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Abstract

Background: Certain types of potassium channels (known as Eagl, KCNHI, KvI0.l) are
associated with the production of tumours in patients and in animals. We have now studied the
expression pattern of the Eagl channel in a large range of normal and tumour tissues from different
collections utilising molecular biological and immunohistochemical techniques.

Results: The use of reverse transcription real-time PCR and specifically generated monoclonal
anti-Eagl antibodies showed that expression of the channel is normally limited to specific areas of
the brain and to restricted cell populations throughout the body. Tumour samples, however,
showed a significant overexpression of the channel with high frequency (up to 80% depending on
the tissue source) regardless of the detection method (staining with either one of the antibodies,
or detection of Eagl RNA).

Conclusion: Inhibition of Eagl expression in tumour cell lines reduced cell proliferation. Eagl may
therefore represent a promising target for the tailored treatment of human tumours. Furthermore,
as normal cells expressing Eagl are either protected by the blood-brain barrier or represent the
terminal stage of normal differentiation, Eagl based therapies could produce only minor side
effects.

Background tumour biology has aroused interest with the identifica-
Ion channels play key roles in cellular functions other  tion of ion channels as potential novel targets for tumour
than electrical signal transmission [1]. In recent years, the  therapy [2-5]. The first identified voltage-gated potassium
importance of voltage-gated potassium channels in
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channel implicated in oncogenesis and tumour progres-
sion was Eagl [6].

Eagl was first described as a cell-cycle regulated channel
[7-9] relevant in the process of myoblast fusion [10,11],
although the RNA is detected only in brain and placenta
by Northern blot on human specimens [11], indicating
that the channel is not expressed in differentiated periph-
eral tissues. In recent years, we have explored the role of
Eagl in the control of cell proliferation and found that it
shows both transforming properties in vitro (i.e. it confers
loss of contact inhibition and increased growth rate) and
increases the speed of growth and the invasiveness of
tumours implanted into SCID mice in vivo [6]. To date,
Eagl is the only potassium channel that has been shown
to affect tumour progression in animal models. Eagl pro-
tein expression has been detected in several cell lines
derived from human malignant tumours, such as neurob-
lastoma [6,12], melanoma [13], and breast [6,14], and
cervical carcinoma [6]. In these cell lines, Eagl enhances
the proliferation of the cells, and is required for the main-
tenance of growth. Moreover, specific inhibition of Eagl
expression by antisense technology [6], siRNA [15] or by
non-specific blockers [14,16,17] leads to a reduction of
tumour cell proliferation in wvitro. Recently, functional
expression of Eagl has been described in clinical samples
of cervical carcinoma, while the channel was absent in
control samples devoid of pathological findings [18], and
aberrant expression of the channel has also been detected
in sarcomas [17], while the surrounding tissues were
devoid of Eagl expression.

For several reasons Eagl represents an interesting target for
tumour therapy. This membrane protein is accessible
from the extracellular side and is predominantly present
in tumour cells. For any potential clinical application it is
an essential pre-requisite that samples from human
tumours (and not only cell lines) overexpress the target
Eagl. For this reason, we performed immunohistochemi-
cal and real-time PCR experiments to determine the
expression patterns of Eagl within normal and neoplastic
tissues in detail. We found very low expression levels in
normal human tissues and an unusually high prevalence
of Eagl overexpression in various types of human malig-
nant tumours.

Results

Eagl.62.mAb selectively detects Eagl expression
Eagl.62.mAb was selected for immunohistochemistry
based on its ability to bind Eagl fusion protein and not
Eag2 as determined by ELISA and Biacore analysis. The
specificity of this antibody was then further tested in a
number of other ways as outlined below.

http://www.molecular-cancer.com/content/5/1/41

The epitope recognised by the antibody is fully conserved
between human, rat and mouse channels, and we took
advantage of this situation to save valuable human mate-
rial. Unfortunately, a positive signal in a western blot
analysis required up to 100 ug total protein from a rat
brain membrane preparation (Fig. 1a). Although no addi-
tional bands appeared in the blot and the specificity of the
antibody appeared conclusive, we were unable to detect a
signal on extracts from CHO cells expressing the human
channel, probably due to the difficulty of obtaining large
amounts of membrane proteins from cultured cells.

