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Abstract

The human ether-à-go-go potassium channel (hEag1) can be detected in 
adult  brain  and  in  both,  tumor  cell  lines  and  primary  tumors.  The 
physiological  function  of  this  channel  in  the  brain  still  remains  to  be 
elucidated. The presence of hEag1 in tumors has been linked to an increase 
in proliferation. Published reports claimed that the IGR39 melanoma cell 
line is negative for hEag1, what allowed this cell to be used as negative 
control.  We observed that IGR39 cells shows positive amplification for 
hEag1, at mRNA level, and a protein with compatible molecular weight 
and  reactivity  for  hEag1  antibody,  was  detected  in  western-blot 
experiments. The biophysical properties of the current registered in IGR39 
presents a different kinetics, but it is still sensitive to blocking by drugs 
and siRNA specific for hEag1. Using molecular  biology techniques, we 
found the expression of  two new splice variants,  E65 and E70, in  two 
melanoma cell lines (IPC298 and IGR39) and in neural stem cells. The two 
splice  variants  have  no  transmembrane  domains  and  can  not  form  a 
functional membrane-bound channel. A characterization of the new splice 
variants was done in  Xenopus leavis oocytes, to verify the interaction of 
the  splice  variants  with  the  full-length  hEag1  (fl-hEag1). 
Electrophysiological  measurements  of  the  oocytes,  co-injected  with  the 
splice  variant  E65  and  the  fl-hEag1,  showed  a  rectified  current  with 
diminished  amplitude.  Moreover,  the  co-injection  of  E65  and  fl-hEag1 
enables  these  oocytes  to  mature,  which  was  the  same  outcome  of  the 
treatment  of  oocytes  with  progesterone.  Based  in  these  results,  we 
conclude  that  IGR39  cell  line  express  Eag1  channels  and  the  splice 
variants found in these melanoma cells, could be either interacting with the 
full-length Eag1 or playing a role in the intracellular signaling.



1 Introduction

1.1 Ion Channels

“Ion channels are macromolecular pores in cell membranes. When they evolved  

and what play they have played in the earliest forms of life we don't know, but today  

ionic channels are most obvious as the fundamental excitable elements in the  

membranes. As sensitive but potent amplifiers, these ionic channels detect the sounds  

of chamber music, guide the artist's paint-brush, or generate the violent electric  

discharges of the electric eel or the electric ray. They tell the Paramecium to swim 

backward after a gentle collision, and they propagate the leaf-closing response of the  

Mimosa plant (Hille, 2001).”

The emergence of the cell membrane was essential for the development of the 

cell  because it  formed a barrier  that  allowed the cell  to  keep all  vital  components. 

However,  cells  have  had  to  evolve  ways  of  transferring  specific  water-soluble 

molecules  and  ions  across  their  membranes  in  order  to  ingest  essential  nutrients, 

excrete metabolic waste products, and regulate intracellular ion concentrations. Cells 

use specialized transmembrane proteins  to  transport  inorganic ions  and small  water 

molecules. Cells can also transfer macromolecules through a more complex mechanism 
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(Hille, 2001; Alberts et al., 2008).

Transporters  and channels  are  the  two major  classes  of  membrane transport 

proteins. Transporters (also called  carriers) bind the specific solute to be transported 

and undergo a series of conformational changes to transfer the bound solute across the 

membrane. Channels, in contrast, interact with the solute to be transported much more 

weakly. They form aqueous pores that extend across the lipid bilayer; when open, these 

pores allow specific solutes (usually inorganic ions of appropriate size and charge) to 

pass  through  them  and  thereby  cross  the  membrane  (Figure  1.1).  Transmembrane 

movement of small molecules mediated by transporters can be either active or passive, 

whereas that mediated by channels is always passive (Alberts et al., 2008).

Figure  1.1  Transporters  and  channels  proteins. (A)  A 
transporter  alternates between two conformations,  so that  the 
solute-binding site is sequentially accessible on one side of the 
bilayer and then on the other. (B) In contrast, a channel protein 
forms  a  water-filled  pore  across  the  bilayer  through  which 
specific  solutes  can  be  diffuse  (Adapted  from Alberts  et  al., 
2008).
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Two important properties distinguish ion channels from simple aqueous pores. 

First, they show ion selectivity, permitting some inorganic ions to pass, but not others. 

Only ions with appropriate size and charge can pass. The second important distinction 

between  ion  channels  and  simple  aqueous  pores  is  that  ion  channels  are  not 

continuously open. Instead, they are gated, which allows them to open briefly and then 

close  again.  Moreover,  with  prolonged  (chemical  or  electrical)  stimulation,  most 

channels go into a closed “desensitized” or “inactivated” state. 

The channels are  gated and usually open transiently in response to a specific 

perturbation in the membrane, such as a change in membrane potential (voltage-gated 

channels) or the binding of ligands (ligand-gated channels) (Alberts et al., 2008).

Ion  channels  play  an  important  role  in  action  potentials  generation  and 

propagation in  excitable  cells,  such as  neurons and muscle fibers.  In non excitable 

cells,  ion  channels  mediate  cellular  functions  involving  intracellular  biochemical 

responses, rather than rapid electrical signaling. The presence of channels is required 

for  several  basic  functions,  such  as  activation  and  secretion  of  lymphokines, 

mitogenesis,  the  regulation  of  cell  volume  and  the  mechanisms  of  resistance  to 

chemotherapeutic agents (Bértran et al., 1995).

A membrane potential  arises when a concentration gradient of ions across a 

membrane with a selective permeability for these ions is established. This causes a 

slight difference in the electrical charge on the two sides of the membrane, due to a 

slight excess of positive ions over negative ones on one side and a slight deficit on the 

other. Such charge differences can result both from active electrogenic pumping and 

from passive ion diffusion across the membrane. In typical animal cells, passive ion 

movements make the largest contribution to the electrical potential across the plasma 
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membrane  (Alberts  et  al.,  2008).  These  ionic  concentrations  in  intracellular  and 

extracellular  compartments together  with  the  selective  membrane  permeability 

establish the membrane potential (Hille, 2001).

At rest, this balancing role is performed largely by potassium (K+) ions, which 

are actively pumped into the cell by the Na+- K+ pump and can also move freely in or 

out through the K+ leak channels in the plasma membrane. Because of the presence of 

these channels, K+ reaches almost equilibrium, where an electrical force exerted by an 

excess negative charges attracting K+ into the cell balance the tendency of K+ to leak 

along its concentration gradient. The membrane potential is the manifestation of this 

electrical force (Alberts et al., 2008).

1.2 Ion Channels and Cancer

Membrane ion channels are essential for cell proliferation and appear to have a 

role in the development of cancer. Ion channels belong to the fundamental inventory of 

any  living  cell  and  are  required  for  cell  proliferation  (Kunzelmann,  2005). 

Electrophysiological  studies  show that  tumor  cells  are  depolarized  when compared 

with normal tissue cells, and that has been proposed as a necessary condition for cells 

that  have  a  limitless  proliferation  (Marino  et  al.,  1994).  Inhibition  of  K+ channel 

expression or blockade by selective inhibitors reduces cell proliferation (Wang, 2004).

Among  ion  channels  expressed  in  excitable  or  non-excitable  cells,  the  K+ 

channels are the most diverse in structure and function. Although the gating, structure 

and permeability mechanism of the K+ channel have been partly clarified (Bezanilla, 

2005; Jiang et al, 2003a; Jiang et al, 2003b), there are still many open questions about 
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their location and role in biological processes such as cell proliferation and survival of 

tumor cells.

More than 80 genes encoding for potassium channels have been identified. The 

different K+ channels  have distinct electrophysiological  properties and are gated by 

specific  tissue transcriptional  control  or  through the  action of  specific  effectors,  as 

much diverse as electrical potential, calcium levels (Ca+2) or ATP cytoplasmic, kinases, 

phosphatases, neurotransmitters or hormones.

Some of these ion channels are essential for cell proliferation control and for 

protein synthesis during the cell growth. There is an established association between 

lymphocyte voltage-gated K+ channels (Chandy et al., 1984; DeCoursey et al., 1984, 

Amigorena et al., 1990a; Amigorena et al., 1990b) and mitogenesis during the immune 

response.  K+ channel  activation  is  associated  with  Ca+2-induced  differentiation  in 

keratinocytes  (Mauro  et  al.,  1997)  and  modulation  of  potassium  channels  on  the 

melanoma  cell  line  IGR1  influences  cell  proliferation  and  the  incorporation  of 

[3H]thymidine into these cells (Nilius and Wohlrab, 1992).

Since  tumor  cells  are  highly  proliferative,  is  not  surprising  that  many  K+ 

channels are associated with cancer. There is currently no clear understanding on how 

these K+ channels actually promote proliferation.  In addition,  not only K+ channels 

have a  role  in  proliferation but  also other  ion channels  selective for  Cl-,  Ca+2,  and 

nonselective cation channels. Some ion channels with a clear relationship to particular 

tumor types are:

1 –  K  +   Channels   : leukemia cell lines (PLB-985, K562, UT7, HEL and HL-60) and 

primary  acute  myeloid  leukemia,  (breast  cancer  (MCF-7),  rat  glioma  (C6),  colon 
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adenocarcinoma, prostate adenocarcinoma (LNCap and PC-3), and rat (Mat-LyLu and 

AT-2), liver (Hep 2, HuH-7 and HFL), myeloma (RPMI-8226) and melanoma (IPC298, 

IGR1) (Agarwal et al., 2010; Fraser SP, 2000; Grimes et al., 1995; Hemmerlein et al., 

2006; Köhler et al., 2000; Mello de Queiroz et al., 2006; Laniado eet al., 2001; Malhi et 

al., 2000; Meyer et al., 1999; Pardo et al., 1999; Rane, 2000; Rouzaire-Dubois et al., 

2000; Skryma et al., 1997; Woodfork et al., 1995);

2 –  Ca  +2   Channels   : pancreatic cancer (MIA PaCa-2 and CAV), breast cancer (MCF-

7/ADRR,  MDA-231,  MDA-231R44  and  BT-474),  melanoma  (MM-RU,  IGR1), 

prostate cancer (DU-145, PPC-1, PC3 and LNCaP) (Sato et al., 1994; Lambert et al., 

1997; Kohn et al., 1996; Wasilenko et al., 1996; Benzaquen et al., 1995);

3 – Cl  -   Channels   : breast cancer (MCF-7), colon cancer (T84), myeloma (RPMI-8226), 

astrocitomas, glioma and rat glioma (C6) (Chou et al., 1995; Levitan & Garber, 1995; 

Rouzaire-Dubois et al., 2000; Ullrich et al., 1996);

4 –  Na  +   Channels  : breast cancer (MCF-7), lung cancer (NCI-H146) and rat prostate 

cancer (Mat-LyLu and AT-2) (Blandino et al., 1995; Fraser SP, 2000; Grimes et al., 

1995).

Although ion channels are directly related to proliferation and invasiveness of 

the tumors described above, the physiological mechanism these channels play remains 

a mystery to be unraveled.
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Besides  cancer,  there  are  several  human genetic  diseases  that  are  related  to 

mutations of structural genes of ion channels. Examples: the increased incidence of 

sudden cardiac death has been observed in patients that lack HERG currents because 

they  carry  a  genetic  defect.  The  mutations  result  in  a  diminished  magnitude  of 

potassium  inwardly  rectifying  current  consistent  with  the  prolonged  LQ  interval 

observed  in  affected  individuals  (Dworakowska  & Dołowy,  2000).  In  pancreatic  ß 

cells,  ATP-sensitive  potassium  (KATP)  channels  regulate  glucose-dependent  insulin 

secretion an serve as the target for sulfonylurea drugs used to treat type 2 and neonatal 

diabetes (Ashcroft, 2005; Ashcroft, 2010). 

1.3 Eag family of Ion Channels

The  ether-à-go-go  (EAG) gene was  first identified as a locus that caused leg-

shaking in Drosophila melanogaster in response to ether anesthesia (Kaplan & Trout, 

1969).  Subsequent  cloning  of  the  gene  revealed  that  eag encodes  a  protein  with 

structural similarities to voltage-gated potassium channels (Brüggemann et al., 1993; 

Warmke et al.,  1991) which defines a novel family of potassium channels. The Eag 

family is  formed for  an extended gene family,  with subsequently isolated members 

placed in  eag, eag-like (elk) and eag-related genes (erg) subfamilies based on their 

sequences similarity. Sequence alignments of Drosophila, rat, mouse and human eag 

channel with cDNA libraries sequences show that these channels are structurally related 

with  both  voltage-gated  K+ channels  and  cyclic  nucleotide-gated  cation  channels 

(Warmke & Garnetzky, 1994). The first mammalian Eag channels cloned were mouse 

Eag1 (rEag1) and human Erg1 (Warmke & Ganetzky, 1994). Since then, all subfamilies 
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members have been cloned, in mammals two Eag channels (Eag1 (KCNH1, Kv10.1) 

(Ludwig et al., 1994), Eag2 (KCNH5, Kv10.2) (Saganich et al., 1999)), three Erg (Erg1 

(Bauer et al., 1998), Erg2 and Erg3 (Shi et al., 1997)) and three Elk (Shi et al., 1998; 

Engeland et al., 1998; Gutman et al., 2005).

The  human  Eag1  and  Eag2  (hEag1  and  hEag2)  channels  possess  73% 

homology,  showing  more  divergence  in  the  C-terminus  region.  Both  channels  are 

expressed  in  restricted  areas  of  the  central  nervous  system  (Martin  et  al.,  2008; 

Schönherr et al., 2002; Saganich et al., 1999) and their physiological function remains 

to be elucidated. 

