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I learned, right along with me: 

There is no immortality that is not built on friendship and work 

done with care. All the secrets in the world worth knowing are 
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be an open city, with all sorts of ways to wander in. 
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― Robin Sloan, Mr. Penumbra’s 24-hour bookstore 
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ABSTRACT 

The main focus of the present thesis was to investigate the stabilization ability of 

poly(ionic liquid)s (PILs) in several examples as well as develop novel chemical structures and 

synthetic routes of PILs. The performed research can be specifically divided into three parts 

that include synthesis and application of hybrid material composed of PIL and cellulose 

nanofibers (CNFs), thiazolium-containing PILs, and main-chain imidazolium-type PILs.  

In the first chapter, a vinylimidazolium-type IL was polymerized in water in the presence 

of CNFs resulting in the in situ electrostatic grafting of polymeric chains onto the surface of 

CNFs. The synthesized hybrid material merged advantages of its two components, that is, 

superior mechanical strength of CNFs and anion dependent solution properties of PILs. In 

contrast to unmodified CNFs, the hybrid could be stabilized and processed in organic solvents 

enabling its application as reinforcing agent for porous polyelectrolyte membranes.  

In the second part, PILs and ionic polymers containing two types of thiazolium repeating 

units were synthesized. Such polymers displayed counterion dependent thermal stability and 

solubility in organic solvents of various dielectric constants. This new class of PILs was tested 

as stabilizers and phase transfer agents for carbon nanotubes in aqueous and organic media, and 

as binder materials to disperse electroactive powders and carbon additives in solid electrode in 

lithium-ion batteries. The incorporation of S and N atoms into the polymeric structures makes 

such PILs also potential precursors for S, N - co-doped carbons. 

In the last chapter, reactants originating from biomass were successfully harnessed to 

synthesize main-chain imidazolium-type PILs. An imidazolium-type diester IL obtained 

via a modified Debus-Radziszewski reaction underwent transesterification with diol in 

a polycondensation reaction. This yielded a polyester-type PIL which CO2 sorption properties 

were investigated. In the next step, the modified Debus-Radziszewski reaction was further 

applied to synthesize main-chain PILs according to a convenient, one-step protocol, using water 
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as a green solvent and simple organic molecules as reagents. Depending on the structure of the 

employed diamine, the synthesized PILs after anion exchange showed superior thermal stability 

with unusually high carbonization yields.  

Overall, the outcome of these studies will actively contribute to the current research on 

PILs by introducing novel PIL chemical structures, improved synthetic routes, and new 

examples of stabilized materials. The synthesis of main-chain imidazolium-type PILs by a 

modified Debus-Radziszewski reaction is of a special interest for the future work on porous 

ionic liquid networks as well as colloidal PIL nanoparticles.  
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1. INTRODUCTION 

Poly(ionic liquid)s (or alternatively polymerized ionic liquids, PILs) are 

macromolecules derived from polymerizable ionic liquid compounds, called ionic liquid 

monomers (ILMs). The studies on PILs date back to the early 1970s when the pioneering 

research on the free radical polymerization of ionic vinyl monomers was performed 

by Salamone and others.1 Initially, the interest on such polymers was mainly focused on 

the synthesis and physical properties of polycations bearing tetraalkylammonium or aromatic 

charged groups (e.g. imidazolium, pyridinium). It is worth noting that they had not attracted 

much attention nor had they been specifically classified as PILs until they were rediscovered in 

the late 1990s. Then, such structures were categorized as “polymerized ionic liquids” 

and investigated as potential materials for solid state electrolytes by Ohno et al.2-5 Ohno’s work 

coincided in time with the technological progress which triggered the growing need to develop 

more efficient and safer materials for energy storage and ion transport. The effects of several 

structural parameters [such as the type of counterions, polymer structure, glass transition 

temperature (Tg), and mesophase morphology] on the ion conductivity of PILs have been 

systematically and intensively studied.2, 3, 5-12 Even though we presently know that due 

to unsatisfactory intrinsic ion conductivity of un-doped PILs, they failed to bring a breath of 

wind to the field of solid state electrolytes, PILs have ever since been utilized as 

a multifunctional platform for many noteworthy materials applications giving rudiments to the 

present work. 

PILs bear IL moieties in the repeating units of their polymeric chains, therefore 

by definition they are a subclass of polyelectrolytes. Their fundamental building blocks, ILMs, 

are polymerizable organic salts which due to efficiently suppressed crystallization are liquids 
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below 100 °C. Their amorphous character originates from several factors: asymmetric chemical 

structure (introducing steric hindrance), weak Coulombic interactions between ions, charge 

delocalization, and lack of intermolecular interactions, just to name a few. The structure of PILs, 

which merges the polymeric nature with the charged IL moiety covalently immobilized in each 

repeating unit, results in their unique physicochemical properties. As PILs retain some features 

of ILs, they are recognized as versatile and remarkably tunable materials. It is worth noting that 

PILs inherit from their low molar mass IL precursors the highly charged character and the 

counterion-dependent solubility in aqueous and organic media. Due to the presence of charges 

among polymer chains, bulk PILs possess a certain ion conductivity (usually below 10-6 S/cm) 

which initiated studies on PILs as potential materials for solid state electrolytes. The tunable 

solubility substantially broadens the application spectrum of PILs in the fields where processing 

in organic media of a wide range of polarity is unavoidable.13-15 It is important to denote that 

by this property PILs outmatch traditional polyelectrolytes which are typically soluble only in 

water and high polarity organic media, such as dimethyl sulfoxide (DMSO) or dimethyl 

formamide (DMF). Additionally, PILs possess often superior thermal stability. In regard to their 

polymeric nature, PILs are mechanically more robust and can be more easily processed into 

spatially controlled shapes than ILs.16-18 Among the disadvantages of PILs, the high affinity of 

even hydrophobic PILs towards water molecules emerges as a substantial drawback.19 

Nevertheless, several methods like the introduction of large, fluorinated counterions in order to 

decrease hydrophilicity and the scrupulous purification (drying at high temperatures and high 

vacuum, the repeated precipitation from water miscible organic solvents, and lyophilization) 

were applicable to minimize the water content in PILs.  
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1.1 The chemical structure and physical properties of PILs 

Recently the growing interest on PILs yielded the abundance of novel materials 

possessing a variety of chemical structures and polymeric architectures. The wide choice 

of polymerizable cations and anions as well as a multitude of available counterions supplies the 

scientists with countless number of accessible PILs. In addition, the properties of PILs have 

been effectively altered by common methods in polymer chemistry, for instance modification 

of their polymeric architecture or synthesis of PIL copolymers.  

