal 

CA1 region. The authors analyzed Rasgrf1 KO, Rasgrf2 KO and Rasgrf1/2 DKO 

(double knock out) mice and, based on their results, developed a model, in which 

Rasgrf1 acts predominantly on Mapk14  (p38a) via Rac1 and thus induces LTD, 

while Rasgrf2 acts via Mapk1 on LTP (Li et al., 2006). This study has to be 

interpreted with caution for a number of reasons, the most striking being that Rasgrf1 

and Rasgrf2 are not expressed together in the region examined. Rasgrf1 is 

expressed postnatally with protein levels reaching the adult state at P7. It is strongly 

expressed in the CA1 and CA3 region of the hippocampus. Immunohistochemical 

experiments reveal intense staining of the stratum pyramidale and dendrite gyrus 

(Wei et al., 1993). As Rasgrf1, Rasgrf2 is expressed postnatally (Tian et al., 2004), 

but is found in different regions than Rasgrf1. Its mRNA and protein are not found in 

the CA1 and CA3 region of the hippocampus, but are highly expressed in peripheral 

cortex layers (Allen_Mouse_Brain_Atlas, 2009; Fernández-Medarde et al., 2002). 
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Based on controversial findings on Ras G proteins and questionable results 

from analyses of Rasgrf1, the current literature cannot yet provide conclusive 

evidence for a definitive role of Ras signaling in LTP. 

 

II.3.3. Ras Signaling and AMPAR Trafficking 

Following the finding, that the Rasgrf1 KO mouse also displayed an increased 

basal transmission (Brambilla et al., 1997), researchers begun to investigate a 

putative role for Ras signaling in AMPAR ([alpha]-amino-3-hydroxyl-5-methyl-4-

isoxazolepopionic acid sensitive receptor) trafficking in the early 2000s. Hras was 

shown to have a positive effect on AMPAR transmission when overexpressed in 

hippocampal neurons (Zhu et al., 2002). Rap1a, also a member of the Ras G protein 

family, has the opposite effect on AMPAR transmission, and NMDAR transmission 

seems not to be affected by either of the proteins. This and several subsequent 

studies (Imamura et al., 2003; Kielland et al., 2009; Qin et al., 2005) used exogenous 

overexpression of G12V Hras mutants in the vast majority of experiments. The 

researchers concluded and further developed a model, according to which Ras G 

proteins have a positive effect on AMPAR trafficking and Rap proteins play an 

antagonistic role. 

Also in the Synras mouse, basal transmission was found to be increased 

(Seeger et al., 2004). However, in the RasG12V mouse, basal transmission appears to 

be unchanged (Kushner et al., 2005). The Hras KO mouse showed unchanged 

AMPAR transmission but an increased NMDAR transmission (Manabe et al., 2000). 

mEPSC (mini excitatory postsynaptic current) analysis in Synras and RasG12V mice, 

resulted in similar findings. mEPSC frequency is increased in both mouse models, 

whereas signal amplitude is unchanged as compared to control animals. These in-

vivo findings contradict the findings from ectopic overexpression studies. Moreover, 

signaling of Hras in postsynaptic morphology was not taken into account by 

electrophysiological studies examining Hras signaling in AMPAR trafficking (Imamura 

et al., 2003; Qin et al., 2005; Zhu et al., 2002). 

In summary, the role of Ras signaling in LTP and in basal transmission, in 

particular in AMPAR mediated transmission, remains largely unclear.  
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II.3.4. Postsynaptic and Presynaptic Effects of Ras Signaling 

In the RasG12V mouse, paired-pulse facilitation (PPF), which is a 

electrophysiological protocol to examine presynaptic release probability, was found to 

be increased (Kushner et al., 2005). Together with an observed increase in mEPSC 

frequency and unchanged mEPSC amplitudes, this result would indicate a purely 

presynaptic effect of Hras, and was discussed as such by the authors (Kushner et al., 

2005). In contrast, PPF was shown to be decreased in the Synras mouse (Seeger et 

al., 2004). These authors also discussed the combined phenotypes of increased 

mEPSC frequencies and unchanged amplitudes as a presynaptic effect, but as an 

indirect effect of postsynaptic strengthening. At least, both opinions are more or less 

in opposition to the idea of a solely postsynaptic function of Hras. This, along with the 

role of Hras in controlling neuronal morphology, is typically ignored in the studies on 

the role o Ras signaling in receptor trafficking (Kielland et al., 2009; Qin et al., 2005; 

Zhu et al., 2002).  

The controversy as to whether effects of Hras are postsynaptically or 

presynaptically induced raises the question, where the protein is actually localized in 

neurons. In various transformed cell lines, H-, N- and Kras are localized to the inner 

leaflet of the plasma membrane (Willingham et al., 1980). In neurons, H-, N- and 

Kras are localized to ER, synaptic plasma membrane, but not to the nucleus, to 

synaptic vesicles or to the PSD, as revealed by immunohistochemical and 

biochemical methods (Mizoguchi et al., 1989). Hras signaling has been observed at 

the Golgi apparatus in PC12 cells (Bivona et al., 2003). Differential posttranslational 

modification (i.e. prenylation and palmitoylation) primarily targets Kras to 

endomembranes, whereas H- and Nras can also be trafficked to the plasma 

membrane (Choy et al., 1999). Hras, but not K- or Nras were detected in the NMDAR 

complex (Husi et al., 2000) and both H- and Kras were found in the “PSD proteome” 

(Cheng et al., 2006), albeit not among the 32 core proteins. Kushner et al. (2005), 

showed a partly overlapping Hras and VGLUT1 staining in hippocampal sections and 

assumed Hras to be presynaptically localized, in accordance with the effects of Hras 

observed in their RasG12V mouse line (Kushner et al., 2005).  

Recently, imaging studies assessed Ras activation and mobility in the plasma 

membrane of single dendritic spines using Ras sensitive FRET (fluorescent 

resonance energy transfer) sensors (Harvey et al., 2008; Yasuda et al., 2006). Also 

using Ras sensitive FRET sensors, Hras activity was detected in axonal growth 



Introduction 
 

 20 

cones of developing neurons (Fivaz et al., 2008). Beyond these studies, conclusive 

and comparative studies that apply modern methods to investigate the exact 

subcellular localization of small G proteins of the Ras family in neurons, are lacking. 

Knowledge from other cell types suggests that also in neurons, Ras proteins are 

found throughout the cell, with a concentration at the Golgi apparatus, ER and 

plasma membrane.  

 

II.4. Complexity of Ras Signaling 

The use of G12V Hras has revealed a vast number of pre- and postsynaptic 

effects of Ras signaling. Interestingly, the results of the different studies applying 

mutated Hras cannot be brought into accord in the majority of cases; basically, each 

line of research follows an independent dogma. The cause of the controversies 

seems to be the expression levels of Hras and the levels of activation in the different 

experimental systems. Indeed, Kusher et al. (2005) argue, that the striking difference 

in the phenotypes of RasG12V and Synras mice is due to relatively different 

expression levels of G12V Hras. The Synras mouse shows higher G12V Hras 

expression than the RasG12V mouse, implying that the stronger the availability of 

activated Hras, the stronger the effect on the postsynapse. This would also be 

congruent with the studies providing evidence for a role of Ras signaling in AMPAR 

trafficking (Kielland et al., 2009; Qin et al., 2005; Zhu et al., 2002), since the 

exogenous expression of G12V Hras that was used in these studies, can be 

expected to result in very high expression levels. 

Which effect-causing mechanisms are that sensitive to the availability of 

activated Hras? Ras proteins regulate a variety of downstream effectors that most 

likely exhibit different affinities for activated Ras and govern different effect-causing 

mechanisms. Many recent studies have attributed the pleiotropic effects of Hras 

solely to the different downstream pathways it activates (Jaworski et al., 2005; Kumar 

et al., 2005; Yoshimura et al., 2006). 

Not only chemical affinity but also spatial proximity governs Ras pathway 

selection. Subcellular proximity of G proteins and their effectors determines the 

molecular pathway that is activated and specifically triggers one effect. It is clear that 

the subcellular distribution of overexpressed proteins such as G12V Hras might differ 

significantly from that of their endogenous counterparts. Mislocalization of 

overexpressed protein can account not only for abnormal additional signaling, but 
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also for abnormal absent signaling. For example, Hras G12V is excluded from 

plasma membrane lipid rafts and only interacts with its membrane resident effectors 

(Karnoub and Weinberg, 2008). 

The complexity of Ras downstream signaling that causes the extraordinary 

sensitivity to experimental perturbation is described in the next sections. 

 

II.4.1. Multitude of Ras Downstream Pathways 

The Pi3k pathway was the first effector pathway of Ras identified besides the 

classical Raf/Map2k/Mapk pathway. The Pi3k family is a group of heterodimeric 

enzymes composed of a catalytic (known as Pik3c or p110) and a regulatory (known 

as Pik3r or p85) subunit. Hras has been shown to bind the catalytic subunit and to 

thereby regulate Pi3k function directly (Rodriguez-Viciana et al., 1994). 

Over the years, several other Ras effectors have been described, which include 

a number of proteins with diverse roles in cell physiology, such as phospholipase C-  

(Plce), T-cell lymphoma invasion and metastasis-1 (Tiam1), Ras 

interaction/interference protein-1 (Rin1), Mllt4 (also called Afadin or AF-6), and the 

Ras association domain-containing family of proteins (Rassf). Some effects, that 

were previously thought to be triggered by the classical Raf/Map2k/Mapk pathway, 

have since been revisited and attributed to these new effectors. Antiapoptotic effects 

were found to depend on the Pi3k pathway mostly; some effects in differentiation 

depend on the Ralgds pathway more than the Mapk pathway (Karnoub and 

Weinberg, 2008). Ralgds is an example of cross talk within the Ras family. It is an 

activator for the Ras G protein Rala and Ralb and therefore, e.g. Hras can activate 

Rala. Rala and Ralb then signal via Ralbp1 (Ral binding protein 1), phospholipase D 

(Pld) and filamin (Takai et al., 2001). Mllt4 contains both microtubule and actin 

binding motifs and was shown to associate with proteins that are involved in 

regulating cell polarity (Mandai et al., 1997), indicating that Ras might act on 

cytoskeletal dynamics via this pathway. Rin1, which is an activator of Rab5 like 

proteins, can trigger endocytosis, and Ras signaling was shown to participate in this 

process (Tall et al., 2001). The less well-studied Rassf proteins seem to be involved 

in regulation of apoptosis (Karnoub and Weinberg, 2008). 

Sequence similarities in the Ras binding domains of all these effectors indicate 

that there might still be more target proteins that are regulated by Ras (Goldfinger, 
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2008). In neurons however, all pathways besides the Mapk, Pi3k and Ralgds 

pathways have been studied only cursory so far. 

 

II.4.2. Shared Downstream Pathways 

Apart from diverging pathways downstream of Ras, signaling from other small G 

proteins can converge upon Ras triggered pathways. Based on direct evidence and 

sequence similarity, all of the Ras family G proteins except Rala and Ralb are 

thought to share many downstream effectors. However, small differences in protein 

sequence and subcellular localization, likely result in different affinities and 

differential activation of effectors. For example, Kras is a more potent Raf/MEK/Erk 

activator than Hras, and in turn Hras is a more potent Pi3k activator (Hancock, 

2003). Activated Rras only weakly binds Raf1, and similarly, Rap1a affinity to and 

activation of Raf1 are distinct from those of Ras (Goldfinger, 2008). 

In addition to pathways shared by Ras family G proteins, some pathways are 

even shared by the whole superfamily of small G proteins. Rho family proteins can 

signal via the Pi3k pathway and indirectly via the Mapk pathway (Takai et al., 2001). 

Rab5 and Rab7 of the Rab family can also signal via Pi3k (Stenmark, 2009), and 

Rala and Ralb regulation by Ras/Ralgds leads to activation of Rho G proteins via 

Ralbp1 (Takai et al., 2001). With knowledge of this extensive cross talk, it is often not 

possible to attribute specific mechanisms to one family, let alone one protein within 

the superfamily of small G proteins. 

Diverging pathways downstream of identified Ras effectors complicate the 

situation even further. For example, Mapk was first reported in insulin-stimulated 

3T3-L1 adipocytes and in epidermal growth factor (Egf) stimulated fibroblasts as a 

protein that phosphorylates the microtubule associated protein 2 (Map2), and was 

therefore first designated Map2 kinase (Ahn, 1993; Hoshi et al., 1988; Ray and 

Sturgill, 1987). Mapk also directly associates with Map2 and therefore with the 

cytoskeleton, and phosphorylation of Map2 by Mapk has a significant impact on 

microtubule stability (Sánchez et al., 2000). Map2 is present in dendrites and a major 

factor in dendrite stability (Bernhardt and Matus, 1984; Matus, 1994). However, the 

Mapk pathway also leads to activation of the transcription factor Creb1 (cAMP 

responsive element binding protein 1), resulting in Wnt2 (wingless-related MMTV 

integration site 2) expression and secretion. Wnt2 in turn is an extracellular signal for 

dendrite arborization (Wayman et al., 2006). Attributing one of these possible 
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mechanisms by which Mapk can regulate dendrite morphology to a specific Ras G 

protein is very difficult. 

In an experiment, the described sharing of downstream pathways such as the 

Pi3k pathway complicates the interpretation, which G protein triggered an observed 

effect. For example, results acquired in experiments that not involved Ras and that 

showed an effect of the Pi3k pathway in dendrite morphogenesis (Jaworski et al., 

2005; Kumar et al., 2005) could as well be attributed to other upstream factors (e.g. 

Rab G proteins). 

 

II.4.3. Pathway Selection by Ras G Proteins 

How is it decided, which signaling pathway is selected by a specific Ras 

protein? In general, this choice is determined by the availability, i.e. existence, 

physical proximity and state (active/inactive) of the signaling pathway involved. 

Availability of signaling components is regulated by developmental stages, tissue and 

cell specific expression, subcellular localization to organelles and scaffolding 

complexes, and temporal dynamics e.g. temporal dynamics, transport, and half-life of 

activation. An example for developmental selection of signaling pathway components 

is Nras. It is expressed in early stages of brain development only, whereas Kras and 

Hras expression is stable or even increases during development, and both are 

present in adult tissue. (Allen_Mouse_Brain_Atlas, 2009; Leon et al., 1987) 

Tissue and cell specific expression of Ras proteins has not been studied in 

detail. However, Hras is only present in neurons within the brain (Mizoguchi et al., 

1989), while other Ras proteins such as Mras have been found to be present in 

astrocytes as well (Nuñez Rodriguez et al., 2006).   

Within the cell, differential palmitoylation leads to trafficking of H- and Nras to 

the endoplasmatic reticulum (ER), Golgi and plasma membrane, whereas Kras is 

only present at ER and plasma membrane. The plasma membrane itself contains 

microdomains that are specified by their lipid composition. The best characterized of 

these microdomains are caveolae and lipid rafts. In both, Hras and all the 

components of the Raf/Map2k/Mapk pathways have been found. Kras is found 

predominantly in non-raft plasma membrane, indicating a differential pathway 

selection by this protein (Hancock, 2003; Omerovic and Prior, 2009). 

Where exactly Hras activation takes place, is still a matter of debate. Using 

overexpression techniques, activation was shown to occur at the Golgi (Bivona et al., 
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2003), but more recent findings support the classical view of predominant Hras 

activation at the plasma membrane (Augsten et al., 2006). Neurons are highly 

compartmentalized cells that contain Golgi and ER structures not only within their 

somata. Dendrites in particular contain large numbers of endomembranous 

structures, among them Golgi outposts, smooth endoplasmatic reticulum and 

mitochondria. Within spines, neurons contain a specific organelle known as the spine 

apparatus. Functionally, all these organelles are thought to act in protein trafficking, 

but some also in local protein synthesis (Kennedy and Ehlers, 2006).  

Several proteins selectively bind Ras proteins and components of downstream 

pathways and thereby facilitate signaling via the components that form one complex. 

For example, Iqgap (IQ motif containing GTPase activating protein) isoforms are 

widely expressed and bind directly to B-Raf, Map2k and Mapk, bringing all these 

signaling components in close proximity (Brown and Sacks, 2009). The neuronal 

specific protein Ksr1 (kinase suppressor of ras 1), which is located in somata and 

apical dendrites of pyramidal neurons, switches Egf signaling from a proliferative 

signal to a differentiation signal in PC12 cells (Müller et al., 2000).  

 

II.5. Control of Ras Signaling 

Given the enormous complexity of Ras signaling pathways and the extensive 

cross talk between these pathways, general perturbation of Ras signaling cannot 

reveal specific effects, e.g. by dominant active mutants of Ras proteins. This is due to 

the fact, that it is essentially impossible to correctly choose the right developmental 

stage, the tissue or culture system that contains only a specific and restricted set that 

can be studied in isolation. Likewise, no expression system can guarantee the 

appropriate expression levels of exogenous protein (e.g. Ras mutants) that would 

then have the correct subcellular localization and physiological affinity to scaffolds 

and effectors. In this context, many of the effects found in studies employing 

overexpression of G12V Hras must be considered as a result from ectopic signaling 

and artifactual activation of cross talk. Consequently, many findings on Hras cannot 

be taken at face value and attributed to Hras alone, but must be seen as effects of 

small G protein signaling in general. They have to be attributed to other, related Ras 

proteins and/or downstream pathways that were activated in the wrong place at the 

wrong time and to a wrong degree.  
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Above considerations lead to the question as to whether Ras proteins 

themselves are the best starting point for analysis of Ras signaling. A physiological 

process with such a huge range of possible implications inevitably complicates the 

interpretation of all the effects caused by general perturbation in a given experimental 

situation. Essentially, signaling by Ras G proteins must be seen as a pluri-potent and 

omni-present activity within the cell. Any given cell must very stringently select 

activation of these proteins and the spatially and temporally segregated downstream 

pathways to avoid unnecessary or even harmful effects of Ras signaling, such as 

tumorigenesis.  

Indeed, nature orchestrates the pleiotropic effects of Ras proteins very 

efficiently. The molecular correlates that conduct this regulation are guanine 

nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). GEFs 

catalyze the release of GDP by reaching into the nucleotide binding site of small G 

proteins and opening it, allowing GDP to escape and GTP to bind. This is achieved 

by the Cdc25-like catalytical domain of GEFs, also referred to as “Ras GEF domain” 

(Boriack-Sjodin et al., 1998; Ehrhardt et al., 2002; Stryer et al., 2002). GAPs interact 

with small G proteins and increase their intrinsic GTPase activity, leading to a much 

faster termination of G protein activation. 

These proteins typically exhibit rather high substrate specificities, i.e. they only 

activate/inactivate only a small subset of Ras G proteins each. Mostly, GEF and GAP 

specificities are restricted towards a few members of one Ras subfamily. In some 

cases, the specificity crosses the borders of subfamilies, but only very few GEFs and 

GAPs show specificity for members of more than one family (which is then achieved 

by separate domains). A second level of specificity is provided by the often very 

restricted subcellular localization of GEFs and GAPs, a feature that distinguishes 

them from their more widely distributed substrates. 

In view of these characteristics, Ras GEFs and GAPs provide a very useful 

alternative starting point for analysis of the functional role of Ras signaling. 

 

II.5.1. Specificity of Ras GEFs 

GEFs that activate classical Ras G proteins in the brain belong to three families, 

the Sos, Rasgrf and Rasgrp family. In case of the Rasgrf and Rasgrp proteins, an 

activity towards the Rras/Mras subfamily besides the classical Ras G proteins seems 

to be a general pattern of specificity. The activity of Sos GEFs seems to be restricted 
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towards the classical Ras G proteins and Mras, while Rras or Rras2 are not affected. 

Rasgrf and Sos proteins not only contain a Ras GEF domain, but also a Rho GEF 

domain, making them parallel activators of Rac G proteins of the Rho family (Bos et 

al., 2007). 

Apart from these three GEF families, members of the Rapgef family can act on 

classical Ras and Rras/Mras proteins under some circumstances. Rapgefs are well 

investigated GEFs of Rap1 and Rap2 proteins. However, Rapgef1 (also known as 

C3G) and Rapgef3 (also known as Epac1) were shown to also act directly on Rras 

(Gotoh et al., 1997; López De Jesús et al., 2006; Roscioni et al., 2008), and for 

Rapgef2 (also known as CNrasGEF, nRap-GEF, PDZ-GEF), an activity towards Hras 

has been observed (Pham et al., 2000). However, it is still unclear if this is a matter 

of direct or an indirect interaction (Kuiperij et al., 2003). 

Another well-known protein that has been considered a Ras GEF is 

phopholipase C epsilon (Plce). It contains a Ras association (RA) domain and a 

Cdc25-like domain at its N-terminus. However, it is not clear if the Cdc25 domain of 

Plce is functional and if Plce is a potent GEF for classical Ras or for Rap proteins 

(Buday and Downward, 2008; Jin et al., 2001; Lopez et al., 2001). Interestingly, Plce 

is also a downstream effector of Ras G proteins (see chapter II.4.1).  

A more recently described Ras GEF is Kndc1 (kinase non-catalytic C-lobe 

domain (KIND) containing 1, also known as VKIND). The only known substrate of this 

GEF is Hras (Huang et al., 2007; Mees et al., 2005). 

 

II.5.2. Roles of Ras GEFs in the Brain 

Sos1 (son of sevenless homolog 1) was the first Ras GEF discovered and 

along with its discovery, the classical model of Ras regulation by extracellular growth 

factors was established. According to this model, growth factors induce a rapid 

dimerization and autophosphorylation of their receptors. The resulting 

phosphotyrosine residues function as binding sites for the SH2 (Src homology 2) 

domain in Grb2 (growth factor receptor-bound protein 2). Grb2 in turn, recruits Sos1, 

subsequently leading to activation of Ras proteins. Sos1 mRNA is ubiquitously 

expressed in brain, with the highest concentration found in hippocampus and 

cerebellum (Allen_Mouse_Brain_Atlas, 2009). The protein was detected in the PSD 

by electron microscopy (EM) and biochemical purification (Suzuki et al., 1999). No 
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electrophysiological data on the function of Sos1 exist so far, most likely because a 

KO of Sos1 in mice causes the animals to die before birth (Wang et al., 1997). 

Sos2 protein expression has not yet been investigated in detail. Its mRNA is 

found in all regions of the brain, but it is not enriched in a specific region as seen for 

Sos1 (Allen_Mouse_Brain_Atlas, 2009). In contrast to Sos1, Sos2 is not present in 

purified PSD fractions (Suzuki et al., 1999). Sos2 KO mice are viable and apparently 

healthy (Esteban et al., 2000), and electrophysiological data indicate that LTP is not 

affected in these animals (Arai et al., 2009). Other physiological properties besides 

LTP have not been tested yet. 

Rasgrf1 has already been mentioned as the potential missing link that relays 

calcium influx into the postsynapse to Hras and the Mapk pathway (see chapter 

II.3.2). However, Rasgrf1 might also function in general neuronal excitability, as KO 

mice show an AMPAR- and NMDAR- independent increase in action potential 

generation (Tonini et al., 2001). Moreover, long-term depression (LTD) is reduced in 

Rasgrf1 KO animals (Li et al., 2006). In the hippocampus, Rasgrf1 is highly 

expressed in the CA1 and CA3 regions and in the dentate gyrus (Wei et al., 1993). 

Rasgrf1 is expressed in neurons where it is present in punctuate stainings along and 

within dendrites and cell bodies, and it can be detected in purified PSD fractions 

(Sturani et al., 1997; Zippel et al., 1997). However, the exact localization of Rasgrf1 

in neurons has not been determined by colocalization studies or EM analyses. 

Experiments on PC12 cells indicate that upon activation by Rasgrf1, both Ras and 

Rho G proteins act in concert to control cell morphology (Yang and Mattingly, 2006). 

Like Rasgrf1, Rasgrf2 is expressed postnatally (Tian et al., 2004), but found in 

different regions than Rasgrf1. Its mRNA and protein are not found in the CA1 and 

CA3 region of the hippocampus, but rather in peripheral cortex layers 

(Allen_Mouse_Brain_Atlas, 2009; Fernández-Medarde et al., 2002). The subcellular 

localization of Rasgrf2 has not been investigated yet. 