Despite the high homology at the protein level, the biophysical characteristics of 

Eag1 and Eag2 channels are different. The activation time constant of the Eag2 at +40 

mV is four times slower than that of Eag1. Moreover, Eag2 current possesses a lower 

dependence  on voltage,  but  the  biggest  difference between the  two isoforms is  the 

threshold potential for activation of the channel, much more negative for Eag2.

Both  isoforms are  able  to  interact  and form heteromultimeric  channels.  The 

formation of these channels could increase the functional variability of Eag currents in 

regions  of  the  central  nervous  system where  there  is  overlapping  expression.  The 

physiological function of Eag2 is not yet known. In mammalians two splice variants 

have  been  cloned  for  hEag1,  Eag1a  and  Eag1b  (Frings  et  al.,  1998;  Warmke  & 

Ganetzky, 1994), which forms an active ion channel, and a third one has been cloned in 

Drosophila, Eag80 that is composed by the N- and C-terminus of the channels and does 

not produce an active ion channel (Sun et al., 2009).

As all channels from the Kv family, the eag potassium channel likely forms a 

tetramer (Jenke et al., 2003). Each monomer is putatively formed by 6 transmembrane 
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domains, α-helical (S1-S6). The segment between S5 and S6 (P region) contributes to 

form the pore region of the channel. The P region is responsible for the selectivity of 

the channel. Another common feature to Kv channels is the S4 segment, crucial for 

voltage  sensing,  where  positively  charged  residues  involved  in  the  initial 

conformational changes that lead to channel opening when the membrane depolarizes 

are located (Figure 1.2). These channels show a Per-Arnt-Sim(PAS) domain located in 

the N-terminus (Cabral et al., 1998). The C-terminus the channel shows a consensus 

sequence for cyclic nucleotide binding domain (cNBD), a calmodulin binding domain 

(CaM) and a tetramerizing coiled coil domain (TCC) (Schönherr et al., 2000; Jenke et 

al., 2003; Warmke & Ganetzky, 1994).
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Figure 1.2 Putative structure of the Eag1 channel monomer. 
Transmembrane  topology  of  an  Eag1  α-subunit  content  six 
transmembrane domain (S1-S6),  where S4 is  the voltage sensor 
and  P  is  the  pore  region.  (Adapted  from 
http://www.sfb604.unijena.de/Project_A4_(Heinemann).html).
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Eag1 channels are expressed in most of the brain regions, and also in myoblasts 

(Bijlenga et al., 1998) as well as in many cancer cell lines and tumor tissues. Over 75% 

of  tumors  tested  were  positive  using  specific  antibodies  for  Eag1  (Meyer  & 

Heinemann, 1998;  Pardo et  al.,  1998; Pardo et  al.,  1999;  Hemmerlein et  al.,  2006; 

Mello de Queiroz et al., 2006; Agarwal et al., 2010), while inhibition of this channel 

decreased  the  proliferation  of  EAG  expressing  cells  (Gavrilova-Ruch  et  al.,  2002; 

Pardo et al., 1999; Gómez-Varela et al., 2007; Mello de Queiroz et al., 2006; Downie et  

al., 2008). Despite the efforts of several laboratories, the physiological role of Eag1 in 

the brain remains elusive.

The activation kinetics of the channel is dramatically slowed down by negative 

pre-pulses potential. This phenomenon is reminiscent of the “Cole-Moore shift” (Cole 

& Moore, 1960), shared by other potassium channels, but orders of magnitude larger. 

The shift  is  also dependent  on  extracellular  Mg+2,  which  binds  to  the  extracellular 

hydrophilic loop between S2 and S3 and slows channel gating (Terlau et al.,  1996; 

Silverman et al., 2000). Intracellular Ca+2 block the channel by calmodulin binding to 

the hEag N- and C-terminus (Stansfeld et al., 1996; Schönherr et al., 2000; Schönherr 

et al., 2004).

Eag1 channels show low sensitivity to classical blockers, like TEA, 4-AP and 

the ERG channel blocker E4031. Quinidine blocks the hEag1 with a IC50 of 1.4 ± 0.06 

µM, while the IC50 for the hEag2 channel is 151,8 ± 24.8 µM, around 100 times less 

sensitive.  Therefore  quinidine  can  be  used  to  pharmacologically  differentiate  the 

isoforms of Eag channels (Schönherr et al., 2002).

Other drugs capable of blocking the hEag1 channel are: imipramine (tricyclic 

antidepressant)  and astemizole  (antihistamine).  Imipramine  is  able  to  block  several 
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types  of ion channels  including hERG, Na+,  Ca+2,  voltage-gated K+ channels,  Ca+2-

gated K+ channels. In all cases, the IC50 for all these channels range from 1 to 30 µM. 

The fact that different ion channels show comparable affinities for imipramine suggests 

structural  conservation  at  the  binding  site  across  these  very  diverse  ion  channels 

targets. Imipramine blocking mechanism is strongly voltage-dependent; it has a binding 

site in the intracellular side of the open channels (García-Ferreiro et al., 2004).

In contrast  to imipramine,  the actions of astemizole are more restricted.  For 

example, concentrations up to 10 µM astemizole have no effect on other K+ channels, 

such as the voltage-gated K+ channels Kv1.1, Kv2.1, Kv4.2 and IRK1 inward rectifier 

K+ channels  (Suessbrich  et  al.,  1996).  Eag-like  channels  2  (hELK2)  are  also  not 

sensitive to astemizole (Becchetti et al., 2002). HERG channels are highly sensitive to 

astemizole with IC50 50 nM (Suessbrich et al., 1996; Barros et al., 1997). This suggests 

structural  conservation  in  the  architecture  of  HERG  and  hEag1  that  supports  the 

selective inhibition by this drug.

The astemizole blocking mechanism is very similar to imipramine, but block by 

astemizole does not show the voltage dependence that is essential for the imipramine 

action (García-Ferreiro et al., 1994).

1.4 Eag1 and cancer

Overexpression of rEag potassium channels in CHO or NIH 3T3 cells induces 

the hallmarks of malignant transformation: faster growth, loss of growth-factor- and 

substrate-dependence, and loss of contact inhibition. Furthermore, Eag1 is expressed 

ectopically  in  human  cancer  cell  lines  and  the  expression  of  hEag  represents  an 
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advantage for the progression of tumors in SCID mice  in vivo  (Pardo et al.,  1999). 

These findings, together with the strong modulation of Eag channels during the cell 

cycle, strongly suggest a direct involvement of Eag protein in cell proliferation and the 

participation  in  the  pathogenesis  of  some  tumors.  This  hypothesis  is  additionally 

supported by results reported from myoblasts (Bijlenga et al., 1998; Occhiodoro et al., 

1998) since Eag is expressed over a short time frame immediately preceding myoblast 

fusion, a proliferation-related phenomenon (Pardo et al., 1999).

In  Xenopus oocytes,  activation  of  mitosis  promoting  factor  (MPF)  produces 

changes in the behavior of heterologously expressed Eag1 (Brüggemann et al., 1997). 

The biophysical  properties  of  this  channel  are  modified by the  cell  cycle,  and this 

modulation has two characteristics: 1) in CHO cells, a current density reduction in M 

phase 2) increase the selectivity for K+ in mitosis  phase and concomitant increased 

block sensitivity by intracellular Na+ (Pardo et al., 1998; Camacho et al., 2000).  

Many  cell  lines  show  positivity  for  Eag1,  such  as  SH-SYS5  (human 

neuroblastoma (Meyer  & Heinemann,  1998)),  EFM-19 and MCF-7 (breast  cancer), 

HeLa  (cervix  carcinoma  (Pardo  et  al.,  1999))  and  IGR1  and  IPC298  (melanoma 

(Gavrilova-Ruch et al.,  2002; Meyer et al.,  1999)). In these cell  lines, inhibition of 

hEag expression by antisense oligonucleotides leads to a reduction of DNA synthesis 

(Pardo et al., 1999). 

Because its expression is limited to the central nervous system in normal adult 

tissue, Eag1 might be a tumor marker. Furthermore, using a specific inhibitor for the 

Eag1  channel  could  decrease  tumor  proliferation  rate  making  the  Eag1  channel  a 

promising candidate for therapy.
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1.5 Splice Variants

Most of the human protein-coding genes exhibit an exon–intron structure that 

becomes apparent when their pre-mRNA is processed. During pre-mRNA processing, 

some  sequences  are  joined  and  exported  into  the  cytosol  as  exons  (for  exported 

sequences). The introns (intervening sequences) are excised and retained in the nucleus 

(Sumanasekera et al., 2008).

In  humans,  almost  all  RNA polymerase  II  transcripts  are  spliced,  and  an 

estimated 74–88% of human genes are alternatively spliced (Kampa et al., 2004). Most 

of the alternative exons encode portions of proteins, and therefore alternative splicing 

generates  multiple  protein isoforms from a  single gene.  These isoforms often  have 

different  biological  properties  in  that  they interact  with  other  binding partners  and 

possess  different  subcellular  localizations,  catalytic  activities  or  pharmacological 

properties  (Stamm  et  al.,  2006).  Several  biological  processes  are  co-ordinate  by 

orchestrated changes in alternative splicing. Well-studied examples of these processes 

include  sex  determination  in  Drosophila  (Forch  et  al.,  2003) and certain  apoptotic 

events (Wu et al., 2003).

Alternative  splicing  (AS)  is  often  regulated  in  a  temporal  or  tissue-specific 

fashion.  This  gives  rise  to  different  protein  isoforms  in  different  tissues  or 

developmental  states;  differential  splicing  is  also  regulated  in  response  to  external 

stimuli. Even a single cell may produce multiple proteins. 

Alternative  splicing  is  regulated  by  “quality  control  mechanisms”  like  the 

cytoplasmic degradation of mRNAs by the nonsense mediated mRNA decay (NMD) 

pathway which eliminates inappropriately spliced forms (Garcia-Blanco et al., 2004). 
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Alternatively spliced proteins are the prime cause of some diseases, for example cystic 

fibrosis,  retinitis  pigmentosa,  spinal  muscular  atrophy,  neurofibromatosis  type  I, 

haemophilia A and Beta – thalassaemia (Pajares et al., 2007), FTDP-17 (frontotemporal 

dementia  and  parkinsonism  linked  to  chromossome  17)  and  Duchenne's  muscular 

dystrophy. The deregulation of the cellular splicing machinery, as exemplified by the 

numerous changes in alternative splicing seen in cancer, in some cases may be causing 

aberrant splicing (Venables, 2006).

The lack of compounds for the activation or inhibition of specific pre-mRNA 

splicing  events  is  a  problem  for  studying  the  splicing  reaction  itself  and  for  the 

generation of therapeutic approaches to treat diseases caused by missplicing.

1.5.1 Alternative pre-mRNA splicing

A gene is first transcribed into a pre-mRNA, which is a copy of the genomic 

DNA containing intronic regions intended to be removed during pre-mRNA processing 

(RNA splicing), as well as exonic sequences that are retained within the mature mRNA. 

During RNA splicing, exons can either be retained in the mature message or targeted 

for removal in  different  transcripts,  referred to  as alternative RNA splicing (Lopez, 

1998).

Pre-mRNA splicing is an essential, precisely regulated process that occurs after 

gene transcription and prior to mRNA translation. Pre-mRNA splicing begins with the 

ordered  assembly and coordinated  action  of  the  particles  U1,  U2,  U4,  U5 and U6 

snRNPs (small nuclear ribonucleoprotein particles) and non-snRNP proteins on the pre-

mRNA. Each snRNP particle contains a small nuclear RNA molecule (snRNA) and 
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several proteins. The complex of snRNPs and non-snRNPs is called the spliceosome 

(Burge et al., 1998).

Pre-mRNA splicing is a mechanism that removes intronic sequences and joins 

their  surrounding  exons.  The  mature  mRNA is  exported  from  the  nucleus  to  the 

cytoplasm where it can be translated into proteins.

There are five main types of splicing mechanisms which are described in Figure 

1.3.

A) RNA splice, which introns are removed and exons are joined

B) Exon skipping, this is the most common type of alternative splicing (AS), it 

contributes at least one third of AS events which involve cassette – type alternative 

exons which are either skipped or included in the final message (exons are included or 

excised  from  the  final  gene  transcript  leading  to  extended  or  shortened  mRNA 

variants).

C) Alternative donor site happens when an alternative 5' splice junction (donor 

site) is used, changing the 3' boundary of the upstream exon.  

D) Alternative  acceptor  site  happens  when an alternative  3'  splice  junction 

(acceptor site) is used, changing the 5' boundary of the downstream exon. 

E) Intron retention can account for 3% of total AS events.  
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Figure  1.3  Schematic  view  of  constitutive  and  alternative 
splicing.  A  represents  the  wild-type  genome  sequence  for  a 
hypothetical  gene,  B  represents  the  most  common  alternative 
splicing, C represents intron retention and D and E represents the 
5'/3' donor/acceptor site.

17



1.5.2 Alternative splicing and cancer

Various  cell  types  and  developmental  stages  regulate  alternative  splicing 

patterns  differently  in  their  generation  of  specific  gene  functions.  In  cancers,  the 

splicing process is significantly altered.

Alternative and aberrant pre-mRNA splicing may play an important functional 

role  in  human  cancers.  The  expression  of  alternative  (even  tumor-specific)  splice 

variants  has  been  shown to  significantly  affect  aspects  of  cancer  biology (such as 

proliferation, motility and drug response), although global, genome wide analyses are 

only  now  emerging.  A  number  of  reviews  have  addressed  this  topic  recently 

(Blencowe, 2006; Brinkman, 2004; Kalnina et  al.,  2005; Venables,  2004;  Venables, 

2006).

Cancer-related  splice  variants  have  a  great  potential  to  serve  as  unique 

biomarkers for diagnostic and even therapeutic purposes. For example, a specific splice 

variant  of  CD44 (the  “v6-variant”),  found preferentially  in  head  and  neck  cancers 

(Herrlich et al., 2000) can form a stimulatory complex with hepatocyte growth factor 

(HGF) and its tyrosine kinase receptor MET, which is then able to activate the Ras 

signaling pathway. These splice variant has been exploited for specifically targeting 

tumor cells with therapeutic antibodies (Heider et al., 2004).

