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The protease b-secretase 1 (Bace1) was identified through

its critical role in production of amyloid-b peptides (Ab),

the major component of amyloid plaques in Alzheimer’s

disease. Bace1 is considered a promising target for the

treatment of this pathology, but processes additional

substrates, among them Neuregulin-1 (Nrg1). Our bio-

chemical analysis indicates that Bace1 processes the

Ig-containing b1 Nrg1 (IgNrg1b1) isoform. We find that a

graded reduction in IgNrg1 signal strength in vivo results

in increasingly severe deficits in formation and maturation

of muscle spindles, a proprioceptive organ critical for

muscle coordination. Further, we show that Bace1 is

required for formation and maturation of the muscle

spindle. Finally, pharmacological inhibition and condi-

tional mutagenesis in adult animals demonstrate that

Bace1 and Nrg1 are essential to sustain muscle spindles

and to maintain motor coordination. Our results assign to

Bace1 a role in the control of coordinated movement

through its regulation of muscle spindle physiology, and

implicate IgNrg1-dependent processing as a molecular

mechanism.
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Introduction

Proteolysis of membrane-tethered molecules is critical for cel-

lular communication. Sheddases, a group of membrane-bound

proteases, cleave single-span membrane proteins at the extra-

cellular surface. One of the most studied sheddases, the

aspartyl protease Bace1 (b-secretase 1), is an important drug

target for Alzheimer’s disease. Bace1 cleaves the amyloid

precursor protein (APP) and is responsible for generation of

pathogenic Ab peptides (Luo et al, 2001; Vassar et al, 2009). In

addition to APP, around 20 substrates have been identified for

Bace1 (Willem et al, 2006; Kandalepas and Vassar, 2012; Kuhn

et al, 2012; Zhou et al, 2012). Knowledge of their physiological

functions can help to monitor adverse effects caused by Bace1

inhibition in patients.

One Bace1 substrate is Neuregulin-1 (Nrg1), a trophic factor

that signals through ErbB tyrosine kinase receptors to regulate

nervous system development and regeneration (Falls, 2003;

Willem et al, 2006; Birchmeier, 2009; Fricker et al, 2011). Nrg1

is a complex gene encoding more than 15 protein isoforms

that are generated by a combination of alternative mRNA

splicing and the use of several promoters. All subtypes of Nrg1

proteins present an EGF-like domain required for receptor

binding and signalling. Depending on the presence of either

an Ig-like or a cysteine-rich domain (CRD) in their amino-

terminal (N-terminal) sequences, Nrg1 variants can be

classified into IgNrg1 (type I and type II) and CRD-Nrg1

(type III). Few Nrg1 variants are secreted molecules (e.g.,

glial growth factor, GGF), most being membrane-bound

proteins that can be shed by proteases (Falls, 2003). Bace1-

dependent shedding of Nrg1 has been implicated in the

control of myelination in the peripheral nervous system (Hu

et al, 2006; Willem et al, 2006).

Coordinated body movement requires constant input of

sensory information to elicit a concerted motor response.

Muscle spindles are sensory organs dispersed throughout

muscles of vertebrates, which detect muscle stretch, allowing

thus the perception of body position (proprioception) impor-

tant for coordinated movement (Maier, 1997). The muscle

spindle is composed of a bundle of specialized (intrafusal)

muscle fibres, and its formation is induced by contact between

TrkCþ sensory axons and muscle fibres (Ernfors et al, 1994;

Farinas et al, 1994; Klein et al, 1994; Tessarollo et al, 1994;

Walro and Kucera, 1999; Chen et al, 2003). Further maturation

takes place during late fetal and early postnatal phases when

muscle spindles grow and become enclosed by the capsules

(Hunt, 1990; Zelena and Soukup, 1993; Maier, 1997). Previous

studies showed that the genetic deletion of neuronally

produced Nrg1 or its receptor ErbB2 in muscle tissue

prevent muscle spindle differentiation (Andrechek et al,

2002; Hippenmeyer et al, 2002; Leu et al, 2003).

Here we show that formation, maturation and maintenance

of muscle spindles depend on Bace1. We use mouse mutants

to demonstrate that in the absence of Bace1, muscle spindle

numbers are reduced and spindle maturation is impaired.
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Moreover, we find that a graded reduction in IgNrg1 signal

strength results in increasingly severe deficits in the formation

and maturation of muscle spindles. Conversely, we observed

supernumerary muscle spindles upon overexpression of a

membrane-tethered Nrg1 variant (Ig-containing b1 Nrg1

(IgNrg1b1)) in sensory neurons, an effect which strictly

depended on the presence of Bace1. Strikingly, inhibition of

Bace1 activity or ablation of Nrg1 expression in adult mice

resulted in a massive reduction of the muscle spindle pool and

impaired coordination of movement. Together, these data

implicate Bace1-dependent processing of IgNrg1 in ontogen-

esis and long-term maintenance of muscle spindles.

Results

Bace1 mutant mice display coordination defects

During handling of Bace1� /� mutant mice, we noted that

their movement was altered. Most notably, they appeared not

to be able to hang to an inverted grid, a task requiring motor

coordination and/or muscle strength (Coughenour et al,

1977; Landauer et al, 2003). A quantitative assessment

demonstrated that wild-type littermates did hang to the grid

three times longer than Bace1� /� mice; Bace1þ /� and wild-

type animals performed similarly (Figure 1A). We then

assessed muscle coordination using gait analysis. The walk-

ing pattern was recorded as mice freely walked on a moving

belt, and gait analysis monitored movement and position of

individual paws using the Treadscan system (Beare et al,

2009). The walking pattern of wild-type mice (Figure 1B

and C) shows coordinated alternation of paws, i.e., opposing

movements of anterior and posterior limbs on the same side

(homolateral coupling value E0.5; Figure 1D and

Supplementary Figure S1A), and opposing movements of

left and right limbs of the same axial levels (homologue

coupling value E0.5; Figure 1E and Supplementary

Figure S1B and C). Homolateral coupling of Bace1� /�

mutants was severely affected and deviated considerably

from wild-type animals. This reflects a lack of forelimb/

hindlimb coordination and resulted in a swaying walking

pattern (Figure 1C; quantified in D and Supple-

mentary Figure S1A). In contrast, homologue coupling was

little disturbed at either axial level, indicating correct left/

right alternation (Figure 1C; quantified in E and

Supplementary Figures S1B and C). Bace1 mutant mice dis-

play peripheral hypomyelination but little Schwann cell turn-

over, similar to Schwann cell-specific coErbB2 (Krox20cre

ErbB2flox/flox) mutant mice (g-ratios P180: control, Bace1� /�

and coErbB2: 0.68±0.01, 0.75±0.01 and 0.80±0.01, respec-

tively; cf. Garratt et al, 2000; Hu et al, 2006; Willem et al, 2006;

Grossmann et al, 2009). In contrast to Bace1 mutants, we did

not observe significant changes in motor coordination in

coErbB2 mutants (Supplementary Figure S2A–D). Together,

our data indicate that motor coordination is disrupted in

Bace1� /� mutants, and this coordination deficit is not caused

by hypomyelination.