The family of PILs can be categorized according to the type of charges which are 

attached to the polymer backbones. Thereupon, it is generally accepted to divide PILs into three 

main subgroups: polycations, polyanions and polyzwitterions. Among them, the cationic PILs, 

especially those which contain imidazolium moieties, are extensively studied.4, 20-27 Since 

poly(1-vinyl-3-alkyl imidazolium) polymers reflect the most representative properties of the 

whole PIL family, they are a good example to describe diverse features of this group 

of polyelectrolytes. When reacted with strong bases, the imidazolium-type PILs undergo 

deprotonation at C2 position to yield highly reactive carbenes. In other distinctive reactions 

of PILs, the counterion exchange is recognized as a straightforward and efficient method for 

tuning their properties. PILs possessing hydrophilic counterions like iodide, bromide, 

or chloride dissociate in water towards polysalts. They are typically well soluble in polar 

organic solvents, like methanol (MeOH, Table 1). When hydrophilic counterions are exchanged 

into fluorinated and non-solvating species, the solution properties of PILs are significantly 

altered. PILs become then insoluble in water, but soluble in various organic solvents, for 

instance tetrahydrofuran (THF), ethyl acetate (EtAc), and acetone (Table 1). This feature is 

often associated with the reduced Coulombic interactions between charged groups attached to 

the polymeric backbone and hydrophobic counterions like tetrafluoroborate (BF4
-), 
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hexafluorophosphate (PF6
-) and bis(trifluoromethane sulfonate)imide (TFSI-). Thus, the 

solubility properties of PILs can be easily shifted from water to organic solvents without the 

necessity of changing the chemical structure of their main-chains. In addition, it is worth noting 

that the choice of counterion has a strong effect on other physicochemical properties of PILs, 

for instance thermal stability and Tg. Besides the effect of counterion, also the structure of alkyl 

substituents attached to the imidazolium ring affects the physical features and solution 

properties of ILs and their polymers. For example, in the case of imidazolium-type ILs, the 

length of the alkyl side-chain influences the hydrophobicity (and consequently solubility) as 

well as melting points of ILs.  

Table 1. The solubility of poly(1-vinyl-3-ethyl imidazolium) [P(ViEtIm+X-)] polymers 

as the example of the dependence of PILs solution properties on the type of counterion 

  (X- - counterion defined in the first column of the table).15  

P(ViEtIm+X-) H2O MeOH Acetone THF EtAc 

Br- + + - - - 

PF6
- - - + - - 

BF4
- - - - - - 

CF3SO3
- - + + - - 

(CF3SO2)2N- - - + + - 

(CF3CF2SO2)2N- - + + + + 

 

Apart from the imidazolium species, the library of cationic PILs encloses the abundance 

of other functional groups, including tetraalkyl ammonium,28, 29  

pyridinium,30, 31 piperidinium,32 pyrrolidinium,33 pyrrolium32 and triazolium34, 35 moieties 

(Figure 1). Such a diversity of implemented cationic moieties not only originates from the 

scientific curiosity to explore unknown structural models, but substantially affects properties of 

PILs and widens their application scope (discussed in the latter section of this chapter). 
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PILs bearing anionic functionalities in their polymeric chains have attracted by far less 

attention than polycations. Hence, the list of reported anionic PILs is relatively short, which can 

be associated mainly with the complicated synthesis of the corresponding ILMs. Nevertheless, 

examples of sulfonate, carboxylate, trifluoromethanesulfonamide, phosphoric, or amide-type 

anionic PILs combined with alkyl-imidazolium, pyridinium, or tetralkylamonium mobile 

counterions have been reported (Figure 1).36  

 

Figure 1. Examples of most common anions and cations incorporated in the structures 

  of PILs.36 

Finally, several studies reporting zwitterionic PILs are also available in the literature. 

Zwitterionic PILs bear both, cationic and anionic species chemically bounded to the polymeric 

chains. Usually monomeric precursors of these polymers do not achieve liquid state below 

100 °C, so by definition they cannot be included into the scope of ILMs. However, due to the 

structural similarity and interesting properties, they are often enclosed into studies discussing 

PIL research. For example, imidazolium and tetraalkylammonium cations have been 

Cationic PILs:

Backbones

Counterions

Anionic PILs:

Backbones

Counterions



 

6 
 

incorporated into the structure of polymers together with anions like sulfonate, 

trifluoromethanesulfonamide, or alkoxydicyanoethenolate anions.36
 

1.2 Synthesis of PILs 

The majority of the reported synthetic methods towards PILs involve the direct 

polymerization of ILMs. In order to obtain PILs with diverse properties, an anion exchange 

reaction must be performed at the stage of ILM synthesis or after its polymerization (Figure 2). 

The first pathway requires the replacement of counterions in ILMs followed by polymerization 

of each ion-exchanged ILM. Such PILs are typically of high purity, being free of contamination 

of undesired anions or cations. In addition, this method is often utilized in order to access 

copolymers of PILs with various charged or neutral polymers. Nevertheless, it is synthetically 

complicated since the polymerization conditions must be optimized independently for each 

monomer. In addition, the polymerization of ILMs with large counterions may proceed slowly 

and in some cases end up unfavorably with oligomers due to steric hindrance. The latter method 

involves the synthetically facile counterion exchange of existent PILs. Nevertheless, 

non-quantitative anion exchange is reckoned as a common obstacle, which in some fields may 

limit the application scope of such polymers.36 However, it is worth noting that the amount of 

residual non-exchanged counterion can be minimized by repeating the ion-exchange procedure.  
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Figure 2. Synthetic routes towards anion exchanged PILs (R - alkyl substituent, 

  X-, X′- - counterions; MX, MX′ - salts). 

Among the polymerization methods employed in the preparation of PILs, free radical 

polymerization of vinyl, styrenic or methacrylic ILMs is the most frequent one. Its popularity 

arises from the synthetic simplicity and high tolerance to a wide range of functional groups and 

impurities. As a consequence, a variety of hydrophilic and hydrophobic PILs and their 

copolymers has been synthesized by free radical polymerization. It includes cationic 

and anionic PILs as well as polyzwitterions. Typically, such reactions are performed in 

a medium, which is a good solvent for both, the monomer and the corresponding PILs. 