Somatic  splice-site  mutations  and  single-nucleotide-polymorphisms  (SNPs) 

which cause aberrant splicing are known for a number of familial cancer syndromes 

and the corresponding tumor suppressor genes such as BRCA1, APC, p53, FHIT and 

LKB1 (Hastings et al., 2005; Orban & Olah, 2003; Venables & Burn, 2006), and for 

example, the prostate cancer susceptibility gene KLF6 (Narla et al., 2005a; Narla et al., 
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2005b).  In  general,  it  has  been  estimated  that  splice-site  mutations  contribute  to 

approximately  10-15% of  the  total  number  of  somatic  mutations  known in  cancer 

(Beroud et al., 2005). This is likely to be an underestimate, provided that many cancer-

gene sequencing approaches are biased towards the exons, and non-coding SNPs may 

also  contribute  to  splice-site  alterations  (ElSharawy et  al.,  2006;  Fairbrother  et  al., 

2004). 

Still  is  unclear  if,  and  to  what  extent,  AS  functionally  contributes  to  the 

initiation and progression of cancers, or if altered splicing patterns could be largely 

symptomatic and attributed to a generalized lack of fidelity of the splicing apparatus in 

cancer  cells.  Accordingly,  it  is  unclear  if  particular  splice  variants  in  cancer  are 

contributing to the cancer phenotype, or if their existence is merely a consequence of 

the malignant phenotype (Skotheim & Nees, 2007).

The persistence of novel  splice variants  as  a result  of  the process of  clonal 

selection may be the critical  parameter  required to  address the topic properly.  It  is 

likely that  cells  expressing certain  AS variants  are  positively selected  for  in  tumor 

progression.  This  would  for  example  be  the  case  when  the  splice  variant  encodes 

protein isoforms that provide advantages such as increased proliferation, anti-apoptotic 

or pro-angiogenic effects, enhanced cell motility or tumor cell survival. Moreover, it 

becomes  increasingly  clear  that  such  micro-evolutionary  processes  in  tumors  are 

indeed  likely  to  exploit  splice  variants  for  gaining  such  functional  advantages,  in 

combination with other mutational and genetic events ( Skotheim & Nees, 2007).

It  is  also  becoming  apparent  that  AS  contributes  to  expand  or  restrict  the 

capabilities and potential  of stem cells,  which are increasingly viewed as central  to 

cancer biology (Lemischka & Pritsker, 2006; Pritsker et al., 2005; Pritsker et al., 2006).
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1.6 Melanomas

 Melanoma is a rapidly proliferating and highly aggressive form of skin cancer 

that is difficult to treat once the tumor has metastasized beyond the original area. This 

tumor occurs when melanocytes, which are the cells that give rise to the color of the 

skin, become malignant. They can grow and spread to the lymph nodes and to the other 

parts of the body such as liver, lungs or brain. Melanoma responds poorly to chemo- 

and radiotherapy (Gavrilova-Ruch et al., 2002). 

The incidence of melanoma is rising faster than any other malignancy (Jemal et 

al.,  2006;  Thompson  et  al.,  2005;  Balch  et  al.,  2003;  Desmond  &  Soong,  2003). 

Bataille & Vries, 2008, quote that in Europe, cutaneous melanoma represents 1-2% of 

all malignant tumors. Overall, 18.000 new diagnoses and 5.000 deaths from melanoma 

are registered in Europe every year.

Figure  1.4  Annual  incidence  of  new  cases  (and  relative 
frequency) of  malignant  tumors  in the  USA.  The incidence  is 
shown  here  and  classified  by  gender.  Source:  American  Cancer 
Society: Cancer Facts and Figures, 2002.
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The most important aspect of the primary melanoma lesion is tumor thickness 

(measured in millimeters, Breslow depth) and the presence or absence of ulceration 

(Balch et al., 2001a; Balch et al., 2001b). Microstaging primarily utilizing these factors 

determines the appropriated therapy and prognosis. Poor prognosis correlates with deep 

Breslow depth and the presence of ulceration. A person with a melanoma detected and 

treated at an early stage has an excellent prognosis (Balch et al., 2001a; Balch et al., 

2001b; Chang et al., 1998). The five-year survival rate ranges from greater than 95% 

for those diagnosed with a melanoma less than 1.00 mm thick with no ulceration to a 

30% five-year survival rate for those with a melanoma greater than 4.00 mm thick with 

ulceration (Rigel et al., 2000).

Advanced  melanoma  represents  therefore  a  still  current  medical  need,  and 

consequently novel molecular targets and markers are actively searched for.

Manipulation of K+ channel function is a very important tool in controlling 

melanomas  (Schönherr,  2005).  Schönherr  (2005)  shows  the  importance  of  Kca3.1 

(calcium-activated potassium channel) and Eag1 for the control of the proliferation of 

several human melanoma cell lines. In addition, a microarray of different melanocytes 

comparing 80 different genes for K+ channels, revealed a consistent upregulation of 

KCa3.1. Further studies on fresh tissue of melanoma revealed the expression of KCa3.1 

in 80% of the cases and Kv10.1 in 50% of the cases. Under hypoxia, a commonly 

condition  found  in  tumors,  KCa3.1  was  upregulated  maybe  facilitating  tumor 

progression. 

Eag1 K+ channels in human melanoma cells contribute to cellular proliferation 

and may provide initial hyperpolarization for the progression into the G1 phase of the 
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cell  cycle  (Gavrilova-Ruch  et  al.,  2002).  Ion  channels  are  viable  pharmacological 

targets for the treatment of many diseases, and there is overwhelming confidence that 

they will have significant potential in diagnosis, prognosis and, importantly, therapy. 

Indeed, this  optimism is supported by some recent publications (Fiske et  al.,  2006; 

Downie  et  al.,  2008;  Gray  &  Macdonald,  2006;  Mello  de  Queiroz  et  al.,  2006; 

Hemmerlein et al., 2006; Weber et al., 2006; Barajas Farias et al., 2004; Gómez-Varela 

et al., 2007; Stühmer et al., 2006; Pardo, 2004; Pardo, 2005; Hoang et al., 2007; Roger 

et al., 2006; Schönherr, 2005; Villalonga et al., 2007; Pardo et al., 1999;). 

The potential of ion-channel inhibitors in the control of tumor development has 

been confirmed at the clinical setting by the use of chlorotoxin, a selective inhibitor of 

a chloride channel (ClC-3), involved in the invasive process (Veiseh et al., 2009). The 

recently developed radiolabelled compound Cltx (I131-Cltx) has successfully completed 

phase I and II of clinical trials for patients with late-stage gliomas (Mamelak et al., 

2006;  Ernest  &  Sontheimer,  2007)  and  a  multi-centre  phase  III  is  now  recruiting 

patients (Cuddapah & Sontheimer et al., 2010).

Ion  channels  are  proteins  in  the  membrane  that  might  activate  intracellular 

pathways,  independent  of  their  permeation  properties,  through  sites  or  domains  in 

different regions of the channel. These properties might explain the influence of the 

channels  in  the  membrane  on  intracellular  processes  involving  enzyme  activation 

and/or protein synthesis such as cell proliferation.
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1.6.1 The melanoma cell line IGR39

IGR39 cell  line originated from the primary achromic cutaneous tumor (left 

thigh) of a 26-year-old man with malignant melanoma (Aubert et al., 1980).

Meyer  and  colleagues  (1999)  investigated  the  functional  properties  in 

melanoma cells and they described that IPC298 and IGR1, two other melanoma cell 

lines,  express  Eag1  channel,  whereas  IGR39 cells  do  not  express  Eag1,  and  only 

express typical delayed-rectifier channels. Since then, this cell line has been used as a 

negative control in experiments with Eag1.

In a proliferation experiment using astemizole, a known drug that blocks hEag1 

channels (Garcia-Ferreiro et al., 2004), using different cancer cell lines, we observed 

that the cell line IGR39, our negative control, showed in its proliferation rate some 

sensitivity to block by astemizole (Figure 1.5). The cell  line IPC298 is much more 

sensitive to proliferation block by astemizole as we can see below.

Figure  1.5  Astemizole  reduces  proliferation  in  melanoma  cell 
lines.  The  (■)  represents  norastemizole,  and  (▲)  astemizole. 
Norastemizole is an inactive form of astemizole, and it was used as a 
control.  In IPC298 cells the proliferation was strongly reduced by 
astemizole  treatment,  while  in  IGR39  cells  was  a  small,  but 
significant reduction (Weber, PhD Thesis, 2006).
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In  IGR39  cells  the  astemizole-dependent  reduction  of  the  proliferation  was 

smaller,  suggesting  that  in  this  cell  line  the  proliferation  mechanism is  not  mostly 

regulated by astemizole-sensitive ion channels.

Through RT-PCR using nine different pairs of primers, we saw that the IGR39 

cell line was positive for Eag1, to an extent close to IPC298, another melanoma cell 

line, the human brain positive control and the transfected HEK293-Eag1cells (Figure 

1.6).

Figure 1.6 RT-PCR for Eag1 in melanoma cell lines. To amplify 
the Eag1 sequence were used nine different pairs of primers located 
in  different  regions of the Eag1aa sequence (Weber,  PhD Thesis, 
2006).

The expression of  the ion channel  protein can be detected also by antibody 

reaction.  In an  immunocytochemistry experiment,  shown in  Figure 1.7,  we see that 

when we used an antibody against the pore region of the Eag1 channel (C and D), both 

melanoma cell lines, IPC298 and IGR39 were positive for Eag1. However, when the 

antibody utilized was against the C-terminus (A and B) of the channel we just detected 

the signal in the IPC298 cell line. We conclude that the antibody against the C-terminus 

24



can not binding in IGR39 cells. We can also notice that the binding of the antibody 

against  the  pore  region  in  IGR39  cell  line  a  much  more  prominent  membrane 

localization than the one detected in the IPC298 cell line. Why do the antibodies stain 

differently?

Figure 1.7 Eag1 immunostaining in melanoma cell lines. (A) and 
(B)  show  the  antibody  staining  against  the  C-terminus  of  the 
channel,  and (C)  and (D)  the  antibody staining  against  the  pore 
region of the channel. In (A) and (C) is the staining for IGR39 cell 
line, and in (B) and (D) shows the staining for the IPC298 cell line 
(A. Sanchez, unpublished).

Based on these data  from our  laboratory,  divergent  from literature  data,  we 

decided to characterize the expression of Eag1 in these melanoma cell lines.  
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2 Aims

2.1 General Aim

To characterize the potassium channel Eag1 present in the melanoma cell lines 

IGR39 and IPC298.

2.2 Specific Aims

To  characterize  the  properties  of  Eag1  expressed  in  IGR39  and  IPC298 

melanoma cell lines.

To investigate the biophysical characteristics of Eag1 from IGR39 and IPC298 

cells.

To investigate the sequence of Eag1 from IGR39 and IPC298 cells.

To investigate the subcellular localization of Eag1 from IGR39 cells.
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3 Materials & Methods

3.1 Cell Culture

Cell lines HEK293 (ECACC 85120602), IPC298 (DSMZ ACC251) and IGR39 

(DSMZ ACC239) were obtained from DSMZ (Braunschweig, Germany). Each cell line 

was  propagated  and  maintained  according  to  the  instructions  of  the  corresponding 

provider, HEK293 cells were maintained in Dulbecco's MEM + 10% FCS, IPC298 in 

RPMI 1640 + 10% FCS and IGR39 in Dulbecco's MEM + 15% FCS. For transfected 

cells, the selection compound Zeocin (Calya) was added to the culture medium at 3 

µg/ml. Transient transfections were performed using Fugene (Roche Applied Science).

The  Fugene  transient  transfections  were  performed  using  15µl  of  Fugene 

transfection  reagent  plus  185µl  of  OptiMen  medium  without  serum  (Gibco).  This 

mixing was called tube 1, and it was incubated at room temperature for 5 minutes. In a 

tube 2, 1µg of the DNA construct was mixed with OptiMen to a final volume of 200µl.  

After  the  5  minutes  incubation,  the  200µl  of  tube  1 was added directly inside  the 

solution in tube 2. The mixing was incubated at room temperature for 15 minutes. The 

400µl was added directly in a 5ml normal supplemented medium T25 (25cm2)  cell 

culture bottle and wait 48 hours.
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3.2 Drugs

Astemizole and MG115 (Sigma) were diluted from a DMSO stock solution. The 

final concentration of DMSO was always 0.1%, a concentration that showed no effects 

on hEag1 currents (data not shown). Imipramine and Chloroquine (Sigma) were used 

from stock in distilled water. Progesterone (Sigma) was diluted in ethanol.