Bace1 mutation affects formation and maintenance

of muscle spindles

Coordination of body movement requires functional proprio-

ception, and muscle spindles are important proprioceptive

organs governing the coupling of antagonistic muscles

(the spindle structure is shown schematically in Figure 1F).

We quantified the amounts of muscle spindles in lower

hindlimbs of newborn control and mutant mice at P0, using

a combination of morphological criteria (large nuclei, pre-

sence of a capsule) and immunohistology with antibodies

against Egr3, a muscle spindle-specific transcription factor,

collagen IV, a marker for muscle spindle outer capsules, and

NF200, a neurofilament isoform expressed by sensory fibres

contacting the spindles (Figure 1G and H; cf. Tourtellotte and

Milbrandt, 1998; Tourtellotte et al, 2001; Hippenmeyer et al,

2002). Newborn Bace1� /� mice presented a pronounced

reduction (45%; Po0.001) of the number of muscle

spindles, and the reduction persisted until adulthood

(Figure 1G, Table I). A small but significant reduction

(14%, P¼ 0.01) was observable in heterozygous Bace1þ /�

mutant mice. The overall morphology of persisting

muscle spindles was unchanged in Bace1� /� mice at P0,

but postnatal muscle spindle growth was impaired

(Figure 1H, Table II, see also below). We conclude that

Bace1 is required for the correct formation and maturation

of muscle spindles.

Bace1 activity is required to sustain muscle spindles

and to maintain motor coordination

We next assessed whether Bace1 activity is needed to

sustain mature muscle spindles. Adult (P180) wild type,

heterozygous and homozygous Bace1 mutant mice were

treated with the pharmacologic Bace1 inhibitor Ly2811376

for a period of 29 days (May et al, 2011). Ly2811376 inhibited

Bace1 activity effectively in vivo, as assessed by monitoring

the Nrg1 processing in the brain (Figure 2A). Ly2811376

treatment led to a regression of adult muscle spindles,

notably a loss of 40% of muscle spindles in wild type and

heterozygous Bace1 mutant animals, compared to corre-

sponding vehicle-treated groups (Figure 2B; Supplementary

Figure S2E). Ly2811376 treatment did not further decrease the

muscle spindle pool in homozygous Bace1 mutant mice,

demonstrating that this effect was mediated through specific

Bace1 inhibition (Figure 2B; Supplementary Figure S2E).

Together, these genetic and pharmacological data indicate

that Bace1 controls the maintenance of muscle spindles

during adulthood, as well as their formation during

development.

We next tested whether Bace1 inhibition in the adult

affected motor coordination. A quantitative assessment of

grip ability demonstrated that animals treated with a Bace1

inhibitor lost their footing 3–4 times faster than animals

treated with the vehicle (Figure 2C). Gait analysis also

demonstrated that the walking pattern of the mice was

aberrant after long-term inhibition with Bace1 inhibitor

(Figure 2D–F). Thus, the value of homolateral coupling

deviated considerably from the one observed in vehicle-treated

animals. This reflects a lack of forelimb/hindlimb coordination

and resulted in a swaying walking pattern (Figure 2D; quanti-

fied in E and Supplementary Figure S1A). Homologue coupling

was little disturbed after Bace1 inhibition (Figure 2D; quantified

in F and Supplementary Figure S1B and C). We conclude

that long-term treatment of adult mice with Bace1 inhibitor

disrupts motor coordination. It is noteworthy that coordination

was affected to similar extents in Bace1� /� and in Bace1

inhibitor-treated animals, indicating that Bace1 activity is

continuously required for motor coordination.

Bace1 controls spindle development and maintenance
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Bace1 processes Nrg1 isoforms

Various Nrg1 isoforms exist (Figure 3A) that can take over

distinct functions. Nrg1 isoforms containing an Ig domain

(IgNrg1) are produced by proprioceptive neurons and control

the induction of the muscle spindle (Hippenmeyer et al,

2002). Bace1 is expressed broadly in sensory neurons

Figure 1 Bace1 is required for the correct formation of muscle spindles. (A) Performance of Bace1þ /þ , Bace1þ /� and Bace1� /� mice (P180)
in the inverted grid test. Horizontal bars show the average time the mice remain clinging to the grid. (B) Normal walking pattern of a mouse; the
movement of homolateral (top) and homologous (bottom) limbs are indicated. (C) Representative walking patterns of control and Bace1� /�

mice; displayed are series of four consecutive steps. (D, E) Homolateral (D) and homologue (E) coupling values for the movements of control
(inner circle) and Bace1� /� mice (outer circle). A value of 0.5 defines coordinated movement of the paws. The grey area indicates the non-
pathological interval (0.5±0.1). (F) Schematic representation of a muscle spindle; indicated are the central intrafusal fibres of the spindle, which
are surrounded by a capsule and (extrafusal) muscle fibres. (G) Quantification of muscle spindles in hindlimbs of control, heterozygous and
homozygous Bace1 mutant mice at P0. (H) Immunohistological analysis of muscle spindles from control and Bace1 mutant mice at P0. Intrafusal
fibres express Egr3, the nascent outer capsule displays a pronounced collagen IV staining, and contacting sensory fibres are NF200þ . Scale bar,
10mm (H).

Table I Number of muscle spindles in lower hindlimbs of newborn and adult mice

Control IgNrg1D/þ Bace1� /� Bace1� /� IgNrg1D/þ co-IgNrg1 IgNrg1b1Ov Bace1� /� IgNrg1b1Ov

P0 8.8±0.3 6.8±0.3** 4.8±0.6*** 2.6±0.4*** 1.0±0.2*** 14.1±1.2*** 5.0±0.2***
P30 10.0±0.6 8.1±0.5* 5.6±0.5*** 3.2±0.2*** 1.8±0.3*** 18.8±0.5*** 5.9±0.2***

Values are mean±s.e.m. of 5–6 animals per genotype and age, expressed as number of muscle spindles per hindlimb section. Significance of
the differences between numbers observed in control and mutants is indicated.
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(Willem et al, 2006). In situ hybridization combined with

immunohistochemistry showed that Bace1 and IgNrg1 are

co-expressed in NF200þ large diameter sensory neurons at

birth; thus proprioceptive neurons co-express Bace1 and

IgNrg1 (Figure 3B). Quantification demonstrated that the

vast majority of sensory neurons as well as IgNrg1þ sensory

neurons in dorsal root ganglia (DRG) co-expressed Bace1

(93.7±1.2% and 99.8±0.2%, respectively). Various IgNrg1

isotypes exist, called a1/2 and b1–4 that differ in the EGF-like

domains and in sequences carboxy-terminal (C-terminal)

thereof (Supplementary Figure S3A; Falls, 2003). We

analysed their expression in DRG at P0 using semi-

quantitative PCR (qPCR). This showed that among the

IgNrg1 isoforms, b variants and particularly, the b1 isotype

are expressed at highest levels (Figure 3C).