However, some interesting structures like nanoparticles and fibers can be obtained for instance 

by precipitation polymerization. As an example, this method was utilized by Yuan et al. for the 

synthesis of polymeric nanoparticles with side-chain length dependent unilamellar or 

multilamellar morphology. In addition, free radical polymerization provides a synthetic 

platform for the preparation of cross-linked PIL nanoparticles, gels or even monolithic porous 

structures.37, 38 Such polymeric structures of satisfying cross-linking density can be accessed by 
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the utilization of multivalent ILMs or non-ionic cross-linking agents and their subsequent 

copolymerization with ILMs.  

The synthetic methods employed in PIL research are not limited to free radical 

polymerization. Polycondensation reactions,39 “click chemistry”,34 and ring opening metathesis 

polymerization40 have been applied for the preparation of some PILs as their unique structures 

are often not accessible by free radical polymerization. Yet, all the above-mentioned methods 

fail when more sophisticated polymeric architectures, for example block copolymers, are 

desired. In addition, they bring poor control over molar mass and molar mass distribution of the 

synthesized PILs. Thus, controlled radical polymerization (CRP) techniques like reversible 

addition-fragmentation transfer polymerization,41, 42 atom transfer radical polymerization43, 44 

and cobalt-mediated radical polymerization14, 45 have been investigated for the synthesis of 

PILs. CRP methods are powerful tools towards polymers of defined and tunable molar masses 

and narrow molar mass distributions. They can be also used for synthesis of (multi)block 

copolymers, which are of great importance for instance in studies of their self-assembly 

behavior. The utilization of multifunctional initiators for CRP may yield polymers with 

sophisticated architecture (for example branched or star-shaped). Moreover, the novel coupling 

method developed by Detrembleur et al. provides access to symmetric, triblock copolymers of 

PILs.46 In addition to the polymerization in solution or bulk, synthesis of PILs in emulsions, 

microemulsions and dispersions have also been reported. Generally speaking, the synthetic 

toolbox for PILs has been broadened with convenient methods towards nanoparticles, 

(micro)gels, and even open-cell porous materials. 

Whereas polymerization of ILMs dominated the research on PILs, postpolymerization 

modification of some conventional polymeric precursors provides an alternative. It requires the 

synthesis of polymers which bear in their structure certain groups (for instance tertiary nitrogen 
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atoms, imidazole rings or trialkylamine groups), which can be subsequently converted into IL-

type, charged species. These macro-precursors of  

PILs are accessible by typical synthetic methods developed for conventional polymers. 

However, non-quantitative post-polymerization modification reactions of these precursors are 

a major drawback of this method.36  

1.3 Applications of PILs in materials chemistry 

The abundance of accessible structures of PILs and high versatility of their properties 

yields a multitude of applications for which PILs have been successfully tested. 

The physicochemical properties of PILs strongly depend on the choice of counterion, but the 

role of the type of cations or anions covalently incorporated into the polymeric main-chain 

cannot be overlooked. PILs having imidazolium-cations were utilized for various applications, 

like components of light emitting electrochemical cells or field effect transistors,  coatings, and 

solid-phase microextraction.47 They were also successfully incorporated into porous 

polyelectrolyte membranes. This type of membranes is scientifically and industrially attractive 

due to its potential usefulness in areas like gas separation, controlled release, sensors or catalyst 

support.48 Thus, pH sensors and actuators were prepared from porous imidazolium based 

PILs.48, 49 Imidazolium-type PILs can be used as precursors for nitrogen doped carbon 

materials.50 Moreover, their application as catalysts for benzoin condensation has been 

reported.51, 52 Imidazolium PILs have been also recognized as efficient stabilizers for various 

nano- and micro-objects in aqueous and organic media. The dispersions of gold nanorods, silver 

nanoparticles, as well as single and multi-walled carbon nanotubes were effectively stabilized 

and reversibly transferred between water and various organic 

solvents.53, 54 Analogously, the simultaneous role of PILs as stabilizers and phase transfer agents 
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for sub-micron sized particles of conductive polymers, like polypyrrole, polyaniline, 

and poly(ethylenedioxythiophene) has been studied.22 In addition, ILMs were 

photopolymerized as a method for in situ stabilization of gold nanoparticles within the PIL 

matrix.55 Paillard et al. obtained electrochemically stable, imidazolium-containing PIL 

nanoparticles with TFSI- counterion which serve as binder materials for lithium-ion battery 

electrodes.56  

Apart from imidazolium-containing polymers, PILs bearing other cations and anions are 

also useful in materials chemistry. It was reported that for certain usages, the tailored choice of 

ions connected to the polymeric backbone may play a crucial role to enhance the materials 

properties. PILs bearing specific tetraalkyl phosphonium and 4-styrenesulfonate groups were 

employed as stabilizers for nanomaterials. Interestingly, their solutions possess lower critical 

solution temperatures which equips the obtained dispersions with stimuli responsive features 

(e.g. to ionic strength and temperature).54, 57-59 Moreover, due to its relevance in preventing the 

global warming, the research on CO2 sorption and storage has recently attracted much attention. 

PILs are intensively studied for this purpose. Their performance strongly depends on the type 

of cationic moieties incorporated into the structure of  polymers and decreases in the following 

order: tetraalkyl ammonium > pyridinium > phosphonium > imidazolium.60 Thus, PILs were 

successfully engaged in the studies on CO2 sorption, in general outperforming the 

corresponding ILs in terms of CO2 uptake regarding both, absorption kinetics, and capacity. In 

addition, tetraalkyl ammonium-containing PILs were successfully processed into CO2 

sensors.29 Polymers bearing tetraalkyl ammonium species are potentially better materials for 

microwave absorption compared to imidazolium-type PILs, since they possess higher dielectric 

constant and dielectric loss factor values.61 Recently, cholinium-based PILs were obtained for 

the applications in biocompatible ion gels and cellulose coatings.62 Photosensitive 

supramolecular liquid crystalline materials were synthesized from pyridinium-type PILs.63 
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Polymers bearing this cations were also studied for their anti-microbial activity.64 Even though 

most of PILs decompose at high temperatures without achieving liquid state, recently a PIL 

which is a viscous liquid below 100 °C has been reported. This PIL containing anionic sulfonate 

groups in the main chain and alkylammonium-based counterions of the tailored structure can 

be employed in the synthesis of metal nanoparticles for dual purpose, simultaneously as solvents 

and stabilizers.65 Moreover the synthesis of paramagnetic PILs based on pyrrolidinium as well 

as imidazolium was presented.66 In general, the careful choice of the chemical structure of PILs 

may determine their performance in materials applications. Triggered by this knowledge, 

the synthetic methods for novel PIL structures are established as a part of this work in order to 

further widen the application scope of polyelectrolytes. 