The family of Rasgrps (Ras guanyl releasing proteins) contains four genes 

encoding at least five proteins; four of them are expressed in the brain. These are 

Rasgrp1, Rasgrp2a, Rasgrp2b and Rasgrp3.  

Rasgrp1 mRNA and protein are highly expressed in the brain. It is found in the 

olfactory bulb, cortex, caudo-putamen (including striatum), hippocampus and 

thalamus, but only at very low levels in midbrain, cerebellum, pons and medulla 

(Allen_Mouse_Brain_Atlas, 2009; Pierret et al., 2000; Toki et al., 2001). Expression 
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of Rasgrp1 starts in late embryonal stages (E18) in caudo-putamen and subiculum 

and reaches its adult pattern at P21 (Pierret et al., 2001; Toki et al., 2001). Within the 

hippocampus, the Rasgrp1 protein is found from P2 on only in the CA1 and CA3 

region, but not in the dentate gyrus. Immunohistochemical experiments followed by 

EM detection indicate a localization of Rasgrp1 exclusively in the somatodendritic 

compartment of pyramidal neurons (Pierret et al., 2001).  

The Rasgrp2 gene expresses two isoforms. The first one discovered was called 

Caldag-gefI, while the second isoform was named Rasgrp2, in accordance with the 

human genome project nomenclature committee (Clyde-Smith et al., 2000). To omit 

confusion of the reader, I will refer to the encoded proteins as Rasgrp2a and b, 

respectively, and to the shared gene or mRNA as Rasgrp2. Rasgrp2b is the longer 

isoform of the both, additionally containing a N-terminal acetylation site that targets 

Rasgrp2b to the membrane. This is a unique feature among the Rasgrp proteins.  

In contrast to the other members of the Rasgrp family, Rasgrp2a shows GEF 

activity towards Rap1a, Rap2a, Rras and Rras2 (TC21), but not towards H-, N-, K- 

and Mras.  

Rasgrp2b however shows additional activity towards N- and Kras, but not to 

Hras, which might be due to the plasma membrane targeting of the protein (Clyde-

Smith et al., 2000). Rasgrp2 mRNA is already present at small levels in the 

embryonic brain and expression peaks at P3. At this time point, the mRNA is present 

throughout the brain, including cerebellum (Toki et al., 2001). Until P14 however, 

mRNA levels decline in most regions, until the caudo-putamen remains the only 

region expressing Rasgrp2 mRNA (Allen_Mouse_Brain_Atlas, 2009; Toki et al., 

2001). For Rasgrp2a, this adult mRNA expression pattern was 

immunohistochemically confirmed (Kawasaki et al., 1998). The cellular and 

subcellular localization of Rasgrp2a and b in neurons is not known yet. However, 

since Rasgrp2 and Rasgrp1 mRNA were found to colocalize in the striatum, an 

expression of Rasgrp2 in neurons is likely (Toki et al., 2001). Rasgrp2 KO mice 

display impaired integrin signaling via Rap1a and perturbed cell adhesion of 

leukocytes and platelets (Bergmeier et al., 2007). 

Rasgrp3 is expressed in the brain and an early immunohistochemical study 

finds it to be most dominantly expressed in cerebral and cerebellar white matter 

(Yamashita et al., 2000), indicating a preferred expression in oligodendrocytes. Data 

on region specific expression and detailed investigations of cellular and subcellular 
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localization are lacking. Interestingly, Rasgrp3 has the broadest substrate specificity 

of all Ras GEFs, since it activates not only Hras, Mras, Rras and Rras2 (TC21), but 

also Rap1a (Ohba et al., 2000; Rebhun et al., 2000; Yamashita et al., 2000). 

Rasgrp4 is not expressed in the brain (Reuther et al., 2002; Yang et al., 2002) and 

therefore will not be considered in this text. 

As mentioned above, the catalytic activity of Rapgef2 towards Hras is still 

disputed. However, Rapgef2 is a neuron specific protein highly expressed in 

hippocampal pyramidal cells, where it is mostly found in somatodendritic 

compartments (Bilasy et al., 2009). KO mice die during embryogenesis (Wei et al., 

2007) and a telencephalon specific conditional KO (cKO) of Rapgef2 exhibits a 

severely aberrant cortex structure (Bilasy et al., 2009). A putative function of Rapgef2 

in synaptic transmission and plasticity has not been investigated yet. 

Kndc1 seems to be weakly expressed in the hippocampus. A stronger 

expression can be found in the cerebellum. In hippocampal pyramidal neurons, 

Kndc1 is expressed in the somatodendritic compartment, and in cultured neurons, it 

partly colocalizes with Map2. Moreover, Kndc1 was shown to be a negative regulator 

of dendrite development in cultured neurons (Huang et al., 2007). 

Electrophysiological experiments to investigate further roles of Kndc1 have not been 

performed yet.  

Gripap1 (GRIP1 associated protein 1, also known as GRASP-1) was previously 

reported as a Ras GEF and to be involved in AMPAR trafficking by binding to the 

AMPAR/Grip1 complex (Ye et al., 2000). However, recently Gripap1 was shown to 

be a Rab3 GEF and not to display activity towards Ras family G proteins 

(Hoogenraad et al., 2010).  

 

II.5.3. Roles of Ras GAPs in the Brain 

The best-investigated Ras GAPs in the brain are Syngap1 and Neurofibromin1 

(Nf1). Syngap1 exhibits a dual specificity towards Ras and Rap subfamilies 

(Yarwood et al., 2006). It is expressed postnatally with a peak of expression at P35 

(Porter et al., 2005). It was found to be highly expressed in the postsynapse (Chen et 

al., 1998), and initially thought to be exclusively localized to excitatory postsynapses. 

Proteomics studies indicated that the levels of Syngap1 at the PSD are as high as 

those of the major PSD scaffolds PSD-95 and PSD-93 (officially known as Dlg2) 

combined (Cheng et al., 2006). However, a recent comparison of the localization of 
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different Syngap1 isoforms revealed that at least one isoform is present at some 

inhibitory postsynapses as well (Moon et al., 2008). Syngap1 KO animals die during 

embryonal development. In the hippocampus of heterozygous KOs synaptic 

transmission is normal, but LTP is reduced (Kim et al., 2003). Homozygous KO 

neurons, however, show increased basal transmission and increased spine density 

(Vazquez et al., 2004). Another study confirmed this electrophysiological phenotype, 

but concluded that it is due to increased glutamate receptor surface expression, and 

not to a change in spine morphology (Rumbaugh et al., 2006). A more recent study 

showed that LTD is impaired and spine density is increased in hippocampi of 

heterozygote Syngap1 KOs (Carlisle et al., 2008). As for its downstream target, Ras, 

a role in spine morphology s still a matter of controversy.  

Nf1 is a protein in which mutations can lead to cancer syndromes. These 

become manifest as accumulations of pigmented lesions and sporadic malignant 

outgrowths, such as neurobfibromas or neurofibrosarcomas (Neurofibromatosis type-

1) (Karnoub and Weinberg, 2008). Nf1 activity is clearly specific for the Ras 

subfamily (Yarwood et al., 2006). It is found throughout the brain in neuronal as well 

as in non-neuronal cells. In neurons, Nf1 localizes to cell bodies and apical dendrites 

of pyramidal cells (Allen_Mouse_Brain_Atlas, 2009; Nordlund et al., 1993; Zhu and 

Parada, 2001). In a detailed EM study, Nf1 was found at the smooth endoplasmatic 

reticulum (SER), but not at the Golgi, mitochondria, nucleus, nuclear envelope or 

plasma membrane of neurons (Nordlund et al., 1993). Biochemical studies indicate 

that Nf1 is part of the NMDAR complex (Husi et al., 2000). Nf1 KO mice die as 

embryos and therefore only heterozygous animals were investigated in 

electrophysiological experiments so far. They show a slightly reduced basal synaptic 

transmission, reduced LTP, but enhanced GABAergic inhibition due to increased 

presynaptic vesicle release (Costa et al., 2002; Cui et al., 2008; Guilding et al., 

2007). The authors speculate that the impaired LTP is due to the increased inhibition 

in these animals.  

Rasa and Rasal GAPs are less well-studied proteins in neurobiology, but their 

expression patterns as well as recent data make them interesting subjects for future 

research. Rasa1 (also known as p120GAP, Rasa, RasGAP, GAP) is ubiquitously 

expressed in the brain (Allen_Mouse_Brain_Atlas, 2009), but its cellular and 

subcellular expression has not been studied in detail. However, besides Syngap1, it 

is the only Ras GAP found in the PSD proteome (Cheng et al., 2006). It stimulates 
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Hras and Rras, shows no activity towards Rho or Rap (Nakamura et al., 2005; 

Yarwood et al., 2006), and was recently found to act in axonogenesis via Ras 

subfamily proteins (Endo and Yamashita, 2009). 

Rasa3 (also known as GapIII, GAP1(IP4BP), R-Ras GAP) was discovered in 

1995 (Baba et al., 1995; Cullen et al., 1995) and displays activity towards Hras, Rras, 

Rap1a, but not towards Kras, Rac1 or Rap3a. Rasa3 mRNA is expressed in neurons 

and oligodendrocytes of the hippocampus, cortex and cerebellum and peaks at P35. 

Immunohistochemical analysis revealed high protein levels in the CA1 region of the 

hippocampus, but low protein expression in CA3 and dentate gyrus. At the 

subcellular level, Rasa3 is found in cell bodies (endomembranes and plasma 

membrane, less in the cytosol) and proximal apical dendrites (Signore et al., 1999). 

Little is known about Rasa2 (also known as mGAP1, GAP1m) and Rasa4 (also 

known as Capri), whose mRNA seem to be more or less exclusively expressed in the 

olfactory bulb (Allen_Mouse_Brain_Atlas, 2009). Similarily, Rasal1 (also known as 

MRASAL) and Rasal2 (also known as NGAP) are not characterized in a neuronal 

context yet. Their mRNA expression pattern in the brain is interesting due to the fact 

that they seem to be present only in the telencepalic cortex. In the hippocampus, only 

the CA1 region seems to express Rasal1 and Rasal2 (Allen_Mouse_Brain_Atlas, 

2009). The putative Ras GAP Dab2ip is expressed postnatally and highly 

concentrated in hippocampal pyramidal neurons (Chen et al., 2006; Homayouni et 

al., 2003). Iqgaps 1-3 contain RasGAP domains (Bos et al., 2007). They may be 

involved in Mapk- pathway scaffolds (Brown and Sacks, 2009), but their role as Ras 

GAPs in the brain has not yet been investigated. 

 

II.5.4. Interplay of Ras Regulatory Proteins in the Hippocampus 

The rodent hippocampal formation includes the “retrohippocampal region” 

comprised of the entorhinal cortex and the subicular complex (subiculum, 

parasubiculum, presubiculum) and the “hippocampal region” comprised of 

hippocampus proper (Ammon’s horn = Cornu ammonis regions CA1, CA2 and CA3 

fields) and the dentate gyrus (Abrams, 2005; Amaral and Witter, 1989; Burwell et al., 

1995). The processing of information in the hippocampus takes place in a cortico-

hippocampal-cortical loop. Cortical input entering the superficial layers II and III of the 

entorhinal cortex is relayed directly to the CA3 region. Processes of pyramidal 
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neurons in the CA3 region form the Schaffer collateral fibers that pass the neuronal 

cell body-free CA2 region and terminate at pyramidal neurons in the CA1 field.  

The CA1 region is the most thoroughly investigated region in the brain. The 

main reason for this is its physiological importance for learning and memory 

formation. Secondly, it is a distinctly layered structure, which makes it nicely suitable 

for electrophysiological and optical investigations. In a dorso-ventral order, it 

comprises of four regions, the stratum oriens (so), the stratum pyramidale (sp), the 

stratum radiatum (sr) and the stratum lacunosum moleculare (slm). The stratum 

pyramidale contains the somata of excitatory pyramidal and inhibitory interneurons. 

Pyramidal neurons extend their basal dendrites and their axons into the stratum 

oriens and their thicker and longer apical dendrites into the stratum radiatum. The 

apical dendrites branch several times in the stratum radiatum. In the stratum 

lacunosum moleculare they end in so called “dendritic tufts”. Most incoming signals 

are therefore received in the stratum radiatum and the stratum lacunosum 

moleculare, signal integration takes place in the stratum pyramidale and conduction 

of action potentials occurs through the stratum oriens (Spruston, 2008).  

Of the six proteins within the classical Ras protein subfamily and the Mras/Rras 

subfamily, three proteins are expressed in the adult CA1 region of the brain. These 

are Hras, Kras and Mras. In total, at least 12 regulatory proteins (or their mRNA) for 

these small G proteins have been detected in the CA1 region. However, cellular and 

subcellular localizations have not been determined for most of them. The neuronal 

GEFs expressed in the CA1 are Sos1, Rasgrf1 and Rasgrp1. Whether Sos2 and 

Rasgrp3 are also present in neurons remains to be determined. Ras GAPs that have 

been identified in CA1 neurons include Syngap1 and Nf1, Rasa1 and Dab2ip. In 

addition, Rasal1, Rasal2 and Iqgap1 may also be present in the CA1 region. Of these 

Ras regulators Syngap1 and Sos1 are clearly localized to the postsynapse. No Ras 

regulatory protein that would be specifically localized to the presynapse has been 

found yet.  
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II.6. Rasgrp1 

II.6.1. Rasgrp1 in Non-neuronal Functions 

Rasgrp1 is a key Ras regulator. Despite of its strong expression in the brain, 

research has so far have concentrated on its function in the haematopoietic system.  

Rasgrp1 has been found to link T-cell receptor (TCR) signaling to Hras in a 

diacylglycerol (DAG) dependent manner (Ebinu et al., 2000). Hras activation is 

necessary for differentiation of double negative thymocytes (CD4- / CD8-) into double 

positive thymocytes (CD4+ / CD8+). Only double positive thymocytes are able to 

undergo positive selection into single positive cells (CD4- / CD8+ or CD4+ / CD8-), 

which are ready to differentiate into killer or helper cells. Accordingly, Rasgrp1 KO 

mice exhibit a defect in positive selection (Dower et al., 2000; Priatel et al., 2006).  

Interestingly, the GEFs Rasgrp1 and Sos1/2 functionally cooperate in 

lymphocytes to integrate TCR signals. Rasgrp1 modulates Sos1/2 by providing GTP 

bound Ras (Ras-GTP) to the allosteric Ras-binding pocket of Sos1/2, leading to an 

increased sensitivity of Sos1/2 and increased Ras signaling. This positive feedback 

loop may be a form of molecular short-term memory (Chakraborty et al., 2009).  

Rasgrp1 might also play a role in systemic lupus erythematosis (SLE), which is 

characterized by dysregulated signaling in T- and B-lymphocytes (Peng, 2009). In the 

kidney nephron, Rasgrp1 is involved in the regulation of sodium reabsorption by 

preventing surface expression of sodium chloride transporter (NCC) (Ko et al., 2007). 

 

II.6.2. Insights in the Function of Rasgrp1 in the Brain 

In an investigation of memory formation in the subregions of the rat 

hippocampus that involved spatial memory training and subsequent microarray 

based gene expression profiling, Camk2a, Neuroligin1 and Rasgrp1 mRNA 

expression was shown to be strongly upregulated in the CA3 region of the 

hippocampus upon this spatial memory training (Haberman et al., 2008), indicating 

that Rasgrp1 may play a role in memory formation. 

Rasgrp1 may also be involved in motor side effects induced by certain anti-

parkinsonian therapies. Under normal conditions, Rasgrp1 expression in the striatum 

is rather low and mainly restricted to striasomes (also called “patches”). In contrast, 

Rasgrp2 is expressed abundantly in the striatum and only found in the 

complementary compartment, i.e. the striatal matrix. Parkinson's disease is 

characterized by loss of dopaminergic neurons in the striatum, which leads to motor 
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dysfunction. Patients treated with L-DOPA first experience a gain in motor function, 

but suffer dyskinesia in prolonged treatment. In a parkinsonian rat model treated with 

L-DOPA, Rasgrp1 was found to be upregulated in the striatum, with a concomitant 

downregulation of Rasgrp2. These high Rasgrp1 and low Rasgrp2 mRNA levels 

quantitatively correlated with high dyskinesia scores, indicating that Rasgrp1 and 

Rasgrp2 may be involved in general motor activity control (Crittenden et al., 2009). 

 

II.6.3. Structure of Rasgrp1 and Mechanisms of Function 

Rasgrp proteins share a high degree of structural similarity. Most N-terminally, 

they exhibit a Ras exchanger motif (REM), which is a common structural feature 

found in many Ras GEFs, and the catalytical Ras-GEF domain. Towards the C-

terminus, two EF-hand (EFh) motifs and a phorbol esters/diacylglycerol binding (C1) 

domain follow. These domains mediate regulation by calcium and DAG, respectively, 

which both activate Rasgrp1 (Dower et al., 2000; Ebinu et al., 1998; Ebinu et al., 

2000; Kawasaki et al., 1998; Lorenzo et al., 2001; Reuther et al., 2002).  

One mechanism to achieve specificity in Ras signaling is the differential 

subcellular targeting of regulatory and downstream components of the signaling 

pathway. Localized signaling of Rasgrp1 was demonstrated by the finding that 

overexpression of Rasgrp1 in a number of cell lines activates Hras selectively on the 

Golgi apparatus, leading to neurite outgrowth in PC12 cells (Bivona et al., 2003). 

Although this finding has later been revised by evidence for a predominant activation 

of endogenous Hras at the plasma membrane (Augsten et al., 2006), it provided 

insights into general mechanisms of compartmentalized Ras signaling. Of particular 

importance for the mechanism of compartmentalized Ras signaling through Rasgrp1 

is the C1 domain, because it mediates translocation of Rasgrp1 from the cytosol to 

the Golgi apparatus (Bivona et al., 2003). The second messenger DAG is produced 

by the cleavage of phosphatidyl inositol-bisphosphate (PIP2) into inositol-

trisphosphate (IP3) and DAG. As PIP2, DAG remains incorporated in the membrane. 

Therefore, proteins containing a C1 domain, which binds DAG often show a high 

affinity to membranes. The C1 domain however, seems not to be the only structural 

feature of Rasgrp1 that determines its subcellular localization. Other findings 

indicated that a plasma-targeting domain (PT) and a suppressor of plasma targeting 

domain (SuPT) domain within the C-terminus of Rasgrp1 compete or cooperate with 

the C1 domain to shuttle Rasgrp1 between cellular compartments (Beaulieu et al., 
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2007). In addition, the first EF hand and the Ras-GEF domain also seems to be 

involved in the translocation of Rasgrp1 to the plasma membrane (Tazmini et al., 

2009). 

Neurons exhibit the highest degree of compartmentalization among all known 

cell types. In view of the complex subcellular compartmentalization of Rasgrp1 and 

its regulation by key second messengers, along with the fact that Rasgrp1 

expression parallels the developmental increase in neuronal polarization and 

complexity, I set out to test the possibility that Rasgrp1 is involved in nerve cell 

differentiation and function. 

 

II.7. Aims of the Study 

The aim of this study was to characterize the Rasgrp1 KO in order to gain 

insights into the role of Rasgrp1 in differentiation and function of the brain. As 

Rasgrp1 is strongest expressed in the hippocampus, this study concentrated on this 

region of the brain. Since spatial control has a strong impact on the function of Ras 

signaling, the localization of Rasgrp1 in the hippocampal CA1 region was studied in 

detail. Fluorescent immunohistochemistry was used to label Rasgrp1 and to compare 

its staining pattern with that of cellular and subcellular markers. Since Ras signaling 

has been reported to be involved in neuronal morphology (see chapter II.3.1), the 

brain morphology of Rasgrp1 was studied subsequently. Dendrite morphogenesis 

was analyzed in detail using hippocampal cell culture. Also, possible physiological 

implications of Rasgrp1 were studied. Field and whole cell recordings on acute 

hippocampal slices were carried out to investigate basal synaptic transmission and 

LTP. Next, the study examined the possibility that lack of Rasgrp1 disturbed the 

architecture of the synaptic network in the hippocampus. A detailed 

immunohistochemical analysis of excitatory and inhibitory pre- and postsynapses 

was used to detect any alterations in the synaptic architecture of the CA1 region. A 

biochemical analysis of hippocampal homogenates and PSD fractions gave insights 

into the molecular components that are involved in Rasgrp1 function. 

Taken together, this study is the first to systematically analyze the neuronal 

function of Rasgrp1 and thereby to provide valuable information to the understanding 

Ras signaling in the brain. 
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III. Material 

III.1. Apparatus and Tools 

Product Source 

Agarose gel imager Intas GmbH 

Amplifier, Multiclamp 700B Molecular Devices (formally Axon Instruments) 

Apotome Microscope Axio Imager Z.1 ZEISS 

Binocular MZ16F, Fluorescence Leica Microsystems 

Centrifuge, RC6 Sorvall 

Confocal laser scanning microscope TCS-SP2 Leica Microsystems 

Cryotome Reichert-Jung 

Developing machine for ECL films Agfa-Gevaert GmbH 

Fluorescence Microscope Olympus BX61 Olympus Optical CO., (Europa) GmbH 

Freezers Liebherr, Heraeus über Thermo Electron 

Glass-teflon potters B. Braun Biotech International GmbH 

Incubators Adolf Kühne AH, Heraeus GmbH 

Microtiter plate reader Molecular devices 

Mini Protean II system BIO-RAD 

Neubauer improved cell counting chamber  Paul Marienfeld GmbH 

PCR machine PTC-225 MJ Research 

PCR-Thermocycler PTC 225 MJ Research, Bio-Rad Laboratories GmbH 

Thermomixer compact eppendorf 

Tissue slicer Leica Microsystems 

Ultra Turrax IKA Labortechnik 

Ultracentrifuge Optima TLX Beckman 

Ultracentrifuge, L-60 Beckman 

Ultrasonic waterbath Branson 

 

III.2. Consumables and Kits 

Product Source 
Catalogue 

number 

BCA assay kit Pierce, Thermo Scientific 23228 & 1859078 

Bradford assay kit BIO-RAD 500-0006 

coverslips  13 mm Menzel Gläser  

coverslips  23 mm Menzel Gläser  

culture plates, 25 well Greiner bio-one 662160 

culture plates, 6 well Greiner bio-one 657160 

ECL films Amersham Biosciences  

ECL kit Amersham Biosciences RPN2106V1 & 2 

Filter paper Whatman 3MM Whatman International Ltd.  

glass slides 76x26 mm Menzel Gläser  

Microfilters (22 m) Millipore  

Microtiter plates Roth 9293.1 

nexttec™ Genomic DNA 
Isolation Kit 

Nexttec 10.924 

Nitrocellulose Membrane, 0.2 
m 

Schleicher & Schuell  

PCR plates ThermoScientific  

plastic tubes eppendorf  

T-75 culture flasks nunc 157 400 

Ultracentrifugaion tubes Beckman  
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III.3. Software 

Product Source 

Axiovision R4.1 ZEISS 

CellP 2.7 Olympus Soft Imaging GmbH 

IGOR Pro 4.03 WaveMetrics, Inc. 