IgNrg1b1 isotypes contain a predicted Bace1 cleavage site

(Figure 3D and Hu et al, 2008). However, IgNrg1 isoforms are

produced by few sensory neurons, whereas CRD-Nrg1 is

expressed broadly in sensory neurons (Figure 3B, cf. Meyer

et al, 1997; Hippenmeyer et al, 2002). This hampers a direct

biochemical analysis of IgNrg1 processing in sensory ganglia

in vivo. We therefore analysed processing of HA-tagged b1

isotypes in cultured HEK293 cells, and tested whether the

predicted Bace1 cleavage sites present in b1 variants of Ig- or

CRD-containing Nrg1 are recognized. Full-length and

processed C-terminal fragment of Nrg1b1 proteins

containing CRD or Ig domains were observed in the

absence of transfected Bace1 cDNA, using an antibody

against the C-terminus of Nrg1 (Figure 3E). In the presence

of Bace1, the full-length protein almost disappeared, whereas

the processed C-terminal fragment accumulated (Figure 3E).

Thus, Bace1 cleaves the Nrg1b1 sequence, regardless of

whether it is present in a CRD or Ig isoform.

IgNrg1b2 and IgNrg1b3 represent a membrane-tethered

and a secreted isoform, respectively, and are produced at

lower levels than IgNrg1b1 in DRG (Figure 3A and C). We

compared processing of the two membrane-tethered isoforms

IgNrg1b1 and IgNrg1b2 in transfected HEK293 cells and

analysed the release of their HA-tagged extracellular frag-

ment, which contains the receptor-binding EGF domain

(Figure 3F). IgNrg1b1 was constitutively processed, but co-

transfection of Bace1 resulted in a further increase in the

amount of the C-terminal and HA-tagged N-terminal frag-

ments, as well as a decrease of full-length protein, indicating

increased processing. In contrast, IgNrg1b2 was neither pro-

cessed constitutively, nor in a Bace1-dependent manner

(Figure 3F). The release of the N-terminal fragments was

quantified using Nrg1 constructs carrying alkaline phos-

phatase in their extracellular domain (Figure 3G; secreted

alkaline phosphatase or SEAP, cf. Willem et al, 2006).

Co-transfection of IgNrg1b1SEAP and Bace1 increased the

amount of released alkaline phosphatase six-fold, which

was abolished by the Bace1 inhibitor C3 but not by the

metalloproteinase inhibitor GM6001 (Figure 3G; Willem

et al, 2006; Freese et al, 2009). In contrast, released

alkaline phosphatase from the corresponding IgNrg1b2SEAP

was low and little affected by Bace1 activity. We conclude

that the major Ig variant expressed in sensory neurons,

Nrg1b1, is a substrate of Bace1.

We next tested whether endogenous levels of Bace1 can

process IgNrg1b1. Hippocampal neurons were transfected

with an IgNrg1b1 expression vector (Figure 3H and I). The

majority of cellular IgNrg1b1 was processed, and only little

full-length protein was observable. In the presence of the

Bace1 inhibitor C3, IgNrg1b1 cleavage was reduced, resulting

in accumulation of Nrg1 FL and slightly reduced levels of the

65-kDa C-terminal fragment (Figure 3H). HA-tagged Nrg1b1 in

the supernatant was detected using HA-specific antibodies,

which revealed mildly reduced quantities of the N-terminal

fragment in case of Bace1 and metalloproteinase inhibition

(Figure 3I). The combination of Bace1 and metalloproteinase

inhibitors acted synergistically. In addition, the N-terminal

fragment was immunoprecipitated using HA-specific

antibodies and detected on western blot using HA and 4F10

antibodies. We took advantage of the 4F10 antibody, which

recognizes a Nrg1b1-specific epitope only when exposed by

Bace1 cleavage (Fleck et al, 2013). This revealed that the

neuronal production of the Nrg1b1 4F10-specific epitope

was impaired upon inhibition of Bace1, but not of

metalloproteinases (Figure 3I). These data indicate that en-

dogenous amounts of Bace1 suffice to cleave IgNrg1b1 in

primary hippocampal neurons, and support the notion that

in such neurons IgNrg1b1 is cleaved by Bace1 and metallo-

proteinases.

IgNrg1 isoforms are required for motor coordination

To directly define the function of IgNrg1 isoforms in motor

coordination, we generated a new mutant allele in which one

of the exons encoding Ig sequences is ‘floxed’ or constitu-

tively deleted (IgNrg1flox and IgNrg1D; Supplementary

Figure S3B). IgNrg1D or cre-recombined IgNrg1flox mutations

specifically interfere with the production of IgNrg1, but not

CRD-Nrg1 transcripts (see Materials and methods for

more details). We then generated Wnt1cre/þ IgNrg1flox/D

mice; Wnt1cre is expressed in neural crest cells that give

rise to sensory neurons (Danielian et al, 1998; Le Douarin

and Kalcheim, 1999). Semi-quantitative RT-PCR indicated

that expression of IgNrg1 and particularly IgNrg1b1

Table II Diameter of muscle spindles and intrafusal content at birth and during adulthood

Control Bace1� /� Bace1� /� IgNrg1D/þ co-IgNrg1 IgNrg1b1Ov Bace1� /� IgNrg1b1Ov

Spindle diameter (mm)
P0 26.5±0.9 23.7±1.4NS 23.4±0.9NS 25.9±1.1NS 26.8±1.5NS 22.7±0.5NS

P30 40.6±0.6 32.5±0.8*** 33.3±0.6*** 29.4±1.0*** 42.1±0.6NS 34.6±1.2**

Intrafusal fibres/spindle
P0 4.0±0.2 3.9±0.2NS 3.1±0.1** 2.9±0.1*** 4.3±0.2NS 4.0±0.1NS

P30 3.9±0.1 3.9±0.1NS 3.4±0.1NS 3.1±0.1** 4.5±0.2*** 3.8±0.1NS

Equatorial diameter and number of intrafusal fibres per muscle spindle was determined in 3–6 animals per genotype and per age and is
expressed as mean±s.e.m. Asterisks indicate significance of the differences observed when mutants were compared to control littermates.
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transcripts were reduced by 90 and 50% in DRG of Wnt1cre/

þ IgNrg1flox/D (hereafter called co-IgNrg1 mutants) and

heterozygous IgNrg1D/þ newborn mice, respectively

(Figure 4A; Supplementary Figure S4A). In contrast,

expression of CRD-Nrg1 transcripts was unaltered in DRG

of co-IgNrg1 mice (Figure 4A).

Conditional IgNrg1 mutants displayed pronounced curled

tails and uncoordinated tail movements, which we attributed

to an almost complete depletion of the spindle pool in tail

muscles (Supplementary Figure S4B). Besides, co-IgNrg1

mice lost their grip five times faster than their control

littermates in the inverted grid test (Figure 4B). Moreover,

gait analysis showed that co-IgNrg1 mutants, like the Bace1

mice described above, suffered from pronounced deficits in

forelimb/hindlimb coordination (Figure 4C and D). In addi-

tion, a pronounced deficit in left/right coordination was

apparent in hindlimbs, resulting in frequent hopping move-

ment (Figure 4E, summarized in Figure 7I). We conclude

that, similar to Bace1 mutants, coordinated movement is

severely disrupted in co-IgNrg1 mice.