1.4 Motivation 

The motivation of the present work embraces the development of new PIL structures for 

the applications as stabilization, phase transfer, and gas storage agents.  The potential usage of 

such polymers in areas like batteries and CO2 adsorption is also in the scope of interest. The 

secondary objective of this thesis is to make PIL synthesis more sustainable, for instance by 

using chemicals produced from biomass and mild reaction conditions. This is relevant, since 

depleting resources of fossil fuels and the “greenhouse effect” are socially significant issues. 

The methods towards PILs and PIL-containing hybrid materials which feasibly harness bio-

derived components, energy-efficient procedure, and environmental-friendly conditions are 

established.  

In Chapter 2, the capability of PILs to act as simultaneous phase transfer agents 

and stabilizers for cellulose nanofibers (CNFs) is investigated. CNFs are water-dispersible bio-
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products with superior mechanical properties. Nevertheless, difficulties in processing CNFs in 

organic media limit their applicability. To overcome this obstacle, the method for grafting 

imidazolium-type PILs onto the surface of CNFs is designed, yielding stable dispersions either 

in water or organic solvents. Subsequently, grafting PILs onto the surface of CNFs improved 

compatibility of the latter with the polyelectrolyte membranes, enabling application of this 

novel hybrid material as reinforcing agents.  

The work presented in Chapter 3 aims to develop new chemical structures of PILs, 

which bear thiazolium functionalities among their polymeric backbone. Establishing of new 

synthetic routes is followed by the investigation of their performance as stabilizing agents. 

Thus, they are examined in applications as binders of the electrode components and as 

stabilizers for carbon nanotubes (CNTs) in water and organic solvents.  

Finally, in Chapter 4 the synthesis of novel main-chain imidazolium-type PILs which 

are partly or fully obtained from bio-derived components is described. In the first part, 

imidazolium-type diester synthesized by the modified Debus-Radziszewski method is 

employed as a precursor of partly bio-derived polyesters. These PILs are found to exhibit 

satisfactory CO2 sorption capacity. In the second part, the modified Debus-Radziszewski 

method is applied for the one-pot synthesis of bio-derived, main-chain imidazolium-type PILs. 

Such energy efficient and “green” method towards PILs is explored in order to synthesize PILs 

of different charge density and to introduce novel-functionalities into their main chains. 

Moreover, the synthesis of PILs possessing aromatic spacers between imidazolium 

functionalities is developed, proving the versatility of the newly developed synthetic procedure. 
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2. OMNIDISPERSIBLE PIL-FUNCTIONALIZED 

CELLULOSE NANOFIBRILS 

Nanocellulose is a unique class of nanomaterials which stems from renewable resources. 

It has recently attracted rapidly growing attention in fundamental science and industry due to 

outstanding material properties and a multitude of potential applications. Its utilization perfectly 

matches a general trend of using bio-derived products as a possible solution for saving depleting 

resources of fossil fuels, reducing environmental pollution, and limiting the “greenhouse 

effect”. Nanocellulose possesses several intrinsic, particular features, such as low thermal 

expansion, functional surface groups, versatile chemical-modification capacity and excellent 

mechanical properties. All of them are combined with a high surface-to-volume ratio – a 

characteristic attribute of all nanomaterials. Among the applications of nanocellulose, barrier 

films, composites, aerogels, and multifunctional foams are the most striking.67, 68 

Scientists distinguish three major forms of nanocellulose materials: cellulose nanofibrils 

(CNFs), cellulose nanocrystals, and bacterial cellulose. All of them have different properties 

due to variations in dimension and mechanical flexibility. CNFs are wire-like anisotropic 

particles composed of crystalline cellulose nanodomains connected by amorphous cellulose 

linkers. Their dispersions possess interesting viscoelastic behavior that can be attributed to a 

high aspect ratio of rods (diameter in the range from 5 to 60 nm and length up to several 

micrometers). CNFs are prone to gelation even at low concentration.68 They display a good 

capability of film formation and consequently were employed in order to produce nanopapers 

with high tensile strength (up to 250 MPa).68 Moreover, CNFs are applied (or being 

implemented) in such branches of industry as food, hygiene and packaging, as well as scaffold 

materials in tissue engineering, and as additives in cosmetic products and pastils.68, 69 Currently, 
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in the case of CNFs obtained via common synthetic methods, their surface is highly charged. 

In this way, CNFs can be readily stabilized in water, but aggregate in most of organic media. 

However, their processing in organic solvents is absolutely essential for certain applications. 

This factor is one of the major obstacles limiting the scope of usages of CNFs. The state-of-the-

art methods employed to make CNFs dispersible in organic solvents and/or polymeric matrixes 

are based on adsorption or grafting of surfactants, polymers, and coupling agents,70-73 or 

alternatively corona treatment.74-76 Other methods include hydophobization of CNFs’ surface 

by acetylation, silylation, or “click chemistry”.77-79 Those routes are often associated with 

certain limitations, including lack of versatility and a risk of damaging the fibrillar structure of 

CNFs (especially in the case of silylation).80 Therefore, there is a necessity to develop 

alternative functionalization methods which are straightforward, non-damaging for the surface 

of CNFs, and allow for easily transfer and processing of CNFs in organic solvents. 

As presented in the introduction part, PILs can be efficiently used as stabilizers 

and phase-transfer agents.36, 38, 53, 58 In addition, a simple pathway for the preparation of porous 

membranes by triggering ionic complexation between PIL and poly(acrylic acid) (PAA) has 

been developed by Zhao et al.48 The potential applications of such membranes are gas 

separation, controlled release, sensors, and catalyst support. However, they possess insufficient 

mechanical properties. Thus, as a part of this doctoral work, a method for one-step grafting of 

PILs onto CNFs has been developed. Such CNF@PIL nanocomposites show tunable dispersity 

in water and organic solvents of different dielectric constants. Moreover, the hybrid material 

was introduced into the porous PIL/PAA membranes in order to enhance their mechanical 

properties. The overall synthetic route for the preparation of such hybrids and reinforced 

membranes is presented in Figure 3. Part of this chapter has been published in Chemical 