3.3 Molecular Biology

3.3.1 Total RNA isolation and cDNA synthesis

Total  RNA was  obtained  from cell  pellets  (using  RNeasy,  Qiagen,  Hilden, 

Germany).  Samples (~ 5 x 106 cells)  were disrupted in buffer containing guanidine 

isothiocyanate  and  homogenized.  Ethanol  was  then  added  to  the  lysate,  creating 

conditions that promoted selective binding of RNA to the RNeasy silica-gel membrane 

(RNeasy Kit, Qiagen). Total RNA bound to the membrane, contaminants were washed 

away, and a DNase treatment was performed to eliminate genomic DNA. After wash 

steps, the RNA was eluted in RNase-free water.
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Figure  3.1  total  RNA 

extraction. The  scheme 

shows the main steps in high 

quality  RNA  purification 

using  RNeasy  Kit  from 

Qiagen.  Adapted  from 

www.qiagen.com.

cDNA was synthesized from 2.5µg of total RNA. Was added to the samples 1μl 

Oligo (dT) 12-18 and DEPC-water to advice a RNA concentration of the final volume 

of 12μl and a RNA concentration of 0.2µg/µl. At each step the samples were mixed by 

vortexing and collected by brief centrifugations. The reaction mixture was heated at 

70°C for 10 minutes and rapidly cooled on ice for 1 minute. Subsequently was added 

reaction buffer containing:  2μl of reverse transcriptase buffer 10x concentrated,  2μl 

MgCl2 25mM, 2μl of DTT 0.1mm and 1μl of dNTPs 10mM. The reaction mixture was 

heated for 5 minutes and to the negative samples 1μl of DEPC-water was added, and to 

the positive samples 1μl of reverse transcriptase enzyme was added. After the addition 
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of enzyme or water, the samples were incubated for 50 minutes at 42 ° C and then for 

15 minutes at 70°C. 1μl of RNase was added to degrade RNA present in the samples in 

order to avoid possible contamination in a PCR. The reaction mixture was incubated for 

20 minutes at 37 ° C.  At the end of the procedure 4μl of DEPC-water were added to 

advice a reaction volume of 25μl with final concentration of cDNA of 0.1μg/μl. All 

reagents used for cDNA synthesis were  from  SuperScript First-Strand Synthesis Kit 

(Invitrogen).

The mRNA for the northern-blot experiments was obtained directly from fresh 

cells. Samples (up to 1x107 cells) were washed with cold PBS and the lysis was done in 

1ml of Lysis/Binding Buffer (µMACS mRNA isolation kit - MACS molecular) with 

strong vortexing for  3-5 minutes.  The lysate  was applied to a  LysateClear  Column 

which was centrifuged at 13.000xg for 3 minutes. The cleared lysate was collected in 

the centrifugation tube. Cell debris was removed using LysateClear Column. During the 

centrifugation the µMACS separator is prepared in a magnetic field of an appropriated 

magnetic rack.  The columns were rinsed once with 100µl Lysis/Binding Buffer and 

following 50µl per 1ml lysate of Oligo(dT)MicroBeads was added to the separator. The 

lysate was added on top of the column matrix and the lysate was left to pass through 

while the magnetically labeled mRNA was retained in the column. Subsequently, the 

column was rinsed 2 times with 200µl of Lysis/Binding Buffer to remove proteins and 

DNA. After that, the column was washed 4 times with 100µl of Wash Buffer to remove 

rRNA and DNA. A pre-elution step was performed, and 27µl of a pre-heated (70°C) 

Elution Buffer was added to the column. The elution was then performed using 50µl of 

pre-heated Elution Buffer in a magnetic field.
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Figure  3.2  mRNA 
extraction. The  scheme 
shows the main steps in high 
quality  mRNA  purification 
using  µMACS  mRNA 
isolation  kit  from  MACS 
Molecular.  Adapted  from 
www.miltenyibiotec.com.

RNA and  DNA concentration,  purity  and  yield  were  determined  by optical 

density (OD) measurements  at  260 and 280 nm using a spectrophotometer  (Implen 

Nanophotometer UV/VIS). 

3.3.2 Endonuclease digestion

First-strand  cDNA  from  2.5µg  total  RNA  was  mixed  with  synthetic 

deoxyoligonucleotide  (Table  1)  complementary  to  the  intended  exon  with  two  3’ 

unpaired nucleotides to a final concentration of 1µM in a volume of 50µl. The mixture 

was applied at 94°C for 2 minutes, 85°C for 15 minutes, 70°C for 15 minutes, 55°C for 
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15 minutes, and room temperature for 15 minutes. Then 15 U restriction endonuclease 

were added, and samples were incubated at 37°C for 2 hours. 

Table  1  –  Deoxyoligonucleotides  used  in  cleavage  of  cited 
exons.  Underlined  uppercase  indicates  cleavage  site;  underlined 
lowercase indicates unpaired 3’ tail.  

The digested cDNA was directly used in a PCR reaction as described in section 

3.6.

3.3.3 Plasmids, constructs and cRNA preparation

From the splice variants cloned in pGEM-T and Eag1 in pSGEM, we cut with 

two enzymes, AarI (Fermentas) and BspEI (New England BioLabs), and exchanged the 

fragment.  The ligation was performed using the Quick  Ligation Kit  (New England 

BioLabs), we combined 50 ng of the digested pSGEM-Eag1 with a 3-fold molar excess 

of insert, which was the digested pGEM-T-splice variants. In the reaction was added 

10µl of 2x Quick Ligation Buffer, 1µl of Quick T4 DNA Ligase and water to the final 

volume of 20µl. The samples were mixed, and submitted to a bench top centrifuge. 

Incubation at room temperature (25°C) for 5 minutes was performed. Immediately after 
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the 5 minutes the samples were chilled on ice and then transformed in DH5α cells. All 

the  sequences,  including  the  PCR  amplified  splice  variants  were  verified  by 

sequencing.

The E65 construct was cloned into a pcDNA3-Venus, which encodes an E65 

fused  protein  with  Venus  at  its  C-terminus.  HEK293-Eag1  cells  transfected  with 

pcDNA3-E65Venus were plated in uncoated 12 mm round #1 glass coverslips in 24-

well plates at a density of ~10,000 cells per well. After 48 h in culture, cells were fixed 

for 10 min at room temperature (25°C) with 4% paraformaldehyde in PBS, washed 

three  times  with  PBS,  and  then  permeabilized  with  0,3%  Triton  X-100  in  PBS. 

Subsequently,  the  detergent  was  removed  and  the  coverslips  were  washed.  Before 

mounting, cells were loaded with TOPRO, a nucleic acid dye, at 100ng/ml in PBS for 

10 min. Coverslips were mounted onto 3 inch x 1inch x 1mm slides (Fisher Scientific) 

using Prolong Gold (Inivitrogen).

3.4 Confocal Microscopy

Three-dimensional (3D) confocal images were acquired with a Zeiss LSM 510 

Meta mounted on a Axiovert  200 M Zeiss inverted microscope controlled by LSM 

Image Browser Rel. 4.2 Zeiss software.  Images stacks were acquired with 0.53 µm 

steps throughout the depth of the cells for both YFP (excitations, 514; emission, 526-

612) and TOPRO (excitations, 633; emission, 644-719). Image stacks were converted 

to a series of 16-bit TIF files and imported into Imaris(R) x64 6.2.1 (Bitplane Scientific 

Solutions) in which image volume measurements were made based on pixel intensity in 

the x-y plane throughout the z depth of the stack.
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3.5 Real Time PCR

Real-time PCR was performed using the TaqMan system in a LightCycler 480 

(Roche  Applied  Science).  The  oligonucleotides  used  were  (5'-3'):  Forw.: 

TCTGTCCTGTTTGCCATATGATGT,  FAM-

AACGTGGTTGAGGGCATCAGCAGCCT(-Tamra)  and  Reverse: 

CGGAGCAGCCGGACAA.  Transferrin  receptor  was  used  to  control  for  RNA 

integrity,  with  the  following  oligonucleotides:  GACTTTGGATCGGTTGGTGC, 

CCAAGAACCGCTTTATCCAGAT, and JOE-TGAATGGCTAGAGGGA-TAMRAdT-

ACCTTTCGTCCC (probe).

PCR conditions were: 2min 50°C; 15min 94°C; 15s 94°C; 15s 56°C; and 1min 

60°C (40 cycles). Copy numbers per volume of the samples were determined with the 

help of a calibrator curve of plasmid standards with a known number of copies. The 

resulting concentrations were standardized to the amount of a housekeeping gene, the 

human transferrin  receptor  type  1.  The plotted  graphs  are  thus  standardized  values 

further  normalized  to  the  Control  with  means  and  S.E.  Data  shown in  the  figures 

correspond to the analysis of results obtained in three independent RNA preparations. 

3.6 PCR

The primers used for Eag1 and their expected amplicon size are described in 

table 1. The primers used in the nested PCR were: External Forward: 5'-TGT TCG 

GCG GTC CAA TGA TAC TAA-3'; External Reverse: 5'-GGT CCC GGC CCC CTC 

TC-3'; Internal Forward: 5'-TGT TGG GGA ATG CTC AGA TAG TGG-3'; Internal 
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Reverse: 5'-GGG GGC CTC ATT CTT TCG TTT CAT-3'.

PCR was performed using 2 µL first strand cDNA in a 50 µL reaction volume 

containing 1X Taq Polimerase Buffer (New England BioLabs), 1.5 mM MgCl2, 10 mM 

of each deoxynucleotides (dNTPs), 1U Taq Polymerase (New England BioLabs), and 

40 pmol of each specific primer (Table 1). For the second round of the nested PCR we 

used as DNA sample 1 µL from the first round. The first round of the Nested PCR was 

performed for 20 times, and the second round 35 times. The samples were submitted to 

this program in the thermocycler: 3 minutes at 95°C, 30 seconds at 95°C, 30 seconds at 

59°C and 3 minutes at 72°C. After this reaction, the samples were analyzed by 1.5% 

agarose gel.  

3.7 siRNA transfections

We used a siRNA designed to target the Eag1 sequence (Target sequence: 5’-

TACAGCCATCTTGGTCCCTTA-3’)  using  the  HiPerformance  siRNA  Design 

Algorithm. siRNA’s (30 nM) were transfected using DreamFect (Oz Biosciences) in 

OptiMEM medium (Invitrogen). The siRNA transfections were performed using 15µl 

of  DreamFect  transfection  reagent  plus  185µl  of  OptiMen  medium without  serum 

(Gibco). This mixing was called tube 1, and it was incubated at room temperature for 

10 minutes. In a tube 2, 7.5µl of 20µM siRNA stock solution was mixed with OptiMen 

to a final volume of 200µl. After the 10 minutes incubation, the 200µl of tube 1 was 

added  directly  inside  the  solution  in  tube  2.  The  mixing  was  incubated  at  room 

temperature  for  20  minutes.  The  400µl  was  added  directly  in  a  4.6ml  normal 
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supplemented medium T25 (25cm2) cell culture bottle and wait 48 hours.

After  DreamFect  transfection,  cells  were  not  suited  for  eletrophysiological 

experiments. Therefore we used Amaxa Nucleofector Kit  and device (Lonza).  Cells 

were plated two days before transfection. The 2.25ml of Nucleofector Solution L was 

supplemented with 0.5ml of Supplement. The cells were harvest with trypsin/EDTA 

and the trypsinization was stopped by medium addition.  The cells  were counted to 

determine the cell density and they were centrifuged. The pellet was resuspended in 

Nucleofector Solution L, supplemented, to a final concentration of 1x106cells/100µl. In 

100µl of cell suspension 1µl of Eag1 siRNA, stock solution at 3µM, was added. The 

cell suspension was transferred into an amaxa electroporation cuvette. The cuvette was 

placed in the Nucleofector device and for IPC298 cells the program selected was T020, 

and for IGR39 cells, T030. After the procedure the cells were removed from the cuvette 

immediately and 500µl of the pre-warmed culture medium was added. Subsequently, 

the cells were plated into T025 cell culture bottles containing 4.5ml fresh supplemented 

cell culture medium. 

The negative control we used a siRNA with the reverse but not complementary 

(“scrambled”) sequence of Eag1. The molecules have the same composition and closest 

structure to the active siRNA. The sense strand of the annealed siRNA duplexes was 

modified  with  two  dT  at  the  3'-ends,  the  antisense  strand  with  the  sequence 

corresponding desoxynucleotides to stabilize the siRNAs against degradation. All the 

siRNA were synthesized by Qiagen. The cells were incubated with the siRNA and the 

transfection reagent, when used, for between 6 h and 8 h. Cells were harvested for the 

experiments 24 hours after the start of the transfection for real-time experiments, and 

48 hours for patch-clamp experiments.
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3.8 Xenopus oocytes preparation

Xenopus oocytes were prepared as described previously (Almouzni and Wolffe, 

1993).  Stage  VI  oocytes  were  sorted  and  used  within  24  h  of  oocyte  preparation. 

Oocytes were maintained at 18°C in ND96 medium (mM: 96 NaCl, 2 KCl, 0.2 CaCl2, 

2 MgCl2, 0.5 teophylline, 5 HEPES, pH 7.5). The injection was performed with 50 nL 

for each cRNA solution. After injection, only oocytes with homogenous pigmentation 

and normal turgor were collected. The experiments were performed after 48 h.

After linearization with SfiI, cRNA was prepared in vitro using the T7 promoter 

containing in  the pSGEM vector,  with the T7 mMessage mMachine Kit  (Ambion). 

Oocytes were injected with 0.025 – 1ng cRNA and kept at 18°C in ND96 solution (96 

mM  NaCl,  2  mM  KCl,  0.2  mM  CaCl2,  2mM  MgCl2,  0.5  mM  teophilline,  5  mM 

HEPES, pH 7.5).

3.9 Protein extraction, separation and western blot

To  obtain  cell  lysates,  cultures  were  washed  twice  with  phosphate-buffered 

saline and resuspended in 3 ml of lysis buffer (mM: 50 Tris-HCl pH 7.4, 300 NaCl, 5 

EDTA,  1%  Triton  x-100  containing  protease  inhibitor  cocktail  (Roche)).  After  30 

minutes  of  incubation,  cells  were  centrifuged  for  15  min  at  14.000rpm and  the 

supernatant was used as total cell extract. 

Protein concentration was determined using BCA (bicinchoninic acid)  Protein 

Assay Reagent  (from Pierce)  that  employs  BSA (albumin)  as  a  pattern  curve.  The 

samples (triplicate) in a protein solution of 10µl were incubated for 30 minutes at 37°C 
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together  with  BCA reagent,  composed  by  solution  A (sodium  carbonate,  sodium 

bicarbonate,  bicinchoninic acid and sodium tartrate in 0.1 M sodium hydroxide) and 

solution B (4% cupric sulfate) in a proportion of 8ml solution A to 160µl solution B.   