ImageJ 1.43k http://rsb.info.nih.gov/ij/index.html 

Leica Application Suite (Binocular) Leica Microsystems 

Photoshop CS3 Adobe 

WinWCP http://spider.science.strath.ac.uk/sipbs/software_ses.htm 

 

III.4. Chemicals, Media and Solutions 

Product Source 
Catalogue 

number 

agarose Life Technologies (formerly Invitrogen/Gibco) 15510-27 

ammonium persulfate Merck 1.01217.1000 

Bromphenol Blue Pierce 20730 

CaCl2 x 2H2O Merck 2382 

cyclothiazide Tocris Bioscience 0713 

DAPI AppliChem A1001 

DMEM Life Technologies (formerly Invitrogen/Gibco) 41966-029 

DNA Ladder, 1 Kb Life Technologies (formerly Invitrogen/Gibco) 15615-024 

DTT (dithiotreitol) BioMol 04010 

EDTA Merck 1.08418.0250 

EGTA Sigma-Aldrich GmbH E3889 

Ethanol Merck 1.00983.1011 

Fluoromount-G Southern Biotech 0100-01 

gabazine  Sigma-Aldrich GmbH SR 95531 

gabazine Tocris Bioscience 1262 

GlutaMAX™I Life Technologies (formerly Invitrogen/Gibco) 35050-038 

Glycine Merck 1.04201.1000 

Goat Serum Life Technologies (formerly Invitrogen/Gibco)  

HBSS Life Technologies (formerly Invitrogen/Gibco) 14170-088 

HEPES Sigma-Aldrich GmbH H3375 

Isofluran DeltaSelect  

KCl Merck 1.04936.1000 

L-AMPA Tocris Bioscience  

Methanol L.T. Baker  

MgCl2 x 6H2O Merck 1.05388.1000 

Na2HPO4  Merck 1.06346.0500 

NaCl Merck 1.6404.1000 

NaH2PO4 x H2O Merck 1.6329.0500 

NaOH Merck 1.06498.1000 

Neurobasal A Medium (NBA) 
 

Life Technologies (formerly Invitrogen/Gibco) 10888-022 

Papain Worthington 36K9030 

Paraformaldehyde (PFA) Serva 31628 

PBS (for cell culture) PAA H15-002 

Penicillin/Streptomycin 
10,000/10,000 U/mL (P/S) 

Life Technologies (formerly Invitrogen/Gibco) 15140-122 

PLL Sigma-Aldrich GmbH P4707 

Ponceau S Sigma-Aldrich GmbH P3504 

REDTaq™ DNA Polymerase Sigma-Aldrich GmbH D4309 

REDTaq™, 10x Reaction 
Buffer 

Sigma-Aldrich GmbH B5926 

SDS (sodium dodecyl-sulfate) Sigma-Aldrich GmbH L5750 

skim milk frema  

Sucrose 
Merck 

Sigma-Aldrich GmbH 
1.07651.1000 

s7903pis 
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Chemicals, Media and Solutions (continued) 

Product Source 
Catalogue 

number 

Temed (N,N,N´,N´-
Tetramethyl-ethylenediamine) 

Serva 35925.01 

tri-brom-ethanol Sigma-Aldrich GmbH T48402 

Tris Base Sigma-Aldrich GmbH T1503 

Triton X-100 Roche 10.789704.100 

Trypsin-Inhibitor Roche Holding GmbH  

TTX (tetrodotoxin) Tocris Bioscience 1078 

Tween 20 Sigma-Aldrich GmbH P7949 

-D(+) Glucose x H2O Fluka 49159 

 

III.5. Antibodies 

Primary 
antibodies 

Source 
Catalogue 

number 
Immunoblot 

Immuno-
histochem. 

Immuno-
cytochem. 

gp-a-VGAT Synaptic Systems 131 004 - 1:4,000 - 

ms-a-Map2 clone 
AP20 

Millipore/Chemicon MAB3418 1:2000 - - 

ms-a-NMDAR1 M68 Synaptic Systems 114 011 1:1,500 - - 

ms-a-PSD95  
[6G6-1C9] 

Abcam ab2723 1:8,000 1:2,000 - 

ms-a-Ras (clone 
RAS10), H-,N-,Kras 

 
Millipore (Upstate) 

 
05-516 1:2,000 - - 

ms-a-Rasgrp(199) Santa Cruz sc-8430 1:500 1:1,500 - 

ms-a-
Synaptophysin1 
clone 7.2 

Synaptic Systems 101 011 1:40,000 - - 

rb-a-Calbindin D-28K Millipore Chemicon AB1778 - 1:5,000 - 

rb-a-Calnexin 
Stressgene/ Assay 

Designs 
SPA-860 - 1:1,000 - 

rb-a-Calretinin Millipore Chemicon AB5054 - 1:2,000 - 

rb-a-EEA1 Abcam 2900 - 1:500 - 

rb-a-GAD65/67 Millipore Chemicon AB1511 - 1:800 - 

rb-a-Giantin Abcam ab24586 - 1:2,000 - 

rb-a-GluR1 (rabbit 
monocl.) 

Millipore Upstate 04-855 1:800 - - 
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Primary 

antibodies 
(continued) 

Source 
Catalogue 

number 
Immunoblot 

Immuno-

histochem. 

Immuno-

cytochem. 

rb-a-GluR2 Synaptic Systems 182103 1:3,000 - - 

rb-a-GluR2/3 Millipore Chemicon AB1506 1:800 1:500 - 

rb-a-Map2 Millipore Chemicon AB5622 - 1:500 1:500 

rb-a-NMDAR2A Millipore Chemicon AB1555P 1:2,000 - - 

rb-a-NMDAR2B Millipore Chemicon AB1557P 1:2,000 - - 

rb-a-Parvalbumin Swant PV-28 - 1:5000 - 

rb-a-Synapsin1/2 Synaptic Systems 106 002 1:4,000 1:1,000 - 

rb-a-VGLUT1 Synaptic Systems 135 302 - 1:4,000 - 

 

Secondary 
antibodies 

Source 
Catalogue 

number 
Immuno-

blot 
Immuno-

histochem. 
Immuno-

cytochem. 

gt-a-gp Alexa Fluor® 
555 

Life Technologies 
(formerly 

Invitrogen/Gibco) 
A-21435 - 1:1,200 - 

gt-a-ms Alexa Fluor® 
488 

Life Technologies 
(formerly 

Invitrogen/Gibco) 
A-11029 - 1:1,200 1:2,000 

gt-a-ms Alexa Fluor® 
555  

Life Technologies 
(formerly 

Invitrogen/Gibco) 
A-21424 - 1:1,200 1:2,000 

gt-a-rb Alexa Fluor® 
488 

Life Technologies 
(formerly 

Invitrogen/Gibco) 
A-11034 - 1:1,200 1:2,000 

gt-a-rb Alexa Fluor® 
555 

Life Technologies 
(formerly 

Invitrogen/Gibco) 
A-21429 - 1:1,200 1:2,000 

gt-a-ms HRP 
Jackson 

Immunoresearch 
115-035-146 1:10,000 - - 

gt-a-rb HRP 
Jackson 

Immunoresearch 
111-035-144 1:10,000 - - 

 



Methods 
 

 40 

IV. Methods 

IV.1. Animals 

Animals were hold in the animal house of the MPI of Experimental Medicine 

under the excellent care of Inga Schauenberg and Astrid Ohle. For comparative 

analysis of Rasgrp1 KO and WT mice, animals between 2.5 and 5 weeks of age 

were examined. 

 

IV.1.1. Genotyping 

Genomic DNA was prepared from mouse-tail samples using the Nexttec 

genomic DNA preparation kit. It contains a “clean” plate, a “DNA plate”, a “prep” plate 

containing columns filled with DNA binding resin, lysis (LG1), “prep-”, washing and 

elution buffers. Tissue samples were lysed in LG1 for 30 min gently shaking (300 

rpm, Thermo mixer) at 60 °C. The prep- plate was equilibrated by incubation with 

“prep” buffer for 5 min. Residual prep- buffer was removed by centrifugation. After 

that, the tissue lysate was applied onto the columns. During a 1 min incubation time, 

DNA bound to the resin. The rest of the lysate was removed by centrifugation. Bound 

DNA was washed with the ethanol-containing washing buffer. The DNA was removed 

from the columns by adding elution buffer and collected in the DNA plate by 

centrifugation. Typically, 1 L of this sample was used for the genotyping PCR. 

The PCR sample for genotyping was prepared as follows: 2.1 L REDTaq 

Reaction buffer, 0.8 L dNTPs (10 M, 2.5 M each), 15.5 L dsH2O, 0.08 L oligo 

8587 (50 M), 0.08 L oligo 8588 (50 M), 0.16 L oligo 8589 (100 M), 1 L DNA.  

Oligos: 

# 8588: 5'-CCTGAGCACATGGGCACATAG -3'   (Dr. Andrea Betz) 

# 8587: 5'-GCATTCCACCACTGAGCTAGG -3'   (Dr. Andrea Betz) 

# 8589: 5'-GCTGATGCTTCAGAGCCGAGT -3'  (Dr. Andrea Betz) 

The reaction was performed using a PCR-Thermocycler PTC 225 (BIO-RAD) 

and the following protocol: 

 

 Step Temp. Duration Cycles 

1.) Initial denaturation 94˚C 2’ - 
Denaturation 94˚C 30’’ 
Annealing 60˚C 45’’ 2.) 
Elongation 72˚C 30’’  

 
35 x 
 

3.) Final elongation 72˚C 2’ - 
4.) Store 10˚C  - 
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15 L of the resulting PCR sample containing amplified DNA were analyzed on 

a 2 % agarose gel. The WT specific fragment is 314 bp and the KO fragment 378 bp 

in length.  

 

IV.2. Immunohistochemistry 

Buffer: 

0.1 M PB was prepared from 19 parts 0.2 M Na2HPO4, 81 parts 0.2 M NaH2PO4
 and 

100 parts dsH2O (81:19:100) 

Avertin solution: 150 μL tri-brom-ethanol, 4.5 mL 0.9 % NaCl, 400 l EtOH 

PO4 buffer, 2 L: 15.4 g NaOH, 67.3 g NaH2PO4xH2O 

Animals were deeply anesthetized with 300-400 μL Avertin and transcardially 

perfused with 4 % paraformaldehyde (PFA) in 0.1 M PB for 10 min. Brains were post-

fixed o/n in 0.1 M PB (2 % PFA, 2 % glutaraldehyd), rinsed twice in 0.1 M PB, and 

cryoprotected o/n by incubation in 30 % sucrose in 0.1 M PB. 40 μm thick coronal 

sections were cut using a cryotome, collected in 0.1 M PB and then stored at 4 °C. 

For blocking and permeabilization, sections were rinsed with 0.1 M PB and 

subjected to 0.1 M PB containing 5 % goat serum (GS) and 0.3 % Triton X-100 for 1 

h at RT. Primary antibodies were diluted in 0.1 M PB containing 2 % GS and 0.3 % 

Triton X-100. The final dilutions were as stated in chapter III.5. The sections were 

incubated with the primary antibodies for 36 h at 4 °C and slow, bidirectional shaking. 

Following that, the sections were rinsed three times with 0.1 M PB for 5 min. The 

secondary antibodies (raised in goat, conjugated to the fluorochromes Alexa555 or 

Alexa488, 1:1200 final dilution) were prepared in 0.1 M PB containing 5 % GS and 

0.3 % Triton X-100 and added to the section. After incubation for 1 h at RT in the 

dark, the sections were repeatedly rinsed with 0.1 M PB and then subjected to 0.5 

g/mL DAPI in 0.1 M PB for 5 min at RT. Section were rinsed again and mounted in 

Fluoromount-G. 
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IV.3. Cell Culture 

IV.3.1. Preparation of Primary Hippocampal Cell Cultures from P0 

Mice 

Solutions & media: 

Papain solution: DMEM, 0.2 mg/mL Cystein, 10 mM CaCl2, 5 mM EDTA, 5 U/mL 
Papain, supplied with Carbogen for at least 20 min 

stop solution: FBS-Medium, 2.5 mg/mL BSA, 2.5 mg/mL Trypsin inactivator  

NBA complete: NBA medium, 1x B27, 2 mM GlutaMAX™I, 20 U/ml Penicillin, 20 
μg/ml Streptomycin 

FBS medium: DMEM, 10 % FBS, 500 L, MITO+ Serum Extender (1 ampulla/5 ml 
DMEM), ml 20 U/ml Penicillin 

Prior to use, all solutions and media had been sterilized using 22 m microfilters. 

P0 littermates from heterozygous (Rasgrp1 +/-) parental animals were 

genotyped as stated in IV.1.1; homozygous WT and Rasgrp1 KO animals 

decapitated and the hippocampi quickly prepared in ice-cooled HBSS. Tail samples 

were kept for post-hoc control of genotypes. During genotyping, culture plates were 

supplied with 1:12 poly-L-lysine (PLL) solution in PBS and set into the cell culture 

incubator (37 °C; 5 % % CO2) for 1 h for coating. After that, the PLL solution was 

exchanged with HBSS and the plates set back into the incubator.  

Per preparation, separate cell cultures were derived from the hippocampi of 1-3 

animals per genotype. The hippocampi were transferred into Papain solution and 

incubated for 1 h at 37 °C and gently shaking (600 rpm, Thermo mixer). After 

digestion by Papain, the solution was exchanged by stop solution to inhibit remaining 

Papain. In the stop solution, the digested hippocampi were incubated for 15 min at 37 

°C and gently shaking (600 rpm, Thermo mixer). During that time, the HBSS in the 

culture plates was exchanged with NBA complete. The plates were set back into the 

cell culture incubator until further use. After incubation and exchanging of the stop 

solution with prewarmed NBA (37 °C), the digested hippocampi were mechanically 

triturated. This was achieved by pipetting the tissue up and down using a 10-200 L 

pipette tip. Remaining tissue clusters sedimented during a short (  1 min) incubation 

period and the supernatant was transferred into a fresh 1.5 mL plastic tube. The cell 
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concentration in this suspension was determined by counting in a Neubauer counting 

chamber. The appropriate volume of cell suspension was transferred into the wells of 

the prepared plates. 

For continental cultures, cells were seeded in a density of 170 cells/mm2 onto 

13 mm  coverslips in 24 well plates. Half of the NBA complete medium was 

exchanged once a week with fresh medium. 

Astrocyte island cultures were kindly provided by Anja Galinski. Quickly, 

astrocytes were prepped from cortices of P0 WT mice. Cortices were digested in 

Trypsin solution for 20 min at 37 °C and gently shaking  (600 rpm, Thermo mixer). 

The Trypsin solution was exchanged with stop solution and the digested cortices 

incubated (15 min, 37 °C, 600 rpm, Thermo mixer). The stop solution was exchanged 

with FBS medium. Subsequently, the cortices were mechanically triturated and 

sedimented by short incubation. The supernatant was saved and the cell 

concentration determined using a Neubauer counting chamber. 800,000 cells were 

seeded into T-75 culture flasks and grown in the cell culture incubator until a 

confluent cell layer had formed at the bottom of the flask. These cells were harvested 

by Trypsin treatment and 12.000 cells each were seeded onto glass 23 mm  

coverslips in 6 well culture plates. These coverslips had been coated with a 

Collagene/PLL solution by “stamping”; i.e. using a stamp with grid-like notches, 

resulting in coated microdots (  0.5 mm ) that alone allowed the adherence of cells. 

These cells were grown in FBS selection medium until islands composed of astrocyte 

had formed. 

For the seeding of neurons onto the astrocytes, the FBS medium was 

exchanged with NBA complete and 4000 cells added, resulting in a final density of 

only 10 cells/mm2.  

 

IV.3.2. Immunocytochemical Stainings 

Buffer: 0.1 M PB, preparation as described in section IV.2  

Hippocampal cultures were gently washed with PB and fixed for 15 min at RT in 

0.1 M PB containing 4 % PFA and 2.5 % sucrose. Next, the fixed cultures were 

washed with 0.1 M PB and incubated with 0.1 M PB containing 0.3 % Triton X-100 

and 3 % GS for 30 min. This step is required for permeabilization of the cells and 

blocking of unspecific epitopes. The primary antibody was added to a final dilution in 
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0.1 M PB as stated in III.5. The samples were incubated with the primary antibody 

o/n at 4 °C. The next day, the samples were washed, and incubated with the 

secondary antibody (goat-anti-rabbit conjugated to the fluorochrome Alexa555, 

1:2000) for 1 h at RT. Upon washing, the samples were subjected to DAPI (0.5 

g/mL) in 0.1 M PB for 5 min at RT. Again, the samples were washed and mounted 

on glass slides using the fluoro-protectant Fluoromount G. From incubation with the 

secondary antibody on, all incubations had been performed in the dark to avoid 

bleaching of the sample. 

 

IV.4. Microscopy and Image Analysis 

Overview images for qualitative analyses were taken at a fluorescence 

binocular. For detailed qualitative analyses such as of cellular localization, single-

plane confocal images of immunolabeled sections were taken on an inverted TCS-

SP2 confocal laser-scanning microscope (Leica Microsystems), using a 63x objective 

and a zoom factor of 2x to 4x. For analysis of dendrite morphology, images were 

taken at an Olympus fluorescence microscope, using a 20x objective.  

Grid-projection images for analysis of synaptic composition were taken at a 

ZEISS ApoTome Microscope, using a 63x objective. The basic concept behind the 

ApoTome is the use of an evenly spaced grid in the aperture plane. The grid is 

inserted into the light path of the microscope and projects a shadow of the grid lines 

in the objective focal plane. During acquisition, three separate images of the object 

are sequentially gathered by shifting the grid projection by one-third between each 

image capture. The resulting image set contains the sum of contributions from the in-

focus plane, which are shadowed by sharply defined stripes, plus blurred planes (not 

focused) that do not contain the distinct striping pattern from the grid. By computing 

these ray images, the application software produces a single sharp image that is free 

of the blur arising from remote focal planes. 

 

IV.4.1. Analysis of Dendrite Morphology Using Sholl Analysis 

(Sholl, 1953) 

Images were obtained with the 20x objective and sequential acquisition settings 

at maximal resolution (1024x1024) of the Olympus fluorescence microscope. Cells 

were imaged, processed and analyzed blind to the experimental condition. Cells 

showing obvious signs of toxicity such as dendrite fragmentation, vacuoles in the cell 
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body and unusual lamellopodium formations were excluded from the analysis. 

Neuronal cells obviously belonging to a minor subpopulation of hippocampal cells 

such as bipolar cells and “hairy cells” (cells with very many thin and short, non 

bifurcating dendrites) were excluded as well, leaving a collection of images showing 

separated, healthy appearing neurons with the common morphological feature of 

having roughly between 3 and 15 primary dendrites.  

Each image was a z-series of 7 to 12 images taken at 0.5-1 m intervals. Each 

acquisition of such a z-stack was carried out for each color channel separately to 

reduce bleed-through. Exposure times were kept at the same level throughout the 

whole experiment.  After taking the pictures, the “Extended Focus” algorithm of the 

CellP software was applied to each z-series. This algorithm extracts the focused area 

of each image and than “flattens” the z-series of extracted areas, creating a single 

picture. In this way even dendrites extending from upper or lower levels of the cell 

body or dendrites crossing each other could be displayed “in focus”. Moreover this 

procedure leads to a markedly reduced background, resulting in pictures where even 

thin dendrites could clearly be distinguished from their surroundings. 

These images were exported as TIFFs and the cells traced in Photoshop using 

the magic wand tool. Binary images were generated and analyzed using the ImageJ 

Sholl analysis plug-in (available on the homepage of the Gosh lab, USCD 

http://biology.ucsd.edu/labs/ghosh/software/). 

 

IV.4.2. Analysis of Synaptic Composition of the CA1 Region 

Coronal brain sections were immunolabeled as described in IV.2. Images were 

taken blind to the experimental conditions at the ZEISS ApoTome Microscope. The 

stratum oriens and the stratum pyramidale were imaged together; the stratum 

radiatum and the stratum lacunosum moleculare were imaged separately. In the 

latter, this set of four regions is called “image series”. Of each coronal section, both 

hippocampi were imaged. Of each hippocampus, two series of images were taken. 

One series covered a lateral part, the other one the medial part of the hippocampus. 

After imaging, the stacks were exported from the AxioVision software into TIFF 

formats. The regions of interest (ROIs), displaying the respective lamina without an 

overlap of other laminae, were extracted using ImageJ. 

Although utmost attention was paid to homogenous experimental conditions 

during immunohistochemical stainings, the intensity of the stainings always displayed 
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a slight heterogeneity. Moreover, intensity of stainings is always decreasing with 

tissue depth due to decreasing antibody penetration. Although the standard imaging 

procedure for comparative analyses requires setting the focus on a Z-plane that lies 

in a defined distance from the tissue surface, intensities can differ significantly even 

though this distance is tightly controlled. To circumvent this problem, a stack was 

taken in each region. This stack was composed of three slices taken at defined Z-

depths beneath the tissue surface (2 m, 4 m and 6 m). After analysis, the data 

obtained from these slices were binned.  

In total, the data of 12 images were binned per lamina per coronal section: Two 

parts (medial, lateral) per each of the two hippocampi makes four stacks, each 

comprised of three slices. Therefore the n- numbers given represent the number of 

sections analyzed. 

 

IV.4.2.1. Development and Evaluation of Image Processing Methods 

For the analysis of synaptic composition in the hippocampus involving a huge 

set of images, an ImageJ macro frameset for automatized processing and analysis 

was developed (Figure IV.1). Imaging slices taken in different Z-planes and exhibited 

heterogeneous intensities posed a problem, since they had to be processed in the 

same way. The problem was to find a processing method involving automatized and 

intensity based thresholding that would not extract too much information of one, and 

leave too much background in the other slice. Also stacks taken in the different 

laminae of the hippocampus had to be processed by the same method for 

comparison. Since the labeled proteins are not expressed to the same extent in each 

lamina, immunostainings showed differences in intensity, posing the same problem 

for processing as stated above. For reliable comparison of the numbers of inhibitory 

and excitatory pre- and postsynapses, also the different immunostainings for PSD-

95, Synapsin1/2, VGLUT and VGAT had to be processed in the same way. For the 

development of a processing method that could be applied for all slices of a Z-stack, 

the different regions imaged and the different immunolabelings examined, it seemed 

difficult to rely on a purely qualitative approach of evaluating the processed slices, i.e. 

to test different methods and compare original and processed images by eye. The 

characteristic puncta found in synaptic stainings appear densely packed in 

immunohistochemical stainings, making it impossible to tell which puncta represents 

a synapse and which not. Since many samples had to be evaluated, it would have 
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been nearly impossible, to apply the same qualitative criteria to all during an 

evaluation “by eye”. 

 

 

Figure IV.1: Macro frameset for the analysis of synaptic composition 

Images for analysis of synaptic composition were processed and analyzed by using a 

ImageJ macro frameset. The first step was to extract ROIs from the image stacks, 

followed by stack splitting and automatic processing. Binarized particles were 

selected by means of area and circularity. Area and number of selected particles 

were counted and converted to a mask (red). This mask was overlaid onto the 

original image and intensities measured. The data was exported and collected and 

processed by Excel VBA macros. 

 

Therefore a method was developed to quantitatively evaluate the processed 

slices. For testing different processing methods, sections from WT animals were 

examined (Figure IV.2). These samples comprised of several series (i.e. four stacks 

showing stratum oriens, pyramidale, radiatum and lacunosum moleculare) taken from 

different sections of different animals stained in separate experiments, to provide a 

maximum degree of heterogeneity. The method of choice should meet the following 

condition: To be able to extract the most homogenous information from this 

heterogeneous population of samples. As intensity and size of a single synaptic 



Methods 
 

 48 

punctum reflect the labeling efficiency and distribution of the synaptic protein labeled, 

the number of puncta is the most general information that could be used for 

evaluation of homogeneity. In addition to that, the scientific question this experiment 

was supposed to answer in the first place was, as to whether the number of 

synapses had changed in the hippocampus of Rasgrp1 KO mice. 

Therefore the first constraint of this method was to show the least variance in 

the numbers of puncta among all the slices that belong to one lamina. To perform 

test-counts posed another problem, because the selection of puncta to be counted 

was not exclusively defined by the result of image processing. The resulting particles 

remaining after processing cannot be counted bona-fide. Some of the particles were 

composed of aggregating synaptic puncta; some were too small to be taken into 

account as genuine synapses. Therefore it seemed very helpful to select particles by 

restrictions for area and circularity. Circularity is a measurement of how spherical an 

object is and is defined by 

circularity =
2 A

P
  

A denotes the area and P the perimeter of an object. The resulting values 

distribute between zero and one. For example, one reflects a perfect sphere and zero 

reflects a line. However, to select for these measurements imposed additional 

variables besides the variable of the processing method. These variables are 

restriction values (r) that denote the minimal and maximal area and circularity. 