Communication, 2014, 50, 12486-12489. 
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Figure 3. Synthetic route to the CNF@PIL hybrid nanomaterials and CNF-reinforced porous 

  polyelectrolyte membranes (IL-Br - ionic liquid monomer with Br- anion).81 

2.1 Synthesis of CNF@PIL nanocomposites 

Successful grafting of dense PIL chains on the surface of CNFs plays a crucial role in the 

synthesis of hybrid material. As a prerequisite, high-quality suspension of untangled CNFs in 

water must be obtained prior to the grafting process. Thus, the CNF suspension was sonicated 

using a highly efficient ultrasonic horn device. Good quality of dispersion was confirmed via 

atomic force microscopy (AFM, Figure 4A). Cationic PIL chains were grafted onto the 

negatively charged surfaces of 2,2,6,6-tetramethylpiperidine-1-oxyl - oxidized (TEMPO-

oxidized) CNFs, rich in carboxylate functionalities. The grafting was performed via in situ 

polymerization of an ILM [1-ethyl-3-vinylimidazolium bromide (EVIm+Br-)] in water in the 

presence of CNFs. During the synthesis, a large excess of EVIm+Br- was used (40:1 weight 

ratio of EVIm+Br-:CNF) in order to achieve high grafting efficiency. Meanwhile, 

the concentration of CNF dispersions was kept at 0.05 w% to maintain relatively low viscosity. 

anion exchange
(    Br-,     PF6

- or TFSI-)

H2O, 85 C

polymerization
of IL-Br

Membrane formation
with PAA/PIL mixture

CNF@PIL-PF6 or CNF@PIL-TFSI

CNF@PIL-BrCNF
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It was necessary, since a too high viscosity could impede effective stirring of the reaction 

mixture. After polymerization a gel-like mixture was subjected to ultrafiltration (pore size: 

50 nm), using water as eluent to eliminate the unanchored, free polymer chains, and non-reacted 

monomer. The ultrafiltration process was performed until a monomer- and polymer-free filtrate 

was eluting from the system. It is important to mention that a straightforward, direct mixing of 

a PIL solution and the CNF dispersion led to the creation of interpolyelectrolyte complexes 

which precipitate from the solvent and aggregate even under sonication treatment. Finally, 

counteranion metathesis reactions were performed in order to exchange Br- anions of 

CNF@PIL-Br to more hydrophobic PF6
- and TFSI- anions, forming CNF@PIL-PF6 and 

CNF@PIL-TFSI hybrids, respectively. Anion-exchange was achieved by the addition of 

corresponding aqueous salt solutions to the aqueous dispersion of CNF@PIL-Br. Incorporation 

of hydrophobic anions into the hybrid structure turned it insoluble in water, consequently 

causing rapid precipitation from reaction mixture. The obtained precipitate was eventually 

purified from excess of salt by ultrafiltration. 

2.2 Characterization of CNF@PIL hybrid nanomaterial 

AFM images visualized that bundle-free morphology of CNFs remains well preserved 

after the grafting of PILs (Figure 4 A,B). In addition, it confirms that no degradation of CNFs 

due to possible dissolution in reaction media occurred during the in situ polymerization of the 

IL monomer (Figure 4B). It is important to highlight that the ability of ILs to dissolve cellulose 

is widely known. However, this feature applies only for certain ILs, typically at very high purity 

or under specifically chosen conditions.82  
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Figure 4. AFM height images of A - CNF; B - CNF@PIL-Br hybrid adsorbed from their 

  corresponding aqueous suspensions. 

Successful grafting of PIL onto the surface of CNFs was confirmed by attenuated total 

reflection Fourier transform infrared spectroscopy (ATR-FTIR), ζ-potential measurements as 

well as elemental analysis. In ATR-FTIR spectra of the hybrid material, characteristic peaks of 

both components – PIL and CNFs can be clearly distinguished (Figure 5). Sharp bands at 1160 

and 1550 cm-1 are assigned to C-N stretching of imidazolium rings as well as CH2(N), 

CH3(N)CN, and asymmetric ring in-plane stretching vibrations, respectively. Peak at 1050 cm-1 

is due to C-O stretching vibration of CNF. This clearly verifies the presence of both components 

in the hybrid material.83 Moreover, ζ-potential measurements showed that negatively charged 

CNFs (-45.4 ± 4.7 mV) bear positive surface charge after the polymerization (37.3 ± 4.2 mV), 

which can be explained by the existence of polycationic brushes on CNFs’ surface. Elemental 

analysis measurement was employed in order to determine the CNF/PIL weight ratio in the 

hybrid material. The measured C/N weight ratio of CNF@PIL-Br hybrid was 4.23. It was 

confirmed that CNFs do not contain nitrogen (< 0.05 wt%). For the calculation of the amount 

of grafted polymer, C/N for the hybrid material was compared with the C/N value in pure 

PIL-Br polymer. Hence, according to the obtained data, the CNF/PIL weight ratio in the final 

product was calculated to be 1:2.5. The existence of ca. 70 wt% of PILs in the hybrid proves 

successful and highly efficient grafting of PILs onto the CNF surface. Dynamic light scattering 

A                          B
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(DLS) measurement was applied to characterize aqueous suspensions of CNFs and 

CNF@PIL-Br hybrids. The hydrodynamic radius of CNFs showed a size expansion from 500 

to 700 nm after polymerization process. This can be attributed to stretching of CNFs due to the 

enhanced steric and electrostatic repulsion among the grafted PIL chains on the CNF surface. 

  

Figure 5. ATR-FTIR spectra of PIL-Br, CNF  and the CNF@PIL-Br hybrid. 

It is worth noting that the stabilization of CNFs via in situ polymerization of IL monomer 

does not require any further pre-functionalization of the surface of TEMPO-oxidated CNFs. As 

it was presented before, direct mixing of PIL solution and CNF dispersion failed in the synthesis 

of well dispersible hybrid CNF@PIL material, forming indispersible precipitate instead. Such 

aggregates are interpolyelectrolyte complexes of two oppositely charged species. The possible 

explanation why in situ polymerization method is so efficient is that after addition of several 

monomeric units to the radical, the short polymer chains were adsorbed onto CNFs due to 

electrostatic interaction. This attachment locally neutralizes the negative charge of CNFs, but 

at this step PILs chains are still active in the radical propagation. Further addition of monomeric 
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units leads to the inversion of the surface charge of CNF material from negative to positive, 

which stabilizes dispersions of the hybrids. Good quality of the suspensions can be related to 

two factors. The first one is the short length of oligomeric PIL chains at the adsorption step. 

PILs interact with individual fibers, rather than create inter-CNF network that would lead to 

electrostatically crosslinked products. Therefore, the hybrids retain their fibrillar structure at the 

grafting step. Additionally, positively charged PIL brushes growing on the surface of CNFs 

introduced electrostatic repulsions between individual fibers. Both factors efficiently suppress 

undesirable crosslinking of the hybrid material and improve colloidal stability of this system. 