Immunoprecipitation was performed using Protein G Magnetic Beads from New 

England BioLabs.  An extract containing 1 mg protein was first  pre-incubated for 1 

hour, at 4°C, with 50µl of magnetic beads to pre-clear the crude cell extract and avoid 

non-specific binding to the beads. A magnetic field was applied to the mixture for 30 

seconds and the beads were pulled to the side of the tube. The supernatant was placed 

in a clean tube and the beads were discarded. 2µg of an anti-Eag1 monoclonal antibody 

(33) were applied to the supernatant, and the mixture was incubated for 1 hour at 4°C. 

After  this,  50µl  of  magnetic  beads  were  applied  to  the  suspension,  vortexed  and 

incubated for 1 hour at 4°C. The beads were recovered in a magnetic field, washed 3 

times with protease free wash solution (0.1% Triton, 50mM TRIS-Cl, 300mM NaCl, 

5mM EDTA plus 1 protease inhibitor tablet/10ml). Then the beads were resuspended in 

16.25µl TBS (TRIS Buffered Saline: 50mM TRIS and 150mM NaCl, pH 7.6), 2.5µl of 

reducer buffer (Invitrogen) and 6.25µl of LDS sample buffer (Invitrogen). The samples 

were incubated for 10 minutes at 70°C and then exposed to a magnetic field to separate 

beads from supernatant. 

To obtain the oocyte lysates, 15 oocytes were resuspended in 300 µL (20 µL per 

oocyte)  of  oocytes  lysis  buffer  (1% Triton,  150mM  NaCl,  20mM  Tris-HCl,  5mM 

MgCl, 5mM EDTA). After 30 minutes incubation, oocytes were centrifuged 2 times for 

2  min  at  14,000rpm and  the  supernatant  was  used  as  total  cell  extract.  The  Eag1 

immunoprecipitation process was the same as the one used for cultivated cell extracts. 

The same process was also used when the antibody was the mouse monoclonal anti-
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Xenopus cyclin  B2 (Santa  Cruz  Biotechnology  X121.10).  The  immunoprecipitation 

was performed using 2 µg of anti-cyclin B2, and for western-blot the 20µl of antibody 

were diluted in 10ml of TBS-T (Tris-buffered saline + 0.05% Tween 20). 

The supernatant was separated by gradient SDS-PAGE NuPAGE Novex TRIS-

Acetate 3-8% gel (Invitrogen) and transferred to nitrocellulose membranes. Membranes 

were blocked for 1 hour with 0.1% casein (Roche Applied Science), incubated with 

polyclonal anti-Eag1 antibody in 0.1% casein for 1 hour, washed with deionized water 

for 7 times and then incubated in TBS-T (Tris-buffered saline + 0.05% Tween 20) for 5 

min.  Following,  the  membranes  were incubated  with peroxidase-coupled  anti-rabbit 

antibody (Amersham Biosciences) for 1 hour. The membranes were developed using 

Millipore  Immobilon  system.  To  prepare  working  horseradish  peroxidase  (HRP) 

substrate 5ml from each Luminol Reagent and Peroxide Solution were mixed. Signals 

were detected in a Bio-Rad Chem-Doc luminescence detection system.

3.10 Electrophysiology

3.10.1 Patch-Clamp

IPC298 and IGR-39 cells were plated on poly-L-lysine-coated glass coverslips 

in Petri dishes and allowed to attach overnight. Cells were left untreated or treated with 

siRNA for 6 h. After 24, 30 or 48 h., the coverslips were removed from the dish and 

used for electrophysiology measurements. 

Electrophysiological recordings were performed in the whole-cell configuration 

of the patch-clamp, using an EPC9 amplifier and Pulse software (HEKA, Germany). 
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Currents were filtered at 10 kHz and digitized at 50 kHz. Patch pipettes were pulled 

from Corning #0010 glass (World Precision Instruments) to resistances of 1-2 MΩ. 

Solutions for IPC298 and IGR-39 cells contained (mM) Internal: 100 KCl, 45 NMDG, 

5  1,1-bis(O-aminophenoxy)ethane-N,N,N,N-tetracetic  acid  (BAPTA),  5  EGTA,  1 

MgCl2, 10 HEPES pH 7.4; External: 160 NaCl, 2.5 KCl, 2 CaCl2, 1 MgCl2, 8 Glucose, 

10 HEPES pH 7.4.

We  used  the  automated  capacity  compensation  of  the  amplifier  to  estimate 

series  resistance,  which  was  compensated  to  85%,  and  cell  capacity.  A P/N  leak 

subtraction protocol was performed (at -120mV). To determine Eag1 current amplitude, 

we applied a conditioning pulse to -100 mV for 1500 ms to slow down the activation of 

Eag1, and the outward currents were then elicited by a square depolarization to +40 mV 

for 500 ms.

3.10.2 Two - electrode voltage-clamp

Two-electrode voltage-clamp recordings were performed 1-3 days after c-RNA 

injection, using a Turbo TEC-10CD amplifier (NPI electronics) at room temperature. 

The intracellular electrodes had resistances of 0.3-1.5 MΩ when filled with 2M KCl. 

The extracellular measuring solution (Normal Frog Ringer, NFR) contained (mM): 115 

NaCl, 2.5 KCl, 1.8 CaCl2, 10 HEPES/NaOH, pH 7.2, with or without 5 mM MgCl2.

Data acquisition and analysis were performed with the Pulse-Pulse Fit (HEKA 

Electronics)  and  IgorPro  (Wave-Metrics)  software  packages.  Currents  records  were 

filtered at 1 kHz. The cells were held at -100 mV membrane potential.  The applied 

voltage protocols are described in the figure legends. A leak protocol was applied at 
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120mV in the I-V protocols. 

3.11 Northern-Blot

The mRNA from the cell lines were analyzed in a 2% formaldehyde agarose gel 

for  7  hours.  The  running  buffer  was  1x  MOPS  (80ml  DEPC-water,  4.18g  3N-

Morpholina propane sulfonic acid (MOPS), at this time the pH was adjusted to 7.0 with 

NaOH; 1,66ml 3M sodium acetate, 2ml 0.5M EDTA, the volume was adjusted to 1 liter 

with DEPC-water, the solution was kept protected from light at 4°C).

The transfer process to a Hybond N membrane was performed following the 

next steps: 

• the gel was washed twice with DEPC-water for 10 minutes, and then twice with 2x 

SSC Buffer (0.3M NaCl, 0.03M Sodium-Citrate, pH 7.0) for 10 minutes;

• the Hybond N membrane was equilibrated in 2x SSC for 5 minutes;

• a Whatman paper bridge was cut in the gel size. The platform of the gel box was 

covered with the bridge in a way that there was still a piece of the bridge in each of 

the wells. The wells were filled with 20x SSC;

• a Whatman paper piece, larger than the membrane wet in 2x SSC, was placed above 

the base of the bridge;

• the  gel  was  placed  above  the  Whatman  paper  layer,  and  all  air  bubbles  were 

removed;

• the membrane was placed on top of the gel. Again, all air bubbles were removed;

• 3 Whatman paper piece, larger than the membrane wet in 2x SSC, was placed on 

top of the membrane;
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• then,  40  dry  Whatman  paper  pieces,  larger  than  the  membrane,  on  top  of  the 

sandwich;

• lastly, a heavy object was placed on top of the papers layers. The transfer was left to 

happen overnight.   

Figure 3.3 Northern-blot  membrane transference. The scheme 
shows how the sandwich to transfer a northern blot membrane was 
prepared.  Adapted  from 
http://www.currentprotocols.com/protocol/txa03e.

The RNA was transferred to a Hybond N membrane overnight and crosslinked 

(UV  Stratalinker  1800-  Stratagene)  by  applying  energy  of  1200 Joule.  Then  the 

membrane was left to dry for one day. Before starting the hybridization, the membrane 

was washed with 2x SSC for 10 minutes, and a pre-hybridization process was done 

with 8ml of Rapid-hybr-Buffer (Roche) for 2-3 hours. Afterwards, the membrane was 

incubated  overnight  in  10ml  of  Rapid-hybr-Buffer  plus  a  probe specific  for  the  C-

terminus of the Eag1 channel [32P]dCTP-labelled Eag1 700 bp fragment, overnight at 
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65°C.

The labeling process was performed by following the instructions from Deca 

Label DNA Labeling Kit from Fermentas: 100 ng of DNA template was mixed together 

with 10µl of Decanucleotide in 5x Buffer and nuclease-free water to 40µl in a 1.5ml 

microcentrifuge tube. The tube was vortexed and spun down for 3-5 seconds. Then, 

incubated in a boiling water bath for 10 minutes and cooled on ice. After this, a quick 

spin down was done. Subsequently, 3µl of Mix C was added in the reaction tube, 6µl of 

[α-32P]-dCTP and 1µl of Klenow fragment (5u). The tube was vortexed, spun down for 

3-5 seconds and incubated at 37°C for 5 minutes. The reaction was stopped by addition 

of 1µl 0.5M EDTA, pH 8.0. Afterwards, a removal of the unincorporated nucleotides 

was performed using Illustra MicroSpin G-50 Columns (GE). The column preparation 

was performed resuspending the resin inside and breaking the cap below the column, 

and then a centrifugation was performed for 1 minute at 735xg. After the centrifugation 

a fresh tube was placed in the column and 12-50µl of the sample was applied directly 

inside the column. A centrifugation was performed for 2 minutes at 735 x g for removal 

of  unlabeled  nucleotides  from  DNA.  The  labeled  probe  was  used  directly  for 

hybridization with the membrane.

After overnight hybridization the membrane was collected and washed twice 

with 50ml of 2x SSC, for 30 minutes. Then washed again twice with 2x SSC + 0.1% 

SDS, for 30 minutes. The wash steps were performed at 65°C. The membrane was then 

exposed for 4 hours or overnight. The membrane was also exposed to a phosphoimager 

plate (Fuji) for 2 hours and subsequently read.   
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3.12 Statistical analysis

The statistical analysis was performed using the program GraphPad Prism v4.0. 

The  t  test  nonparametric,  Mann Whitney,  was  used  for  comparisons  between  each 

treatment and its control. Real-time experiments were evaluated according to Pfaffl test 

(Pfaffl et al., 2002).
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4 Results

4.1 Functional Characterization of Eag1 in Melanoma Cells

4.1.1 Both, IPC298 and IGR39 express Eag1 RNA and protein

Previous  experiments  indicated  that  these  melanoma cells  were  positive  for 

Eag1, in contrast to published data. The first strategy was to test whether we could 

detect  Eag1  amplification  by  a  RT-PCR.  To  perform  these  experiments  we  used 

different pairs of primers, located in various parts of the Eag1 sequence, in an attempt 

to verify whether or not mutations, deletions or splice variants occurred in the sequence 

in these melanoma cells.

Our  first  interpretation  of  this  discrepancy  was  that  the  primers  used  were 

different, and we hypothesized a different splice variant in IGR39 cells. Cancer cells 

are in an abnormal cell state associated with an increased rate of heritable genomic 

alterations  as  chromosomal  rearrangements,  deletions  and  inversions.  This  genetic 

instability could generate also splice variants of the same gene or many mutations. The 

used primers were located mainly in the exon junctions to verify if the junctions in 
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Eag1 sequence were preserved. As seen in Figure 4.1, we could detect amplification in 

all combinations, indicating that the full length Eag1 is present in these cell lines. As a 

positive control we used HEK293 cells transfected with Eag1a, and another melanoma 

cell line, IPC298.

Eag1 target Primer name Size Sequence
exon1-2 
junction

1-forward 255 bp 5'-GCG GTC CAA TGA TAC TAA TTT TGT 
GTT-3'

exon 3-4 
junction

1-reverse 5'-CCA CAC AGG TGT CCT GTT CTT CTT 
GTA C-3'

exon 4-5 
juntion

2-forward 540 bp 5'-GAT GATTCA TGT AAA GGC TGG GGG 
AAG-3'

exon 6a-7 
junction

2-reverse 5'-GCT GAA CAG GCT GCT GAT GCC CTC 
ATC CAC GTT CTC-3'

exon7 3-forward 864 bp 5'-CTA AAA GTT GTC CGG CTG CTC C-3'

exon 9-10 
junction

3-reverse 5'-CTT TTC CTA GAA TGG CCA CCA C-3'

 exon 9 4-forward 450 bp 5'-GTT CCA GAC GGT GCA CTG TG-3'

exon 11 4-reverse 5'-CTG TCG GAA TCT CTG GAA GAG G-3'

exon 11 5-forward 450 bp 5'-GAT CAG CGA TGT GAA ACG TGA A-3' 

exon 11 5-reverse 5'- CAT CGA CTC AGC CTT GGA CAC-3'

exon 11 6-forward 450 bp 5'-TCA AAG ATG CTT GCG GGA AGA-3'

exon 11 (end) 6-reverse 5'-CAG CTG GCT CCA AAA ATG TCT-3'

exon 11 7-forward 450 bp 5'-GAT GGA GAC ACT TCC CGA GAG G-3'

pos-
transcriptional

exon 11

7-reverse 5'-GGT GAC GGC AGG GTT GGA-3'

Table 2 Primer sequences and their respective sizes and targets.  
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Figure  4.1  hEag1  expression  by  RT-PCR.  Amplification  of 
different sequences of Eag1 in IPC298, IGR39 and HEK293-Eag1 
transfected cells. The numbers are referent for each used primers 
described  on  Table  1.  The  scheme  above  represents  the  Eag1 
sequence,  the  exons  are  identified  by  number  and  the  arrows 
represent the localization of the primers from Table 2.