Minimal and maximal restrictions of area and minimal restriction of circularity were 

tested. The maximal circularity was set to one. 

The test counts for the restriction values (r) were performed by counting the 

particles in the processed images, starting with a minimal rmin, e.g. 0.03 μm2. Then, 

rmin was increased by a defined value v (e.g. 0.01 m2) and the puncta were counted 

again, using r + v (e.g. 0.04 m2). This was repeated until r equaled the maximal 

restriction value rmax. The resulting variances in in the particle counts were assessed 

by the coefficient of variation. The coefficient of variation (cv) is defined by the ratio of 

the standard deviation ( ) to the mean (μ) and is used for comparison of variances in 

populations of samples displaying different mean values: 

cv =
μ

 

The cv values were separately assessed for all different laminae. The cv of the 

corresponding r (e.g. 0.03 m2) were summarized (cv,all). The r corresponding to the 
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lowest cv,all was chosen for comparison of the processing methods. It was too 

laborious to test all possible combinations of area and circularity restrictions. 

Therefore, the restriction values obtained separately were combined for particle 

analysis in a final, “optimal values” test. It proved, that the variances obtained in this 

way were very low. Although it is possible, that a combined approach would result in 

more exact restriction values that could reduce the variance even more, this separate 

approach was completely sufficient for obtaining very low variances. Of course, this 

totally depended on the processing method that was evaluated in this way. The 

processing method chosen for comparative analysis was the one that showed the 

lowest overall variance in synaptic counts. 

 

 

Figure IV.2: Evaluation of the image processing method for analysis of 

synaptic composition 

The processing method was evaluated based on the variability of test counts at 

different restriction values. Images from WT coronal sections were used as a test 

samples. The particles in binarized images were automatically selected using 

different restriction values. The example shows the results of selections at an 

increasing minimal circularity. The resulting coefficients of variability (cv, left Y-axis) 

and counts (right Y-axis) were plotted relative to the minimal circularity. Separate 

analyses were carried out for each lamina of the hippocampus; so, stratum oriens; 
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sp, stratum pyramidale; sr, stratum radiatum; slm, stratum lacunosum moleculare. 

The orange line represents the minimum of the summarized cv . 

 

 

 

To realize the processing of a high number of images (i.e. 480 per 

immunolabeling, at an n of 10 sections analyzed), an ImageJ macro was developed 

for completely automatized processing. Also the iterative analysis of particles at 

different restriction values was realized by an ImageJ macro. Automatized data 

analysis was realized by several Excel VBA macros. However, the results of 

automatized processing and analysis was visually controlled in a subpopulation of 

randomly selected images (Figure IV.3). 

 

 

Figure IV.3: Visual control of processing and particle selection 

The results of image processing and particle selection were routinely controlled by 

eye. Both overview and magnification images were assessed. As in the example 

shown above, the original, the binarized particles and the selected particles were 

compared. 
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IV.4.2.2. The Processing Method of Choice 

The processing method evaluated to provide the best results, was composed of 

seven sequential steps. The separate processing algorithms are available as ImageJ 

plug-ins. 

 

(1) Background subtraction, using a rolling ball algorithm with a ball radius of 20 

pixels. 

(1) Otsu- thresholding, resulting in a binary image. 

(2) Watershed segmentation, mask generation, loading mask into original image 

and deleting unmasked regions. 

(3) Gaussian blur with a sigma of 1. 

(4) Background subtraction, using a rolling ball algorithm with a ball radius of 10 

pixels. 

(5) Isodata thresholding, resulting in a binary image. 

(6) Watershed segmentation, mask generation, loading mask into original image for 

measuring intensity in masked regions. 

 

The rolling ball algorithm can be imagined as a ball rolling over a 3D surface, 

where the heights are represented as the intensity values of the pixels. The radius 

determines, which heights are overrun. These heights are designated as background  

(Sternberg, 1983). However, the radius also determines if the ball can pass a “valley” 

between two heights. Therefore a lower radius was applied in step (5) to “clean out” 

theses valleys that could not be subjected to the subtraction of background in step 

(1). 

The thresholding method according to Otsu et al. (1979) takes into account the 

variances within a distribution of values to distinguish between signal and noise. In 

case of image thresholding, the variance within the histogram is assessed and the 

regions showing the highest variances are denoted as background (OTSU, 1979) 

and removed. Thresholded pixels and signal- pixels were transformed into a binary 

image.  

Watershed segmentation is a way of separating particles that touch. The 

algorithm calculates a Eucledian distance map, i.e. an image, where the thickest 

parts of an object receive high values; the parts closer to its boundaries receive low 

values. Two touching particles can be imagined as two local maxima that are 
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connected by a “hanging bridge” of values that from the first maximum first decrease 

and then increase again towards the second maximum. Watershed segmentation 

cuts this “hanging bridge” at its minimum, thereby separating the particles. The name 

watershed is derived from an inversed view of that process. The fattest parts can 

also be seen as local minima, which are connected by higher values. If water is 

poured onto this map imagined as a 3D surface, the maxima represent watersheds, 

which separate the filling pools (Vincent and Soille, 1991). 

The binary image was used as a mask for the original picture and the 

unmasked regions deleted, i.e. denoted as background. Continuing with step (4), the 

resulting gray-scale image was further processed. Gaussian blur was applied to 

dilate single background pixels that remained after step (1) – (3) and simultanously to 

reduce their intensity value. This helped to remove these pixels by subsequent 

background subtraction using the rolling ball algorithm. 

This was followed by isodata thresholding. The isodata algorithm is an iterative 

procedure for choosing a threshold. The histogram of an image is initially segmented 

into “background” and “signal” at half of the maximum dynamic range. The mean 

value of pixels associated with the background and that of those associated with 

signal are calculated. The average of these two means are used as the new 

threshold in the next iteration. This procedure is repeated until the threshold does not 

change anymore (Ridler and Calvard, 1978). In case of the images processed in this 

study, isodata thresholding resulted in more stringently reduced background as 

compared to Otsu- thresholding. 

The particles in the binary image were selected using the best restriction values 

as determined in (IV.4.2.1). Subsequently, the areas and number of the selected 

particles were determined. Then, the selection was converted into a mask and 

overlaid onto the original image for measurement of intensities. 

The areas of particles representing postsynapses labeled for PSD-95 averaged 

around at  0.2 μm2, which would result in a diameter of 500 nm (if a sphere is 

assumed, see Figure V.10). Interestingly, this is consistent with the size of the PSD, 

which was reported to have a mean diameter of 500 nm (Feng and Zhang, 2009). 

The mean area labeled by presynaptic markers ranged from 0.3 to 0.4 m2, 

according to diameters of 620 to 710 nm (Figure V.11, V.12, V.13). All presynaptic 

markers used label synaptic vesicles. The synaptic pool fills a great fraction of the 

presynaptic bouton and depending on the report and image, is  500 – 700 nm in 
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diameter (Siksou et al., 2007; Siksou et al., 2009). It is generally larger in diameter 

than the PSD. This relation as well as the values obtained underlines the reliability of 

the processing method, whose development has been described here.  

 

IV.5. Electrophysiology on Acute Hippocampal Slices 

Solutions: 

S-ACSF (sucrose supplied artificial cerebro-spinal fluid): 87 mM NaCl, 26 mM 
NaHCO3, 75 mM sucrose, 25 mM -D(+) Glucose, 2.5 mM KCl, 1.25 mM 
NaH2PO4, 0.5 mM CaCl2, 7 mM MgCl2 

Ringer’s solution: 119 mM NaCl, 26 mM NaHCO3, 10 mM -D(+) Glucose, 2.5 mM 
KCl, 1 mM NaH2PO4, 2.5 mM CaCl2, 1.3 mM MgCl2, saturated with 95 % 
O2 and 5 % CO2 (Carbogen) at pH 7.4 

Patch-electrode solution: 135 mM KGluc, 20 mM KCl, 10 mM HEPES, 0.2 mM 
EGTA, 2 mM MgATP, pH 7.2 

IV.5.1. Preparation of Acute Hippocampal Slices 

For preparation of acute hippocampal slices, animals were anesthetized by 

laminar flow using evaporated Isofluoran. Brains were quickly, but carefully removed 

from the skulls and kept covered in icy, Carbogen supplied S-ACSF slush for 5 min. 

Brain hemispheres were separated and glued onto the cutting platform of a tissue 

slicer and submerged in S-ACSF slush. 300 m thick horizontal hippocampal slices 

were prepared at a cutting speed of 0.1 mm/s and at an horizontal cutting blade 

amplitude of 1 mm. After preparation, slices for patch clamp recordings were kept in 

Carbogen supplied Ringer’s solution at 37 °C for 30 min. After that, slices in Ringer’s 

solution were maintained at RT. Slices for field recordings were transferred directly to 

Ringers’s solution at RT after cutting. 

For recordings, slices were transferred onto Lysine-coated glass coverslips. 

When they had attached at the coverslips, slices where quickly transferred into the 

recording chamber of the set-up. Recording chambers were perfused by Carbogen 

saturated Ringer’s solution. The perfusion speed was tightly controlled and set to 4-5 

mL/min prior to each experiment to omit heterogeneous experimental conditions, e.g. 

different wash-in times for the application of L-AMPA. 

Slices for field recordings were kept for maximal 7 hours, slices for patch clamp 

recordings for maximal 4 hours. 
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IV.5.2. Field and Patch Clamp Recordings 

Field EPSP (fEPSP) recordings were performed with low resistance patch 

clamp electrodes filled with Ringer’s solution. The recording electrode was placed in 

the stratum radiatum area CA1. Schaffer collaterals were stimulated with patch clamp 

electrodes filled with Ringers’s solution at a frequency of 0.05 Hz. Electrophyiolgical 

signals were recorded with a MultiClamp 700B amplifier (Molecular Devices), low-

pass filtered at 1-3 kHz and digitized with 5-10 kHz (AD board, National Instruments) 

and data were stored on the PC for later off-line analyses. All in-experiment analyses 

for monitoring as well as post-hoc analyses of field recordings were done in IGOR 

Pro software. For input-output experiments, the strength of the input signal was 

determined by measuring the fiber volley. The resulting fEPSPs were recorded. 

Paired pulse facilitation was examined by monitoring the ratio of second to first 

fEPSP. LTP was induced by four 100 Hz stimuli, each 20 s apart. The resulting 

potentiation was analyzed as stated in Figure V.8 B.  

Single cell voltage clamp recordings were performed in whole cell mode of the 

patch-clamp technique. Patch clamp electrodes (resistance 2-5 M ) were filled with 

patch-electrode solution. Series resistance ranged from 6 - 25 M  and was 

continuously monitored throughout the experiment. All patch-clamp experiments 

were performed in the presence of the GABA receptor-antagonist gabazine (1 μM), 1 

M tetrodotoxin (TTX, 1 μM), and cyclothiazide (100 μM). mEPSCs were analyzed 

starting from 2 min after stable access to the cell had been established. Recordings 

were automatically analyzed using the WinWCP software. The results of these 

analyses were visually controlled to remove test pulse artifacts and multiple 

overlapping mEPSCs. AMPAR currents were evoked by application of 25 nM L-

AMPA for 15 min. The change in holding current (IAMPA) was recorded and analyzed 

in IGOR Pro software. All raw data was exported to Excel for the design of graphs 

and diagrams. 
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IV.6. Biochemistry 

IV.6.1. SDS-PAGE and Western Blotting 

Buffers: 

Seperating gel buffer: 0,5 M Tris-HCl (pH 6,8), 0,4 % SDS 

Stacking gel buffer: 1,5 M Tris-HCl (pH 8,8), 0,4 % SDS,  0.01 g Bromphenol Blue 

Transfer buffer, 1 L: 3 g Tris-Base, 14.4 g Glycine, 200 mL Methanol 

Laemmli Buffer 3x: 140 mM Tris-HCl (pH 6.8), 3 mM EDTA, 39 % sucrose, 10 % 
SDS, 0.1 % Bromphenol Blue, 150 mM DTT 

Ponceau solution: 0.1 % Ponceau S, 5 % acetic acid 

Protein samples were separated by sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE). Separating gels contained 10-15 % bis-acrylamide in 

separating gel buffer. Stacking gels were composed of 3.75 % bis-acrylamide in the 

stacking gel buffer. The polymerization of the gels was initiated by adding Temed and 

ammonium-persulfate. Gels were loaded with 8 – 12 g of protein in Laemmli buffer 

and run at RT and 25 mA in BIO-RAD chambers (Mini Protean II system). 

Western blots were prepared by the wet transfer method (BIO-RAD Mini- 

Protean II system). Proteins were blotted onto nitrocellulose membrane in transfer 

buffer. Blotting was performed at 40 mA and 4 °C for 16 h. The success of 

transferring proteins onto the membrane was controlled by Ponceau staining. 

 

IV.6.2. Immunolabeling of Blots 

Buffers: 

TBS (Tris-buffered saline): 20 mM Tris-HCl, 140 mM NaCl, pH 7.5 

TBST (Tris-buffered saline containing Tween 20): TBS, 0.1 % Tween 20 

For immunolabelings, blots were blocked in TBST containing 5 % (w/v) skim 

milk 5 % (v/v) and goat serum (GS) for 30 min at RT. The primary antibody was 

added to a final concentration as stated in (III.5) and the blots incubated for 1 h at 

RT. Goat antibodies reactive to mouse or rabbit and conjugated to horseraddish 

peroxidase (HRP) were used as secondary antibodies. After removing the primary 
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antibody by washing with TBST (5 % skim milk), the secondary antibody was applied 

in a final dilution of 1:10000 in TBST (5 % skim milk). Secondary antibody and blot 

were incubated for 1 h at RT. After that, the blot was washed several times in TBST 

(5 % skim milk), followed by three washing steps using TBST (without skim milk), and 

rinsing with TBS. 

An ECL signal was evoked by application of the ECL (enhanced 

chemiluminescence) reagents provided in the ECL detection kit of Amersham 

Biosciences. Detection of the resulting ECL signal was achieved using ECL sensitive 

films and subsequent development in a developing machine.  

 

IV.6.3. Subcellular Fractionation 

Buffers:  

sucrose buffer: 4 mM HEPES, 320 mM sucrose, 1x protein inhibitors, pH 7.3 

0.8 M sucrose buffer: 4 mM HEPES, 0.8 M sucrose, 1x protein inhibitors 

1.2 M sucrose buffer: 4 mM HEPES, 1.2 M sucrose, 1x protein inhibitors 

lysis buffer: 4 mM HEPES, 1x protein inhibitors 

The brains of three WT mice were dissected on ice. The cerebellum and the 

brain stem were cut off. Then, the hemispheres were separated and the midbrains 

removed. All following steps and centrifugations were performed at 4 °C (cold room) 

or on ice. The forebrains were pooled in 8 mL of sucrose buffer in a glass tube and 

homogenized by 12 up/downs of a teflon homogenizer rotating at 900 rpm. Of each 

intermediate or final sample, a fraction was saved for later analysis. The homogenate 

was centrifuged at 1,000 g (SS34 rotor, Sorvall RC6 Centrifuge) for 10 min. The 

supernatant (S1) was saved and centrifuged at 12,000 g (SS34 rotor, Sorvall RC6 

Centrifuge). The pellet (P1) was resuspended in 6 mL of sucrose buffer and stored 

for later analysis. After centrifugation of S1, the part of the supernatant that could 

clearly be distinguished from heavier fractions was saved (S21) and the rest of the S1 

sample washed by supplying 6 mL of sucrose buffer and centrifuged again (12,000 g, 

SS34 rotor, Sorvall RC6 Centrifuge). The resulting supernatant (S22) was collected 

and combined with S21. The resulting S2 sample was centrifuged at 50,000 rpm 

(223,160 rpm, Beckman L-60 centrifuge, Type 75Ti fixed angle rotor) for 2 h. The 
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resulting final fractions were S3 and P3. P3 was resuspended in 300 L sucrose 

buffer and stored for analysis, S3 was concentrated using Centricon 10 columns prior 

to storage, resulting in  1.5 mL of sample.  

The pellet that had formed in the previous centrifugation (P21) consisted of a 

lighter and a heavier fraction (P2M). The lighter fraction (P2) was carefully removed 

and resuspended in 500 L sucrose buffer, transferred into glass tubes, 

supplemented with 9 mL lysis buffer and further homogenized by 10 strokes at 1500 

rpm of a Teflon homogenizer. The P2M fraction was resuspended in 500 L sucrose 

buffer and stored for analysis. The lysed P2 fraction was centrifuged at 25,000 g for 

20 min (SS34 rotor, Sorvall RC6 Centrifuge). This resulted in the LP1 and the LS1 

fractions. The LS1 fraction was collected and centrifuged at 50,000 rpm for 2 h 

(223,160 rpm, Beckman L-60 centrifuge, Type 75Ti fixed angle rotor). The resulting 

LP2 fraction was resuspended in 150 L sucrose buffer and stored for analysis, the 

LS2 fraction was concentrated in Centricon 10 columns, resulting in  300 L 

sample, which was stored for analysis. The LP1 fraction was resuspended in 1 mL of 

sucrose buffer and applied onto a sucrose gradient composed of 5 mL 0.8 mL 

sucrose buffer on the top of 5 mL 1.2 M sucrose buffer in a glass tube. The sample 

was centrifuged at 19,000 rpm (64206 rpm, Beckman L-60 centrifuge, SW41Ti swing 

out rotor) for 2 h. The upper interphase (LP1A) the lower interphase (LP1B) and the 

pellet (LP1C) were collected and stored. 

Protein titration of the fractions was achieved by the Bradford method and the 

concentration adjusted to 1 mg/mL. 

 

IV.6.4. Purification of PSD Fractions 

Buffers: 

homogenization buffer: 320 mM Sucrose, 10 mM HEPES-KOH (pH 7.4), 5 mM EDTA 
(pH 7.4), 1x protein inhibitors 

resuspensiton buffer: 20 mM Tris-HCl (pH 7.4), 2 mM EGTA (pH 7.4), 1x protein 
inhibitors 

Hippocampi were prepared, quickly frozen in liquid nitrogen and stored until 

enough tissue samples were available for an experiment. In one experiment, PSD 

fractions were separately prepared from eight to twelve hippocampi. Analyses 

contained samples from three separate preparations. All steps of the protocol were 
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performed at 4 °C or on ice. Frozen hippocampi were transferred into 

homogenization buffer in a glass tube and homogenized with 10 gentle up/downs at 

900 rpm of a Teflon potter. A fraction of the crude homogenate was saved for later 

analysis, the rest was centrifuged at 1000 g. The supernatant (S1) was saved and 

centrifuged at 15000 g. The supernatant (S2) was discarded and the remaining pellet 

(P2) resuspended in 50 L of resuspension buffer. The protein content was assessed 

by the Bradford assay and adjusted to 2 mg/mL by adding Triton X-100 to a final 

concentration of 1 %. Then, the resuspended P2 sample was sonicated in an 

ultrasonic waterbath for 3 times for 30 s at 70 % power. Following that, the proteins 

were solubilized by slow overhead-rotation for 1 h. Then, the protein extracts were 

collected in ultra-centrifugation tubes and centrifuged at 100000 g for 1 h. The pellet 

(PSD sample) was saved and resuspended in resuspension buffer containing 1 % 

SDS.  Again, the sample was agitated by slow rotation for 1 h. Protein levels in 

homogenate and PSD fraction samples were assessed using the BCA method and 

samples were adjusted to a final concentration of 1 mg/ml in resuspension buffer 

containing 1x Laemmli buffer. Protein samples were loaded on SDS-PAGE gels (10 

g per well), and seperated as described in IV.6.1. Immunolabeling and detection 

were performed as described in IV.6.2.  

Protein levels on the blots were assessed by densitometry using the ImageJ 

„Analyze Gels“ plug-in. Synaptophysin was used as the reference protein. Protein 

levels of marker protein were expressed as the ratio of marker to reference protein. 

 

IV.7. Statistics 

If not otherwise stated, all means are represented ± sem. Also if not otherwise 

stated, all statistical analyses were performed using the Student’s t-test. 
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V. Results 

V.1. Distribution of Rasgrp1 in the Mouse Hippocampus 

V.1.1. Strongest Expression of Rasgrp1 is Found in the Stratum 

Pyramidale 

Previous immunohistochemical studies in rat brain sections have reported 

strong expression of Rasgrp1 in the hippocampus (Pierret et al., 2001). 

Immunostainings for light microscopy already indicated an enrichment of Rasgrp1 in 

somata and apical dendrites of pyramidal cells in hippocampal CA1 and CA3 regions. 

 I confirmed these results by fluorescence immunostaining for Rasgrp1 and 

Map2 in mouse coronal sections. Map2 is a well-known marker for dendrites 

(Bernhardt and Matus, 1984). In the hippocampal CA1 region, Rasgrp1 

immunofluorescence was primarily detected in the stratum pyramidale, where it 

localized to the perinuclear region of cells, but not to the nucleus (Figure V.1 A). 

Map2 was found almost exclusively in the stratum radiatum and the stratum 

lacunosum moleculare (Figure V.1 A). These laminae contain the apical dendrites of 

the pyramidal neurons. High magnification images revealed additional Rasgrp1 

immunofluorescence in the proximal region of the stratum radiatum and 

colocalization with Map2 immunofluorescence, indicating a localization of Rasgrp1 in 

proximal apical dendrites (Figure V.1 B). Moreover, a faint disheveled staining was 

detected that could not be attributed to a specific compartment. Overall, these results 

confirm the findings of Pierret et al. (2001). However, they also clearly show a 

preferential localization of Rasgrp1 to somata, which could not be concluded from the 

earlier studies (Pierret et al., 2001). 
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Figure V.1: Regional distribution of Rasgrp1 in the CA1 region of the 

hippocampus 

DAPI staining and immunohistochemical stainings for Rasgrp1 and Map2 were 

performed to study the distribution of Rasgrp1 in the layers of the CA1 region of the 

hippocampus. 

(A) Strongest immunolabelings of Rasgrp1 was detected in the stratum pyramidale. 

A disheveled staining of low intensity was detected throughout all strata. Scale bar = 

40 m. (B) Rasgrp1 was also present in proximal apical dendrites, as indicated by 

colocalization with Map2. Scale bar = 20 m.  

so, stratum oriens; sp, stratum pyramidale; sr, stratum radiatum; slm, stratum 

lacunosum moleculare. 

 

V.1.2. Rasgrp1 is Not Expressed in Inhibitory Neurons 

When observing Rasgrp1 stainings, it became apparent that Rasgrp1 is not 

present in every cell. This was indicated by costainings of nuclei by DAPI (2-(4-

amidinophenyl)-1H-indole-6-carboxamidine). The majority of stained nuclei were 

surrounded by characteristic Rasgrp1 immunofluorescence, but some were not 

(Figure V.1 A, B). The stratum pyramidale is named after the prevalent cell type 

found within it, i.e. the pyramidal cells. A minor fraction of somata found in the 

stratum pyramidale belongs to inhibitory neurons. Therefore the few cells negative for 
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Rasgrp1 immunofluorescence might represent inhibitory neurons. This was tested 

using markers for inhibitory neurons in immunofluorescence staining experiments. 