The selection criteria used for our antibodies make it very
unlikely that another potassium channel would be recog-
nised. All of our clones are able to discriminate between
Eagl and Eag2 (see Methods), Eag2 being the most similar
potassium channel to Eagl described so far (73% identi-
cal [19-21]). Indeed, of the nine amino acid residues that
form the epitope recognised by Eagl.62.mAb, three are
different in Eag2. Immunofluorescence experiments per-
formed on cells transfected with either Eagl or Eag2 con-
firmed that Eagl.62.mAb discriminates between the two
(Figure 1b). We performed immunofluorescence studies
on CHO cells transiently transfected with Eagl in the
pTracerCMV vector, which also expresses GFP. In these
experiments, the immunohistochemical localization of
Eagl was achieved using a red-fluorescent secondary anti-
body (Alexa 546). Red fluorescence was restricted to cells
also showing the green fluorescence of GFP, indicating
that the Eagl.62.mAb antibody labelled only cells
expressing Eagl (not shown).

We then performed transient transfections with another
protein chimera containing the entire Eagl channel with
the enhanced GFP fused to its N-terminus (EGFP-hEag1).
The characterization of this chimera showed that the elec-
trophysiological properties of Eagl are preserved (data
not shown). When these cells were immunostained with
Eagl.62.mAb, red fluorescence co-localised with the green
fluorescence of the EGFP-channel fusion protein (Figure
1¢). Thus, the antibody bound only to cells that had been
transfected with Eagl and only to areas where the channel
was localised. Indistinguishable staining patterns were
obtained when using the monoclonal antibody against a
different epitope in the C-terminus of Eagl
(Eagl.33.mAD, data not shown). Although Eagl is an
integral membrane protein (as unequivocally demon-
strated by electrophysiological measurements
[6,10,12,13,18,22-24,24]), we observed a strong intracel-
lular staining that masked the cell membrane signal that
was as such evident only in some cells. This result, how-
ever, is a common finding for membrane proteins and
may reflect newly synthesised channels that are being
transported to the membrane (e.g., [26]).
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Characterization of the Eagl antibodies. a. Western blot analysis of Eagl-expressing membrane preparations with anti-
Eagl.62.mAb. A single protein is detected only when using large amounts of brain extract protein. b. Eagl.62.mAb stained
CHO cells transfected with Eagl (left) while cells transfected with Eag2 (right) show only faint background, indicating that
Eagl.62.mAb does not recognise Eag2. c. CHO cells transiently expressing a chimera between EGFP and hEagl. Chimeras

were stained with Eagl.62.mAb. The green fluorescence due to the presence of the chimera (upper left panel, marked EGFP)
matches the staining pattern of the antibody (upper right panel, marked Eagl.62.mAb), as seen as yellow colour in the merged
pseudo-colour image (lower panel, marked Overlay) Scale Bar: 20 um. d-g. Light micrographs showing the immunohistochemi-
cal reaction for the monoclonal antibodies in rat hippocampus (d, Eagl.62.mAb; e, Eagl.33.mAb) and cerebellum (f,
Eagl.62.mAb; g, Eagl.33.mAb), with (right column) and without (left column) pre-adsorption of the antibody to the corre-
sponding fusion protein. The staining patterns are identical for both antibodies and are fully blocked by incubation with the cor-

responding epitopes, indicating that both antibodies specifically recognise the same molecular entity. Scale Bar: 50 um.

Our antibodies show cross-reactivity to rat Eagl (99%
identical to the human channel). We used this property to
further characterise the specificity of the antibody, since
the expression of Eagl in rat brain has already been
described [20,27,28]. We obtained staining patterns that
overlapped precisely with those described for rat Eagl in
both the hippocampus (Fig. 1d,e) and cerebellum (Fig.
1f,g). Pre-incubation of the antibody with the fusion pro-
tein used to immunise the mice completely abolished
staining (Figure 1d.f, right panels). Additionally, immu-
nostaining with a different antibody (Eagl.33mAb),
directed against the C-terminus of the channel, gave iden-
tical staining patterns that could also be blocked by the
corresponding antigen (Figure 1e,g).

Taken together, these results strongly suggest that
Eag1.62.mAb specifically recognises the Eagl protein.