The fact that cells possess RNA coding for Eag1 does not necessarily mean that 

there  is  expression  of  the  protein.  To  test  this,  we  used  western-blot.  The  low 

abundance of the channel in a native expressing system makes it difficult to detect the 

protein  from  crude  extract.  To  solve  this  problem,  we  performed  an 

immunoprecipitation in both melanoma cell lines and in the HEK293-Eag1 control cell 
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line (Figure 4.2). The immunoprecipitation was achieved using a monoclonal antibody 

against  the  C-terminus  of  the  Eag1  channel  (mAb  33)  and  the  western-blot  was 

performed with a polyclonal antibody (9391). The use of two antibodies also increases 

the specificity of the immunoblot, since a positive signal requires recognition by both 

antibodies.

Figure 4.2 Immunoprecipitation of Eag1 in melanoma cell lines. 
Cell  extracts  precipitated with an  anti-Eag1 monoclonal  antibody 
and detected with an anti-Eag1 polyclonal antibody.

To enrich the protein we inhibited proteolysis by addition of 10µM of MG115 

and 100µM of chloroquine.  MG115 is  a potent  inhibitor of the 20S subunit  of the 

proteasome,  and  chloroquine  is  an  endosomal  acidification  inhibitor, they are  very 

useful to detect low levels of protein in native system.

The  semi-quantitative  analysis  of  the  Eag1  signal  intensity  showed  similar 

levels in both melanoma cell lines under control conditions. However, when the cells 

were treated with chloroquine the difference was more significant, IPC298 express less 
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than IGR39. In the transfected control HEK293-Eag1 we see the high level of Eag1 

protein expression. 

Based in these results we conclude that both melanoma cell lines express Eag1 

and protease inhibition increases the protein level in both cell lines, specially using 

chloroquine. 

4.1.2 Ion currents in melanoma cell lines

The experiment described above indicates that Eag1 is expressed at both the 

RNA and protein level in IGR39 cells. The next test was to investigate the functional 

expression  of  this  protein  in  these  melanoma  cells  using  whole-cell  patch-clamp 

recordings. 

Figure 4.3  shows representative traces from IPC298 (A),  HEK293-Eag1 (B) 

and  IGR39  (C).  In  IPC298  melanoma  cells  (A),  depolarization  induced  a  slowly 

activation, non-inactivating outward current with kinetics compatible with Eag1. For 

comparison, panel (B) shows the traces obtained from HEK293-Eag1 transfected cells. 

In contrast, IGR39 cells (C) showed a current with fast activation and a certain degree 

of inactivation.  
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Figure 4.3 Currents expressed by melanoma cell lines in presence 
of 1mM Mg+2. IV relationships were determined by measuring the 
whole-cell current elicited by depolarizations to a test potential from 
a holding potential  of -60 mV to +60 mV for  500 ms in 20 mV 
increments. In (A) the current elicited by IPC298 and by HEK293-
Eag1 transfected cells  (B).  The current elicited by IGR39 cells  is 
represented in (C). (D) represents the mean (±SEM) of the current 
amplitude vs membrane potential obtained from IPC298 (n=82) and 
IGR39 (n=121) cells. 
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The hallmark of Eag currents is a strong dependence of activation kinetics on 

holding potential,  such that the activation is  slower the more negative the prepulse 

potential (Cole-Moore shift).  This effect is exacerbated by Mg+2 in the extracellular 

medium. 

A very marked effect reminiscent of the Cole-Moore shift described for other K+ 

channels was detect. Typical traces are shown in Figure 4.4 IPC298 (A) and IGR39 (B) 

cells. IPC298 cells showed the typical behavior of Eag1 currents, while IGR39 showed 

no deceleration of activation. Moreover, in IGR39 cell the pulse starting from -120mV 

elicited higher currents than the one starting from -60mV, a phenomenon compatible 

with recovery from inactivation of an inactivating channel.Together,  these experiments 

allow us to conclude that IGR39 cells do not express current with the characteristics of 

Eag1, while IPC298 do.

Figure 4.4 Activation kinetics of Eag1 channels in melanoma cell 
lines.  The depicted voltage protocol was applied to the cell lines. 
The cells were clamped for 6 sec to two different holding voltages (-
120 mV and -60 mV) and then depolarized (+50mV) to activate K+ 

channels. We see a characteristic shift in IPC298 cell (A) but not in 
IGR39 cells (B) caused by the dependence of the activation kinetics 
on the holding voltage.
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4.1.3 Pharmacology of currents measured in melanoma cell lines

Gavrilova-Ruch  and  colleagues  (2002)  showed  that  when  the  tricyclic 

antidepressant imipramine and the antihistamine astemizole are present in the growth 

medium  of  Eag1-expressing  melanoma  cells,  the  proliferation  is  slowed.  García-

Ferreiro  (2004) demonstrated that  the  charged forms of  imipramine  and astemizole 

blocks the current through hEag1 K+ channels by binding to sites in the intracellular 

portion of the permeation pathway only accessible when the channels are open. 

To test the sensibility of the melanoma cell currents we used imipramine and 

astemizole aiming to characterize whether these currents were or not sensible to these 

drugs used to block the Eag1 K+ channel. 

The  IC50  of  imipramine  for  Eag1  is  in  the  µM  range  (1  to  30).  Although 

imipramine effect is not selective for Eag1 K+ channels, we known from previous data 

that Eag1 current are the major currents expressed in melanoma cells, together with 

calcium-activated potassium channels (Kca) (Gavrilova-Ruch et al., 2002). Using the 

two melanoma cell lines, IPC298 and IGR39 we observed that the blockage induced by 

imipramine was very similar for both cell types (Figure 4.5), around 75% and 70% of 

total current was blocked, respectively.
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Figure 4.5 Sensitivity of IPC298 and IGR39 melanoma currents 
to imipramine.   Representative traces  (A) and (B) showing that 
more than 70% of the density current was blocked by imipramine in 
both cells. (C) and (D) represent the trace currents elicited by the 
depicted voltage protocol  prior  to  the  block (black  trace),  in  the 
presence of imipramine 10 µM (green trace) and after the washout 
of the drug (blue trace). 

In  contrast  to  imipramine,  the  actions  of  astemizole  on  K+ channels  seem 

restricted to some members of the eag family. For example, concentrations up to 10 µM 

astemizole have no effect in K+ currents in heart, inward rectifier K+ channels, and the 

voltage-gated K+ channels Kv1.1 (Suessbrich et al., 1996), Kv2.1 and Kv4.2 (García-

Ferreiro et al., 2004). To test the effect of astemizole on the melanoma currents we used 
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three different concentrations, 500 nM, 5 and 10 µM. When the concentration used was 

500 nM, the inhibition was around 50% of the total current in both melanoma cell lines 

(Data  not  show).  A dose-dependent  inhibition  of  the  currents  expressed  by  these 

melanoma cells was achieved using astemizole; the 5 µM inhibition is shown in Figure 

4.6.

Figure 4.6 Sensitivity of IPC298 and IGR39 melanoma currents 
to  astemizole.   Representative  traces  (A)  and  (B)  showing  that 
approximately 80% of the current was blocked by 5 µM astemizole 
in both cells. (C) and (D) represent the trace currents elicited by the 
depicted voltage protocol  prior  to  the  block (black  trace),  in  the 
presence of astemizole (green trace) and after the washout of the 
drug (blue trace).
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We conclude that, although the electrophysiological features of the current in 

IGR39 cells do not follow those of Eag1, the pharmacology of the current is compatible 

with Eag1.

4.1.4 siRNA reduces Eag1 mRNA and current in melanoma cell lines

siRNA are 21-23 base pairs double stranded RNA molecules with 2-nucleotide 

3'-overhangs (in practice modified to increase stability). When entering the cell, they 

bind  to  the  RISC complex (RNA-initiated  silencing complex),  which  promotes  the 

cleavage  of  the  RNA containing  that  particular  sequence.  The  mechanism is  very 

effective, leading to virtual abolition of the expression of the target gene, but it is most 

interesting  feature  is  the  virtually  absolute  specificity  that  can  be  reached  (Nature 

Editorial, 2003).

Weber et al. (2006) show that the use of a short interfering RNA (siRNA) that 

acts specifically on Eag1 induces a significant decrease in the proliferation of tumor 

cell  lines  and  reduction  of  the  current  in  transfected  Eag1  cells  after  24  hours  of 

transfection.

Since we do not have highly selective drugs that inhibit Eag1, siRNA is a very 

useful tool to identify these channels. Here we use the same target sequences as Weber 

and coworkers (2006) at a concentration of 30nM. 

As a negative control we used a siRNA with the reverse but not complementary 

(“scrambled”) sequence of the Eag1 (Figure 4.7, scrambled). siRNA specific for the 

Eag1 sequence was effective in reducing the Eag1 mRNA level in these melanoma cell 

lines (Figure 4.7). 
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Figure  4.7  Reduction  on  Eag1  message  in  melanoma cells  by 
siRNA.  Relative expression of mRNA content in cells IPC298 (A) 
and  IGR39  (B)  treated  with  siRNA  for  Eag1a,  30  nM.  The 
transfection reagent DreamFect was used as a control and the siRNA 
scrambled in the same concentration as the Eag1a. n = 3. (*** = 
p<0.001). (Pfaffl, 2001).
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The reduction of mRNA levels produced by siRNA correlated with a reduction 

of protein content, as revealed in immunoprecipitation experiments.  Figure 4.8 shows 

that,  30 h.  after  transfection with siRNA specific  for hEag1,  the signal  detected in 

immunoprecipitation for Eag1 protein was abolished. 

Figure 4.8 Reduction on Eag1 protein level in melanoma cells by 
siRNA.   Cells  were transfected with siRNA for Eag1 and after  30 
hours the extract was prepared and Eag1 was immunoprecipitated with 
an  anti-Eag1 monoclonal  antibody (mAb 33)  and detected  with  an 
anti-Eag1 polyclonal antibody (9391).
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Figure 4.9 shows the effect of siRNA treatment in the current levels of both cell 

types, IPC298 and IGR39. Although the current detected in IGR39 cells does not show 

the typical features of hEag1, anti-Eag1 siRNA reduced the current density by 80%, 

indicating that the current is dependent on the mRNA for hEag1. 

58



Figure  4.9  Reduction  on  Eag1  current  in  melanoma  cells  by 
siRNA.   Cells  were transfected with  siRNA for  Eag1 and after  30 
hours  currents  were  measured. Traces  were  elicited  by  the  same 
protocol depicted in Fig. 3.3. The graphs (A) and (D) show that more 
than 80% of the current in IPC298 (scrambled n=8, siRNA n=11) and 
IGR39 (scrambled n=9, siRNA n=10) was blocked by the siRNA for 
hEag1. Representative traces of the current in scrambled transfections 
are shown in (B) for IPC298 and (E) for IGR39 cells; and in siRNA 
for hEag1 transfections in (C) for IPC298 and (F) for IGR39. (***= 
p<0.001). 
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4.2 Detection of new hEag1 Splice Variants in Melanoma Cell Lines

4.2.1 Detection of splice variants by nested-PCR

Our hypothesis to explain the differences in Eag1 channel kinetics between the 

two cell lines was the presence of the splice variants. To test this, we used a Nested RT-

PCR  strategy.  This  technique  allows  detecting  low  levels  of  circulating  mRNA 

transcripts and also increases the specificity of the amplified product. The subsequent 

sequencing  reactions  of  the  nested  PCR product  (Figure  4.10B)  revealed  two  new 

splice variants generated by exon skipping. 

The whole Eag1 is composed by 11 exons as represented in Figure 4.10A. The 

expected sequence amplified should be around 2 kb, from the full length of Eag1, as 

the  one  seen  amplified  in  the  transfected  cell  HEK293-Eag1.  This  2  kb  band  is 

amplified  in  melanoma  cell  lines,  IPC298  and IGR39 (Figure  4.10B).  However,  a 

smaller fragment is additionally amplified in the lanes from melanoma cells, with 700 

bp in IPC298 and 500 bp for IGR39.
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Figure  4.10  Detection  of  splice  variants  by  Nested  PCR.  (A) 
scheme of the genomic structure of Eag1. The arrows in the Eag 
sequence represent the sites where the primers were located. Yellow 
arrows: external primers; green arrows: internal primers. In (B) a 
1.5%  agarose gel  with  Nested  PCR  products  obtained  with  the 
specific primers for hEag1 represented in the scheme above.  Lane 
1:  100  bp  markers.  Lane  2,  3  and  4:  respectively  cDNAs  for 
IPC298, IGR39 and HEK293-Eag1 transfected cells.

Sequencing of  the  amplified  bands  revealed  the  absence  of  exon 4  to  7 in 

IPC298 cells, and 4 to 9 in IGR39 cells. We did not detect any additional changes in 

the sequence. Both sequences keep the reading frame and could give rise to distinct 

proteins. The predict size of the IPC298 protein should be around 70 kD and the one of 

IGR39 cells 65 kD. Based on their molecular weight we call the splice variants E70 

and E65, respectively (Figure 4.11). 
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Figure 4.11 Representative schemes showing the two melanoma 
splice variants. (A) shows the whole Eag1 sequence and a relation 
between the protein and the coding region. In (B) the representative 
splice variants from IPC and IGR39 are shown.

Sequence analyses predict that E70 and E65 have no transmembrane domains 

and should not produce structural channels.

We could not find any mutation in the region that was preserved in the spliced 

sequence of both variants when compared to hEag1 (Figure 4.12).
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Figure 4.12 Sequence alignment of amino acid sequences of the 
Eag1 WT with the two alternative spliced forms E70 and E65. 
Residues conserved among different variants are shadowed.
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4.2.2 Expression of splice variants in Xenopus leavis oocytes 

To determine  whether  these  splice  variants  were  translated  into  protein,  we 

injected the cRNA in Xenopus oocytes, as described in Methods. After 48 h. an extract 

of the whole oocyte was obtained, and we performed an immunoprecipitation as shown 

in Figure 4.13.