Parvalbumin is a soluble Calcium binding protein located in the cytoplasm of 

inhibitory neurons (Mátyás et al., 2004). No expression of Rasgrp1 was found in 

Parvalbumin-positive somata (Figure V.2 A). Calretinin is another Calcium binding 

protein localized to a different subpopulation of inhibitory neurons (Mátyás et al., 

2004). Also for this marker, no colocalization with Rasgrp1 immunofluorescence was 

detected (Figure V.2 B). Glutamic acid decarboxylase (GAD) exists in two isoforms 

(GAD65, officially known as Gad2 and GAD67, officially known as Gad1) that 

catalyze the decarboxylation of Glutamate to GABA in inhibitory neurons (Erlander et 

al., 1991). Both Gad isoforms are found at synapses and within somata of inhibitory 

neurons (Esclapez et al., 1994). GAD65/67 positive somata were negative for 

Rasgrp1 immunoreactivity (Figure V.2 C). Calbindin is a Calcium binding protein 

found in a subpopulation of inhibitory neurons as well as in a subset of pyramidal 

neurons (Mátyás et al., 2004). Prevalent Calbindin immunofluorescence was 

detected in the layer of somata that lie adjacent to the stratum radiatum, indicating 

that most of them belong to pyramidal cells (Figure V.2 D). These somata also 

showed expression of Rasgrp1, whereas other Calbindin positive somata were 

negative for Rasgrp1. The more dorsally located layers of somata were completely 

devoid of Calbindin immunofluorescence, but showed Rasgrp1 expression (Figure 

V.2 D). These results provide strong evidence for an absence of Rasgrp1 in inhibitory 

neurons and indicate an exclusive expression of Rasgrp1 in pyramidal cells. 
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Figure V.2: Cellular distribution of Rasgrp1 in the stratum pyramidale 

DAPI staining and immunohistochemical stainings for Rasgrp1 and inhibitory neuron 

markers showed that Rasgrp1 is not expressed in inhibitory neurons. 

(A-C) All somata that expressed Parvalbumin, Calretinin or GAD65/67 were negative 

for Rasgrp1, as indicated by the arrows. Scale bars = 30 m (A), 40 m (B), 30 m 

(C). (D) Calbindin is expressed in inhibitory neurons and in a subset of pyramidal 

neurons. Arrows indicate inhibitory neurons that expressed Calbindin but not 

Rasgrp1. Thin arrowheads indicate pyramidal neurons that are positive for both 

Rasgrp1 and Calbindin immunoreactivity, and broad arrowheads indicate neurons 

that only expressed Rasgrp1. Scale bar = 40 m. 
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V.1.3. Rasgrp1 Preferentially Localizes to the Golgi Apparatus of 

Neurons 

In many cell lines, Rasgrp1 has been shown to localize to the Golgi apparatus. 

Also in the neuronal PC12 cell line this specific pattern of localization was observed 

(Bivona et al., 2003).  

To corroborate these findings in neurons, immunolabelings for Rasgrp1 and 

markers for subcellular compartments were performed. Indeed, Rasgrp1 showed a 

prominent colocalization with the Golgi apparatus marker Giantin (Figure V.3 A), 

although Rasgrp1 staining appeared a little more diffuse. In contrast, none or 

unspecific overlaps of Rasgrp1 staining were apparent when compared to stainings 

of the ER marker Calnexin (Figure V.3 B), the early endosome maker EEA1 (Figure 

V.3 C), or the postsynaptic marker GluR2/3 (Figure V.3 D).  

Taken together, the above results show that Rasgrp1 is expressed exclusively 

in pyramidal cells of the hippocampus, and therein specifically localizes to the Golgi 

apparatus, but not to ER, early endosomes, or postsynapses.  
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Figure V.3: Subcellular localization of Rasgrp1 in pyramidal neurons 

Immunohistochemical stainings for Rasgrp1 and subcellular compartment markers 

showed that Rasgrp1 localizes to the Golgi apparatus. 

(A) Rasgrp1 colocalizes with the Golgi marker Giantin. (B-C) None or unspecific 

colocalization was observed for markers of early endosomes (EEA1), endoplasmatic 

reticulum (ER; Calnexin) or postsynapses (GluR2/3). Scale bars columns 1-3 = 20 

m; Scale bars column 4 = 10 m. 
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V.1.4. Enrichment of Rasgrp1 in the Microsomal Fraction of Fore 

Brain 

To further characterize the localization of Rasgrp1, forebrain homogenate and 

biochemically purified subcellular fractions were blotted, immunolabeled and 

analyzed for enrichment or depletion of Rasgrp1.  

As compared to the homogenate, the fractions enriched in Rasgrp1 were the 

P3, the S3, the LP1B and the LP1A fraction (in order of band intensity). The fractions 

depleted in Rasgrp1 were the P1, the P2M, the LP1C, the LP2 and the LS2 fraction 

(Figure V.4 A). The fraction predominantly enriched in postsynaptic markers such as 

PSD-95 and the AMPAR subunits GluR2 and GluR3 (Figure V.4 B, C) is the LP1B 

fraction. It also contains proteins found at the presynaptic membrane (Figure V.4 E, 

F), indicating that it is a fraction composed of both post- and presynaptic membrane. 

The soluble S3 fraction is enriched in Map2 (Figure V.4 D). Map2 associates to the 

cytoskeleton and is solubilized when cell structure is destroyed (Matus, 1994). The 

LP2 fraction was reported to contain synaptic vesicle proteins (Huttner et al., 1983). 

Presence of the synaptic vesicle proteins Synaptophysin (Syp) and Synapsin 

(Synapsin1/2; Syn1/2) confirmed, that the LP2 fraction contains these organelles 

(Figure V.4 E, F). As expected, an antibody recognizing all three classical Ras G 

proteins revealed their presence in all membranous fractions (Figure V.4 G). Except 

for the S3 fraction, classical Ras G proteins are found in the same fractions as 

Rasgrp1. The lack of classical Ras G proteins in the S3 fraction confirms that Ras 

activation occurs at membranes (Augsten et al., 2006; Bivona et al., 2003). Rasgrp1 

found among somatic soluble proteins (i.e. S3 fraction) cannot signal to classical Ras 

proteins.  

It is important to note that it cannot be determined by this method, if Rasgrp1 is 

predominantly pre- or postsynaptically localized. In the fraction containing synaptic 

plasma membranes (LP1B), proteins from both synaptic sides are found. Though 

weak, a signal can be detected in the fraction containing synaptic vesicle proteins 

(LP2). These results confirm a localization of Rasgrp1 to endomembranes. In 

addition they indicate, that Rasgrp1 is also found in fractions containing synaptic 

markers. 
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Figure V.4: Fore brain subcellular fractions containing Rasgrp1 

Western blots of homogenate (hom) and subcellular fractions prepared from mouse 

forebrain were immunolabeled for Rasgrp1 and marker proteins. 

(A, D) Strongest enrichment of Rasgrp1 was found in the microsomal fraction (P3) 

containing endomembranous proteins, followed by the S3 fraction, containing 

somatic soluble proteins, such as Map2. (B, C, E, F) Enrichment of Rasgrp1 was 

also detected in the fraction containing synaptic plasma membranes (LP1B), which 

was also positively immunolabeled for postsynaptic and presynaptic markers. (E, F) 

Rasgrp1 was present, but not enriched (as compared to homogenate), in the 

fractions containing synaptic vesicle proteins. (G) Classical Ras G proteins were 

found to be enriched in the same fractions as Rasgrp1.  

Protein mass is indicated in kDa on the left. 
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V.2. Characterization of the Rasgrp1 KO Mouse 

The Rasgrp1 KO mouse line was generated by Dr. Andrea Betz (see VIII.1). 

 

V.2.1. No Obvious Behavioral Phenotypic Changes or Defects in 

Rasgrp1 KO Mice 

Heterozygous Rasgrp1 +/- animals were healthy and reproduced normally. 

Resulting Rasgrp1 KO animals developed normally and could not be distinguished 

from their WT littermates by appearance (Figure V.5 A). Animals between 3 and 8 

weeks of age did not exhibit any overt obvious behavioral abnormalities. Prepared 

brains did not show differences in appearance or weight as compared to WT controls 

(WTmean = 0.515 ± 0.046 g; KOmean = 0.487 ± 0.045 g; n  = 6 pairs; p = 0.391) (Figure 

V.5 B, C). These results indicate that Rasgrp1 is not crucially required for survival, 

growth, or brain development. 

 

V.2.2. Gross Brain Morphology of Rasgrp1 KO Mice is Normal 

Expression of constitutively activated Hras in the Synras mouse led to general 

neuronal hypertrophy, resulting in a strikingly increased cortical volume (  15 %) 

(Heumann et al., 2000). The opposite effect may be expected in a mouse model 

exhibiting less potential to activate the Ras signaling pathway, such as the Rasgrp1 

KO. To test this, brain sections of KO and WT mice were analyzed by staining for 

Synapsin1/2 and by DAPI staining. When immunostained for Synapsin1/2, the 

laminae of the hippocampus can be clearly distinguished (Figure V.6 A). Synapsin 

stainings of Rasgrp1 and WT coronal sections were used to quantify the diameters of 

the cortex and the laminae of the hippocampus. No significant differences were found 

when comparing Rasgrp1 KO and WT mean diameters: WTctx = 753 ± 28.7 m; KOctx 

= 734 ± 15.6 m; p = 0.609; WTso = 107 ± 6.8 m; KOso = 106 ± 5.0 m; p = 0.888; 

WTsp = 33 ± 2.2 m; KOsp = 35 ± 2.6 m; p = 0.635; WTsr = 167 ± 12.4 m; KOsr = 

176 ± 11.6 m; p = 0.641; WTslm = 88 ± 10.7 m; KOslm = 95 ± 5.5 m; p = 0.602; n = 

6 pairs each (Figure V.6 B). When stained for Rasgrp1, no immunoreactivity was 

detected in coronal sections of KO mice (Figure V.6 C). In corresponding WT 

sections, a strong immunoreactivity was detected in the CA1 and the CA3 regions, 

but not in the dentate gyrus. Of all regions expressing Rasgrp1, strongest 

immunofluorescence is found in the CA3 region. 
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Figure V.5: Observation of Rasgrp1 KO mice and brains 

Adult Rasgrp1 knock-out (KO) mice did not show obvious behavioral phenotypic 

changes or defects in brain structure. 

(A) Two female littermates of the indicated genotypes at the age of 5 weeks (w). (B) 

Brains were prepared from 13 w old littermates. The KO brains observed did not 

show any obvious defect. Scale bar = 5 mm. (C) The mean weight of KO brains was 

not significantly different from that of wild-type (WT) brains. Numbers (n) of brains 

analyzed are shown at the bottom of the bar graphs. Error bars represent standard 

deviation (sd). Statistical analysis was carried out using the two-tailed Student’s t-test 

(ns, not significant). 
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Figure V.6: Gross brain morphology of Rasgrp1 KO mice 

Histochemical stainings of coronal brain sections were used to study morphological 

properties in Rasgrp1 knock-out (KO) mice and the expression pattern of Rasgrp1 in 

wild-type (WT) mice. 

(A) Immunohistochemical stainings for Synapsin 1/2 (Syn) and DAPI stainings 

revealed no obvious changes in gross morphology of sections prepared from 3-5 

week (w) old KO mice. Scale bar = 1 mm. (B) No significant differences were found 

in diameters of Rasgrp1 KO brain regions as compared to WT. Error bars represent 

sem; two tailed student’s t-test, n = 6 pairs of littermates; ns, not significant; ctx, 

cortex; so, stratum oriens; sp, stratum pyramidale; sr, stratum radiatum; slm, stratum 

lacunosum moleculare. (C) Rasgrp1 immunoreactivity was most prominent in the 

cortex, in thalamic nuclei (th), and in the hippocampus (hc) of 8 w old WT mice. In the 
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hc, immunoreactivity was detected in the Cornu Ammonis region 1 (CA1) and in CA3, 

but not in the dentate gyrus (DG). Deletion of Rasgrp1 and specificity of the antibody 

were verified by the absence of immunoreactivity in the corresponding KO coronal 

sections. Scale bar = 2 mm. 
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V.2.3. Rasgrp1 KO Neurons Display Aberrant Dendrite 

Morphogenesis 

The possibility of an involvement of Rasgrp1 function in dendrite 

morphogenesis was investigated in detail, because previously published findings 

indicate a positive role of Ras signaling in this process (Alpar et al., 2003; Arendt et 

al., 2004; Gärtner et al., 2005; Holzer et al., 2001; Jaworski et al., 2005; Kumar et al., 

2005; Seeger et al., 2003) and because Rasgrp1 overexpression in PC12 cells leads 

to neurite outgrowth (Bivona et al., 2003).  

Dendritic development of hippocampal neurons in-vivo begins at postnatal day 

5 (P5). Starting at P5, dendritic complexity increases rapidly and only slows down 

after P15 (Pokorny and Trojan, 1986). RasGRP1 expression starts at P2 and 

reaches an adult-like pattern around P20 (Pierret et al., 2000). Thus, the increase in 

dendritic complexity and the increase of RasGRP1 expression correlate during the 

initial phase of dendrite morphogenesis. In cultured rat hippocampal neurons, the 

increase of dendritic complexity is most rapid between DIV4 and DIV10 and 

resembles a sigmoidal curve if complexity is taken as a measurement (Dotti et al., 

1988). This time period is characterized by extensive growth and branching of 

neurites. However, dendritic development also requires regressive events that 

constrain dendritic expansion. In mature stages, the final morphology is shaped by a 

dynamic balance between growth and elimination of individual dendritic protrusions 

(Wong and Ghosh, 2002). 

Hippocampal Rasgrp1 KO neurons were prepared from P0 animals and 

cultured as described (chapter IV.3.1). Cultures were fixed and stained for Map2 at 

DIV5, DIV10, DIV14 and DIV21. Analyses of dendritic complexity were carried out 

using the method described by Sholl et al. (1953). Neurons grown in continental 

cultures were used for analyses at DIV5 and DIV10. As neuron density and resulting 

overlap of dendritic processes increases after DIV10, neurons grown separately on 

astrocyte islands were used for analyses of dendritic morphology at DIV14 and 

DIV21. 

Upon cursory observation, DIV5 neurons from KO or WT cultures did not show 

an obvious difference. However, Sholl analysis of 85 neurons of each genotype (N = 

4 different cultures prepared from littermates) showed slightly reduced dendritic 

complexity of Rasgrp1 KO neurons (Figure V.7 A). The difference in intersections 

was significant in medial and distal segments (WT40 = 5.2 ± 0.255; KO40 = 4.25 ± 



Results
 

 72 

0.254; **p = 0.009; WT80 = 1.33 ± 0.193; KO80 = 0.86 ± 0.127; *p = 0.045). When 

DIV10 neurons were observed (n, WT = 73; n, KO = 72; N = 3 cultures each), no 

difference in dendritic complexity was measured by Sholl analysis (Figure V.7 B). 

In contrast to the reduced complexity at DIV5, neurons showed an enhanced 

dendritic complexity in medial and distal regions at DIV14  (n, WT = 39; n, KO = 40; 

N = 3 cultures each). The number of intersections was significantly different at 150 

and 175 m distance from the soma (WT150 = 0.61 ± 0.316; KO150 = 1.74 ± 0.414; *p 

= 0.025; WT175 = 0.22 ± 0.126; KO175 = 0.78 ± 0.337; *p = 0.046). When observed 

qualitatively, this difference was due to an extended dendritic territory of neurons and 

not to increased branching in distal regions. This indicates an increase in complexity 

by elongated morphology of dendrites (Figure V.7 C). This phenotype was also 

observed in DIV21 neurons (n, WT = 37; n, KO = 50; N = 2 cultures each). 

Interestingly, the number of intersections measured up to 75 m distance from the 

soma differed even less than between WT and KO neurons at DIV14, resulting in 

virtually overlapping Sholl plots (Figure V.7 D). However, at 125, 150, 175 and 200 

m distance, numbers of intersections were significantly higher in KO cells (WT125 = 

1.05 ± 0.412; KO125 = 2.07 ± 0.349; *p = 0.035; WT150 = 0.33 ± 0.194; KO150 = 1.77 ± 

0.399; **p = 0.002; WT150 = 0.33 ± 0.194; KO150 = 1.77 ± 0.399; **p = 0.002; WT175 = 

0.00 ± 0.0; KO175 = 0.8 ± 0.280; **p = 0.003; WT200 = 0.000 ± 0.0; KO200 = 0.37 ± 

0.179; *p = 0.026). 

These results indicate that lack of Rasgrp1 in early dendrite morphogenesis 

leads to a decrease in dendritic complexity. Conversely, with regard to late dendrite 

morphogenesis and mature morphology, Rasgrp1 KO neurons show an increased 

dendritic complexity.  
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Figure V.7: Analysis of dendrite morphogenesis in Rasgrp1 KO neurons 

Dendrite morphogenesis of cultured hippocampal neurons was investigated using 

Sholl analysis (circle interval = 5 m) after Map2 immunostaining. Rasgrp1 knock-out 

(KO) neurons display a defect in dendrite morphogenesis. Sample neurons of 

different developmental stages stained for Map2 are shown next to the 

corresponding Sholl plot. The indicated values were statistically analyzed using 

Students t-test. (A) Dendrite morphology at day in-vitro (DIV) 5; scale bar = 100 m. 

KO neurons showed a slightly, but significantly decreased dendrite complexity (n, WT 
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= 85; n, KO = 85). (B) Dendrite morphology of cultures at DIV 10. No significant 

differences in KO dendrite morphology were observed as compared to wild-type 

(WT) neurons (n, WT = 73; n, KO = 72); scale bar = 50 m. (C) Dendrite morphology 

at DIV 14 (n, WT = 29; n, KO = 40); scale bar = 150 m. (D) Dendrite morphology at 

DIV 21 (n, WT = 37; n, KO = 50); scale bar = 150 m. (C, D) At DIV 14 and DIV 21, 

Rasgrp1 KO neurons show an significantly enhanced dendrite complexity in distal 

regions. Neurons analyzed in (A) and (B) were grown in continental cultures, and 

neurons analyzed in (C) and (D) were grown on astrocyte islands. Error bars 

represent sem. All statistical analyses were carried out using the two-tailed Student’s 

t-test; *, p<0.05; **, p<0.01; ns, not significant. 
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V.2.4. Rasgrp1 KO Mice Show an Increased Synaptic Transmission 

V.2.4.1. Field Recordings in the Rasgrp1 KO Hippocampus 

While Ras signaling clearly regulates physiological functions in neurons, its 

exact role is far from clear (see chapter II.3). For example, decreasing the potential to 

activate Ras by a KO of the Ras GEF Rasgrf1 leads to enhanced basal transmission 

(Brambilla et al., 1997), but the same effect is observed upon increases of Ras 

activity by overexpression of Hras in hippocampal neurons (Zhu et al., 2002).  

To investigate the function of Rasgrp1 in synaptic transmission, acute 

hippocampal slices from Rasgrp1 KO mice were stimulated in the stratum radiatum 

of the CA1 region. The amplitude of the resulting fiber volley (fv) of the Schaffer 

collaterals is generally assumed to reliably correlate to presynaptic stimulation. 

Therefore, stimulation was set to obtain fv amplitudes at increasing intervals of 0.05 

mV (0.05, 0.1 0.15, 0.2, 0.25 and 0.3 mV). The resulting field excitatory postsynaptic 

potentials (fEPSPs) were recorded further medially in the CA1 stratum radiatum. The 

output signals (mean fEPSP slopes/amplitudes) were plotted relative to the 

correlating input signals (fv amplitudes)  (Figure IV.1 A). Rasgrp1 KO fEPSPs 

exhibited significantly increased mean slopes and amplitudes (see Table V.1), 

indicating enhanced efficiency of synaptic transmission. 

 

Table V.1: Input-output experiments in Rasgrp1 KO hippocampal slices 

 fEPSP slope fEPSP amplitude 

fv WT KO p WT KO p 

0.05 0.08 ± 0.008 0.12 ± 0.009 0.006** 0.21 ± 0.023 0.29 ± 0.027 0.048* 

0.1 0.14 ± 0.016 0.22 ± 0.025 0.02* 0.38 ± 0.039 0.54 ± 0.054 0.03* 

0.15 0.21 ± 0.030 0.31 ± 0.030 0.048* 0.56 ± 0.069 0.70 ± 0.061 0.169 

0.2 0.25 ± 0.029 0.39 ± 0.029 0.064** 0.68 ± 0.079 0.91 ± 0.069 0.047 

0.25 0.30 ± 0.034 0.48 ± 0.030 0.013** 0.77  ± 0.085 1.15 ± 0.088 0.093** 

0.3 0.33 ± 0.038 0.54 ± 0.036 0.012** 0.84 ± 0.080 1.33 ± 0.111 0.003** 

The first column displays the fiber volley (fv) amplitude [mV]. Slope values are given in mV/ms ± sem; 

amplitudes in mV ± sem; n, WT = 11 slices; n, KO = 12 slices. Statistical analyses were carried out 

using the two-tailed Students t-test ; *, p<0.05; **, p<0.01. 

 

Next, LTP induction was tested in Rasgrp1 KO hippocampi (Figure V.8 B). Four 

tetanic stimuli were applied in 20 s intervals after recording a stable baseline for 10 

min. The resulting mean potentiation shortly after these stimuli (binned values from 

11 to 15 min) was 1.61 ±0.054 fold baseline in WT mice and 1.40 ± 0.051 fold 

baseline in KO mice. The difference was statistically significant (*p = 0.018). The 
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binned mean values from 16-20 min (WT16-20 = 1.32 ± 0.038; KO16-20 = 1.20 ± 0.040) 

also showed a significantly lower potentiation in KO animals (*p = 0.047). However, 

at the end of the recording period (averaged values from 36 to 40 min), no significant 

differences were detected, although potentiation was still lower in KO animals (WT16-

20 = 1.33 ± 0.040; KO16-20 = 1.23 ± 0.046; p = 0,131; n, WT = 11; n, KO = 12). 

Increased basal transmission and reduced LTP in Rasgrp1 KO animals could 

result from pre- or postsynaptic effects. A series of experiments were carried out to 

test the presynaptic release probability for neurotransmitters in Rasgrp1 KO slices. 

First, paired pulse facilitation (PPF), i.e. the enhancement of neurotransmitter release 

in response to two closely spaced stimuli, was tested at different inter-stimulus 

intervals (ISI) (Figure V.8 C). The first stimulus drives calcium into the presynapse, 

some of which remains as the second stimulus leads to additional calcium influx. 

Upon the second stimulus, the increased calcium concentration triggers a larger 

number of synaptic vesicles to fuse with the presynaptic membrane in Schaffer 

collaterals contacting CA1 pyramidal cells, resulting in enhanced neurotransmitter 

release (Zucker and Regehr, 2002). This facilitation of release is detectable as a 

larger fEPSP following the second stimulus. When comparing genotypes, a change 

in PPF would therefore indicate a likely defect in the presynaptic vesicle release 

machinery. However, at all the intervals tested (20, 50, 100, 200, 300, 400 and 500 

ms ISI), the mean facilitation was not significantly different between WT and KO 

animals (Table V.2). 

 

Table V.2: Paired pulse facilitation in Rasgrp1 KO hippocampal slices 

ISI WT KO p 

20 1.23 ± 0.057 1.21 ± 0.057 0.775 

50 1.17 ± 0.044 1.14 ± 0.044 0.587 

100 1.12 ± 0.034 1.10 ± 0.034 0.451 

200 1.08 ± 0.028 1.05 ± 0.028 0.202 

300 1.02 ± 0.022 1.00 ± 0.022 0.45 

400 0.98 ± 0.022 0.97 ± 0.022 0.533 

500 0.95 ± 0.015 0.94 ± 0.015 0.482 

The first column displays the inter-stimulus intervals at which PPF was tested. Values are given as the 

ratio of the second to the first amplitude, n, WT = 11 slices; n, KO = 12 slices. Statistical analyses 

were carried out using the two-tailed Students t-test. 

 

Paired pulse facilitation is a correlate of presynaptic short-term facilitation. 

However, synapses with high basal levels of transmission and high basal release 

probability exhibit paired-pulse depression as preceding stimuli deplete the pool of 
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releasable vesicles to a degree that even the elevated calcium concentrations cannot 

cause an increased release. Reduction of basal transmission, e.g. by reducing 

calcium concentration, relieves depression (Zucker and Regehr, 2002). The standard 

Ringer’s solution used in the experiments described above contained 2.5 mM 

calcium. Additional PPF experiments at low calcium concentration (1.5 mM; 50 ms 

ISI) were performed in order to determine if the loss of Rasgrp1 causes changes in 

presynaptic function when release probability is low (Figure V.8 D). However, no 

significant difference was detected in mean ratios of WT and KO animals (WT = 1.74 

± 0.044; KO = 1.79 ± 0.044; n, WT = 10; n, KO = 10; p = 0.679). To further examine 

longer lasting forms of short-term plasticity, 14 Hz train experiments were conducted. 