Eagl expression level is low in normal non-neural tissues

In previous studies [6,11], dot blot, Northern blot and RT-
PCR analyses all indicated that Eagl is preferentially
expressed in human brain. To confirm this finding and
allow a more quantitative comparison, we performed
real-time PCR on commercially available RNA extracted
from several normal human tissues (Fig. 2). After normal-
ising the RNA quality and tissue activity with respect to
the transferrin receptor mRNA, our results confirmed the
reported specific expression pattern of Eagl. The normal-
ised levels of Eagl expression obtained (brain = 1, see
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Figure 2

Expression of Eagl RNA in peripheral tissues is restricted. Real-time PCR records on cDNA from different human
RNAs. The average fluorescence obtained in three experiments (z standard error) is plotted against cycle number. The dotted
line indicates the threshold values used to determine positive signals. A clear signal can be detected after 21 cycles only in brain
(red diamonds), while testis (dark green circles) and adrenal glands (light green triangles) required several more cycles of ampli-
fication for the signal to reach threshold. The rest of the tissues were negative. The Inset shows the control amplification
obtained simultaneously on the same samples using the human transferrin receptor (TFR) as a template to demonstrate RNA
integrity.

Materials and Methods) were: skeletal muscle 0.005, thy-  Total RNA from whole organs may be limited by the
mus 0.04, kidney 0.019, heart 0.003, spleen 0.0, trachea  potential dilution of a specific mRNA from a discrete cell
0.046, mammary gland 0.028, adrenal gland 0.114, testis ~ population. Thus, it is possible that the RNA under study
0.124 and liver 0.0. may not be detectable in a particular tissue despite being
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highly expressed in a limited subpopulation of cells. To
overcome this problem, histological techniques need to
be applied.

To determine the cellular distribution of the Eagl potas-
sium channel we analyzed biopsy specimens by immuno-
histochemistry using the FEagl.62.mAb. In good
agreement with the results obtained by RT-PCR, the over-
all staining was absent or faint in all organs tested. A closer
examination revealed that restricted cell populations with
clear Eagl reactivity do exist as described below and some
examples are shown in Fig. 3. In the gastrointestinal tract,
gastric gland chief cells and pancreatic acini were the only
populations showing positive signals. In the male repro-

Figure 3

Some normal tissues show Eagl staining in restricted
populations. In the female reproductive system, the follicu-
lar epithelia (a) do not show Eagl-staining. The surface and
gland epithelia of the resting endometrium are also negative
(b). However, in proliferating and secretory activated glands,
a strong Eagl-expression can be observed (b. Inset). In the
healthy mammary gland (c), Eagl signals are limited to lumi-
nal cells in the acini and ducts of the ductulo-lobular unit,
while the basal cell layer is negative (arrow). In the testis (d),
interstitial cells and spermatogonia within the ducti seminiferi
show a weak to intermediate Eagl expression. (e) The gas-
tric corpus mucosa express little or no Eagl (white arrow)
except in chief cells (black arrow) where very strong signals
are observed. In colon (f), the normal mucosa is negative,
while mucosa-associated lymphocytes stain positive.

http://www.molecular-cancer.com/content/5/1/41

ductive system, the spermatogenic cells were positive, in
agreement with RNA expression data. In the female repro-
ductive system, epithelial cells in both the endocervix and
endometrium were moderately positive, particularly in
secretory activated endometrial glands. This contrasts
with the surface epithelium, which showed very low sig-
nal intensity. In non-transformed breast tissue we found
variable staining of the ductular-lobular unit, in contrast
to the virtual absence of Eagl reactivity in the epithelium
of the ducts. Since unaltered breast tissue is not biopsied,
the tissue available was always from the vicinity of
tumours or from fibrocystic proliferating changes within
the gland. Bone marrow, spleen, lymph nodes, thymus
and tonsil were all negative. However, we did detect posi-
tive signals in the germinal centres of lymph follicles in
reactive lymph nodes. Interestingly, mast cells and tissular
macrophages were found to stain positively, frequently
with very strong signals. We found this property useful as
a positive control for our stainings, since these cells gave
us an internal estimate of the highest staining level possi-
ble for that particular preparation. Regarding the endo-
crine and autonomous nervous system, the anterior
pituitary and the adrenal gland were stained with a low
intensity both in cortex and medulla, again confirming
the RT-PCR data. All cell subsets positively stained corre-
spond to the terminal developmental stages of the respec-
tive lineages and therefore to a non-proliferating
population.

Eagl is frequently aberrantly expressed in tumour tissues
We quantified the expression of Eagl within several breast
carcinomas using real-time PCR and compared it to
tumour-free tissue from the same biopsy when available
(Figure 4). There was a clear increase in RNA levels of Eagl
in the tumour samples as compared to the paired tumour-
free tissues. The tumour-free samples also showed
increased Eagl expression over commercially available
normal mammary gland RNA. This could be due either to
the different sources of tissue or to elevated Eagl expres-
sion in the vicinity of the tumour beyond the actual
tumour cells.