Figure 4.13 Expression of splice variants E70 and E65 protein in 
Xenopus oocytes.  Western  blot  of  15  whole  oocyte extract 
precipitated with an anti-Eag1 monoclonal  antibody and detected 
with an anti-Eag1 polyclonal antibody.

Injection of E70 did not produce any detectable protein. However, injection of 

E65 gave rise to a band of estimated 54 kDa. The co-injection of Eag1 with E70 did 

not cause alteration in the Eag1 protein band detection, unlike when the co-injection 

was performed with E65. In the latter case we observed a strong reduction of the Eag1 

band. Despite that we can not detect a protein band when Eag1 was co-injected with 
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E65, we still can register a small but significant current. In the case where only the 

Eag1 was  injected  we detect  a  protein  band,  which  is  not  so  evident,  but  we can 

register a powerful current. 

4.2.3 Characterization  of  E65  and  E70  effects  on  Eag1  current 

expressed in Xenopus leavis oocytes

As mentioned before,  E65 and E70 should not produce homomeric channels 

since  they  do  not  have  the  exons  responsible  for  the  transmembrane  segments 

formation.  However,  it  is  conceivable  that  the  splice  products  could  physically  or 

functionally interact with the full length Eag1. The splice variants could co-assemble 

with Eag1 channel subunits changing their surface expression and/or properties, or they 

could work as an intracellular signaling protein. To test this possibility,  we injected 

Xenopus  oocytes with the E65 and E70 cRNA alone, or together with the full length 

Eag1 cRNA and recorded ion currents after 48 h. using two-electrode voltage clamp.

When oocytes where co-injected with E70 (Figure 4.14B) we did not observe 

any difference  when  compared  to  the  Eag1  wild  type  (Eag1  WT)  (Figure  4.14A). 

However,  co-expression of  full  length Eag1 with E65 (Figure 4.14C) resulted in  a 

current with altered the IV (Figure 4.14D) characteristics. At very positive voltages, the 

current amplitude decreased (instead of increasing), a phenomenon known as inward 

rectification.  As  expected,  oocytes  injected  with  E65  or  E70  cRNA alone  did  not 

produce  any  different  currents  than  the  endogenously  expressed  by  the  Xenopus 

oocytes (data not shown). 
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Figure  4.14  Functional  characterization  of  E65  and  E70 
expressed  together  with  Eag1  in  Xenopus oocytes.  Currents 
elicited by the depicted voltage protocol (20 mV increments) for 
Eag1 WT (A) and co-injected with E70 (B). In (C) the Eag1 was co-
injected with E65. The corresponding I-V relationships are shown 
in  (D),  for  Eag1  WT (black  traces),  Eag1+E70  (pink  trace)  and 
Eag1+E65 (green trace). 
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As described before, the activation kinetics of Eag1 channels is slowed down by 

negative  pre-pulses  (“Cole-Moore  shift”).  Since  this  is  characteristical  for  Eag1 

channels we decided to verify whether or not the activation kinetics was changed in co-

injected oocytes. The results are exemplified in  Figure 4.15. No substantial difference 

was observed in the voltage shift when any of the splice variants were co-injected with 

Eag1 WT.

Figure 4.15 Activation kinetics of Eag1 co-injected with E65 and 
E70 in Xenopus oocytes. The depicted voltage protocol represents 
that  the  cells  were  clamped  for  500  ms  to  different  negatives 
holding  voltages  (-120  mV until  -70  mV)  and  then  depolarized 
(+40mV) to activate K+ channels. In (A) is the control Eag WT, (B) 
Eag+E65 and (C) Eag+E70. (D) from the currents traces show in 
(A), (B) and (C) the time to reach 80% of maximal current was 
obtained and plotted vs. the holding voltage.
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To determine the specificity of the interaction between E65 and Eag1 we used 

another ion channel, Kv1.4, as a control. This is a voltage-gated potassium channel, 

which also presents N- and C-terminus in the intracellular side of the cell. Figure 4.16A 

shows the control current elicited by wild types Kv1.4 channels,  and 4.16B when co-

injected  with  E65. We  observed  that  no  discernible  effect  was  produced  by  co-

injections of E65 with Kv1.4: the I-V curves superimposed (Figure 4.16C).

Figure 4.16 Interaction with E65 is specific for Eag1 channels. 
Currents  elicited  by  the  depicted  voltage  protocol  (20  mV 
increments) of Fig.  3.14.  (A) and (B) represent,  respectively,  the 
currents  for  Kv1.4 WT and or  Kv1.4  co-injected  with  E65.  The 
corresponding I-V relationship are shown in (C), where (*) is for 
Kv1.4 WT and (□) for Kv1.4+E65.
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4.2.4 Maturation induced by E65 in Xenopus leavis oocytes

In  Xenopus laevis, immature oocytes are arrested in the late G2 phase of the 

first  meiotic  division until  progesterone released from the surrounding follicle cells 

triggers  completion  of  meiosis  I  and progression  to  meiosis  II.  The  mature  oocyte 

remains  arrested  in  metaphase  II  until  fertilization.  Within  minutes  of  progesterone 

exposure, a decrease occurs in the level of cyclic AMP (cAMP), which is believed to 

attenuate the  activity of  cAMP-dependent  protein kinase.  This  presumably leads  to 

diminished phosphorylation of an unidentified protein or proteins inhibitory to meiotic 

maturation  (Smith,  1989).  The  events  of  maturation,  including  germinal  vesicle 

breakdown  (GVBD),  chromosome  condensation,  and  formation  of  the  metaphase 

spindles during both meiosis I and II, occur upon activation of mitosis-promoting factor 

(MPF), a complex consisting of p34cdc2 and cyclin B2 (Solomon, 1993). Once Cdc-2-

cyclin B is activated, it targets multiple substrates for phosphorylation which in turn 

trigger the mitotic events of nuclear envelope breakdown, chromosome condensation, 

and spindle assembly (Philpott and Yew, 2008; Brüggemann et al., 1997).

Previous  data  from  our  group  (Brüggemann,  Stühmer  and  Pardo,  1997) 

described that the process of Xenopus oocytes maturation leads to a reduction of rEag1 

current amplitude.  They reproduced this  behavior by injection of mitosis-promoting 

factor  (a  complex  of  cyclin  B and p34cdc2),  the  main  molecule  responsible  for  the 

maturation in oocytes. 

We observed here that the currents identified when we co-injected Eag1 plus 

E65  splice  variant  are  very similar  to  those  elicited  when  the  oocytes  are  mature 

(Figure 4.17). At the moment of the injection the oocytes were immature, and they 

were kept in a solution containing theophillin, a maturation inhibitor which helps to 
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maintain high cAMP levels.  Based on these results  we hypothesized that the splice 

variant can be inducing maturation of the oocytes.

To verify the maturation process in oocytes, after the injection of Eag WT and 

Eag+E65, a progesterone induced-maturation (as a progesterone pulse of 5µg/ml) was 

performed and then  the  currents  were  measured.  The oocytes  were  in  presence  of 

progesterone for 5 min and then they were placed in NFR without progesterone for at 

least 2 hours before electrophysiology measurements. 

Figure  4.18 shows  in  (A)  the  behavior  of  the  Eag1  WT current  after  the 

progesterone  treatment  and  (B)  when  the  oocytes  were  co-injected  with  E65.  We 

observed that  in  both of  them the IV linearity is  lost  and rectification sets  in  (C), 

indicating that behavior of the current in both situations are similar. 

70



Figure 4.17 Comparison between Eag1 WT vs Eag1+E65 in non 
mature and mature Xenopus oocytes. In (A) currents registered in 
non mature oocytes injected with Eag WT (○) or Eag+E65 (●) is 
represented.  (B)  shows  the  result  published  by  Brüggemann, 
Stühmer and Pardo (1997) showing the rEag WT currents before (○) 
and after maturation (●). 
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Figure  4.18  Maturation  induced  by  progesterone  in  injected 
Xenopus oocytes. (A) represents currents registered in oocytes injected 
only with Eag WT and matured by a progesterone pulse (5 min). (B) 
shows currents elicited by co-injection of Eag+E65. (C) shows Eag WT 
I-V relations from non-mature oocytes (○), Eag WT in mature oocytes 
(□) and Eag+E65 (●).
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To  test  our  hypothesis  that E65  is  inducing  maturation  in  oocytes,  we 

performed the  classical  germinal  vesicle  breakdown (GVBD)  maturation  test.  The 

GVBD happens when the nuclear maturation is reinitiated. The germinal vesicle forms 

when the nucleus swells and enlarges to produce a watery nucleus. It is thought that the 

unique  structure  and  composition  of  the  germinal  vesicle  may protect  the  genetic 

material.  When  the  membrane  of  the  germinal  vesicle  disintegrates,  the  swollen 

nucleus is easily recognized, appearing to “break down”.  

We injected immature oocytes with our splice variant E65, and after 48 h an 

extract of these oocytes was obtained. The extract was treated with RNase to eliminate 

the  pre-injected  cRNA.  This  extract  was  then  injected  into  fresh  oocytes  kept  in 

NFR+theophilin. After 2 h the oocytes showed the classical GVBD signs, indicating 

that the cell cycle had continued (Figure 4.19).

Table 3 shows the number of oocytes injected with E65 that exhibited GVBD.

Table 3 – Number of oocytes that exhibited GVBD.
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Figure 4.19 Maturation induced by E65 in Xenopus oocytes. (A) 
Oocytes  injected  with  the  extract  from previous  oocytes  injected 
with E65. The white spots on top of the animal pole are the GVBD; 
(B) oocytes injected with extract from uninjected oocytes.

The activation of the cell cycle requires many enzymes and several events of 

intracellular  signalization.  To  try  to  understand  how  the  E65-induced  maturation 

happens we decided to test whether cyclin B2 was active (Figure 4.20). We observed 

that the cyclin  B2 level in oocytes  that did not receive the progesterone pulse (A) 

showed very low basal levels in both injected and control oocytes. When the oocytes 

received a pre-pulsed with progesterone (B), then we observed a increase in cyclin B2, 

independently of the cRNA injected.
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These results indicate that the maturation induced by E65 in oocytes happens 

independently of cyclin B2.

Figure  4.20  E65-induced  maturation  in  Xenopus oocytes  is 
cyclin B2 independent. Western-blot using extract from15 oocytes. 
Immunoprecipitation and detection was done using a monoclonal 
cyclin  B2  antibody.  (A)  Non-mature  oocytes  injected  with  the 
cRNA combinations  or  not  injected,  and  (B)  Oocytes  after  the 
progesterone pulse. 
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4.2.5 Northern-Blot analysis of the variant mRNA

To estimate the relative size of  the mRNA encoding for E65 we performed 

Northern-blot  analysis  using  an  exon probe.  Figure  4.21 shows the  annealing  of  a 

specific  probe  for  the  C-terminus  of  the  Eag1 channel  corresponding  to  the  10-11 

exons.  Using  this  probe  we  expect  to  observe  the  full  length  Eag1  band  and  the 

alternative spliced variant, which shares the same C-terminus.

We did not detect the full length the hEag1 band in the melanoma cell lines 

IPC298 and IGR39, and neither in human brain positive control, although a band had 

previously been detected using a different probe (Occhiodoro et al., 1998). The mRNA 

is however detected by PCR. That appears to be a common problem (Asano et  al., 

2004) attributable to low mRNA abundance.

In the HEK293-Eag1 plus E65 transfected cells, the expected presence of two 

bands, ~ 4kb, and ~ 2.5kb was detected. The IGR39 cell line also showed two bands, 

one  stronger  (~  4kb),  and  the  other  weaker  (~  2kb),  which  were  also  detected  in 

IPC298  cells,  and  still  we  could  detect  a  smaller  (~  1.5kb)  in  IPC298  cells. 

Untransfected  HEK  cells  were  used  as  a  negative  control  for  unspecific  binding. 

HEK293-Eag1 we detect also two bands, ~ 4kb and the smaller ~ 2kb.
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Figure 4.21 Northern blot analysis of variant mRNA expression 
in human cells. 10 µg of mRNA from the cell lines indicated were 
separated in a 2% formaldehyde agarose gel, transferred to Hybond 
N membranes and hybridized overnight to a 700 bp DNA probe for 
the C-terminus of Eag1 channel (32P-C-terminus). The contrast  is 
different in lines referent to IPC298 because the signal was very 
week.
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4.3 Subcellular localization of E65 splice variant

In order to clarify whether the obvious lack of transmembrane domains at E65 

would render a soluble protein, we fused the C-terminus of E65 with the fluorescent 

protein Venus. The resulting cDNA was expressed in HEK-293 cells and analyzed by 

confocal laser scanning fluorescence microscopy as described in methods. E65-venus 

constructs resulted in a diffuse expression pattern in the whole cytoplasm, with the 

nuclear region empty (Figure 4.22).  
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Figure  4.22  Subcellular  localization  of  HEK293-Eag1 
transfected  with  E65-venus. In  these  confocal  microscopic 
pictures the E65Venus in green and the nucleus in blue (ToPro) can 
be  seen.  (A)  shows the  cytoplasmic  localization  of  E65  and  we 
confirm this in a different view of the nucleus in (B) and (C). (D) 
shows a stack performed in the confocal microscopy and confirms 
the cytoplasmic dispersion of the E65 splice variant. 
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4.4 Other Experiments

4.4.1 Expression of E65 in Neural Stem Cells

Neural  stem  cells  (NSC)  are  self-renewing  cells  with  the  capacity  to 

differentiate into neurons, astrocytes and oligodendrocytes. Adult NSC’s are extremely 

rare and are believed to reside only in discrete regions of the hippocampus and the 

subventricular zone. Due to their therapeutic potential, considerable attention has been 

focused  on  identifying  the  sources  of  stem  cells,  the  signals  that  regulate  their 

proliferation and the specification of neural stem cells towards more differentiated cell 

lineages  (Gage,  2000).  These cells  are  often  identified based upon the presence  of 

molecular markers that are correlated with the stem and/or progenitor state along with 

the absence of differentiated phenotypes as assessed through marker analyses (Palmer 

et al., 1997).