We next analysed muscle spindles in IgNrg1 mutants

(Figure 5A; Supplementary Figure S5A and Supplementary

Table II). We observed a significant (30%, P¼ 0.002) reduc-

tion and a massive loss of spindles (84%, Po0.001)

in heterozygous IgNrg1D/þ and co-IgNrg1 newborn mice,

respectively. No obvious alteration was apparent in the

morphology of Golgi tendon organs and Pacinian corpuscles

in co-IgNrg1 mutants, nor did we detect changes in myelina-

tion of peripheral nerves (Supplementary Figure S5B and C,

g-ratios P12: 0.72±0.02 and 0.71±0.01 in the sciatic nerve of

control and co-IgNrg1 mice, respectively). When the hetero-

zygous IgNrg1 mutation was introduced on a Bace1� /�

background, a more pronounced loss of muscle spindles

was observed, and only 25% of the normal numbers

were present in Bace1� /� IgNrg1D/þ mice (Figure 5A;

Supplementary Figure S5A). This indicates that a graded

reduction in IgNrg1 signal strength results in increasingly

severe deficits in muscle spindle formation.

We further assessed the formation of muscle spindles in a

transgenic mouse strain in which IgNrg1b1 is overexpressed

in neurons under the control of the Thy1 promoter (type I

IgNrg1b1, hereafter called IgNrg1b1Ov; cf. Michailov et al,

2004 and Figure 5A; Supplementary Figure S5A). Such mice

displayed a 50% increase in muscle spindle numbers at

birth, and these supernumerary spindles persisted until

adulthood (Figure 5A, Table I). The expansion of the muscle

spindle pool was accompanied by increased survival

of proprioceptive neurons during the selection phase

(Figure 5B–D), which is possibly caused by expression of

neurotrophin 3 (NT3) in the supernumerary muscle spindles.

Strikingly, only in the presence of Bace1 supernumerary

spindles were observed in IgNrg1b1Ov transgenic mice. In

particular, the muscle spindle pool of Bace1� /� IgNrg1b1Ov

was smaller than the one of control mice, and reached

similar numbers to those observed in Bace1� /� mutants

(Figure 5A). Increased survival of proprioceptive neurons

during the selection phase was not observable in compound

mutant Bace1� /� IgNrg1b1Ov animals (Figure 5C and D).

We conclude that transgenic IgNrg1b1 strictly requires Bace1

processing to exert its role in muscle spindle formation.

Maturation of muscle spindles depends on Bace1

and Nrg1

Muscle spindles are induced before birth and mature during

postnatal life, when they can be detected by a combination of

morphological criteria and immunohistology (Maier, 1997;

Figure 2 Bace1 activity regulates motor coordination and maintains
muscle spindles during adulthood. (A) Western blot analysis of
Bace1 expression and processing of endogenous Nrg1 in the mid-
brain of adult (P180) wild type (wt) or Bace1� /� (B1� /� ) mice
treated with vehicle (Vh) or the Bace1 inhibitor Ly2811376 (Ly).
Nrg1 FL denotes the 130 kDa Nrg1 species corresponding to full-
length CRD-Nrg1, detected by an antibody directed against the Nrg1
C-terminal sequence. The amount of Nrg1 FL is markedly increased
upon Bace1 inhibition or ablation, indicating reduced cleavage, but
Bace1 expression is unaffected by Ly2811376 treatment. Calnexin is
used as internal control. (B) Quantification of muscle spindles in the
tibialis anterior muscle of control, heterozygous and homozygous
Bace1 mutant mice (P180) treated with the Bace1 inhibitor
Ly2811376. (C) Performance of Bace1þ /þ , Bace1� /� and vehicle-
or Ly2811376-treated wild-type mice in the inverted grid test. Note
that Bace1� /� and Ly2811376-treated mice perform similarly.
(D) Representative walking patterns of vehicle- and Ly2811376-
treated wild-type mice. (E, F) Homolateral (E) and homologue
(F) coupling values for the movements of vehicle- (inner circle)
and Ly2811376-treated (outer circle) wild-type mice. Bace1� /� mice
(middle circle) are included for comparison.
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Figure 3 Nrg1b1 is a substrate of Bace1. (A) Structure of Nrg1 isoforms containing cysteine-rich domain (CRD) or Ig-like (Ig) domains. Full-
length (Nrg1 FL), N-terminal (Nrg1 NtF) and C-terminal (Nrg1 CtF) fragments analysed in (E, F, H, I) are indicated. Green arrows show the Bace1
cleavage site present in b1 isotypes, yellow star the position of the HA-tag used for biochemical analysis; C-terminal transmembrane domain TM.
(B) In situ hybridization (Bace1, IgNrg1) combined with immunohistology (neurofilament 200; NF200) demonstrates co-expression of Bace1 and
IgNrg1 in sensory neurons. Left: Bace1 is broadly expressed in sensory neurons. Right: IgNrg1 and Bace1 (insert) are co-expressed in NF200þ

sensory neurons. (C) qPCR of DRG mRNA encoding CRD-Nrg1 and a/b IgNrg1 isoforms (P0). (D) Sequence alignment of a/b Nrg1 isotypes;
predicted Bace1 cleavage sites are indicated. Asterisk indicates stop codon in b3. (E, F) Western blot analysis of Bace1-dependent processing of (E)
Ig- and CRD-Nrg1b1, (F) IgNrg1b1 and IgNrg1b2 in HEK293 cells. Antibodies are indicated (aCNX: anti-calnexin). Full-length precursors (Nrg1 FL;
IgNrg1: 110 kD, CRD-Nrg1: 130 kD) and processed C-terminal fragment (Nrg1 CtF: 65 kD) are detected in RIPA lysates using an antibody against
the Nrg1 C-terminus; HA-tagged N-terminal fragments (Nrg1 NtF) are detected in the supernatant using anti-HA. Calnexin serves as loading
control. NT, non-transfected. (G) Quantification of Bace1-dependent shedding of IgNrg1b1SEAP and IgNrg1b2SEAP. The N-terminal sequence of
IgNrg1SEAP variants contains alkaline phosphatase whose enzymatic activity is detected in supernatants in the absence/presence of Bace1 cDNA,
C3 or GM6001 inhibitors. (H) Western blot analysis of IgNrg1b1 cleavage in primary neurons. Detected are full-length and C-terminal IgNrg1b1 in
RIPA lysates using an antibody recognizing the Nrg1 C-terminus. (I) The N-terminal fragment of IgNrg1b1 was directly detected in supernatant by
western blotting using anti-HA (upper panels). Alternately, supernatant was immunoprecipitated using anti-HA (middle and lower panels), and
Nrg1 NtF fragments were detected using anti-HA and 4F10 antibodies; the latter identifies a Bace1-specific Nrg1 cleavage product. Asterisks
indicate cross-reactive proteins. Scale bar, 50mm (B).
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Chen et al, 2003). Generally, similar changes in numbers of

muscle spindles were observed in adult (P30) IgNrg1 and

Bace1 mutant mice as those present at birth (Table I).