According to the above-mentioned anticipated mechanism of electrostatic grafting PIL on 

CNFs, individual polymeric chains exhibit multivalent interactions with the surface of CNFs 

but repel each other during the grafting process. Therefore, a polymeric layer of medium or low 

grafting density should be expected. In order to estimate the value of grafting density, firstly a 

sample of the free polymer (obtained from the filtrate of ultrafiltration process) was 

characterized by gel permeation chromatography (GPC) measurement in 0.2M aqueous solution 

of Na2SO4 with 1% of acetic acid used as eluent. The performed experiment revealed that molar 

mass of the PIL-Br sample amounted to 35 kg/mol, having molar mass dispersity index (Đ) of 

1.5 (the values were calculated to pullalan standards). For the further calculations, it was 

assumed that the molar mass of PIL electrostatically attached to the surface of CNF was similar 

to the one of free polymer. This opened up a possibility to estimate a grafting density of PIL-Br 

chains on CNFs (the method is described in section B of Appendix). According to the performed 

calculations, CNF@PIL-Br hybrid contains 0.15 PIL-Br chains per each 1 nm-2 of CNFs’ 

surface. Such created PIL layer can be considered as a middle density polymer brush which is 

in agreement with anticipated grafting mechanism. However, one must take into account that 

pullalan standards which were used to determine molar mass of the free polymer do not fully 
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mimic its solution behavior. Therefore, the obtained value of the grafting density should be 

considered as an estimation rather than an absolute value. 

The thermal stability of CNF@PIL was determined by thermogravimetric analysis 

(TGA) under nitrogen and compared with the results obtained for pure PIL-Br and CNFs. 

The results indicated that grafting of PIL did not cause any deterioration in the thermal stability 

of CNFs (Figure 6). Moreover, a slight increase in the threshold decomposition (in this thesis 

defined as 10 wt% of mass loss) was observed for the hybrid material, when correlated to bare 

CNFs. At the temperature range between 330 and 900 °C the residual mass for CNF@PIL-Br 

is lower than that for CNFs, but higher than that for pure PIL. This verifies again the presence 

of both components in the hybrid. 

 

Figure 6. TGA curves of CNF, PIL-Br and CNF@PIL-Br hybrid (heating rate 10 K·min-1, 

under nitrogen atmosphere). 

The striking advantage of the CNF@PIL hybrid materials over bare CNFs is their 

dispersibility in a broader range of organic solvents. Tuning the dispersion behavior can be 

achieved via extensively studied anion-effect of PILs.13 Such properties of hybrid materials 
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were tested and compared with that of bare CNFs. The results are summarized in Table 2. 

The CNF@PIL-Br hybrid is dispersible in water but only partially in DMSO. Replacing the Br- 

with more hydrophobic TFSI- counter anion leads to the formation of a hybrid, which 

precipitates from water, but can be readily dispersed in DMSO. Interestingly, CNF@PIL-PF6 

display dispersibility not only in DMSO, but also in volatile organic solvents such as MeOH 

and acetone, which are poor solvents for bare CNFs (Figure 7). This is a significant advantage 

in terms of material processing in organic media. The performed experiments indicate that 

dispersibility of CNF@PIL hybrids can be easily tuned without the necessity of changing 

chemical structure of the polymeric backbone, which would involve complicated reactions. 

Instead, the experimentally facile anion-exchange reactions were applied for the synthesis of 

omnidispersible and versatile hybrid material.  

Table 2. Dispersibility tests of CNF and CNF@PIL hybrids with different anions in 

  various solvents. 

Material Water MeOH/EtOH DMSO Acetone 

CNF + - + - 

CNF@PIL-Br + - +/- - 

CNF@PIL-PF6 - + + + 

CNF@PIL-TFSI - - + - 

 

 

Figure 7. Photographs of: A - CNF and B - CNF@PIL-PF6 hybrid dispersions in acetone.  
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2.3 CNF@PIL hybrids as reinforcing agent 

The omnidispersible hybrid material combines properties of CNFs with the versatile 

solubility of PILs. It is widely known that excellent mechanical properties are one of the 

intrinsic features of CNFs. Hence, CNF@PIL appeared to be potentially efficient reinforcing 

agent for materials which must be processed in organic solvents. Very recently, Zhao et al. 

described a straightforward, template-free approach for the preparation of porous membranes 

composed of PILs and PAA.48 In detail, such materials were obtained by mixing both PAA and 

a PIL in a non-protic organic solvent, followed by film casting on a glass plate, drying, and 

subsequent immersion of the film into an aqueous ammonia solution to form pores. To further 

improve the mechanical stability of membranes, a reinforcing agent compatible with their 

matrix became imperative. The structural similarity and high charge density of the grafted PILs 

with the matrix of the membrane made CNF@PIL hybrids perfect candidates for this purpose. 

The preparation of reinforced membranes follows the procedure illustrated in Figure 8. In the 

first step, different amounts of the CNF@PIL-PF6 hybrid were mixed with PAA and poly(1-

cyanomethyl-3-vinylimidazolium PF6) (the imidazolium/COOH molar ratio was fixed to 1:1) 

in DMSO to form a stable dispersion. The mixtures were then cast onto a glass slide, followed 

by drying in the air at 80 °C for 3 h. Afterwards, the dry films were immersed in aqueous 

ammonia solution, which triggered pore formation within their bulk. This pore formation 

process has been well described in the aforementioned work of Zhao et  al.48 In agreement with 

their studies, after the steps of film casting and drying, the developed film was dense, non-

porous, and tightly adhered to the glass substrate. Creation of pores took place when the glass 

slide covered with the polymer blend was immersed in 0.2 wt % aqueous ammonia solution 

(pH 10.8). Diffusion of aqueous ammonia into the film causes deprotonation of carboxylic acid 

groups in PAA chains. The PAA chains create inter-polyelectrolyte complexes with PILs and 
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lead to the restructuration of the bulk of the film into a porous, electrostatically cross-linked 

arrangement.  

 

Figure 8. The preparation method of porous membranes and a photograph of such reinforced 

material.  