Immunohistochemical analysis applied to a larger
number of breast carcinomas further completed and con-
firmed the previous RT-PCR results. Seven of eight speci-
mens in our archive were unequivocally positive for Eagl
albeit to varying degrees. We also tested a commercial
multiple tissue array containing samples from 50 breast
cancer cases- all were clearly positive with Eagl being
detectable in a large proportion of the tumour cells. Addi-
tionally, we studied tumour samples from the Manitoba
Breast Tumor Bank, with similar results. In contrast, the
mammary epithelium was negative under both normal
conditions and in the tumour-free areas in all cases. Alto-
gether, Eagl could be detected in 80% of the breast can-
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Eagl RNA is present in mammary tumours. Real-time PCR amplification reveals increased Eagl expression on cDNA
obtained from human mammary gland tumours (red trace, N = | |), as compared with paired RNAs (filled black circles)
from three of the cases (since only those samples were available) and commercially available normal mammary epithelium RNA
(open circles designated comm. gland RNA). Data points represent average fluorescence units from the reporter fluoro-
phore versus PCR cycle number. Error bars represent standard error.

cers investigated in this study (Table 1, Figures 5 and 6).
We also analyzed other common human tumours with
comparable results. The immunohistochemical data on
tumour samples are summarised in Table 1.

We next describe results of some epidemiologically rele-
vant tumours. As previously mentioned, Eagl is only
faintly detectable in normal prostate epithelium. In con-
trast, 54 of the 56 analyzed cases of prostate carcinoma
were strongly positive in our Eagl immunostaining exper-
iments. Similar results were obtained for normal bron-
chus and colon epithelia. Normal colon epithelium was
negative or faintly positive in our experiments, while 6 of
8 colon carcinoma samples stained strongly positive (the

remaining two samples were faintly positive). In the lung,
we could detect some Eagl expression in the sub mucous
glands, while the bronchial epithelium was negative. In
contrast, 9 out of 10 bronchus carcinomas scored highly
positive (see Materials and Methods).

Liver is one of the tissues in which our methods failed to
detect any Eagl expression at the RNA level. It was also
completely negative by immunohistochemistry, although
under pathological conditions such as steatohepatitis we
found immunohistochemical signals in hepatocytes. In
contrast, 10 out of 10 liver carcinomas tested were
strongly positive (Table 1, Figure 5). Together with the
data from several different neoplasms, we found a very
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Table I: Immunohistochemical detection of Eagl in tumours

http://www.molecular-cancer.com/content/5/1/41

Tumour type

Whole antibody

Recombinant PhoA scFv

N
Oesophagus carcinoma 8
Gastric carcinoma 10
Colon carcinoma 8
Hepatocellular carcinoma 10
Gallbladder carcinoma 5
Pancreatic carcinoma 8
Renal cell carcinoma 9
Transitional cell carcinoma 9
Prostate carcinoma 56
Cervical carcinoma 9
Endometrial carcinoma 10
Cystadenocarcinoma of the ovary 10
Breast carcinoma 230
Bronchus carcinoma 10
Thyroid papillary carcinoma 9
Basalioma, spinalioma 10
Malignant melanoma 59
Total 470

Positive N Positive
8 12 8
9 14 6
6 40 31
10 8 5
4 | |
6 | |
9 9 6
8 6 4
55 | |
7 -
10 -
10 -
196 116 95
9 73 41
9 3 2
| -
22 | |
378 (80%) 286 202 (71%)

high frequency of abundant Eagl immunoreactivity, over
90% in average. In all cases, the corresponding normal tis-
sue from which the tumour originated was negative.
Where tested, normal organs were also found to be nega-
tive for Eagl using RT-PCR.

While performing the experiments described above, we
noticed that several factors strongly influence Eagl stain-
ing. The procedure used for tissue preservation is very crit-
ical, as it can lead to both loss of the antigen and to non-
specific staining. We also noticed that the particular mon-
oclonal antibody used loses activity with time, and can
also give rise to unspecific staining. For this reason, we
decided to generate a recombinant antibody with the
same specificity.