During repetitive stimulation of synapses at this moderate frequency, control synaptic 

responses at Schaffer collateral- CA1 synapses show an initial facilitation, followed 

by depression (Schoch et al., 2002). 14 Hz train experiments were performed at both 

normal and reduced calcium concentrations (Figure V.8 E, F). At normal calcium 

concentration, a strong depression (ratio of last to first fEPSP) was detected in both 

WT and in Rasgrp1 KO slices (Figure V.8 E). However, the genotypes did not differ 

(Table V.3). Facilitation at 1.5 mM Calcium was sustained even at the last stimulus in 

control slices, indicating that this concentration does not lead to depletion of synaptic 

vesicles during stimulation (Figure V.8 F). Again, comparative analysis of responses 

in WT and Rasgrp1 KO did not reveal significant differences (Table V.3). 

 

Table V.3: 14 Hz experiments in Rasgrp1 KO hippocampal slices 

 2.5 mM Calcium (Figure V.8 E) 1.5 mM Calcium (Figure V.8 F) 

ratio WT KO p WT KO p 

2
nd

/1
st
 1.30 ± 0.041 1.25 ± 0.015 0.302 1.62 ± 0.043 1.68 ± 0.045 0.333 

last/1
st
 0.72 ± 0.066 0.60 ± 0.03 0.125 1.63 ± 0.143 1.65 ± 0.066 0.936 

Values are given as ratios between 2nd and 1st and last and 1st fEPSP amplitude ± sem; n, WT = 10 

slices; n, KO = 10 slices. Statistical analyses were carried out using the two-tailed Students t-test. 

 

In summary, field recordings in the CA1 region of Rasgrp1 KO mice revealed a 

phenotype that characterized by an increased basal synaptic transmission and 

reduced potentiation in the early phases of LTP. In addition, experiments assessing 

presynaptic release probability and depletion of synaptic vesicles, did not show 

abnormal results in Rasgrp1 deficient mice.  
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Figure V.8: Field recordings in the CA1 stratum radiatum of Rasgrp1 KO mice 

(A) Rasgrp1 KO mice (3-5 weeks) showed an increased basal synaptic transmission, 

as seen in sample traces showing the input (fiber volley) and the output (fEPSP). 

Input-output curves for basal synaptic transmission were generated from the mean 

fEPSP slope (left panel) and amplitude (right panel) of 11 experiments in wild-type 

(WT) and 12 experiments in Rasgrp1 knock-out (KO) mice. (B) LTP was significantly 

impaired in KO mice. LTP was induced by tetanic stimulation (TS), i.e. 100 pulses at 

100 Hz, four times, 20 s apart.  Traces on top of the plot are averages of 5 

consecutive responses each, taken from the end of the baseline and from the end of 

the recording period. The summary plot shows the normalized mean amplitude of 11 

experiments in WT and 12 experiments in KO. The bar graphs show the averaged 



  Results 
 

   79

values taken from the indicated time periods. (C) Paired pulse facilitation (PPF) was 

not significantly changed in KO mice. The traces on top of the plot are overlays of 

traces (each the average of 5 consecutive sample traces) recorded at inter-stimulus 

intervals (ISI) ranging from 20 to 500 ms. The plot shows the ratio of second to first 

fEPSP (WT, n = 11; KO, n = 12). (D-F) Similarily, no significant differences were 

found in PPF (ISI = 50 ms) at low Calcium concentration  (D), and in 14 Hz train 

experiments at normal (E) or low (F) Calcium concentration (WT, n = 10; KO, n= 10, 

each). In 14 Hz trains, the ratio of second to first and last to first amplitude was 

analyzed. Traces are averages of 5 consecutive sample recordings. 

Error bars represent sem; all statistical analyses were carried out using the two-tailed 

Students t-test ; *, p<0.05; **, p<0.01; ns, not significant. 
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V.2.4.2. Patch Clamp Recordings in the Rasgrp1 KO Hippocampus 

Next, patch clamp recordings were performed to record mini excitatory 

postsynaptic currents (mEPSCs) and to assess the sensitivity of pyramidal neurons  

to bath application of L-AMPA. The recordings were obtained from neurons in the 

CA1 stratum pyramidale and performed in the presence of the sodium channel 

blocker tetrododoxin (TTX, 1 M), and the AMPAR-desensitization inhibitor 

cyclothiazide (CTZ, 100 M). Blocking of sodium channels abolishes action potential 

generation, which limits the amount of neurotransmitter released to the spontaneous 

fusion of single synaptic vesicles with the presynaptic membrane. Ideally, a mEPSC 

represents the effect of one “quantal size” (i.e. the neurotransmitter content of a 

single synaptic vesicle) on the postsynaptic cell. Predicted that synaptic vesicle filling 

with neurotransmitter is normal, mEPSC sizes (i.e. amplitudes) indicate postsynaptic 

sensitivity. The frequency of mEPSCs recorded in a period of time is generally 

thought to correlate to the number of functional synapses and to the number and 

release probability of fusion competent vesicles in synapses. An increase in mEPSC 

amplitudes (i.e. postsynaptic efficiency) and/or increased mEPSC frequency (i.e. 

number of synapses, number of fusion competent vesicles per synapse) would help 

to explain the enhanced synaptic transmission observed in Rasgrp1 KO animals.  

mEPSC amplitudes were analyzed by cumulative frequency distribution and by 

calculating the mean amplitude. In case of the recorded events from Rasgrp1 KO 

mice, the cumulative frequency distribution was shifted towards higher values of 

amplitudes. A two-sample Kolmogorow-Smirnow test showed that this shift was 

highly significant (n = 618 events each; Dmax = 0.289; ***p < 0,001; Figure V.9 A). 

Correspondingly, mean amplitudes were significantly increased in KO (WT = 13.99 ± 

0.679 pA; KO = 18.93 ± 1.31 pA; n, WT = 9 cells; n, KO = 8 cells; **p = 0.0056; 

Figure V.9 B). However, mEPSC frequency appeared to be normal in Rasgrp1 KO 

animals (WT = 0.83 ± 0.116 Hz; KO = 0.79 ± 0.155 Hz; n, WT = 9; n, KO = 8; p = 

0.878; Figure V.9 C). These results indicate an increased postsynaptic sensitivity in 

Rasgrp1 KO animals. Postsynaptic efficiency is regulated by a multitude of cellular 

mechanisms. The most likely mechanism to be involved in regulating synaptic 

transmission is a change in the number or the composition of postsynaptic receptors. 

The most prevalent receptors mediating basal synaptic transmission at Schaffer 

collaterals to CA1 synapses are AMPA receptors (AMPARs) that open upon the 

binding of glutamate.  
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L-AMPA is an analogue of glutamate and activates AMPARs within the 

postsynaptic membrane (Honoré et al., 1982). In the whole-cell mode, the current 

(IAMPA) necessary to hold the cell at a potential of -60 mV was recorded (Figure V.9 

D). After recording 5 min of baseline, the standard Ringer’s solution was substituted 

by a Ringer’s solution containing 25 nM L-AMPA. As the remaining standard solution 

and the L-AMPA containing solution mix in the recording chamber, L-AMPA 

concentration rises. IAMPA rapidly increases, as channels open and higher current is 

necessary to hold the cell at a potential of -60 mV. Interestingly, Rasgrp1 KO cells 

not only required a higher current than WT cells, but also showed an earlier onset of 

reaction towards wash-in of L-AMPA. The mean current value obtained from 8 to 10 

min after onset of recording (3 min after begin of wash in), was significantly increased 

in Rasgrp1 KO cells  (WT8-10 = 735.21 ± 99.36 pA; KO8-10 = 918.91 ± 92.37 pA; n, 

WT = 9; n, KO = 10; *p = 0.047). After 10 min, the holding current in Rasgrp1 KO 

cells recovered quite rapidly, until matching WT levels at around 15 min (WT14-16 = 

1147.82 ± 148.42 pA; KO14-16 = 933.28 ± 122.28 pA; n, WT = 9; n, KO = 9; p = 

0.931). These results clearly show an increased sensitivity towards L-AMPA in 

Rasgrp1 KO cells. 

In summary, above patch clamp recordings showed an enhanced postsynaptic 

sensitivity of Rasgrp1 KO cells, which likely result from increased sensitivity towards 

glutamate. The unchanged frequency of mEPSCs excludes, that formation of new 

synapses, an “un-silencing” of usually silent synapses, or substantial changes in the 

number or the release probability of fusion competent synaptic vesicles takes place 

in Rasgrp1 KO cells. Therefore, the increased transmission in KO cells observed in 

field recordings is likely to result from strengthening of existing postsynapses by an 

overabundance or changed properties of AMPA receptors. 
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Figure V.9: Patch clamp recordings in the CA1 stratum pyramidale of Rasgrp1 

KO mice 

Rasgrp1 knock-out (KO) mice (2-4 weeks old) showed increased miniature synaptic 

current amplitudes and a higher sensitivity towards L-AMPA.  

(A) Miniature EPSCs (mEPSCs) were recorded in whole cell mode at -60 mV. 

Sample traces are shown on top. Cumulative frequency distribution displays a 

significant increase in mEPSC amplitudes of KO mice (two-sample Kolmogorow-

Smirnow (KS)- test; 618 equally selected events each; ***p < 0.001; Dmax = 0.289). 

(B) The mean mEPSC frequency was unchanged in the KO. (C) The mean mEPSC 

amplitude was significantly increased. (D) Whole cell currents were evoked by bath 

application of 25 nM L-AMPA during the indicated time period. A summary plot 

shows the enhanced response to L-AMPA of KO cells as compared to WT cells. Bar 

graphs show the average of values within the time periods 8-10 (bottom-left) and 14-

16 minutes (bottom-right). mEPSCs and AMPA currents were recorded in the 

presence of the sodium channel blocker Tetrodotoxin (TTX, 1 M) and the AMPAR-

desensitization inhibitor Cyclothiazide (CTZ, 100 M); numbers (n) of cells analyzed 

(from >4 animals each) are shown at the bottom of the bar graphs; error bars 



  Results 
 

   83

represent sem; all statistical analyses were carried out using the two-tailed Student’s 

t-test; *, p<0.05; **, p<0.01; ns, not significant. 
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V.2.5. Rasgrp1 KO Mice Show Increased PSD-95 Expression  

V.2.5.1. Imaging of Synaptic Composition in the Rasgrp1 KO 

Mouse 

Electrophysiological experiments indicate a postsynaptic component of the 

abnormal transmission seen in Rasgrp1 KO mice. To obtain additional evidence that 

the postsynaptic, but not the presynaptic compartment is the major source of these 

changes, a detailed imaging study was performed to investigate the number and 

composition of synapses in the hippocampal CA1 region. Coronal brain sections of 

WT and Rasgrp1 KO mice were immunolabeled for specific pre- and postsynaptic 

marker proteins. These stainings resulted in punctuate signals, which were counted 

and analyzed with respect to their intensities and area. 

Axons running through the CA1 stratum radiatum terminate at apical dendrites 

of CA1 pyramidal cells in the stratum radiatum itself, but also branch and target basal 

dendrites in the stratum oriens and the dendritic tufts of pyramidal neurons in the 

stratum lacunosum moleculare. These axons derive from neurons of the CA3 region, 

but also from neurons in the entorhinal cortex. The stratum lacunosum moleculare 

also receives input from the thalamus (Klausberger and Somogyi, 2008). In the field 

recordings described above, stimulus and recording electrode were placed in the 

stratum radiatum. To investigate, if other regions were affected by knock out of 

Rasgrp1, the laminae of the hippocampus were analyzed separately. 

 

V.2.5.1.1. Imaging of Excitatory Postsynapses 

First, immunolabelings for PSD-95 were analyzed. PSD-95 is highly enriched in 

the postsynapse of glutamatergic synapses and therefore is frequently used as a 

marker protein for this compartment. PSD-95 is the major postsynaptic scaffolding 

protein of the PSD (Cheng et al., 2006; Cho et al., 1992; Feng and Zhang, 2009) and 

was additionally reported to associate with the postsynaptic membrane itself via 

posttranslational palmitoylation (Craven et al., 1999).  

Immunohistochemical studies detected PSD-95 throughout all layers of the 

hippocampus with highest levels of expression in the stratum oriens and the stratum 

radiatum (Chang et al., 2009; Hunt et al., 1996). This staining pattern was confirmed 

in immunolabelings of WT sections performed in the present study. Interestingly, 

higher levels of fluorescence intensity in all strata of Rasgrp1 KO sections were 

evident even from cursory comparison at the fluorescence binocular (Figure V.10 A). 
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Quasi-confocal (grid-projection) images were taken from each lamina of the CA1 

region and processed as described in chapter IV.4 (Figure V.10 B). Mean intensity of 

puncta did not differ significantly in all strata analyzed, but relative frequency 

distribution of values obtained from analyses of Rasgrp1 KO sections showed clear 

shifts to higher intensity values (Figure V.10 C). The pairs of values tested at several 

intervals showed statistically significant differences in the stratum oriens, stratum 

pyramidale and stratum radiatum (five value pairs tested each). Only the shift of 

intensity distributions for the PSD-95 puncta imaged in the stratum lacunosum 

moleculare was not significantly different between WT and KO at all of the intervals 

tested (Table V.4). 

 

Table V.4: Intensities of PSD-95 puncta in the Rasgrp1 KO hippocampus 

stratum oriens stratum pyramidale 

 WT KO p  WT KO p 

mean 14.18 ± 2.70 16.93 ± 3.36 0.546 mean 12.39 ± 1.85 15.39 ± 2.33 0.342 

20 0.120 ± 0.027 0.035 ± 0.014 *0.018 12 0.108 ± 0.027 0.017 ± 0.011 **0.003 

24 0.130 ± 0.031 0.072 ± 0.017 0.135 16 0.123 ± 0.024 0.042 ± 0.012 **0.007 

28 0.112 ± 0.026 0.121 ± 0.020 0.801 20 0.129 ± 0.023 0.111 ± 0.018 0.352 

32 0.083 ± 0.017 0.137 ± 0.025 0.109 24 0.116 ± 0.022 0.160 ± 0.027 0.816 

36 0.059 ± 0.013 0.124 ± 0.019 *0.016 28 0.088 ± 0.021 0.171 ± 0.037 0.153 

stratum radiatum stratum lacunosum moleculare 

 WT KO p  WT KO p 

mean 14.11 ± 2.54 16.32 ± 3.08 0.436 mean 14.13 ± 3.06 14.76 ± 2.21 0.880 

20 0.153 ± 0.033 0.085 ± 0.038 0.211 20 0.144 ± 0.024 0.085 ± 0.024 0.105 

24 0.153 ± 0.031 0.127 ± 0.041 0.636 24 0.158 ± 0.027 0.105 ± 0.021 0.154 

28 0.111 ± 0.021 0.156 ± 0.038 0.336 28 0.132 ± 0.027 0.131 ± 0.028 0.970 

32 0.073 ± 0.013 0.142 ± 0.027 *0.043 32 0.091 ± 0.024 0.134 ± 0.029 0.288 

36 0.052 ± 0.008 0.110 ± 0.018 *0.013 36 0.063 ± 0.019 0.103 ± 0.021 0.188 

Datasets are organized in sections, headed by the name of the region investigated. The first row of 

each section contains the mean intensity values. Below, the relative frequency values at the indicated 

intervals are shown. n, WT = 12 sections; n, KO = 11 sections; all values are given as means ± sem. 

Statistical analyses were carried out using the two-tailed Students t-test. 

 

Similarly to the relatively low PSD-95 immunofluorescence of the stratum 

pyramidale, the number of PSD-95 puncta per 100 μm2 was also lowest in this 

lamina when compared to other strata (Figure V.10 D). Comparison of counts 

revealed that the mean numbers of PSD-95 puncta were significantly increased in 

every region of KO hippocampi  (Figure V.10 D, Table V.5). The mean area of puncta 

in Rasgrp1 KO mice was comparable to that of WT puncta in every lamina, except for 

the stratum pyramidale (Figure V.10 E), where a slight but significant difference of  

13 % was observed (Table V.5).  
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Table V.5: Numbers and areas of PSD-95 puncta in the Rasgrp1 KO hippocampus 

stratum oriens stratum pyramidale 

mean WT KO p mean WT KO p 

number 20.91 ± 1.60 28.86 ± 0.98 **0.001 number 16.08 ± 1.06 21.07 ± 0.80 **0.002 

area 0.225 ± 0.006 0.231 ± 0.003 0.958 area 0.222 ± 0.008 0.255 ± 0.010 *0.023 

stratum radiatum stratum lacunosum moleculare 

mean WT KO p mean WT KO p 

number 18.12 ± 1.19 23.35 ± 1.23 *0.02 number 23.07 ± 1.07 27.91 ± 1.89 *0.03 

area 0.231 ± 0.007 0.235 ± 0.005 0.613 area 0.231 ± 0.007 0.229 ± 0.006 0.172 

Datasets are organized in sections, headed by the name of the region investigated. The first row of 

each section contains the mean numbers. The row below displays the mean areas [ m2]. n, WT = 12; 

n, KO = 11; all values are given as means ± sem. Statistical analyses were carried out using the two-

tailed Students t-test. 

 

The increased intensity and number of PSD-95 puncta in Rasgrp1 KOs 

substantiates the hypothesis of postsynaptic strengthening in the Rasgrp1 KO 

hippocampus. The regions observed by this method theoretically cover the whole 

postsynaptic morphological structure of pyramidal neurons. The stratum oriens 

contains basal dendrites, the stratum pyramidale contains the somata, the stratum 

radiatum contains the apical dendrites, and the stratum lacunosum moleculare 

contains the dendritic tufts (Spruston, 2008). Therefore, the effect of Rasgrp1 KO on 

PSD-95 seems to be general, since all of these regions show higher numbers of 

PSD-95 puncta and increased intensities. A general mechanism leading to these 

observations would be an increased expression of PSD95. 
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Figure V.10: Imaging of excitatory postsynapses in CA1 of Rasgrp1 KO mice 

Excitatory postsynapses were specifically labeled by immunostaining for PSD-95. 

The number and intensity of PSD-95 were significantly increased in Rasgrp1 knock-

out (KO) mice (3-5 weeks old).  

(A) Sample cross-sections through the CA1 strata of WT and KO mice (boxes = 

20x20 m) stained for PSD-95. (B) Regions of interest (ROIs) were selected from 12 

WT and 11 KO coronal sections (>3 animals each) and processed. PSD-95 puncta, 

which had areas between 0.06 and 2.5 m2 and circularities between 0.6 and 1, were 

counted and intensities measured. Scale bar = 10 m. (C) In KO sections, the 

relative frequency distribution of normalized intensities shows a significant shift to 

higher intensities for stratum oriens (so), stratum pyramidale (sp) and stratum 

radiatum (sr), but not for stratum lacunosum moleculare (slm). The five intervals 

around the intersection of WT and KO distributions were statistically analyzed. Bar 

graphs show the mean intensity of PSD-95 puncta, which were not significantly 

different in any region. (D) The mean puncta count per 100 m2 (#) was significantly 

increased in every region analyzed. (E) The mean area of puncta was unchanged, 
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except for a slight, but significant increase in the stratum pyramidale of Rasgrp1 KO 

animals. Error bars represent sem; all statistical analyses were carried out using the 

two-tailed Student’s t-test; *, p<0.05; **, p<0.01; ns, -, not significant. 
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V.2.5.1.2. Imaging of Presynapses 

Stronger intensities and increased number of PSD-95 puncta in Rasgrp1 KO 

animals could result from two phenomena. First, increased PSD-95 expression in 

Rasgrp1 KO mice could result in a higher number and stronger labeling of 

postsynapses. Secondly, increased PSD-95 expression could result in stronger 

labeling of the postsynapse only. The increased count would then arise from a higher 

probability of detection because PSD-95 puncta were more intensely labeled. 

mEPSC frequency was unchanged in the Rasgrp1 KO, indicating that the number of 

functional synapses is unchanged. In that case, the number and strength of 

presynapses in the CA1 region of Rasgrp1 KO mice should be normal.  

Synapsins are proteins found in most synapses in the brain. They tether 

synaptic vesicles to the cytoskeleton and to each other (Cesca et al., 2010; Evergren 

et al., 2007). Several isoforms are produced from the three genes (Synapsin1-3), of 

which the Synapsin1 and 2 isoforms are found exclusively at presynaptic terminals, 

whereas Synapsin3 can also be detected in the somata of neurons (Cesca et al., 

2010; Evergren et al., 2007; Ferreira et al., 2000). An antibody recognizing 

Synapsin1 and 2 therefore seemed appropriate to specifically label presynapses in 

the present study. 

As described in other studies, highest Synapsin1/2 immunoreactivity was 

detected in the stratum radiatum, followed by the stratum oriens. The stratum 

lacunosum was less intensely stained, and in the stratum pyramidale only very few 

immunoreactive puncta were detected (Figure V.11 A, B). Presynaptic intensity 

profiles as well as mean intensities were not significantly different between Rasgrp1 

KO and WT mice (Figure V.11 C; Table V.6).  
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Table V.6: Intensities of Synapsin1/2 puncta in the Rasgrp1 KO hippocampus 

stratum oriens stratum pyramidale 

 WT KO p  WT KO p 

mean 18.36 ± 2.44 18.06 ± 1.61 0.923 mean 17.61 ± 1.96 16.05 ± 1.46 0.549 

16 0.111 ± 0.026 0.121 ± 0.019 0.779 16 0.111 ± 0.018 0.208 ± 0.075 0.245 

20 0.130 ± 0.029 0.189 ± 0.032 0.199 20 0.154 ± 0.023 0.225 ± 0.058 0.288 

24 0.156 ± 0.021 0.171 ± 0.025 0.668 24 0.159 ± 0.022 0.161 ± 0.028 0.964 

28 0.137 ± 0.021 0.140 ± 0.017 0.928 28 0.139 ± 0.017 0.111 ± 0.029 0.428 

32 0.110 ± 0.023 0.120 ± 0.022 0.767 32 0.106 ± 0.016 0.069 ± 0.018 0.148 

stratum radiatum stratum lacunosum moleculare 

 WT KO p  WT KO p 

mean 22.96 ± 3.01 19.69 ± 1.28 0.365 mean 13.47 ± 1.36 12.26 ± 0.831 0.478 

32 0.106 ± 0.016 0.069 ± 0.018 0.096 12 0.155 ± 0.033 0.231 ± 0.038 0.156 

36 0.069 ± 0.011 0.041 ± 0.010 0.185 16 0.223 ± 0.038 0.289 ± 0.051 0.330 

40 0.036 ± 0.006 0.022 ± 0.006 0.832 20 0.206 ± 0.038 0.187 ± 0.035 0.722 

44 0.020 ± 0.003 0.012 ± 0.003 0.317 24 0.132 ± 0.019 0.104 ± 0.020 0.338 

48 0.013 ± 0.003 0.007 ± 0.002 0.102 28 0.065 ± 0.012 0.044 ± 0.010 0.188 

Datasets are organized in sections, headed by the name of region investigated. The first row of each 

section contains the mean intensity values. Below, the relative frequency values at the indicated 

intervals are shown. n, WT = 15 s; n, KO = 14; all values are given as means ± sem. Statistical 

analyses were carried out using the two-tailed Students t-test. 

 

Interestingly, mean puncta counts in the stratum oriens and the stratum 

radiatum resulted in small, but significant differences between WT and Rasgrp1 KO 

mice (Figure V.11 D). In these regions, mean numbers of Synapsin1/2 positive 

presynapses were decreased in KOs by  6–7 %. Mean numbers in the stratum 

pyramidale and the stratum lacunosum moleculare were not significantly different 

(Table V.7) The mean area of puncta was significantly decreased in the stratum 

pyramidale, whereas they appeared normal in the other strata (Figure V.11 E; Table 

V.7).  