As shown in the scanning electron micrographs (SEM, Figure 9), three-dimensionally 

interconnected porous structures were formed in both hybrid-free and hybrid-reinforced 

membranes. Both membranes display a similarly structured two-zone morphology (white lines 

in Figure 9 A and C), consisting of a micrometer-sized porous top zone and a bulk bottom zone 

with pores of 150 ± 50 nm for the CNF-free (Figure 9 B) and 250 ± 40 nm for the reinforced 

membranes (Figure 9 D). The structural similarity of grafted polymer and the PIL component 

of the membrane prevents phase separation of reinforcing agent from the polymeric matrix 

during the membrane formation. Thus, homogenous porous materials can be efficiently 

processed in the analogous manner as its precursors, presented by Zhao et al.48 Unfortunately, 

a spatial distribution of CNF@PIL fibers within the membrane cannot be determined using 

SEM. Individual fibers in the bulk of the membrane cannot be distinguished even at high 
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magnification. This can be explained by the thin diameter (ca. 5 nm by TEM characterization) 

of CNFs and the presence of the polymeric brush on its outer layer which reduces the contrast 

between CNFs and the bulk membranes. Surprisingly, there are also no fibers protruding from 

the cross-section of the reinforced membrane. 

 

Figure 9. SEM images of membranes containing: A, B – 0 wt %; C, D – 5 wt % 

  of CNF@PIL-PF6. 

Reinforcement of the porous membranes obtained by the incorporation of 

CNF@PIL-PF6 hybrids was evaluated by tensile tests. It was anticipated that wet conditions are 

a potential environment at which membranes can be practically used. Hence, to acquire the data 

which is representative and brings an insight into the performance of the membranes at the 

conditions of their application, the test was performed at the wet state. In order to obtain 

quantitative results, thin strips of membrane (14 x 2 x 0.1 mm, at least 5 measurements for each 

type of membrane) were stressed in tension in a custom-made device. Due to the presence of 

hybrid materials within the bulk of the membrane, Young’s modulus and stress at  failure values 

increased from ~470 to ~610 MPa and from ~7.8 to ~10.4 MPa, respectively (Figure 10, Figure 

11). The results show that incorporation of even 5 wt% of CNF@PIL-PF6 (1.4 wt% of CNFs) 
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yields in the material with substantially better mechanical performance. Such a substantial 

reinforcement in the mechanical properties of membranes can be associated with the twofold 

structure of CNF@PIL-PF6 hybrids. Their inner part is constituted of CNF rods which due to 

high tensile strength are good materials for application in reinforcing agents. PIL-PF6 brush on 

the surface of hybrid has a high charge density and is structurally similar to the matrix of the 

membrane. It is anticipated that such a structure prevents the separation of CNFs from the 

polymeric matrix at the stage of membrane preparation, leading to the homogenous distribution 

of CNF@PIL and creating a reinforcing scaffold within the membrane.  

 

Figure 10. Average stress - strain curves of porous membranes composed of CMVImPF6/PAA 

matrix containing 0 wt% (red line) and 5 wt% (black line) of CNF@PIL-PF6. 
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Figure 11. Box plots illustrating (A) stress at failure and (B) Young’s modulus values obtained 

for porous membranes composed of PCMVImPF6/PAA matrix and containing 0 wt% (red) and 

5 wt% (black) of CNF@PIL-PF6 hybrids (crosses represent maximum and minimum measured 

values, whiskers are 5th and 95th percentile, 25th and 75th percentile are represented as top and 

bottom lines of the boxes, medians are shown by the line inside 

  the box and squares inside boxes correspond to average values). 

Due to its hybrid composition, porous structure, and mechanical properties, 

CNF@PIL-PF6 reinforced membrane can be considered as potential separation or supporting 

membrane. Thus, stress at failure and Young’s modulus values measured for the reinforced 

porous membrane were collated with the literature results obtained for other porous, 

polyelectrolyte membranes (Table 3). The CNF@PIL-PF6 containing porous film outperforms 

most of these membranes in terms of stress at failure values. It is worth noting that the obtained 

results are around 50 to 80 % higher than that of polyethersulfone, polysulfone, and poly(styrene 

sulfonate) complexes. Moreover, the CNF@PIL-PF6 reinforced membrane resists stress two 

times higher than its counterparts composed of cellulose acetate and poly(ether–ether–sulfone). 

A membrane of chitosane-alginate complexes again breaks at stress almost 7 times lower than 

the reinforced PILs/PAA material. Only several reported values obtained for the membranes 

composed of poly(vinyl alcohol) and poly(vinylidene fluoride) outmatch the PILs/PAA 

reinforced porous films in terms of stress at failure values. However, the poly(vinyl alcohol) 
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based membranes possess Young’s modulus around 13 times lower than the one obtained within 

this work. The poly(vinylidene fluoride) membrane, in turn, has very low porosity, so the direct 

comparison to the PIL/PAA complexes is misleading. In addition, with the measured value of 

610 MPa, the PIL/PAA membrane containing CNF@PIL-PF6 outperforms all above-mentioned 

porous materials in terms of Young’s modulus. This comparison clearly allows the conclusion 

that PIL/PAA membranes reinforced with CNF@PIL hybrids possess very good mechanical 

features, which make it competitive with other existent porous polyelectrolyte analogues. 

Table 3. Literature values of stress at failure and Young’s modulus of selected porous 

  membranes. 

Polymer 
Stress at 

failure [MPa] 

Young’s 

modulus 

[MPa] 

Poly(vinyl alcohol)84 13.5 48 

Poly(vinyl alcohol)84 4.3 110 

Polyvinylidene fluoride85 7,5 - 

Polyvinylidene fluoride85 
17,7 (10% of 

porosity) 
- 

Polyethersulfone86 6.97 ± 0.23 228.30 ± 49.56 

Polyethersulfone86 5.88 ± 0.27 273.80 ± 21.58 

Polysulfone87 6.04 194.9 

Poly(diallyldimethylammonium)-poly(styrene 

sulfonate) complex88 
6.0 - 

Cellulose acetate + poly(ether–ether–

sulfone)89 
4.87 247.30 

Chitosan-Alginate complex90 1.54 - 

2.4 Conclusion 

In summary, an efficient method for facile grafting PILs onto the surface of CNFs by 

a simple in situ one-step polymerization has been developed. Such CNF@PIL hybrids display 
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excellent and tunable dispersibility in water and various organic media via anion exchange. The 

omnidispersibility of the PIL-functionalized CNFs enables processing them in organic solvents, 

which was used to implement such nanohybrids into porous polyelectrolyte membranes. 

Addition of CNF@PIL hybrids even at a low fraction of 5 wt% substantially affects mechanical 

properties of porous PIL membranes, improving both, ultimate tensile strength and Young’s 

modulus values. The PIL-functionalization of CNFs offers a versatile and straightforward way 

to create omnidispersible nanoparticles from highly charged components. 
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3. THIAZOLIUM-BASED PIL STABILIZERS 

The thiazolium cation as a part of vitamin B1 (thiamine) is produced in nature within 

bacteria, plants and fungi (Figure 12) as a catalyst for biochemical processes. Its catalytic 

activity (for instance in nucleophilic acylation) is explained by the presence of nucleophilic 

carbene, which can be generated on thiazolium ring under special conditions.91  

 

Figure 12. Chemical structure of thiamine.  