Single chain antibodies can be produced from antibody
molecules by joining the C-terminus of the heavy chain
variable region to the N-terminus of the light chain varia-
ble region by a polypeptide spacer [29,30]. Such con-
structs usually have binding affinities similar to those of
the native antibodies [31], and can also be produced in
prokaryotic expression systems [32]. Furthermore the sin-
gle chain antibody proteins can be fused to alkaline phos-
phatase to allow their detection by a simple and robust
enzymatic colour reaction [33]. This reduces the potential
for non-specific staining by eliminating the secondary
antibody and the production of the single chain antibody
in E. coli provides a more homogeneous source of mate-

rial. The single chain fusion antibody was applied to brain
slices and yielded staining patterns indistinguishable
from those obtained with the whole antibody.

We subsequently used this recombinant antibody for the
detection of Eagl in multiple tissue arrays from different
sources (see Methods), as well as tumour and normal tis-
sues from our own collection. The results obtained using
this recombinant antibody are summarised in Table 1 and
Figure 6, and agree with those obtained with the conven-
tional antibody. The normal tissues from our collection
showed the same staining pattern when either of the two
antibodies was used. In contrast, tumour samples from
multiple tissue arrays stained with the single chain anti-
body produced a general decrease in the frequency of pos-
itive signals. This effect may be attributed to the lack of an
amplification step when using the single chain antibody.

We detected a higher frequency of positive signals using
the single chain antibody in normal tissues from multiple
tissue arrays than in tissues from our archive. In contrast,
the frequencies observed in tumour tissue arrays from the
same commercial source were similar to the results from
our archive. An explanation for this discrepancy may be
the different treatment of the tissue arrays. Tumour tissue
is generally obtained from biopsies and surgical speci-
mens (and therefore undergo similar handling to the tis-
sues from our archive), while normal tissue in the arrays
frequently stems from necropsy material and therefore it
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Representative images of neoplastic tissue: Immu-
noperoxidase stainings using Eagl.62mAb as primary
antibody. Examples of high expression levels of Eagl in
mammary carcinoma (a), prostate carcinoma (b), hepatocel-
lular carcinomas (c) colon carcinoma (d) or squamous cell
lung carcinoma (e) (Hematoxylin counterstain, X400).
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is treated differently than our normal tissue (which is
from biopsies and surgical origin). Therefore, suboptimal
fixation can lead to false positives.

Discussion

The emerging role of potassium channels in cancer has
gained increasing interest in recent years (reviewed e.g. in
[2,3,5,34,35]). Among these channels, Eagl is unique in
its restricted expression outside the CNS [6,10] while
being overexpressed in tumour-derived cell lines [6,12-
14,16,36] and detectable in several cases of cervical carci-
noma [18] using the antibody described in this work.
However, the actual frequency of expression of Eagl in
tumours remained unknown. We therefore designed and
generated tools to permit the immunohistochemical
detection of Eagl in clinical specimens and used them in
combination with molecular biology to address this issue.

The first problem when investigating the expression pat-
terns of a protein is the specificity of the available tools,
especially in the case of antibodies. Our selection criteria
during the antibody generation process were very strin-
gent, that is, only those clones not recognising Eag2, the
closest relative to Eagl, in both ELISA and SPR experi-
ments were pursued. The commonly accepted method
used to define the specificity of an antibody is the recog-
nition of the target protein in a western blot without evi-
dence of any non-specific cross-reacting bands. We
performed experiments using rat brain extracts and could
show the absence of non-specific bands. However, similar
to many other monoclonal antibodies, Eagl.62.mAb has
a very low sensitivity in western blots as compared with
polyclonal antibodies. We therefore used alternative
approaches to confirm the selectivity of the antibody.
First, immunofluorescence experiments showed that the
antibody recognises human Eagl in transfected cells but
does not stain cells transfected with human Eag2. Second,
the pattern of expression detected by Eagl.62.mAb in rat
brain corresponds to that described in in situ hybridisa-
tion experiments and matches perfectly the pattern of an
alternative Eagl antibody with a completely different
epitope. The staining in rat brain is completely blocked by
pre-incubation of the antibody with its epitope. Taken
together, these data strongly suggest the ability of Eagl to
specifically recognise its epitope while not detecting Eag2.

HERG [37] is another channel related to Eagl showing
relatively low homology to Eagl but relevant in the con-
text of tumour biology e.g. [38-42]. Cross-reactivity with
HERG channels was therefore a concern. The absence of
the specific epitope recognised by Eagl.62.mAb and the
absence of a signal in smooth muscle where HERG expres-
sion is abundant [43] make it very unlikely that
Eag1.62.mAb recognises HERG. In practical terms, the saf-
est control for cross-reactivity will be achieved by testing
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Figure 6
Representative images of neoplastic tissue stained with alkaline phosphatase coupled to anti Eagl single chain
antibody. (a) Ductal-invasive mammary carcinoma (b) Lung carcinoma (squamous cell). (c) Prostate carcinoma.

healthy human myocardial tissue to which we has no
access yet.