Although a small decrease in mean counts and sizes of Synapsin1/2 positive 

puncta was detected in some regions, this effect was not as prominent as the 

increase in intensities and numbers of PSD-95 puncta. However, it cannot be ruled 

out that the presynapse is slightly affected by knock-out of Rasgrp1. 
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Table V.7: Numbers and areas of Synapsin1/2 puncta in the Rasgrp1 KO 

hippocampus 

stratum oriens stratum pyramidale 

mean WT KO p mean WT KO p 

number 47.45 ± 0.69 43.76 ± 1.27 *0.041 number 15.85 ± 0.51 16.76 ± 1.10 0.425 

area 0.29 ± 0.006 0.29 ± 0.005 0.613 area 0.39 ± 0.009 0.35 ± 0.011 **0.009 

stratum radiatum stratum lacunosum moleculare 

mean WT KO p mean WT KO p 

number 51.88 ± 0.61 49.44 ± 1.08 *0.027 number 39.38 ± 1.89 36.30 ± 1.49 0.424 

area 0.30 ± 0.005 0.30 ± 0.006 0.5 area 0.27 ± 0.007 0.26 ± 0.005 0.62 

Datasets are organized in sections, headed by the name of region investigated. The first row of each 

section contains the mean numbers. The row below displays the mean areas [ m2]. n, WT = 15; n, KO 

= 14. All values are given as mean ± sem. Statistical analyses were carried out using the two-tailed 

Students t-test. 

 

 

Figure V.11: Imaging of presynapses in the CA1 region of Rasgrp1 KO mice 

Excitatory and inhibitory presynapses were labeled by immunostaining for 

Synapsin1/2 The intensity of puncta was unchanged and numbers differed only 

slightly between Rasgrp1 knock-out (KO) and WT mice (3-5 weeks). 
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(A) Sample cross-sections through the CA1 strata of WT and KO mice (boxes = 

20x20 m) stained for Synapsin1/2. (B) Regions of interest (ROIs) were selected 

from 15 WT and 14 KO coronal sections (>3 animals each) and processed. 

Synapsin1/2 puncta, which had areas between 0.09 and 2.5 m2 and circularities 

between 0.5 and 1, were counted and intensities measured. Scale bar = 10 m. (C) 

Relative frequency distributions of normalized intensities show no significant 

difference in any region. The five intervals around the intersection of WT and KO 

distributions were statistically analyzed. Bar graphs show the mean intensities of 

Synapsin1/2 puncta, which were not significantly different in any region. (D) The 

mean puncta count per 100 m2 (#) was slightly, but significantly reduced in stratum 

oriens (so) and stratum radiatum (sr) of KOs. (D) Mean areas of puncta were 

unchanged, except for a small, but significant decrease in the stratum pyramidale of 

Rasgrp1 KO animals. 

so, stratum oriens; sp, stratum pyramidale; sr, stratum radiatum; slm, stratum 

lacunosum moleculare. Error bars represent sem; all statistical analyses were carried 

out using the two-tailed Student’s t-test; *, p<0.05; **, p<0.01; ns, -, not significant. 
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V.2.5.1.3. Imaging of Excitatory Presynapses 

Synapsin1/2 is found in both excitatory and inhibitory presynaptic terminals. In 

order to control the equilibrium that normally exists between excitatory and inhibitory 

synapses to maintain synaptic integrity, specific immunolabelings for excitatory and 

inhibitory presynapses were analyzed next. 

VGLUT1 is the main vesicular glutamate transporter at excitatory presynapses 

in the hippocampus (Herzog et al., 2006). It is nearly absent from the stratum 

pyramidale as the vast majority of excitatory inputs arrive in the other strata. VGLUT1 

localizes primarily to the stratum radiatum and the stratum oriens (Bellocchio et al., 

1998). This pattern is also seen in Figure V.12 A and B. In all laminae of Rasgrp1 KO 

hippocampi, numbers and intensities of VGLUT1 positive puncta were similar to WT 

values (Figure V.12 C, D; Table V.8). The mean area of puncta was slightly 

decreased in all strata, but this difference was only statistically significant in the 

stratum oriens (Figure V.12 E; Table V.9) 

These results show, that excitatory presynapses in general and the Glutamate 

transport machinery at synaptic vesicles in particular, are likely to be unaffected by 

loss of Rasgrp1. 

 

Table V.8: Intensities of VGLUT1 puncta in the Rasgrp1 KO hippocampus 

stratum oriens stratum pyramidale 

 WT KO p  WT KO p 

mean 23.36 ± 0.58 21.46 ± 1.29 0.223 mean 16.60 ± 0.99 17.00 ± 1.08 0.839 

36 0.108 ± 0.018 0.108 ± 0.018 36 12 0.074 ± 0.019 0.103 ± 0.021 0.245 

40 0.112 ± 0.016 0.123 ± 0.021 40 16 0.108 ± 0.030 0.120 ± 0.034 0.288 

44 0.113 ± 0.012 0.113 ± 0.021 44 20 0.129 ± 0.028 0.111 ± 0.034 0.964 

48 0.110 ± 0.009 0.095 ± 0.022 48 24 0.142 ± 0.031 0.102 ± 0.017 0.428 

52 0.090 ± 0.011 0.075 ± 0.024 52 28 0.158 ± 0.039 0.100 ± 0.015 0.148 

stratum radiatum stratum lacunosum moleculare 

 WT KO p  WT KO p 

mean 24.43 ± 0.65 23,64 ± 0.99 0.398 mean 16.34 ± 0.70 16.73 ± 0.76 0.5 

36 0.098 ± 0.017 0.100 ± 0.012 0.950 20 0.129 ± 0.028 0.111 ± 0.034 0.156 

40 0.111 ± 0.016 0.135 ± 0.020 0.395 24 0.142 ± 0.031 0.102 ± 0.017 0.330 

44 0.124 ± 0.019 0.143 ± 0.032 0.633 28 0.158 ± 0.039 0.100 ± 0.015 0.722 

48 0.124 ± 0.021 0.127 ± 0.030 0.938 32 0.126 ± 0.032 0.089 ± 0.017 0.338 

52 0.103 ± 0.017 0.107 ± 0.025 0.909 36 0.084 ± 0.022 0.084 ± 0.016 0.188 

Datasets are organized in sections, headed by the name of region investigated. The first row of each 

section contains the mean intensity values. Below, the relative frequency values at the indicated 

intervals are shown. n, WT = 12; n, KO = 9; all values are given as mean ± sem. Statistical analyses 

were carried out using the two-tailed Students t-test. 
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Table V.9: Numbers and areas of VGLUT1 puncta in the Rasgrp1 KO hippocampus 

stratum oriens stratum pyramidale 

mean WT KO p mean WT KO p 

number 34.28 ± 1.30 36.51 ± 1.71 0.09 number 2.82 ± 0.20 3.92 ± 0.86 0.217 

area 0.43 ± 0.005 0.38 ± 0.015 **0.008 area 0.4 ± 0.009 0.37 ± 0.021 0.253 

stratum radiatum stratum lacunosum moleculare 

mean WT KO p mean WT KO p 

number 35.23 ± 1.61 37.29 ± 1.46 0.06 number 31.44 ± 0.98 33.12 ± 1.22 0.183 

area 0.42 ± 0.01 0.40 ± 0.017 0.407 area 0.27 ± 0.007 0.35 ± 0.012 0.49 

Datasets are organized in sections, headed by the name of region investigated. The first row of each 

section contains the mean numbers. The row below displays the mean areas [ m2]. n, WT = 12; n, KO 

= 9; all values are given as mean ± sem; statistical analyses were carried out using the two-tailed 

Students t-test. 

 

 

Figure V.12: Imaging of excitatory presynapses in the CA1 region of Rasgrp1 

KO mice 

Excitatory presynapses were labeled by immunostaining for VGLUT1. The intensity 

and number of puncta were not changed in Rasgrp1 knock-out (KO) mice (3-5 

weeks). 
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(A) Sample cross-sections through the CA1 strata of WT and KO mice (boxes = 

20x20 m) stained for VGLUT1. (B) Regions of interest (ROIs) were selected from 12 

WT and 9 KO coronal sections (>3 animals each) and processed. VGLUT1 puncta, 

which had areas between 0.09 and 2.5 m2 and circularities between 0.5 and 1, were 

counted and intensities measured. Scale bar = 10 m. (C) The relative frequency 

distributions of normalized intensities show no significant difference in any region. 

The five intervals around the intersection of frequency distribution or, alternatively, 

the common peak of WT and KO histograms were statistically analyzed. Bar graphs 

show the mean intensity of VGLUT1 puncta, which were equally not significantly 

different in any region. (D) The mean puncta count per 100 m2 (#) was not different 

in any stratum. (E) The mean area of puncta was slightly changed in the stratum 

oriens (so) of Rasgrp1 KO mice, but unaltered in other strata. 

so, stratum oriens; sp, stratum pyramidale; sr, stratum radiatum; slm, stratum 

lacunosum moleculare. Error bars represent sem; all statistical analyses were carried 

out using the two-tailed Students t-test; **, p<0.01; ns, -, not significant. 
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V.2.5.1.4. Imaging of Inhibitory Presynapses 

VGAT is a vesicular transporter for GABA and is expressed throughout the CA1 

region. It is concentrated in presynaptic termini around the somata of pyramidal 

neurons, i.e. in the stratum pyramidale (Chaudhry et al., 1998). In the other strata, it 

is less abundant (Figure V.13 A, B). In Rasgrp1 KO samples, neither the intensities 

nor the areas or numbers of VGAT puncta showed any significant difference as 

compared to WT values (Table V.10; Table V.11). 

 

Table V.10: Intensities of VGAT puncta in the Rasgrp1 KO hippocampus 

stratum oriens stratum pyramidale 

 WT KO p  WT KO p 

mean 19.02 ± 2.08 15.37 ± 1.54 0.182 mean 15.37 ± 1.54 18.07 ± 0.98 0.798 

20 0.106 ± 0.018 0.170 ± 0.037 0.170 20 0.090 ± 0.022 0.129 ± 0.032 0.357 

24 0.115 ± 0.018 0.161 ± 0.047 0.402 24 0.132 ± 0.032 0.159 ± 0.030 0.575 

28 0.129 ± 0.018 0.125 ± 0.039 0.933 28 0.141 ± 0.026 0.164 ± 0.022 0.519 

32 0.111 ± 0.023 0.094 ± 0.036 0.710 32 0.123 ± 0.021 0.161 ± 0.023 0.266 

36 0.088 ± 0.033 0.071 ± 0.031 0.723 36 0.102 ± 0.022 0.122 ± 0.024 0.554 

stratum radiatum stratum lacunosum moleculare 

 WT KO p  WT KO p 

mean 17.24 ± 1.81 15.08 ± 1.30 0.52 mean 14.75 ± 0.93 13.90 ± 0.54 0.736 

16 0.109 ± 0.026 0.161 ± 0.044 0.464 12 0.048 ± 0.014 0.106 ± 0.031 0.156 

20 0.102 ± 0.020 0.142 ± 0.032 0.650 16 0.161 ± 0.033 0.171 ± 0.051 0.330 

24 0.106 ± 0.022 0.115 ± 0.017 0.870 20 0.217 ± 0.032 0.196 ± 0.030 0.722 

28 0.126 ± 0.030 0.101 ± 0.025 0.646 24 0.157 ± 0.022 0.211 ± 0.020 0.338 

32 0.114 ± 0.032 0.100 ± 0.043 0.827 28 0.111 ± 0.028 0.170 ± 0.030 0.188 

Datasets are organized in sections, headed by the name of region investigated. The first row of each 

section contains the mean intensity values. Below, the relative frequency values at the indicated 

intervals are shown. n, WT = 12; n, KO = 9; all values are given as mean ± sem; statistical analyses 

were carried out using the two-tailed Students t-test. 

 

Table V.11: Numbers and areas of VGAT puncta in the Rasgrp1 KO hippocampus 

stratum oriens stratum pyramidale 

mean WT KO p mean WT KO p 

number 21.12 ± 1.30 22.08 ± 3.26 0.315 number 14.44 ± 0.69 15.24 ± 0.95 0.794 

area 0.32 ± 0.009 0.33 ± 0.008 0.799 area 0.40 ± 0.009 0.42 ± 0.012 0.156 

stratum radiatum stratum lacunosum moleculare 

mean WT KO p mean WT KO p 

number 24.41 ± 3.15 26.03 ± 3.67 0.377 number 27.29 ± 1.46 30.75 ± 2.20 0.608 

area 0.31 ± 0.006 0.32 ± 0.009 0.958 area 0.29 ± 0.005 0.30 ± 0.005 0.832 

Datasets are organized in sections, headed by the name of region investigated. The first row of each 

section contains the mean numbers. The row below displays the mean areas [ m2]. n, WT = 12; n, KO 

= 9; all values are given as means ± sem; statistical analyses were carried out using the two-tailed 

Students t-test. 
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The analyses of VGAT positive puncta indicate, that Rasgrp1 does not have an 

effect on inhibitory presynapses. Along with the other data obtained in this imaging 

study, this supports the view of a predominant role of Rasgrp1 in postsynaptic 

development and function. Moreover these data highlight a role of PSD-95 in the 

regulation of synaptic transmission by Rasgrp1. 

 

 

Figure V.13: Imaging of inhibitory presynapses in the CA1 region of Rasgrp1 

KO mice 

Inhibitory presynapses were labeled by immunostaining for VGAT. The intensity and 

number of puncta were not changed in Rasgrp1 knock-out (KO) mice (3-5 weeks). 

(A) Sample cross-sections through the CA1 strata of WT and KO mice (boxes = 

20x20 m) stained for VGAT. (B) Regions of interest (ROIs) were selected from 12 

WT and 9 KO coronal sections (>3 animals each) and processed. VGAT puncta, 

which had areas between 0.09 and 2.5 m2 and circularities between 0.5 and 1, were 

counted and intensities measured. Scale bar = 10 m. (C) The relative frequency 

distributions of normalized intensities show no significant difference in any region. 
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The five intervals around the intersection of the frequency distributions or, 

alternatively, the common peak of WT and KO histograms were statistically analyzed. 

Bar graphs show the mean intensity of VGAT puncta, which were equally not 

significantly different in any region. (D) The mean puncta count per 100 m2 (#) was 

not different in any stratum. (E) The mean area of puncta was not changed. 

so, stratum oriens; sp, stratum pyramidale; sr, stratum radiatum; slm, stratum 

lacunosum moleculare. Error bars represent sem; all statistical analyses were carried 

out using the two-tailed Student’s t-test; ns, -, not significant. 

 



  Results 
 

   99

V.2.5.2. Biochemical Analysis of Postsynaptic Markers in the 

Rasgrp1 KO Hippocampus 

PSD-95 does not only act as a structural component at the PSD, but also 

regulates synaptic transmission by providing “slots” that allow AMPA receptors to be 

incorporated into the synapse. This “slot theory” was established after the 

observation that overexpression of PSD-95 selectively leads to increased AMPAR 

transmission (Béïque and Andrade, 2003; El-Husseini et al., 2000; Schnell et al., 

2002). Conversely, reducing PSD-95 levels mediates a reduced AMPAR 

transmission (Elias et al., 2006; Elias and Nicoll, 2007; Schlüter et al., 2006). 

Recently, evidence was also provided for an indirect influence of PSD-95 on 

presynaptic release probability via its interaction with Neuroligins (Futai et al., 2007; 

Irie et al., 1997). Furthermore, increased levels of PSD-95 can influence NMDAR 

transmission (Futai et al., 2007). 

First, PSD-95 expression was investigated. In hippocampal homogenates 

(Figure V.14 A), relative PSD-95 protein content was increased by  10 % as 

compared to WT homogenate, but this difference was not statistically significant 

(homogenate; WTPSD-95 = 1.00 ± 0.09; KOPSD-95 = 1.10 ± 0.08; n, WT = 15; n, KO = 

15; p = 0.401). Contrastingly, the PSD-95 content was increased by  40 %  in the 

PSD fraction (Figure V.14 B; PSD fraction; WTPSD-95 = 1.00 ± 0.09; KOPSD-95 = 1.41 ± 

0.16; n, WT = 14; n, KO = 15; **p = 0.042) 

In order to investigate, if this genotype specific increase of PSD-95 levels also 

involved abnormal levels of AMPARs and/or NMDARs, purified PSD fractions were 

analyzed for several AMPAR and NMDAR subunits. AMPA receptors are oligo-

heteromers composed of four subunits (Rosenmund et al., 1998). The preferred 

composition is that of two heterodimers, mostly GluR1/2 and in some cases, GluR2/3 

(Derkach et al., 2007). GluR4 is not present in the adult hippocampus 

(Allen_Mouse_Brain_Atlas, 2009; Zhu et al., 2000) and therefore GluR4 expression 

was not assessed in this study. However, neither of the AMPAR subunits showed 

abnormal levels either in homogenates or in PSD fractions of Rasgrp1 KO 

hippocampus (Table V.12).  

Next, NMDAR subunit expression was examined. NMDAR receptors are hetero-

oligomers composed of four subunits. They contain two obligatory NMDAR1 subunits 

and two variable NMDAR2 or NMDAR3 subunits. The NMDAR2 family comprises of 

NMDAR2A, -B, -C and –D, and the NMDAR3 family of NMDAR3A and B (Cull-Candy 
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et al., 2001). Expression of NMDAR1, NMDAR2A and NMDAR2B were analyzed in 

hippocampal homogenates and PSD fractions of Rasgrp1 deficient mice, but no 

abnormal protein expression was found (Table V.12). 

 

Table V.12: Relative protein content of markers in homogenate and PSD fractions 

homogenate (Figure V.14 A) PSD fraction (Figure V.14 B) 

marker WT KO p marker WT KO p 

PSD-95 1.00 ± 0.09 1.10 ± 0.08 0.401 PSD-95 1.00 ± 0.09 1.41 ± 0.16 0.042 

GluR1 1.00 ± 0.06 1.03 ± 0.04 0.713 GluR1 1.00 ± 0.10 1.12 ± 0.16 0.568 

GluR2 1.00 ± 0.06 1.02 ± 0.04 0.653 GluR2 1.00 ± 0.16 0.92 ± 0.10 0.330 

GluR2/3 1.00 ± 0.06 0.98 ± 0.06 0.698 GluR2/3 1.00 ± 0.16 1.01 ± 0.14 0.606 

NMDAR1 1.00 ± 0.05 1.01 ± 0.05 0.767 NMDAR1 1.00 ± 0.18 0.96 ± 0.14 0.376 

NMDAR2A 1.00 ± 0.05 0.95 ± 0.05 0.543 NMDAR2A 1.00 ± 0.10 1.05 ± 0.10 0.727 

NMDAR2B 1.00 ± 0.06 1.03 ± 0.07 0.538 NMDAR2B 1.00 ± 0.19 0.85 ± 0.10 0.640 

All values are ratios of densitometric readouts (marker/control) ± sem. Statistical analyses were 

carried out using the two-tailed Students t-test; n – numbers are found at the bottom of the 

corresponding bar graphs (Figure V.14). 

 

In addition to the increased fluorescence signal of PSD-95 seen in 

immunohistochemically stained hippocampal sections (Figure V.10), these results 

confirm the hypothesis that PSD-95 expression is enhanced in Rasgrp1 KO animals. 

However, the analyses of homogenates and PSD fractions provide no indication for 

abnormal protein expression of the major glutamatergic receptor subunits.  
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Figure V.14: Biochemical analysis of hippocampal homogenates and PSD 

fractions prepared from Rasgrp1 KO mice 

The expression of PSD-95 and receptor subunits was assessed by densitometric 

analysis of immunolabeled Western blots. PSD-95 expression in postsynaptic density 

(PSD) fractions was significantly increased in Rasgrp1 knock-out (KO) hippocampi. 

(A) Western blots of homogenates. Sample blots are shown on top of the 

corresponding bar graphs. Synaptophysin (  37 kDa) was used as control of total 

protein load. The ratio of densitometric values of marker and corresponding control 
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are displayed in the bar graphs. None of the markers tested in Rasgrp1 KO 

homogenate showed a significant difference as compared to wild-type (WT).  

(B) Western blots of PSD fractions. Sample blots and analyses of PSD-fraction are 

displayed as described in (A). PSD-95 expression was significantly increased in PSD 

fractions of Rasgrp1 KO hippocampi. 

Numbers of animals (3-5 weeks old) analyzed are shown at the bottom of the bar 

graphs; error bars represent sem; statistical analyses were carried out using the two-

tailed Student’s t-test  (**, p<0.01; ns, not significant). 
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VI. Discussion 

VI.1. Lack of Rasgrp1 Increases Postsynaptic Sensitivity 

In the present study, I analyzed the effects of Rasgrp1 deficiency on 

hippocampal function. The results of this study indicate, that Rasgrp1 deficient mice 

exhibit an increased postsynaptic sensitivity.  

The efficiency of synaptic transmission in the hippocampus of Rasgrp1 KO is 

increased by 35 %. This discovery was made in field recordings, applying an input-

output protocol that correlated the input from Schaffer collaterals to resulting fEPSPs 

in the stratum radiatum of the CA1 region. An increase in synaptic transmission may 

result from three phenomena: An increase in synapses, increased number or release 

probability of synaptic vesicles, or increased sensitivity of postsynapses. PPF 

experiments as well as 14 Hz train experiment did not show any difference between 

WT and Rasgrp1 KO animals, indicating that presynaptic characteristics are not 

changed in Rasgrp1 KOs. In addition, normal mEPSC frequency indicated that the 

number of functional synapses is unchanged in Rasgrp1 KOs. In contrast, the 

amplitudes of mEPSC were increased in Rasgrp1 KO cells, indicating towards an 

increased postsynaptic sensitivity. A detailed immunohistochemical analysis showed 

that numbers and intensities of stained presynapses are unchanged or even slightly 

reduced in the hippocampus of Rasgrp1 KO animals. Excitatory presynapses 

(VGLUT1 stainings) showed normal numbers and intensities in the CA1 region, as 

was the case for inhibitory presynapses (VGAT stainings), indicating that the 

numbers of excitatory and inhibitory presynapses are not affected in Rasgrp1 KO 

mice. Also, comparative immunostainings showed that Rasgrp1 is not present in the 

somata of inhibitory neurons of the stratum pyramidale. Rather, Rasgrp1 appears to 

be exclusively present in somata of pyramidal neurons, and is therefore unlikely to 

function in the formation or regulation of inhibitory presynapses. The number of total 

presynapses (Synapsin1/2 stainings) was slightly reduced (  6 %) in the CA1 region 

of Rasgrp1 KO animals. In any case, the present data show that the increase in 

synaptic transmission cannot be explained by an increase in the number of functional 

synapses. 

In contrast, the numbers and intensities of postsynaptic puncta (PSD-95 

stainings) were significantly increased in the CA1 region of Rasgrp1 KO mice. 

Together with the finding that numbers of presynapses are not increased in Rasgrp1 

KO mice, these data likely result from an increased rate of detection of postsynaptic 
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puncta due to higher intensity levels. In biochemical analyses of PSD fractions 

prepared from Rasgrp1 KO hippocampi, an increased expression of PSD-95 was 

found. These results lead to the conclusion that loss of Rasgrp1 leads to a 

strengthening of postsynaptic efficiency via an increase of PSD-95 levels at 

postsynapses. The slight but significant reductions of presynapses stained for 

Synapsin1/2 (see Figure V.11 D) may represent an indirect effect of postsynaptic 

strengthening. It has recently been shown, that high levels of PSD-95 can indirectly 

influence presynaptic function (Futai et al., 2007). Therefore, reduced protein levels 

of Synapsin1/2 might represent an adaptive effect to an increased synaptic 

transmission. Alternatively, the slight reduction in the number of presynaptic 

structures detected by Synapsin1/2 staining may not have been noticed in the 

VGLUT1 and VGAT staining experiments due to differences in the detection 

sensitivity. In addition, the Synapsin1/2 staining may have detected a small subset of 

non-glutamatergic/non-GABAergic synapses that cannot be detected by antibodies to 

VGLUT1 and VGAT. 