However, we noted that muscle spindles from different

mutant strains presented maturation deficits. Calbindin

protein is detected only in mature intrafusal fibres

(Chen et al, 2002; Gould et al, 2008). Calbindin staining

was reduced in co-IgNrg1 mutants and, conversely,

increased in IgNrg1b1Ov mice (Figure 6A, quantified in

Supplementary Figure S6A). Similar changes were observed

with S100 staining in intrafusal fibres of control, co-IgNrg1

and IgNrg1b1Ov mice (Supplementary Figure S6B). We esti-

mated the diameter and determined the number of intrafusal

fibres per muscle spindle and observed that the co-IgNrg1 or

Bace1 mutations resulted in increased proportions of muscle

spindles characterized by a small diameter (o30 mm;

Figure 6B) and few intrafusal fibres (p3 fibres/spindle;

Figure 6D). Conversely, neuronal overexpression of

IgNrg1b1 resulted in higher proportions of muscle spindles

with unusually large diameter (450 mm; Figure 6C) and high

intrafusal fibre numbers (44 fibres/spindle; Figure 6E). The

outer capsule morphology and the innervation of remaining

muscle spindles appeared unchanged in all genotypes

(Figure 6A). Thus, Bace1 as well as IgNrg1 govern the

maturation of muscle spindles.

Maintenance of muscle spindles requires continuous

Nrg1 signalling

Bace1 inhibition in the adult results in motor coordination

deficits and in a depletion of the muscle spindle pool

(Figure 2B–F). We next tested whether Nrg1 is also continu-

ously needed for motor coordination and muscle spindle

maintenance. We used for this a previously established

colony of cre-ERTM/þNrg1flox/flox mice (Fricker et al, 2013)

hereafter called coTxNrg1 mice. In such animals, a

ubiquitously expressed tamoxifen-inducible cre induces

recombination, and recombination deletes sequences

encoding the EGF domain present in all Nrg1 isoforms. The

mutation was introduced at P70, after somatic growth ended,

and eliminated expression of Nrg1 transcripts in DRG of

coTxNrg1 animals at P100 (see Figure 7A for an outline of

the experiment and Figure 7B for quantification of Nrg1

transcripts). coTxNrg1 mice displayed profoundly impaired

grip and did hang 3–4 times less long in the inverted grid

test than control littermates. Motor coordination was

strongly impaired, as assessed using a beam-walking test

(Figure 7C and D; Supplementary Figure S7). We also ana-

lysed the muscle spindles in coTxNrg1 mutants: coTxNrg1

mice possessed less than half as many muscle spindles as

control littermates (Figure 7E and F), and remaining spindles

were shortened (Figure 7G; spindle length: 1805±106 and

1593±56 mm in control and coTxNrg1 mice, respectively;

P¼ 0.048). In addition, the morphology of residual muscle

spindles was profoundly altered and displayed thinner and

discontinuous collagen IV staining (Figure 7H), which are

signs of outer capsule degeneration (cf. Maier, 1997;

Elsohemy et al, 2009). Further, intrafusal calbindin staining

was weak in control mice of this age, and no longer

observable by immunohistology in coTxNrg1 animals

(Figure 7H). NF200þ terminals were however still present,

indicating that sensory innervation was preserved in remain-

ing spindles (arrowheads in Figure 7H). The analysis of

inducible mutant mice thus demonstrated that continuous

Nrg1 signalling is essential to sustain muscle spindles and

maintain motor coordination in the adult.

Discussion

Bace1 is well known for its role in Alzheimer’s disease, and is

required for APP cleavage and production of Ab peptides

(Luo et al, 2001). In this study, we show that Bace1 controls

muscle spindle ontogenesis and maintenance in the adult. We

combined complex genetic analyses, biochemical studies and

pharmacological interference to provide evidence that these

functions depend on cleavage of membrane-tethered IgNrg1

by Bace1. Our findings identify Bace1 as an important

molecule in proprioception.

Figure 4 IgNrg1 isoforms control motor coordination. (A) Quanti-
fication of the expression of CRD and Ig Nrg1 isoforms in DRG
neurons from control, IgNrg1D/þ , co-IgNrg1 and IgNrg1b1Ov new-
born mice using qPCR. (B) Performance of control and co-IgNrg1
mice (P180) in the inverted grid test. (C) Representative walking
pattern of control and co-IgNrg1 mice. (D, E) Homolateral (D) and
homologue (E) coupling values of limbs in control (inner circle) and
co-IgNrg1 (outer circle) mice (P180).
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Bace1 and Nrg1 control ontogenesis and maintenance

of muscle spindles

Our genetic study provides direct evidence that an Ig-contain-

ing isoform of Nrg1 supplies the muscle spindle-inducing

activity. This is in accordance with the previous work that

demonstrated a role of Nrg1 but not of CRD-containing

isoforms in spindle induction (Hippenmeyer et al, 2002).

IgNrg1b1 is the dominantly expressed Ig-containing isoform

of Nrg1 in DRG and thus expected to participate in muscle

spindle induction. Our analysis of mice overexpressing

membrane-tethered IgNrg1b1 in neurons indicates that this

isoform induces supernumerary muscle spindles, but this

depends on the presence of Bace1.

A direct contact exists between proprioceptive axons and

muscle during muscle spindle differentiation (Ernfors et al,

1994; Farinas et al, 1994; Klein et al, 1994; Tessarollo et al,

1994; Walro and Kucera, 1999; Chen et al, 2003). Membrane

of sensory axons and muscle fibres are thus in close

apposition. Nevertheless, our data show that membrane-

tethered IgNrg1b1 isoforms are not able to elicit a response

without being shed. Further, we find that Nrg1 ablation or

Bace1 inhibition in the adult result in a regression of the

muscle spindle pool, indicating that Bace1-dependent Nrg1

activity is required to sustain muscle spindles even in the

presence of an intact nerve. Previous studies had

demonstrated that a continuous contact between the

intrafusal fibres and sensory axons is a prerequisite for the

maintenance of muscle spindles in adults. For instance, adult

nerve transection in rats results in acute morphological

changes followed by a massive loss of muscle spindles

(Copray et al, 1999; Elsohemy et al, 2009). However, the

molecular identity of the signal(s) provided by sensory axons

had not been defined, and our data indicate that Nrg1

provides a key signal for spindle maintenance.