Many aberrantly expressed tumour-associated proteins
are useful tools for the management of cancer patients
[44]. The expression of such proteins has been used to
make diagnostic, prognostic and therapeutic decisions. In
some cases, the aberrantly expressed protein can be used
for tumour vaccination (e.g., [45] for a review). However,
the high frequency (>85% in 15 of 17 tumour types; Table
1) with which Eagl was found to be overexpressed in this
study of various neoplastic tissues is unusual, especially
given that most molecules overproduced in neoplastic tis-
sues [44] are ubiquitous proteins expressed also in normal
tissues.

It is important to mention that although immunostaining
mainly reveals cytoplasmic signals, electrophysiological
measurements have detected Eagl activity in the plasma
membrane [6,10,12,13,18,22-24]. This unequivocally
demonstrates surface expression of the channel. Even in
transfected cells with robust current expression, it is diffi-
cult to detect membrane staining of the channel, although
biotinylation experiments have shown that the channel is
exposed to the external milieu [24].

It is still unclear at which stage of malignant transforma-
tion expression of Eagl increases. Chromosomal aberra-
tions affecting the long arm of chromosome 1 are

relatively frequent. In fact of 1800 recurrent chromosome
1 aberrations, 280 directly affect region 1q32 and there-
fore Eagl [46]. Since the channel itself is sufficient to
induce transformation and can also increase both the
growth rate and the invasiveness of experimental tumours
[6], Eagl expression may confer a growth advantage to
tumour cells and permit a selective enrichment of Eagl-
expressing cells. Given the elevated levels of Eagl in vari-
ous tumour tissues, it is interesting that we have previ-
ously shown that inhibition of Eagl expression leads to a
reduction of DNA synthesis in human tumour cell lines
[6,15]. Whether this will also be the case in primary
tumours remains to be elucidated.

We believe that our data justify further studies to qualify
Eagl as a target for clinical applications. Like Her2/Neu,
Eagl is a transmembrane protein, extracellularly accessi-
ble, involved in signal transmission and expressed in neo-
plastic tissues such as breast cancer, although only to a
limited extent in normal tissue [47]. Her2/Neu is
expressed in about 30% of breast cancers, where it has
proven effective as a target for immunotherapeutic
approaches [48-50]. A similar scenario is conceivable for
Eagl, given its striking tumour specificity. A potential
Eagl-targetted therapy would have advantages in compar-
ison to other established therapeutic approaches. First, it
could be applied to a broad spectrum of neoplasms that
overexpress the Eagl channel and thus become available
to a large number of patients. Second, most normal cells
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expressing Eagl are either protected by the blood brain
barrier or represent terminally differentiated cells, thereby
allowing more aggressive therapeutic intervention.

Conclusion

Eagl expression is limited outside the CNS, but is fre-
quently expressed in tumours from diverse origin. This sit-
uation could be used in possible prognostic, diagnostic
and therapeutical designs.

Methods

Molecular biology

Total RNA obtained from different normal tissues (Clon-
tech Laboratories GmbH, Heidelberg, Germany) or from
primary tumour biopsies (using RNeasy, Qiagen, Hilden,
Germany) was reverse transcribed (SuperScript, Invitro-
gen, Karlsruhe, Germany) and real-time PCR was per-
formed using the TagMan system in an AbiPrism 7700
Sequence Detector (Applied Biosystems, Foster City, CA).
The oligonucleotides used were (5'-3'):

TCTGTCCTGTTTGCCATATGATGT,  CGGAGCAGCCG-
GACAA, and FAM-AACGTGGA-Amino C6 dT-GAG-
GGCATCAGCAGCCT (probe).