 

VI.2. An Increase of PSD-95 Levels in the Hippocampus of Rasgrp1 

KO Mice Mediates Increased Synaptic Efficiency 

In addition to increased levels of PSD-95, Rasgrp1 KO neurons show an 

increased sensitivity towards L-AMPA. This was demonstrated by bath application of 

L-AMPA during patch-clamp recordings. It is generally believed, that PSD-95 

scaffoldings at the PSD provide “slots” for the insertion of AMPA receptors and, the 

level of PSD-95 expression at the postsynapse is positively correlated to the level of 

synaptic transmission (Béïque and Andrade, 2003; El-Husseini et al., 2000; Elias et 

al., 2006; Elias and Nicoll, 2007; Schlüter et al., 2006; Schnell et al., 2002).  

However, no aberrant expression of AMPAR and NMDAR subunits was detected in 

purified PSD fractions of Rasgrp1 KO mice. There are at least four possible 

explanations for this finding, all of which may be relevant in the context of the present 

study.  

First, the method that was used here to purify PSD fractions and the analysis by 

immunoblotting may not be sensitive enough to detect mild changes in protein levels. 

At their respective peaks, WT and KO L-AMPA- responses differ by  25 % (Figure 

V.9 D). Even if sensitivity towards L-AMPA were linearly proportional to the content of 

AMPA receptors at the synapse, this increase would by very difficult to detect by 
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immunoblotting. Also, the nature of the “slots” provided for AMPA receptors by PSD 

scaffolds is not known yet. Estimated numbers for the content of scaffolding 

molecules at the postsynapse range from 60 to 400, whereas the corresponding 

numbers of AMPA receptors only range from 5-200 (Newpher and Ehlers, 2008) 

indicating that the “slot” for one receptor is formed by a multitude of scaffolding 

molecules. This relation of scaffold molecules and receptors appears to be non-

linear. With regard to minimal values, this ratio might increase to 12 scaffold 

molecules per receptor, indicating that empty slots exist. Even in the case of an 

overabundance of AMPARs, these empty slots are not filled. This has been 

demonstrated by the finding, that overexpression of AMPAR subunits alone does not 

result in enhanced transmission (Shi et al., 2001), consistent with the idea that empty 

slots bind receptors only upon specific stimuli, e.g. during LTP (Lisman and 

Raghavachari, 2006). Although decreased, Rasgrp1 deficient mice still show LTP. It 

is likely, that increased basal synaptic transmission occludes the effect of 

potentiation. However, potentiation would not be maintained at all, if AMPARs were 

present at the postsynapse at the same number, as slots exist. These considerations 

might explain, why an increase in AMPAR levels at the postsynapse can be expected 

to be lower than a primary increase in PSD-95 levels and might therefore not 

detectable by biochemical analysis. 

Second, an explanation for the discrepancy between PSD-95 changes and 

AMPAR levels may be provided by aberrant subunit composition of AMPARs in 

Rasgrp1 deficient mice. The presence or absence of a single AMPAR subunit can 

dramatically change synaptic transmission. For example, GluR1 is a target of Camk2 

phosphorylation, which enhances the coupling efficiency and facilitates channel 

opening. Other studies showed that this effect is responsible for the significantly 

increased single-channel conductance of homomeric GluR1 AMPARs (Derkach et 

al., 1999; Derkach et al., 2007). In addition, AMPARs lacking GluR2 exhibit increased 

permeability for calcium, open probability and conductance (Derkach et al., 2007). 

Although statistically not significant, GluR1 expression in PSD fractions of Rasgrp1 

KO hippocampi is increased by 12 %. Furthermore, GluR2 expression is reduced by 

 8 %. These tendencies might indicate a change in AMPAR subunit composition in 

Rasgrp1 deficient mice. Moreover, the response of Rasgrp1 KO neurons to wash-in 

of L-AMPA was not only increased in amplitude, but also displayed an earlier onset 

and an increased slope. Increased incorporation of GluR1 and decreased 
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incorporation of GluR2 might indicate an enhanced efficiency of glutamate binding 

and channel opening and would explain earlier onset and increased slope of the L-

AMPA curve in Rasgrp1 KOs. However, the mild changes in subunit expression, 

which can lead to these dramatic changes in receptor properties, are unlikely to be 

detectable by immunoblotting. 

Third, the increase in synaptic transmission and sensitivity towards L-AMPA 

seen in Rasgrp1 deficient mice may result from changed properties of an AMPAR 

population, that is “normal” at the level of expression. These changes may include 

posttranscriptional and posttranslational changes as well as phosphorylation. GluR1 

phosphorylation and a resulting increase in conductance of GluR1 containing 

AMPARs have already been mentioned above as a possible mechanism (Derkach et 

al., 1999; Derkach et al., 2007). Many other enzymes are known to modulate AMPAR 

function by phosphorylation, including cAMP-dependent protein kinase (PKA) and 

protein kinase C (PKC) (Song and Huganir, 2002). RNA processing events, including 

alternative splicing and RNA editing, are known to diversify AMPAR function. RNA 

splicing of mutually exclusive exons (termed flip/flop) within the Glutamate binding 

domain modulates desensitization kinetics (Greger et al., 2007). If and in which way 

these processes are influenced by a lack of Rasgrp1, remains to be clarified. 

Fourth, presumably it is not possible to discriminate between synaptic and 

extrasynaptic AMPARs by analysis of PSD fractions, because NMDAR2B subunits 

were detected in this fraction (Figure V.14 B). The NMDAR2B and D subunits 

dominate the neonatal brain, but are replaced by NMDAR2A or NMDAR2C subunits 

during the course of development (Sheng et al., 1994). However, 

NMDAR1/NMDAR2B receptors are still present in mature neurons, but exclusively at 

extrasynaptic sites (Cull-Candy et al., 2001; Newpher and Ehlers, 2008). Therefore it 

is very likely that not only synaptic PSDs, but also extrasynaptic sites containing 

receptors are purified by the method used in the present study. These extrasynaptic 

sites are microdomains consisting of membranous and submembranous structures 

such as scaffoldings, and are thought to play a pivotal role in AMPAR dynamics. The 

loosely defined extrasynaptic region begins at the spine neck and encompasses 

dendritic and somatic plasma membrane (Newpher and Ehlers, 2008). AMPARs 

found in these extrasynaptic regions are assumed to function as a reserve pool and 

may be trafficked to the PSD by lateral diffusion within the plasma membrane or by 

endocytotic recycling. In Rasgrp1 KO hippocampi, synaptic AMPARs may be 
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increased by the same amount as extrasynaptic AMPAR numbers are decreased. 

This transfer would be impossible to monitor by a method that cannot distinguish 

these receptor populations.  

 

VI.3. Ras Signaling and Synaptic Transmission 

Syngap1 is the only known Ras signaling protein that has been directly 

implicated in the function of PSD-95. However, it is unclear how this functional 

interplay operates mechanistically. Syngap1 is found at the postsynapse at similar 

amounts as PSD-95 and PSD-93 combined (Cheng et al., 2006) and interacts 

directly with PSD-95 (Feng and Zhang, 2009). In mature neurons, Syngap1 also 

associates with the NMDAR2B subunit of NMDARs (Derkach et al., 2007), and 

therefore should also be present at extrasynaptic sites. Given its abundance at the 

postsynapse, Syngap1 is also discussed to act as a scaffolding molecule. Camk2, 

another protein that is highly enriched at the postsynapse, regulates Syngap1 via 

phosphorylation, leading to an increase in GAP activity (Oh et al., 2004). Therefore 

an increase in calcium/Calmodulin by synaptic activity would reduce active Ras 

levels by means of Syngap1. Since Ras is thought to positively act on AMPAR 

trafficking, Syngap1 might limit AMPAR trafficking (Derkach et al., 2007). Given the 

high amount of protein found at the cytosolic face of the PSD, Syngap1, a negative 

regulator of Ras activity, can be imagined as a “barrier” for AMPAR trafficking 

mediated by active Ras. Considering only the level of Ras activity, an increase in 

synaptic transmission upon Syngap1 deficiency is contradictory to the findings of the 

present study, since a decreased level of Ras activity is expected in cells deficient of 

Rasgrp1, yet AMPAR mediated transmission is increased. 

Gain-of-function studies involving Hras (i.e. overexpression of G12V Hras) and 

loss-of-function studies involving Syngap1 yielded more or less congruent results.  

Overexpression of G12V Hras results in enhanced synaptic transmission (Imamura 

et al., 2003; Rumbaugh et al., 2006; Zhu et al., 2002). These findings shaped the 

general view on Ras as a positive regulator of AMPAR trafficking. Other findings are 

not as congruent with this general view of Ras signaling in neurons. An AMPAR 

mediated enhancement in transmission was observed in mice deficient in Rasgrf1 

(Brambilla et al., 1997; Tonini et al., 2001) and, Hras KO mice exhibit normal AMPAR 

mediated transmission (Manabe et al., 2000). The electrophysiological phenotype of 

the Rasgrf1 KO mouse, which was characterized by Brambilla et al. (1997), is similar 



Discussion
 

 108 

to that of the Rasgrp1 KO mouse described here. The present study and the study of 

Brambilla et al. (1997) indicate that not only increased but also decreased Ras 

activity can enhance synaptic transmission.  

Looking more closely at the general interpretation according to which Ras 

activity positively regulates synaptic transmission, it appears, that this view currently 

lacks an explanation that involves definitive molecular and cellular mechanisms. In 

research on Ras signaling effects at the postsynapse, some researchers stress the 

ability of Ras G proteins to positively act in the generation of new dendritic spines 

(Seeger et al., 2005; Vazquez et al., 2004) while others highlight the role in AMPAR 

trafficking and exclude the generation of new spines (Imamura et al., 2003; 

Rumbaugh et al., 2006; Zhu et al., 2002). However, the data backing these opposing 

views do not provide an insight into the mechanisms by which Ras signaling is acting 

at the molecular or cellular level. In contrast, known interactions, effector cascades, 

and regulatory proteins can clearly associate Rho G proteins with a regulation of the 

actin cytoskeleton, also during spine morphogenesis (Yoshihara et al., 2009). 

Mechanisms of Rab G proteins in endocytosis and vesicle trafficking have been 

studied in detail, revealing their role in AMPAR endocytosis (Ng and Tang, 2008). 

Research on Ras signaling in neurons lacks this background in many respects. In 

particular, none of the studies investigating Ras signaling in AMPAR trafficking take 

into account a possible role of Ras in the trafficking of PSD scaffolds.  

As already described above (see chapter II.5), a strong determinant of Ras 

function seems to be the subcellular location, at which Ras is activated.  

 

VI.4. Localized Regulation of Neuronal Ras Function 

Syngap1 is not present in the somata of adult pyramidal neurons (Moon et al., 

2008), and apart from the PSD, Syngap1 is only found in the dendritic shaft (Barnett 

et al., 2006). Given the almost exclusive localization of Syngap1 to postsynapses, 

inactivation of Ras activity by Syngap1 must be seen as a PSD specific form of Ras 

signaling. Overexpression of G12V Hras, as has been the usual experimental 

practice in studies on Ras signaling in AMPAR trafficking, “floods” the cell with active 

Ras. It is obvious, that this leads to a general perturbation of localization specific 

effects and to ectopic Ras signaling.  

 Rasgrp1 is almost exclusively localized to the Golgi apparatus. As in other cell 

types, the Golgi apparatus in neurons serves posttranslational modification of 
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proteins and is the starting point for trafficking of proteins and membranes to other 

subcellular compartments and the plasma membrane. Because neurons are highly 

complex cells, the organization of their organelles differs from that of other cells in 

many respects. Dendrites are endowed with a satellite endomembranous system, 

comprising of Golgi outposts and SER, which is continuously linked to somatic ER 

(Kennedy and Ehlers, 2006; Tang, 2008). These satellite organelles are thought to 

act in local protein synthesis, modification and trafficking. Most Golgi outposts are 

found in the apical dendrite of pyramidal neurons, up to 100 μm away from the soma 

and seem to localize primarily at branch points (Horton et al., 2005). In the present 

study, Rasgrp1 immunofluorescence was also found in proximal dendrites and 

seemed to be enriched in branch points (Figure V.1). However, the maximal distance 

from the soma at which these signals were found was 40 μm. Furthermore, these 

accumulations of Rasgrp1 exhibited very low intensities in comparison to the intensity 

of immunofluorescence in the soma. In contrast, effects of Rasgrp1 deficiency, i.e. 

increased numbers and intensities of PSD-95 puncta in the stratum lacunosum 

moleculare are found up to 200 m away from the soma (Figure V.10). It seems 

unlikely, that Rasgrp1 regulates these distant effects directly from its localization in 

the soma. Unlike Syngap1, which is almost exclusively found at the postsynapse, 

Rasgrp1 may rather regulate the development of postsynapses and the supply of 

PSD-95 in adult stages. Given this segregation of Rasgrp1 and Syngap1 function, 

completely opposite regulation (i.e. activation/inactivation) of the same downstream 

effector leading to the same physiological effect (i.e. negative regulation of synaptic 

transmission) is plausible.  

 

VI.5. A Possible Role for Rasgrp1 in Synaptogenesis 

Initial synaptogenesis is a process that occurs within the period in which both 

Rasgrp1 and PSD-95 levels were shown to increase. Proteins involved in 

synaptogenesis are present in neurons before synapses are formed. They are 

localized to heterogeneous clusters of proteins, called “packets”, in dendrites and 

axons (McAllister, 2007).  

Upon axo-dendritic contact, the first proteins to arrive at the future postsynapse 

are NMDARs. Arrival of PSD-95 occurs with a high degree of temporal variability, i.e. 

as early as NMDARs are detected at synapses or up to one hour later. However, 

AMPARs are incorporated into the new structure only after PSD-95 has accumulated 
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at the postsynapse (Bresler et al., 2001; Friedman et al., 2000; McAllister, 2007). 

This is in accord with the notion that scaffoldings have to be present for synapse 

incorporation of AMPARs (Newpher and Ehlers, 2008). NMDARs and PSD-95 are 

transported in discrete packages, and AMPARs are transported in a subset of 

NMDAR containing packages (McAllister, 2007). This form of trafficking continues 

during development as well as in maturity (Gerrow et al., 2006). Observation of these 

transport packages using time-lapse live imaging has so far focused on their 

movement in dendrites, without investigating how and where they are formed exactly. 

However, an earlier study on developing cultured neurons showed, that PSD-95 

locates to Golgi and endomembranous structures at DIV1; additional clustering in 

dendrites was observed from DIV4 onwards (El-Husseini et al., 2000). The specific 

localization of Rasgrp1 to the Golgi apparatus and presumably to proximal Golgi 

outposts is compatible with the idea that Rasgrp1 might in some way regulate the 

formation of PSD-95 containing transport packages. The different packaging and 

transport of AMPARs and PSD-95 might also represent different forms of Ras 

signaling. Syngap1/Ras signaling might be involved in AMPAR trafficking, while 

Rasgrp1/Ras signaling might be more important for trafficking of PSD-95. 

Recently, a particular finding was published (Kim et al., 2009), that might link 

Rasgrp1 to PSD-95 and the regulation of synaptic transmission. Rasgrp1 is activated 

by diacylglycerol (DAG) (Dower et al., 2000; Ebinu et al., 1998; Ebinu et al., 2000; 

Kawasaki et al., 1998; Lorenzo et al., 2001; Reuther et al., 2002). DAG kinases 

(Dgks) are enzymes that remove DAG by converting it to phosphaditic acid (PA). Kim 

et al. (2009) showed, that KO of DAG kinase zeta (Dgkz) leads to decreased 

synaptic transmission and reduced spine density. The authors describe a mechanism 

by which PSD-95 recruits Dgkz to the postsynapse to tightly control local DAG levels. 

However, the initial localization of Dgkz is in the soma and in the proximal dendrites, 

as shown in images of the study by Kim et al. (2009). This subcellular localization 

resembles that of Rasgrp1. As Dgkz has the potential to reduce Rasgrp1 activity, this 

regulation might allow PSD-95 to exit the soma and proximal dendrites, leading to the 

formation of postsynapses in more distal regions. In case of a DGKz deficiency, this 

regulation is inhibited and PSD-95 is maintained in the soma and does not form or 

enhance postsynapses. Conversely, by KO of Rasgrp1, negative regulation is lacking 

and increased amounts of PSD-95 are trafficked into the dendrite, leading to the 

opposite phenotype. 
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VI.6. A Possible Role of Rasgrp1 in Dendrite Morphogenesis 

I also showed in the present study that Rasgrp1 deficient neurons display 

defects in dendrite morphogenesis. At DIV5, the complexity of Rasgrp1 KO 

hippocampal neurons was slightly, but significantly decreased. However, no aberrant 

morphology was observed at DIV10. At DIV 14 and 21, even an increase in dendritic 

complexity was detected.  

When cultured, neurons develop in well-defined stages and in a stereotypic 

fashion (Bradke and Dotti, 2000; Dotti et al., 1988). Shortly after plating, the cells 

attach and form a lamellopodium around the cell. At DIV1, this lamellopodium 

condenses and forms several neurites. Within 24 h, one of these neurites starts to 

grow very rapidly, whereas the others stay quiescent. This process is called 

“symmetry braking” and defines neuronal polarity. The growing neurite becomes the 

axon at later stages. Growth of neurites, which later shape the dendritic tree, starts at 

DIV4.  

In the hippocampus, Rasgrp1 is detectable at late embryonal stages in the 

subiculum, but is not detectable in the hippocampus until P2 (Pierret et al., 2001). 

Also in neurons cultured from mouse hippocampi, staining for Rasgrp1 detected the 

protein as early as DIV3 (data not shown). In this respect, it is likely that rather than 

in early polarization, Rasgrp1 functions in dendrite growth. Dendrite growth is most 

rapid between DIV4 and DIV10. After DIV10, the development of dendritic complexity 

slows down (Dotti et al., 1988). Interestingly, dendritic complexity is reduced at later 

stages until it stabilizes at slightly lower levels (Wong and Ghosh, 2002). This 

process is called “dendritic pruning” and is thought to occur upon synapse formation. 

Only the branches that are contacted by the appropriate inputs are maintained and 

stabilized while others are lost.  

Sholl analyses revealed, that WT neurons at DIV14 are slightly more complex 

at distances larger than 75 m from the soma than WT neurons at DIV21 (Figure V.7 

C, D). This result may reflect dendrite pruning between DIV14 and DIV21. In view of 

this finding, enhanced dendrite complexity of Rasgrp1 KO neurons at both stages 

should not only be discussed as a defect in dendrite growth but also as a putative 

defect in dendrite pruning. Additionally, it remains to be investigated if Rasgrp1 KO 

mice display a defect in morphology in-vivo. It has not been determined yet if the 

increased numbers of PSD-95 positive puncta in the hippocampus of Rasgrp1 KOs 

reflect an increase in postsynapses (see chapter VI.1). If so, this might result from an 
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enlargement of dendrites. However, it is important to note that a putative effect on 

dendrite morphology does not have an effect on synaptic integrity of the 

hippocampus, as no change in the number of functional synapses was detected by 

imaging (Figure V.10 – V.13) or by patch clamp experiments (Figure V.9). Also, the 

increased L-AMPA sensitivity of cells deficient of Rasgrp1 strongly supports the 

notion, that defects in the regulation of receptors might be the primary cause for 

enhanced synaptic transmission seen in Rasgrp1 KO neurons, and not aberrant 

dendrite morphology.  

In contrast to the analysis of dendrite morphogenesis in-vitro, the functional 

characterization of Rasgrp1 KO mice represents only one time point of observation. 

The latter results represent the endpoint of a period of aberrant development, i.e. 

from P2 onwards (the postnatal day at which Rasgrp1 can normally be detected in 

the hippocampus) to the time point of observation. The analysis is therefore ignorant 

of the changes that underlie early development until the time-period of observation, 

i.e. the late juvenile stage. Although more slowly and with less dramatic changes, 

development still proceeds after this stage. PSD-95 is expressed from embryonal 

stages onwards in the developing hippocampus, although the level of expression 

does not increase steadily (Fukaya et al., 1999). From P2 to P7, the expression level 

of PSD-95 decreases in all layers of the CA1 region. After P7, PSD-95 levels 

increase in the stratum radiatum and stratum lacunosum moleculare until P28. After 

P28, protein levels decrease by  25 % until P56 (Chang et al., 2009).  

The maturation of the brain also involves regressive events, such as the loss 

of synapses and stabilization of the remaining ones. This is accompanied and 

determined by the reduction of expression of specific proteins, e.g. PSD-95. As 

mentioned above, also dendrite development is characterized by periods of 

regressive events such as dendrite pruning (Wong and Ghosh, 2002).  

In dendrite morphogenesis, young hippocampal neurons obtained from 

Rasgrp1 KO animals first show a decreased dendrite complexity. However at adult 

stages, their complexity is increased as compared to control neurons. It is possible 

that neurons deficient in Rasgrp1 somehow develop more slowly than WT neurons, 

with respect to both growth and regressive events, and that dendrite growth is first 

delayed while dendrite pruning is impaired subsequently. Might the decrease of PSD-

95 expression after P28, as seen in immunolabelings observed by Chang et al. 

(2009) also be delayed in Rasgrp1 KO animals? Rasgrp1 KO animals were analyzed 
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at a time when PSD-95 levels in WT animals start to decrease. Thus the enhanced 

intensity of PSD-95 immunostainings in Rasgrp1 KOs would also represent “delayed” 

synaptic weakening rather than abnormal synaptic enhancement. To test this directly, 

the developmental time course of PSD-95 expression in Rasgrp1 KO hippocampi 

would have to be analyzed. 

 

VI.7. Outlook 

Based on the present findings, two major future research directions should be 

pursued with regard to Ras signaling in neurons and the specific role of Rasgrp1 in 

this process. 

First, the tissue-, cell- and compartment- specific localizations of Ras G proteins 

and their regulatory proteins have to be analyzed in much more detail. Existing data 

are either scarce or were obtained with methods that do not allow comparative 

analyses of Ras signaling factors and marker proteins (e.g. immunostainings for light 

microscopy). Nowadays, a large number of specific antibodies for such marker 

proteins are available. Furthermore, research at this general level should focus on 

the molecular machineries that the effects of Ras signaling rely on in neurons. The 

canonical Raf/Map2k/Mapk, Pi3k and Ralgds pathways and alterations of gene 

expression cannot alone explain the pleiotropic effects that Ras signaling appears to 

have in neurons. 

Second, research on Rasgrp1 should focus on the molecular networks and 

cellular processes that control expression or trafficking of scaffold molecules. This 

should reveal the mechanisms that cause the phenotypic changes seen in Rasgrp1 

deficient mice. Corresponding approaches should examine the neuronal factors that 

regulate Rasgrp1, the compartments that Rasgrp1 translocates to upon activation, 

and the proteins that interact with Rasgrp1. 

In combination, these two research directions will not only lead to a more 

detailed understanding of Rasgrp1 alone, but also to a better understanding of Ras 

signaling in neurons in general. 
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VIII. Appendix 

VIII.1. Strategy for the Knock-out of Rasgrp1 in Mice 

 

Figure VIII.1: Organization of the RasGRP1 gene and construction of the 

targeting vector in pFlexHR (Schnutgen et al., 2003) 

(A) Organization of the wild-type (WT) gene. (B, C) The resulting genomic 

reorganizations of the RasGRP1 gene after homologous recombination and after 

Cre-recombination are shown below. (C) The resulting organization of the knock-out 

(KO) gene. (D) Wild-type ES cells and ES cells after homologous recombination were 

subjected to Southern Blot analysis after BlnI restriction. kb, kilo basepairs. (E) 

Western Blot analysis of RasGRP1 protein expression in wild-type and mutant 

animals. Whole brain homogenates were subjected to SDS-PAGE and Western Blot 

analysis with specific antibodies against RasGRP1 and -Tubulin. kDa, kilo Dalton. 

Note that a weak signal is visible after long exposure, indicating very low expression 

of a Rasgrp1 fragment of decreased size. 
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