Functions of neuronally produced Nrg1 isoforms during

development and adulthood

We show here that IgNrg1b1 requires Bace1 for its activity as

spindle-promoting factor. IgNrg1b1Ov mice ectopically ex-

press this particular isoform and display supernumerary

muscle spindles, a phenotype that is completely reversed

when Bace1 is ablated. This is accompanied by increased

survival of proprioceptive neurons in IgNrg1b1Ov; it is inter-

esting to note that supernumerary muscle spindles in

IgNrg1b1Ov mice express NT3, a known rate-limiting factor

for survival of proprioceptive neurons (Ernfors et al, 1994;

Klein et al, 1994; Tessarollo et al, 1994). The expression of

NT3 in such supernumerary muscle spindles might account

Figure 5 Bace1 and IgNrg1 control the ontogeny of muscle spindles. (A) Quantification of muscle spindles in hindlimbs of newborn mice of
indicated genotypes. (B) Immunohistological analyses of DRG from control, Bace1� /� and IgNrg1b1Ov animals at E15 and P0 using antibodies
directed against TrkC, NF200 and Islet1/2. (C, D) Quantification of TrkCþ proprioceptive neurons (C) and Isletþ sensory neurons (D) in DRG
of E15 and P0 animals. TrkCþ proprioceptive neurons persisted in increased numbers in newborn IgNrg1b1Ov, while the overall quantity of
Islet1/2þ sensory neurons was comparable. Bace1, co-IgNrg1 and wild-type mice display similar numbers of sensory or proprioceptive
neurons. Scale bar, 25mm (B).
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for the enhanced survival of proprioceptive neurons during

the selection phase. Several findings indicate that not all Nrg1

activity present at sensory–muscular contact sites is provided

by IgNrg1b1 and depends on Bace1 for signalling. Previous

data had indicated that the induction of muscle spindles

strictly depends on neuronal Nrg1, i.e., no spindles form in

the absence of Nrg1 (Hippenmeyer et al, 2002), but we

observed remaining muscle spindles in Bace1 mutants,

although their number and size were reduced. Thus, Bace1-

independent Nrg1 isoforms appear to participate in muscle

spindle induction, for instance the secreted IgNrg1b3 (GGF)

isoform that is also produced at low levels in sensory

neurons. Alternately, metalloproteinases that are known to

process Nrg1 might contribute to IgNrg1 shedding in vivo

(Montero et al, 2000; Shirakabe et al, 2001; Horiuchi et al,

2005; La Marca et al, 2011; Luo et al, 2011). Sensory neurons

provide the IgNrg1 signal for spindle induction. Because of

their limited availability, the relative overabundance of CRD-

Nrg1, and the lack of IgNrg1-specific antibodies, we were

unable to directly assess IgNrg1 processing in sensory

neurons. However, our experiments indicate that the

endogenous Bace1 and metalloproteinases cooperatively

cleave IgNrg1b1 in hippocampal neurons, similar to the

shedding of CRD-Nrg1 described recently (Fleck et al,

2013). Further work is required, for instance by the use of

mouse genetics, to assess the contribution of metallo-

proteinases to IgNrg1b1 cleavage in sensory neurons.

We observed subtle differences in maturation of muscle

spindles in Bace1 and IgNrg1 mutant mice; for instance,

IgNrg1 but not Bace1 mutants frequently display spindles

with unusually few intrafusal fibres. Thus, Bace1-dependent

and -independent IgNrg1 isoforms might assume slightly dif-

ferent functions during muscle spindle maturation.

Alternatively, these differences in muscle spindle morphology

might represent a response to graded differences in Nrg1

signals. In particular, co-IgNrg1 animals display a very severe

reduction in spindle numbers (84% reduction), significantly

smaller spindle diameter and fewer intrafusal fibres in remain-

ing spindles; compound Bace1� /� IgNrg1D/þ mutants spin-

dles are reduced in numbers (71% reduction) and display

milder changes in spindle size and intrafusal fibre numbers;

finally, in Bace1 mutant and inhibitor-treated mice, spindles are

reduced in numbers (B50%), but numbers of intrafusal fibres

are comparable to those in wild-type mice. Thus, a graded

lowering of Nrg1 signals in this series of mutants appears to be

translated into more and more pronounced reduction in num-

bers of muscle spindles and into increasingly pronounced

severities of morphological deficits in remaining spindles.

Nrg1 generated by sensory neurons exerts two unrelated

functions, muscle spindle induction and myelination, and

both are disrupted in Bace1 mutant mice. This argues strongly

for a Bace1-dependent shedding of Nrg1 in the control of these

events. In particular, our biochemical data show that Bace1

processes CRD-Nrg1b1 sequences in cultured HEK293 cells.

Unprocessed CRD-Nrg1 has an apparent MW of 130–140 kD

when expressed in cultured cells, and a Nrg1 isoform of

130 kD accumulates in the brain of Bace1� /� or Ly2811376-

treated mice (Willem et al, 2006 and this study). Furthermore,

hypomyelination is observed in Bace1� /� and CRD-Nrg1þ /�

mice (Michailov et al, 2004; Willem et al, 2006). Together,

these experiments indicated that CRD-Nrg1 requires Bace1-

dependent processing to control myelination. A recent report

demonstrated that hypermyelination associated with

overexpression of CRD-Nrg1 is not completely blocked by a

Bace1 mutation, although a trend that did not reach a

statistical significance was observed (Velanac et al, 2012).

Thus, other substrates but CRD-Nrg1 might cause or

participate in the impaired myelination observed in Bace1

mutants. Alternately, the transgenic overexpression of CRD-

Nrg1 might bypass the processing by Bace1. In this context, it

is noteworthy that Bace1-dependent processing only occurs

during transit of substrates through endosomes, whereas

Figure 6 The maturation of muscle spindles depends on Bace1 and IgNrg1. (A) Immunohistological staining of adult (P30) muscle spindles
from the hindlimbs of mice of indicated genotypes. The capsule (collagen IVþ ) and sensory innervation (NF200þ ) are observable in all
genotypes. Note that the intensity of calbindin staining of intrafusal fibres depends on the dose of IgNrg1 and on Bace1 (quantified in
Supplementary Figure S6A). (B–E) Distribution of the diameter (B, C) and number of intrafusal fibres (D, E) in muscle spindles of Bace1 and
IgNrg1 mutants. Scale bar, 20mm (A).
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Figure 7 Continuous Nrg1 signalling is required to sustain muscle spindles in the adult. (A) Schematic outline of Nrg1 ablation and spindle analysis
in adult coTxNrg1 mice (Tx, tamoxifen). (B) qPCR analysis of Nrg1 transcripts in DRG of control and coTxNrg1 mice at P100. (C, D) Performance of
coTxNrg1 mice (P120) on the beam walk test. coTxNrg1 mice display frequent missteps and distinctive hopping movements; the latter is also a
feature of co-IgNrg1 mice. (E) 3D reconstruction of muscle spindles (white lines) in the tibialis anterior muscle of control and coTxNrg1 mice (P180).
(F) Quantification of numbers of muscle spindles in tibialis anterior muscle of control (black bars) and coTxNrg1 (red bars) animals. (G) Distribution
of muscle spindle length in coTxNrg1 and control mice. (H) Immunohistological analysis of muscle spindles from control and coTxNrg1 animals.
The presence of NF200þ endings indicates that sensory projections contacted spindles in both genotypes (arrowheads), but calbindin was not
detectable in intrafusal fibres of coTxNrg1 mice. In addition, collagen IV staining in outer capsules was weak and interrupted, indicating that
capsules degenerated in remaining spindles of coTxNrg1 mice. (I) Schematic summary of gait impairment in Ly2811376-treated, Bace1� /� , co-
IgNrg1 and coTxNrg1 animals. Each panel displays the directions of paw movements (arrows) during a series of two steps. Both Bace1� /� and
Bace1-inhibited mice display defective anterior/posterior coordination resulting in a swaying walk. In addition, co-IgNrg1 and coTxNrg1 mice show
more pronounced deficits of posterior homologue coupling resulting in frequent hopping. Scale bars, 1.5 mm (E); 15mm (H).
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other proteases like those of the metalloproteinase family are

active at the plasma membrane (Edwards et al, 2008; Willem

et al, 2009; Weber and Saftig, 2012). In such case,

metalloproteinases could contribute to enhanced and Bace1-

independent Nrg1 signalling in mice overexpressing CRD-

Nrg1. Alternatively, transgenic CRD-Nrg1 overexpression

might saturate ErbB signalling; hence Schwann cells would

no longer be affected by a reduction of bioactive Nrg1 caused

by Bace1 mutation.