Transferrin receptor was used to control for RNA integrity,
with the following oligonucleotides: GACTTTGGATCG-
GTTGGTGC, CCAAGAACCGCTITATCCAGAT, and JOE-
TGAATGGCTAGAGGGA-TAMRAAT-ACCTTTCGTCCC
(probe)

A standard curve was prepared with synthetic Eagl RNA.
cRNA was prepared using standard protocols [51] from
human Eagl subcloned into the pSGEM vector (Prof. M.
Hollmann, Bochum University). The exact RNA concen-
tration after synthesis was measured by fluorescent label-
ling (RiboGreen, Invitrogen, Karlsruhe, Germany);
different amounts of the synthetic RNA were mixed with
total RNA from rat liver; cDNA was prepared from the
mixture and processed by TagMan PCR. The number of
PCR cycles required to reach the detection threshold was
used to determine tissue mRNA content, using the stand-
ard curve for interpolation. Relative amounts of RNA were
obtained with respect to the brain Eagl mRNA content
which was set to 1.0. The amplified transferrin receptor
was used to normalise the quantity of mRNA from the tis-
sue sample. The constructs used for transient transfection
were the already described pTracerCMVhEAG1[6] and
chimera EGFP-hEagl, constructed by introducing an
EcoRV site at position 1 of the Eagl open reading frame
(QuickChange Site Directed Mutagenesis Kit, Stratagene,
Amsterdam, The Netherlands) and subcloning into the
pEGFPC2 vector (Invitrogen, Karlsruhe, Germany).

http://www.molecular-cancer.com/content/5/1/41

Antibody design and characterization

A fusion protein containing an area close to the putative
pore region (residues 374 to 452, Eagl.62.mAb) and
another in the C-terminus of Eagl (residues 872 to 932,
Eagl1.33.mAb) was used for immunization. The fusion
protein was cloned in the pET32 vector (Novagen, Madi-
son WI, USA), which contains a thioredoxin tag to
enhance solubility and a poly-histidine tail that was used
for purification after overexpression in E. coli.

Hybridomas were generated by standard techniques
(mice immunization, fusion, selection of positive clones
and two cloning steps; BioGenes GmbH, Berlin, Ger-
many). The epitope recognised by each supernatant and
the ability to differentiate between Eagl and the most
closely related protein known (Eag2 [19-21]) were deter-
mined by surface plasmon resonance [52]. Those superna-
tants with the best performance in this test were then used
to examine human brain tissues immunohistochemically
and the hybridomas giving the expected staining patterns
were subcloned. The antibodies used in this study were
subsequently purified by affinity chromatography, first on
a protein A column and then on a second affinity column
with the fusion protein used for immunization. The activ-
ity of the antibody was again checked by surface plasmon
resonance prior to use.

To generate a single chain, alkaline phosphatase (PhoA)
fused antibody, the antibody cDNA cloning was achieved
by first determining the subtype of the murine antibodies
(IgG x2b) using IsoStrip (Roche Applied Science, Man-
nheim, Germany). Total RNA was prepared from the
hybridoma cells (RNeasy kit, Qiagen, Hilden, Germany)
and translated into cDNA (SMART PCR cDNA Synthesis
Kit, Clontech, Heidelberg, Germany). Subsequently the
genes of the light and heavy chains expressed by the hybri-
domas were amplified by PCR using Pwo polymerase
(Roche, Mannheim, Germany) with the following prim-
ers:

GTAACAACGCAGAGTACGCGGG and either TCATTTAC-
CCGGAGACCGG (heavy chain) or CTAACACTCATTCCT-
GTTGAAGCIC (light chain).

The PCR products were subcloned into pBKS+ and
sequenced. The variable regions of both chains were iden-
tified by sequence comparison [53] and fused by PCR
with a linker sequence between the 3'-end of the heavy
chain variable region and the 5'-end of the light chain var-
iable region (Gly-Gly-Gly-Gly-Ser).

Primer sequences were:

TCTGGAGGTGGAGGTAGTGGGGGAGGAGGTTCAGAT-
GITGTGATGACCCAAACTCC and
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CCCACTACCTCCACCTCCAGAGCCTCCCCCTCCTGAG-
GAGACGGTGACTGAGG (heavy chain) and

TCTGGAGGTGGAGGTAGTGGGGGAGGAGGTITCAGAT-

GTTGTGATGACCCAAACTCC and GGCCTAATCG-
GCCCGTTTGATITCCAGCITGGTG (light chain). The
fusion was then performed using the first and the last of
these sequences.

