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We congratulate the authors on a stimulating paper on a very intuitive and
general approach to construct hypotheses tests. Restricting the considered class
of tests to simple ones determined by a detector function φ, it seems most
natural to minimize over φ and maximize over the pair (x, y) ∈ X ×Y where X
is the hypothesis and Y the alternative. Particularly, this guarantees that the
corresponding test minimizes the worst case error which might happen under
the given pair of hypothesis and alternative. It is evident that the resulting
test is just the likelihood-ratio test for the worst-case hypothesis x∗ against the
worst-case alternative y∗ with corresponding risk ε∗.

The used approach naturally leads to some restrictions yielding solvability of
the resulting saddle point problem, including that X and Y need to be compact
and convex. The authors propose an aggregation scheme to overcome this re-
striction, which is of independent interest from our point of view. Even though
it is limited to X and Y being convex hulls of finitely many convex and compact
subsets, the construction might be very helpful in many cases.

In the following we will comment on the impact of the proposed methodology
to the problem of change point detection. Suppose m observations of the form

Yi = μm

(
i

m

)
+ σεi, 1 ≤ i ≤ m (1)

are given, where εi
i.i.d.∼ N (0, 1) and μ is a bump function of the form μm(x) =

Δm1Im with a subinterval Im ⊂ [0, 1]. We want to test the hypothesis μ = 0
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against the alternative μ �= 0 and ask for the detection boundary in terms of
Δm, |Im| and σ as m → ∞. This problem can be handled with Goldenshluger,
Juditsky and Nemirovski’s approach by the construction used in Section 4.2.3.
W.l.o.g. we will assume n := |Im|−1 ∈ N, set V = {0}, e[i] = ei (the ith unit
vector in R

n) and define the matrix A ∈ R
m×n by

A =

⎛
⎜⎜⎜⎜⎝

1m|Im| 0 0

0 1m|Im|
...

0
...

. . .
...

0 0 1m|Im|

⎞
⎟⎟⎟⎟⎠ .

Here 1m|Im| = (1, 1, . . . , 1)T ∈ R
m|Im|. Note that m is the number of obser-

vations and n = n(m) is related to the complexity of the alternative, more
precisely it equals the number of possible non-overlapping positions for a bump
of width |Im| in [0, 1].

Now the ε-rate profile of the test is given by ρGi (ε) in (Gi,χ
ε ), i.e.

ρGi (ε) = max
ρ,r

{
ρ : |r| ‖Ae [i]‖2 ≤ σ

[
ErfInv

( ε

4n

)
+ ErfInv

( ε

2

)]
, r ≥ ρ

}

=
σ
[
ErfInv

(
ε
4n

)
+ ErfInv

(
ε
2

)]
√
m |Im|

.

Here ErfInv(Erf(t)) = t for all t ∈ R with Erf(t) = (2π)−1/2
∫∞
t

exp(−s2/2) ds,
which is in fact a multiple of the conjugate error function. Asymptotically it
holds

Erf (t) =
exp

(
− t2

2

)
√
2πt

(1 + o (1)) , t → ∞

and thus
ErfInv (s) =

√
2
√

− ln (s) (1 + o (1)) , s ↘ 0.

The test gained by convex optimization is thus able to decide between μ = 0
and μ �= 0 in the specified model if

√
m |Im|Δm ≥

√
2σ

√
− ln (|Im|), m → ∞,

and is hence asymptotically optimal (see e.g. [2]).
If we consider the problem of testing μ = 0 against k signals, the complexity

of the alternative needs to equal
(|Im|−1

k

)
. Thus n ≈ −k(ln(|Im|) + ln(k)), and

thus the test gained by convex optimization will be able to decide between μ = 0
and μ �= 0 in this situation if

√
m |Im|Δm ≥

√
2kσ

√
− ln (|Im|)− ln (k), m → ∞.

Note that
√
2k is not optimal anymore, see again Sect. 2.5 in [2] (we also refer

to [1] in a related context) where we obtained the constants 4 for a bounded
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and 12 for an unbounded number of change points. For the proposed testing
procedure an unbounded number of signals in the alternative would (as shown
above) lead to a diverging factor km → ∞ instead of k.

At this point we want to emphasize that the above discussion shows the ques-
tion of optimality to be answered in a conservative fashion in Proposition 4.2.
In the discussed situation, no test achieving the κn-improved ε-rate can exist,
but from Proposition 4.2 this cannot be concluded. It remains unclear if the
same is true in many other interesting situations.

A similar behavior can be observed in case of indirect measurements. Suppose
(1) is replaced by

Yi = (h ∗ μm)

(
i

m

)
+ σεi, 1 ≤ i ≤ m

with a smooth and 1-periodic kernel h, and ∗ denotes periodic convolution.
Again we want to test μ = 0 against μ = Δm1Im with a subinterval Im ⊂ [0, 1].
This can be handled similarly as above by replacing A with H ◦ A where H is
the m×m-matrix describing the discretized convolution with h. It can readily
be seen that

‖(H ◦A) e [i]‖2 =
√
m ‖h ∗ 1Im‖L2([0,1]) (1 + o (1))

=
√
m |Im| ‖h‖L2([0,1]) (1 + o (1)) , m → ∞.

Thus the test gained by convex optimization is able to decide between μ = 0
and μ �= 0 in this indirect model if

√
m |Im| ‖h‖L2([0,1]) Δm ≥

√
2σ

√
− ln (|Im|), m → ∞.

Proposition 4.2 only ensures this rate to be optimal up to a
√

− ln(|Im|)-factor.
In view of the case of direct observations this rate is even though likely to be
optimal with optimal constant.
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