Two isoforms, Ig- and CRD-Nrg1, are expressed in sensory

neurons (Meyer et al, 1997). We show here that IgNrg1

induces formation of muscle spindles, but is dispensable for

myelination. In contrast, CRD-Nrg1 regulates the development

of Schwann cells and myelination, but is not required for

muscle spindle formation (Meyer et al, 1997; Wolpowitz et al,

2000; Hippenmeyer et al, 2002). The question arises of how

Ig- and CRD-Nrg1 isoforms produced in the same sensory

neurons exert their distinct roles. Both Nrg1 isoforms are

cooperatively cleaved by Bace1 and metalloproteinases

(this work, Willem et al, 2006; Fleck et al, 2013). Further,

similar downstream signalling molecules such as ErbB2 and

CREB participate in myelination and in muscle spindle

induction (Garratt et al, 2000; Andrechek et al, 2002; Leu

et al, 2003; Arthur-Farraj et al, 2011; Herndon et al, 2013).

Divergent intra- or intercellular trafficking mechanisms might

exist that result in separate subcellular localization and

function of Ig- and CRD-Nrg1 isoforms.

Functions of Bace1 in the mature nervous system

We demonstrate here that continuous Bace1 activity is re-

quired in the adult to sustain muscle spindles and therefore

maintain accurate proprioception and coordinated movement.

Bace1 was assigned various developmental functions, for

instance in myelination and vascularization of the eye (Hu

et al, 2006; Willem et al, 2006; Cai et al, 2012). Further

behavioural deficits (prepulse inhibition, novelty-induced

hyperactivity, social recognition) were observed, which

might originate from disrupted synapse formation and

maturation (Stefansson et al, 2002; Laird et al, 2005;

Savonenko et al, 2008; Wang et al, 2008). Bace1 inhibition is

considered a promising route for the treatment of Alzheimer’s

disease, and is expected to interfere with Ab generation and

the formation of pathogenic Ab aggregates (Haass, 2004; Luo

et al, 2011). To this date, several Bace1 inhibitors are tested in

clinical phase II and planned for phase III. Adverse effects due

to the inhibition of physiological functions of the protease

must be considered. The data presented here indicate that one

unwanted side effect of a long-term inhibition of Bace1 in

adults might be disrupted muscle spindle functions, which are

expected to impair coordinated movement.

Materials and methods

Animal strains and generation of IgNrg1flox and IgNrg1D

alleles
Bace1� /� and IgNrg1b1Ov (Nrg1 type I b1 overexpression under the
control of the Thy 1.2 promoter) strains have been described
(Michailov et al, 2004; Dominguez et al, 2005). Exons 3 and 4 of
Nrg1 encode the Ig-like domain (IgNrg1). IgNrg1flox mutants
contain LoxP sites 50 and 30 of exon 4, which were inserted by
homologous recombination into embryonic stem (ES) cells.
Targeted ES cells were used to generate a mutant strain using
standard techniques. The IgNrg1D strain was generated by
crossing IgNrg1flox with Deletercre animals (Schwenk et al, 1995),

in which cre recombinase is expressed in all tissues including germ
cells, thus inducing complete recombination. We obtained IgNrg1D

mice upon backcrossing DeletercreIgNrg1flox animals with wild-type
animals. The Wnt1-cre stain expresses cre in neural crest cells,
causing recombination in the progenitors that give rise to sensory
neurons (Danielian et al, 1998; Le Douarin and Kalcheim, 1999).
Wnt1creIgNrg1flox/D (co-IgNrg1) mice were used for further analysis.
Krox20cre/þErbB2flox/flox animals (here also called coErbB2) present
severe hypomyelination similar to Bace1� /� mice, and were
previously described (Garratt et al, 2000). Phenotypes were
analysed on a mixed C57Bl/6;129Ola background and mutants
always compared with littermates.

Bace1 inhibition in adult mice
In vivo pharmacology studies were conducted with wild type,
heterozygous and homozygous Bace1 mutant mice (EPO Berlin-
Buch GmbH). Briefly, the Bace1 inhibitor Ly2811376 (Eli Lilly) was
prepared as a 160mg/ml stock solution in pharmasolve (ISP tech-
nologies Inc), and aliquots were diluted 1/16 in corn oil (Ly2811376
concentration: 10 mg/ml). The animals were treated daily with
Ly2811376 at a dose of 100 mg/g of body weight/day for 29 con-
secutive days, or a corresponding volume of vehicle solution, a
treatment that did not change body weight. Animals were sacrificed
within 4 h after the last treatment. Brain tissue was snap frozen and
kept at � 801C until further processing.

Ablation of Nrg1 expression during adulthood
The cre-ERTM and Nrg1flox/flox strains have been described (Yang
et al, 2001; Hayashi and McMahon, 2002). Briefly, in cre-ERTM mice
the cre-ERTM fusion protein is ubiquitously expressed under the
control of CAG promoter (CMV enhancer/chicken beta-actin
promoter, cf. Hayashi and McMahon, 2002). We used a previously
established colony of cre-ERTMNrg1flox/flox mice, in which cre-
mediated recombination of Nrg1flox alleles only occurs after
tamoxifen binds to the oestrogen receptor domain (ERTM) of cre-
ERTM (Fricker et al, 2013). Recombined Nrg1flox alleles generate
truncated Nrg1 mRNAs lacking a functional EGF domain (Yang
et al, 2001). Ten–week-old cre-ERTMNrg1flox/flox mice were treated
with tamoxifen (Fricker et al, 2013). Animals were kept for further
16 weeks before dissection. Cre-ERTMNrg1flox/flox animals treated
with tamoxifen are referred as coTxNrg1, and were compared with
three control groups (cre-ERTMNrg1flox/flox vehicle treated; cre-
ERTMNrg1þ /þ tamoxifen treated; Nrg1flox/flox tamoxifen treated).
All control groups displayed similar characteristics and were
therefore grouped for the spindle length analysis.

Animal handling and assessment of motor coordination
The motor coordination of 5–7 months’ old Ly2811376-treated,
Bace1 and co-IgNrg1 mutant mice were assessed using gait analysis
(Treadscan, Clever Sys Inc. Beare et al, 2009) and inverted grid tests
(Coughenour et al, 1977; Landauer et al, 2003). We assessed the
motor coordination of the cohort of 4-month-old coTxNrg1 using
beam walking (as described in Carter et al, 2001; Baskin et al, 2003;
Taylor et al, 2005). All experiments were conducted in accordance
with institutional German regulations and home office guidelines in
UK, respectively.