To produce the PhoA fusion protein, the single chain anti-
body fragment was amplified and a 5' Sall and a 3' Ndel
restriction site introduced. This fragment was cloned
(blunt end) into an EcoRV-digested pBKS+ vector prior to
subcloning (Sall/Ndel) into pQUANTagen(kx) which
contains the alkaline phosphatase sequence. Finally, the
single chain antibody fragment - PhoA fusion protein was
subcloned into the expression vector pASK-iba2 (using
Smal-Sall sites introduced by PCR)

The fusion protein was obtained from inclusion bodies
produced in E. coli (triggered by treatment of anhydro-tet-
racycline 200 ng/ml). The cells were harvested in 100 mM
Tris/HCIl, 100 mM NaCl, pH 8.0, 8 M urea and sonicated
at 0° until lysis was complete and the solution appeared
clear. The lysate was stirred overnight at 4°C and then dia-
lyzed (cut-off 30 kDa) against 6, 4, 2, 1 and 0 M urea in
extraction buffer. The solution was then centrifuged at
18000 xg and stored at 4°C with 0.02 % (w/v) sodium
azide. The preparation was characterised by SDS-PAGE,
PhoA activity and ELISA to determine the relative activity
of the fusion protein compared to the whole murine anti-
body.

Immunohistochemical methods

Transfected cells growing on glass coverslips were fixed
(4% p-formaldehyde in PBS, 5 min at 4°C), permeabi-
lised with Triton X100 (0.5%, 10 min), blocked (10%
BSA, 30 min) and incubated for 2 h with Eag1.62.mAb (1
pug/ml) or Eagl.33.mAb (1 pg/ml). The secondary anti-
body (AlexaFluor 546 Goat anti-Mouse IgG, Invitrogen,
Karlsruhe, Germany) was used at a 1:1000 dilution (30
min) and the preparations were examined by confocal
microscopy.

Two postnatal-day 21 Sprague Dawley rats were anesthe-
tised with a mixture of ketamine HCI (Ketaset; 100 mg/
ml; Fort Dodge Laboratories, Inc., U.S.A.) and xylazine
(Rompun; 20 mg/ml; Mile, Inc., U.S.A.) at 0.1 ml/100 g
body weight. The animals were transcardially perfused
with 4% p-formaldehyde in 0.12 M phosphate buffer (pH
7.2). After perfusion, the brains were removed, fixed for
an additional hour at 4°C, rinsed three times with PBS
and stored overnight at 4 °C. Coronal and sagittal sections
(400-500 um) were cut in cold PBS using a vibratome
(Leica, Vienna, Austria). Slices were incubated for 1 h with
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10% normal goat serum in PBS, then with primary hEagl
antibody (Eagl.62.mAb: 2 ug/ml; Eagl.33.mAb: 4 ug/ml)
in PBS overnight at 4°C and processed using the avidin
biotin-peroxidase system (Vectastain kit, Vector Laborato-
ries, Burlingame, CA). Antibody binding was visualised
using 3'-3-diaminobenzidine tetrahydrochloride (DAB;
DAB substrate kit for peroxidase, Vector Laboratories).
Controls either omitted the primary antibody or incu-
bated the primary antibody with the corresponding fusion
protein (10 pg/ml final concentration) at 4°C for 24 h
prior to following the procedure as described above. Sec-
tions were analysed with a Zeiss Axiophot microscope.

For the immunohistochemical detection of Eagl potas-
sium channels in human tissues, formalin-fixed and par-
affin-embedded biopsy specimens from our own archive,
samples from the Manitoba Breast Tumor Bank [54] and
multiple tissue arrays (BioCat, Heidelberg, Germany)
were used. Optimal staining conditions and antibody
dilutions were determined using formalin-fixed and par-
affin-embedded tissue samples from human cerebral cor-
tex. Antigen retrieval was performed in a microwave oven
in 10 mM citrate buffer (pH 6.0) at 700 W for at least 15
min. Slides were incubated overnight in a humidified
chamber at 4°C with Eagl.62.mAb followed by incuba-
tion with the Envision Peroxidase System and DAB
(DAKO, Hamburg, Germany). Two operators independ-
ently evaluated antigen expression, denoting it either as
"negative" (0), "positive" (1) or "strongly positive" (2) as
appropriate.

For immunodetection of the single chain antibody frag-
ment alkaline phosphatase fusion proteins, the previous
protocol was modified to use the BCIP/NBT (Roche, Man-
nheim, Germany) substrate and the sample was counter-
stained with nuclear fast red (DAKO, Hamburg,
Germany). Two slides of different multiple tissue arrays
were evaluated independently by two researchers using
the scoring system described above.

Processing of consecutive sections from the same block in
different days resulted in identical staining, illustrating
the reproducibility of the system.
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