Experiments using rat NSC (rNSC) revealed that they show a diffuse staining 

for a monoclonal antibody (mAb 62) against the pore region of the Eag1 potassium 

channel, as observed in  Figure 4.23. In contrast, we did not detect expression of the 

channel using RT-PCR (Data not shown). A different antibody against the pore region 

(mAb 49) shows also staining in these NSC in flow cytometry (A. Barrantes-Freer, 

unpublished data). 

We performed a nested PCR using the same primers as for the melanoma cells. 

Figure 4.24 shows that in the positive control, HEK293-Eag1, a band of the expected 

length can be seen. In RNA from IGR39 cells, we detected a band corresponding to 
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both the full length and the shorter splice variant E65. However, NSC showed only the 

shorter variant. 

 

Figure  4.23  Confocal 
microscopy  of  Eag1  in 
rNSCs. The  picture  show 
the staining for Eag1 using 
an antibody against the pore 
region  of  the  channel  (A) 
the  staining  for  nucleus 
using  ToPro  (B)  and  the 
merge image (C).
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Figure 4.24 rNSCs splice variant detection by Nested-PCR. A 
1.5%  agarose  gel  with  Nested  PCR  products  obtained  with  the 
specific primers for Eag1. Lane 1: 100 bp markers. Lane 2, 3, 4 and  
5:  cDNA’s  for  rNSC’s,  IGR39,  HEK293-Eag1  and  H2O, 
respectively.

Sequence analyses showed that the band amplified by rNSC’s have the same 

spliced regions that the splice variant found in IGR39 melanoma cell line, the exons 4 - 

9 are missing in the sequence (Data not shown).
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4.4.2 Identification of low-abundance alternatively spliced mRNA

Alternative splicing of mRNA precursors generates multiple transcripts from a 

single primary transcript. Identification and verification of splice variants and cloning 

of  the  corresponding  isoforms  is  crucial  for  analyzing  gene  expression  and 

understanding the related functions.  Wang and coworkers (2008) showed that  for a 

specific gene, the abundance of the transcripts produced can vary significantly and is 

subject to various regulations. It could be difficult to detect low-level splicing variants 

when others are  present  in  high abundance.  The authors describe a method for the 

amplification  of  low-abundance  mRNA splice  variants  for  such  situations,  which 

introduces a hydrolysis step prior to the conventional RT-PCR. After the transcripts are 

reverse transcribed into cDNA, the high abundance cDNA transcript is suppressed from 

amplification by cleavage at the chosen exon to enhance the amplification of the low-

abundance transcripts that do not have the target exon and are normally undetectable.

 As first strategy we digested exons that were present only in the Eag1 full 

length, and also, exons that were present in both known splice variants.  Figure 4.25 

shows the amplified transcripts after cleavage of different exons in the Eag1 sequence. 

We observed that when the exon 6a was digested (Fig. 4.25A), an exon that is present 

only in the Eag1 full length, a 1 kb band, a 500 bp and a 650 bp was produced in all  

tested cells. The transfected HEK293-Eag1 still shows amplification of full-length after 

the digestion because the transfected cells express a massive amount of Eag1 message. 

When the digested exon was the exon 7 (Fig. 4.25B) that is present only in the full 

length, the same bands, as in the exon 6 digestion, were amplified. Interestingly, when 

the digested exons were present in both known splice variants, the full length and the 
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E65 and E70, like exon 10 (Fig. 4.25C) and exon 11 (Fig. 4.25D), we observed that for 

IPC298, IGR39 and HEK293-Eag1 the results were the same, but when we look at the 

NSC’s we can detect a 2 kb band corresponding to the Eag1 full length that was not 

amplified before.

Figure  4.25  Identification  of  Eag1  gene  transcripts  that  are 
expressed differentially  in melanoma cells  and NSC via  exon 
exclusive RT-PCR.  Cleavage of exon 6 (A), exon 7 (B), exon 10 
(C)  or  exon  11  (D)  from  these  cells  using  restriction  enzymes 
detected two more bands by the conventional RT-PCR.

84



5 Discussion

5.1 Eag1 in Melanoma Cells

The rapid rise  in  melanoma incidence and the high  lethality because of  the 

highly metastatic rate has motivated efforts to define the genetic and environmental 

factors  driving  melanoma  genesis  and  progression  (Kabbarah  and  Chin,  2005). 

Melanoma  responds  poorly  to  chemotherapy  and  radiotherapy;  several  alternative 

methods  of  treatment  have  been  investigated,  including  hormone  therapy  (Rizk  & 

Ryan,  1994),  immunotherapy (Evans& Manson,  1994)  and  therapy directed  to  ion 

channels. 

The plasma membrane in melanocytes and melanoma cells possesses a variety 

of ion channels, which are thought to be involved in the proliferation, differentiation, 

and malignant alteration of cells and thus may contribute to tumor development (Allen 

et  al.,  1997;  Wonderlin  & Strobl,  1996).  Among these ion channels is  the Eag1,  a 

known potassium channels with high oncogenic potential (Pardo et al., 1999). Here we 

show that these two melanoma cell lines investigated, IPC298 and IGR39 express Eag1 

potassium channel, and that this channel contributes to the proliferation of these cell 

lines (Figure 1.6).
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In  contrast  to  previous  reports  (Gavrilova-Ruch  et  al.,  2002;  Meyer  and 

Heinemann, 1999), we detect the presence of Eag1 at the RNA (Figure 4.1) and protein 

level  in  IGR39  cells  (Figure  4.2)  and  also  a  functionality  of  the  channel  in  the 

melanoma cell line IGR39 that was effectively blocked by a specific siRNA (Figure 

4.9).

The  current  expressed  in  IGR39 cells  is  not  sensitive  to  prepulse  potential 

(Figure 4.4), causing the characteristic shift  present in Eag1 currents. This cell  line 

expresses  an  Eag1  ion  channel  with  altered  properties  (Figure  4.3)  or  a  non-Eag1 

channel that is completely dependent of mRNA for Eag1, since when we used siRNA 

specific against Eag1, the current present in IGR39 cells was abolished (Figure 4.9). 

Based on the results obtained, we believe that this cell line expresses Eag1 channels, 

but  somehow with different kinetics.  There is  evidence for many ion channels that 

interaction with accessory proteins alter their kinetics. Along this line, it is conceivable 

that Eag1 interacts with different partners in IGR39 and IPC298 melanoma cell lines, 

either  because  Eag1  itself  is  different  in  both  cell  lines,  or  because  the  accessory 

subunits expressed are not the same in both lines.

The activation mechanism of opening the ion channel is regulated by the S4 

transmembrane segment, which is the voltage sensor. When the membrane depolarizes, 

the positive charges in S4, and the negative charges in S2 and S3 move with respect to 

each other.  The S4 regions apparently move like paddles (Jiang et al. 2003), and this 

leads to opening of the channel gate, located at the intracellular side of the pore (Wray, 

2004). Thus, a new intracellular interaction with this segment of the channel could be 

responsible for a modified conformational change of the channel, leading to a different 

sensitivity to voltage changes across the membrane. 
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Lörinczi and colleagues (2008) show that the voltage control of the channels is 

dependent on all transmembrane domains, at least, together with S4, S5 and S6. The 

authors reported that chimeras mutated in the domains S5 and S6 open at potentials 

more negative compared to the Eag WT. We have to pay attention to these domains in 

the channel, and also with the loop between then because it could be an interesting 

interaction site for intracellular proteins that could be interfering with the biophysical 

properties of the channel.

5.2 Melanomas and Splice Variants

Alternative splicing is the process whereby identical pre-mRNA molecules are 

spliced in different ways, and this is important in normal development as a means of 

creating  protein  diversity  in  complex  organisms  (Black,  2003;  Maniatis  and Tasic, 

2002).  Many  alternative  splicing  events  have  been  noted  in  human  development, 

especially in the brain (Grabowski and Black, 2001; Venables, 2002).

Aberrant  splicing  has  been  found  to  be  associated  with  various  diseases, 

including cancer. Mutations in splicing sites regulatory elements within the nucleotide 

sequence and alterations in  the cellular-splicing-regulatory machinery both result  in 

changes in  the splicing pattern of many cancer-related genes (Pajares et  al.,  2007).

In the melanoma cells studied we have found two new splice variants, called 

E65 and E70 (Figures 4.10 and 4.11). These splice variants have no transmembrane 

domains, so they can not form functional ion channels. Lewis and colleagues (2009) 

show that a spliced form of the TRIP8b protein, which is a hyperpolarization-activated 

cyclic nucleotide-gated (HCN) channel (h channel) interaction protein, participates in 
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the regulation of the h channel, as well in trafficking as in function. Since the splice 

variants found here are not expected to form a functioning ion channel on their own, it 

is likely that they play a role in intracellular signaling.

The splice variants were detected by RT-PCR (Figure 4.10) and we could also 

detect mRNA signals at levels compatible with the variant in IGR39 and IPC298 cells 

(Figure 4.21). We observed that transfected HEK293-Eag1 cells also express a shorter 

splice variant indicating that the alternative splice process can happen in transfected 

systems. This is not unique, Sun and colleagues (2009) reported that a splice variant 

was found in COS cells transfected with a full length Eag1 cDNA. 

Based on the results obtained from PCR performed with the cDNA digested 

regions (Figure 4.25) we conclude that the E65 splice variant is expressed in IGR39 

cells, and also in IPC298 melanoma cells as well as NSC and HEK293-Eag1 cells. We 

detect bands with other sizes, which could be responsible for other spliced transcripts. 

The signal observed by antibody staining of the NSC could be explained by antibody 

binding to the low-abundant full-length Eag1.

Table 4 – Bands identified via exon exclusive PCR.
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Upon co-expression of splice variants with full-length Eag1, E70 did not alter 

the features of the Eag1 current, but E65 induced specific effects (Figure 4.13). When 

we co-injected E65 and full-length Eag1 we observed a significant inward rectification 

(Figure 4.17).

It is still unclear which is the real role of E70, whether it exists at all, and how 

E65 interacts in a different expression system, like mammalian cells. There are several 

questions that remain unanswered on this topic. However, this work opens a new line 

of study for Eag1 channels.

5.3 Xenopus oocytes maturation induced by E65

Xenopus  oocytes  are  arrested  in  meiotic  I  phase.  Progesterone  induces  the 

resumption of meiotic maturation, which requires protein synthesis to bring about Cdc2 

activation. The synthesis of cyclin B and c-Mos, a kinase that activates the mitogen-

activated  protein  kinase  pathway  in  oocytes,  is  clearly  upregulated  in  response  to 

progesterone (Haccard and Jessus, 2005). These two messengers are the responsible 

factors for MPF activation and cell cycle progression in Xenopus oocytes.

As described by Brüggemann, Stühmer and Pardo (1997), the Eag1 channels are 

regulated during cell cycle. When Eag1 channels are expressed in mature oocytes, the 

current is strongly inhibited and has a remarkable rectification. When we co-injected 

E65 together with Eag1 channels in immature oocytes, we observed the same effect 

reported by these authors before the current decreases and becomes rectifying (Figure 

4.14). This work gives a molecular explanation of the results obtained by Brüggemann, 

Stühmer and Pardo in 1997.
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E65 could be changing the intracellular ionic concentration, and increasing the 

Na+2 levels (Pardo et al., 1998). To address this, we tested oocytes during maturation, 

doing the classical GVBD test, and we observed that injection of previous extract from 

oocytes  injected  with  E65  can  cause  maturation  in  fresh  oocytes  (Figure  4.19), 

indicating that there are active kinases, or the same product that is capable to activate 

the MPF complex causing the GVBD in the non mature oocyte. We conclude that the 

MPF complex needs to be active, that E65 does not induce an alteration of intracellular 

Na+, because the simple alteration of Na+ alone is not responsible for the sensibility of 

the  channel.  The channel  became sensible  to  the  increased Na+ concentration  by a 

MPF-mediated activation process. 

Investigating this process, Camacho et al (2000) found similar results that can 

complete the puzzle. They show that cell-cycle-related changes in the behavior of Eag1 

currents are most likely due to microtubular reorganization, since they are restricted to 

the M phase of the cycle, and can be reproduced by disruption of the microtubules.  

E65  induces  maturation  in  oocytes.  Once  E65  induces  MPF  the  cell-cycle 

progression occurs. The MPF and the cell cycle progression modify the reorganization 

of the microtubules, which leads to a reorganization of the cytoskeletal interactions. 

This would also affect interactions with ion channels, which in turn can be responsible 

for  alteration  in  their  currents-conduction  properties.  How  E65  is  causing  MPF-

activation remains unclear. We know that it is a cyclin B2 independent pathway (Figure 

4.20) and also that it is independent of a decrease in cAMP, since the oocytes were kept 

in a solution containing theophillin, a substance that helps to maintain high levels of 

cAMP.

The  observed  correlation  between  cell  cycle  progression  and  cytoskeletal 
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interactions is very interesting. However, in a different system, such as in a mammalian 

cell,  the function of E65 could be different.  Since E65 could not induce cell  cycle 

progression,  could  this  protein  interact  in  a  different  way  with  the  Eag1  channel 

causing a different phenotype? 

The oocyte was used as a viable heterologous expression system because we 

know that once we inject cRNA there is no possibility for the oocyte to reprocess the 

RNA, and therefore we are confident that what is expressed corresponds to what was 

injected. The same can not be assumed for a cell line, because when we transfected 

with cDNA, it was reprocessed, as shown in Fig. 4.25. Therefore, a new splice variant 

can be generate by transfection something that we actually wanted to exclude.
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