Double in situ hybridization and immunohistochemistry
Fluorescent double in situ hybridization and immunohistological
analyses were performed as described (Wende et al, 2012) and
acquired using Zeiss LSM700 confocal microscope. The sequences
of IgNrg1 and Bace1 ISH probes correspond to the 50UTR and type
I-specific coding sequence of Nrg1, or the coding sequence and
30UTR of Bace1, respectively. Antibodies used are Egr3 (rabbit,
1:300, Santa Cruz), Neurofilament 200 (chicken, 1:20 000,
Millipore), calbindin (rabbit, 1:500, Swant), collagen IV (goat,
1:1000, Millipore), S100 (rabbit, 1:1000, Dakocytomation), TrkC
(rat, 1:500, R&D Systems), Islet1/2 (mouse, 1:200, DSHB). DAPI
(250 nM, Invitrogen) was used as nuclear counter stain.

Colocalization of Bace1 and IgNrg1 transcripts in DRG neurons
was performed on eight DRG sections from four animals. TrkCþ or
Isletþ sensory neurons were quantified from serial sections (12mm)
of L5 DRG, in the five centremost sections of 3–6 animals/geno-
type/age. Only TrkCþ cells displaying nuclei in the focal plane were
counted.
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Muscle spindle identification and quantification
The number of muscle spindles per section were counted in lower
hindlimbs or the tibialis anterior of 4–6 animals per genotype/
treatment. Wild-type littermates were used as controls. The
lower hindlimb (P0/P30) or the tibialis anterior (P30/P180) were
sectioned transversally (60mm), every fourth section was stained,
and five (P0 animals) or 10 (adult animals) sections of the center of
the muscle were evaluated per animal. Muscle spindles were
defined as encapsulated structures displaying specific morphologi-
cal hallmarks (nuclear clustering, periaxial space of Sherrington)
and containing at least two intrafusal fibres expressing Egr3 (P0) or
calbindin (adult). Morphological criteria and immunohistological
signals were used to prevent an underestimation of muscle spindle
numbers caused by loss of innervation or reduction of Egr3/
calbindin expression in mutant strains. Expression of calbindin in
intrafusal fibres was particularly weak in P180 control mice, and
absent in age-matched coTxNrg1 mutants. We therefore used
morphological criteria (nuclear aggregation, space of Sherrington)
to identify muscle spindles in P180 animals.

Muscle spindle diameter and intrafusal fibre counts were obtained
from immunohistological sections and were determined at the level of
the annulospiral endings (equatorial plane), identified by NF200
staining; 25 muscle spindles/animal were analysed. The area
enclosed by the outer capsule of the spindle was measured using
ImageJ software 1.46j. Intrafusal fibres were identified using Egr3/
calbindin staining and cell morphology. Each point represents
mean±s.e.m. of data obtained from 5–6 animals per genotype.

For 3D reconstructions of the tibialis anterior muscle, pictures of
sections were assembled as a stack. On individual pictures, the
surface of the muscle was outlined and the position of muscle
spindles was indicated. Muscle spindles were then aligned for
reconstructions using ImageJ 1.46j. Muscle spindle length
was estimated on reconstructed muscle, data points represent
mean±s.e.m. of 3–6 animals per condition.

Cell culture and biochemical analyses
The Bace1 plasmid was described in Westmeyer et al (2004). For
HEK293 cell culture experiments, IgNrg1b1/2 (type I isoforms) and
CRD-Nrg1b1 cDNAs were inserted into pSecTag and pcDNA3.1
expression plasmids, respectively. IgNrgb1 and b2 carry an HA
tag close to the N-terminus, while CRD-Nrg1b1 bears its HA tag
between EGF and transmembrane domains (Fleck et al, 2013). In
constructs used for SEAP assay, the alkaline phosphatase sequences
substituted sequences of the type I-specific and Ig domains of Nrg1
(Willem et al, 2006). The sequences of all constructs were verified
by sequencing.

HEK293 cells were cultured in DMEMþ 10% FCSþpenicillin/
streptomycin (Gibco-BRL Invitrogen) and transfected (5mg DNA)
using Lipofectamine 2000 (Invitrogen) following the manufacturer’s
instructions. The hippocampal neurons were isolated from embryo-
nic day 18 rats as described previously (Kaech and Banker, 2006).
Dissociated neurons were plated at 17 700 cells per cm2 onto 6 cm
dishes coated with poly-L-lysine (1 mg/ml; Sigma) and cultured in
Neurobasal medium supplemented with 2% B27 and 0.5 mM
L-glutamine (all from Invitrogen). We transfected primary neurons
after 4 days of culture with pSecTag-HA-IgNrg1b1 plasmid (5 mg
DNA) using Lipofectamine 2000. After 9 days in culture, cells were
incubated for 24 h in the presence/absence of Bace1 (C3; 0.2mM) or
metalloproteinase (GM6001; 20mM) inhibitors (EMD Biosciences,
Merck). Supernatants and cells were independently collected either
24 h post-transfection (HEK293) or following the inhibitor treatment
(primary neurons) for western blot analysis of Nrg1 cleavage.
Supernatants were cleared by centrifugation and cells were lysed

in RIPA buffer containing protease inhibitor mix (Sigma P8340).
Immunoprecipitation from neuronal supernatants was performed
with anti-HA Agarose (Sigma A2095; 25 mg/ml) and washed
according to standard protocols (Fleck et al, 2013). Western blots
were performed as described (Fleck et al, 2013) using the 4F10
antibody, which recognizes an epitope that is exclusively presented
by Bace1-cleaved N-terminal Nrg1 fragments (1:40) and commercial
antibodies directed against C-terminal Nrg1 (sc348, Santa Cruz,
1:2000), Bace1 (D10E5, Cell signalling, 1:1000), calnexin (AF18,
Enzo, 1:5000) and HA (3F10-HRP coupled, Roche, 1:10 000).
Secondary anti-IgG-HRP antibodies were from Santa Cruz (1:2000)
or Promega (1:10 000).

For SEAP analysis, the medium was changed 24 h after
transfection and cells were incubated for 16 h in the presence/
absence of 5mM C3 and 20 mM GM6001 (EMD Biosciences,
Merck). The SEAP assay was performed as described (Willem
et al, 2006).

Semi-quantitative PCR
qPCR was essentially performed as described (Wende et al, 2012).
The primers used are shown in Supplementary Table I. In Nrg1
isotype analyses, the amount of CRD-Nrg1 transcripts in control
DRG was set to 100%, and amounts of other isoforms in control and
mutant DRG were displayed as proportion of this value.

Statistics
Data are presented as mean±s.e.m. The differences observed
were assessed by ANOVA followed by 2-tailed unpaired Student’s
modified t-test. Significance is displayed as follows: NSP40.05;
*Po0.05; **Po0.01; ***Po0.001. Supplementary Table II details
the statistical analysis for the quantification of muscle spindles in
newborn Bace1 and IgNrg1 mutants presented in Figure 5A.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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