The catalytic activity of thiazolium cation has attracted attention of material scientists. 

Several examples of ILs containing thiazolium ring in their structure have been reported for the 

catalytic applications in benzoin condensation92 and the Stetter reaction.93 The commonly 

accepted mechanism of benzoin condensation by thiazolium salts was proposed by Breslow 

(Figure 13).91 In detail, the thiazolium salt undergoes deprotonation at the C2 position 

of thiazolium ring due to its acidic character. The formed thiazolin-2-ylidene (Figure 13, 

compound 2) can act as a nucleophile and attack an aldehyde to form a resonance-stabilized 

enaminol-type Breslow intermediate (Figure 13, compound 5). Subsequently, compound 5 can 

react with another molecule of electrophile (e.g. the carbonyl group of aldehyde), followed by 

elimination of benzoin and carbene catalyst.91 Additionally, thiazolium-containing ILs can be 

used for gas separation and extractive desulfurization of fuel oil.94, 95 Even though several 
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examples of thiazolium-type ILs have been reported previously, thiazolium-based ionic 

polymers are rare cases and they have not been extensively studied so far. It is one of the main 

aims of this PhD work to merge thiazolium-type compounds and PIL chemistry in order to 

produce new PIL structures and functional polymer materials. In this work, along with the focus 

of this thesis such structures were investigated as stabilizers for nanomaterials and binders for 

battery application. 

 

Figure 13. Thiazolium salt-catalyzed benzoin condensation.91 

3.1 4-Methyl-3-(4-vinylbenzyl)thiazolium-type PILs  

for stabilization of carbon nanotubes 

4-Methylthiazole was selected as a model starting compound for the synthesis of 

thiazolium-containing PILs (Figure 14) due to its relatively low price compared with its other 
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commercial counterparts. It has been reported in the literature that the nitrogen atom of 

the thiazole ring can readily undergo a quaternization reaction with alkyl halides, leading to the 

corresponding ILs. Thus, the attachment of a polymerizable unit to the thiazole ring via the 

nitrogen atom was a potential method to prepare an ILM, which can be subsequently 

polymerized in order to form PILs.  

 

Figure 14. The chemical structure of 4-methylthiazole. 

Among potential applications of thiazolium-containing ionic polymers, stabilization 

of carbon nanotubes (CNTs) was especially appealing. CNTs, as one of the most popular 

nanomaterials, have been extensively studied for their unique mechanical, thermal, electrical, 

chemical, and optical properties. A broad range of usages of CNTs have been explored, 

including drug delivery, nanoelectronics and optical sensors.96 A common problem associated 

with applications of CNTs is that they are prone to agglomeration due to strong hydrophobic 

interactions. For the purpose of dispersing CNTs in liquid phase, stabilization or deaggregation 

agents can be used to prevent CNTs from re-agglomeration after exfoliation from bundles into 

individual tubes. The state-of-the-art methods for the stabilization of CNTs are often divided 

into two main groups, named “covalent” and “physical” ones. The first one relies on anchoring 

stabilization agents on the surface of CNTs by covalent bonding. The major drawback of this 

method is the risk of damaging the CNT, causing disruption of π-networks which decreases 

their mechanical and electronic properties. The latter approach involves strong, non-covalent 

interactions of stabilization agents with the CNT surface.97, 98 This method critically preserves 

the physical properties of the CNT. However, the necessity of using the stabilizer in large excess 

is recognized as an inherent disadvantage. Several organic compounds, including polymers and 
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surfactants, are capable of acting as efficient physical stabilizers for CNTs. 99-102 Part of this 

chapter has been published in Macromolecular Symposia, 2014, 342, 1, 67-77. 

3.1.1 Synthesis of 4-methyl-3-(4-vinylbenzyl)thiazolium-type PILs 

The synthetic route to thiazolium ionic monomers and polymers is presented in 

Figure 15. 4-Methyl-3-(4-vinylbenzyl)thiazolium chloride (MVBT+Cl-), a water soluble ionic 

monomer, was obtained by a quaternization reaction of 4-methyl thiazole with 4-vinylbenzyl 

chloride in ethyl acetate at 70 ºC. Since such a high temperature during synthesis could lead to 

undesired radical reactions of styrene groups, a polymerization inhibitor 

2,6-di-t-butyl-4-methylphenol was included in the reaction mixture. Subsequently, MVBT+Cl- 

after purification was polymerized in aqueous media using a water soluble non-ionic thermal 

initiator 2,2'-azobis[2-methyl-N-(2-hydroxyethyl) propionamide] (VA86), to form 

poly[4-methyl-3-(4-vinylbenzyl)thiazolium) chloride] [P(MVBT+Cl-)]. In order to tune the 

physical properties of the synthesized ionic monomer and polymer, a series of anion exchange 

reactions were performed. The chloride counterions of MVBT+Cl- and P(MVBT+Cl-) were 

replaced with more hydrophobic, fluorinated anions, such as triflurosulfonate (TFO-), PF6
-, and 

TFSI-. Two main methods were employed in the anion exchange reactions of MVBT+Cl- and 

P(MVBT+Cl-). In the synthetic pathway, the synthesis of monomers and polymers containing 

TFSI- and PF6
- counter anions was performed by adding an aqueous solution of the 

corresponding salt dropwise into the aqueous solutions of MVBT+Cl- and P(MVBT+Cl-), 

respectively. The precipitation was observed immediately after the addition of the salt solution. 

This is macroscopic evidence that the hydrophilic Cl- of the monomers and polymers was 

replaced by hydrophobic, fluorinated TFSI- and PF6
-. A different method was employed in order 

to exchange anions from Cl- towards BF4
- and TFO-, as the previously described protocol failed 
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here due to the non-negligible solubility of the monomer and polymer with these two anions in 

water. The exchange reaction was performed by mixing MVBT+Cl- or P(MVBT+Cl-) with a 1.1 

molar equivalent of the corresponding sodium salt in dry acetonitrile. Slow dissolution of 

sodium salts and simultaneous precipitation of NaCl from acetonitrile due to its low solubility 

(0.003 g in 1 kg of acetonitrile at 25°C) took place along the course of the reaction.103 After 

removal of NaCl by filtration, the monomer and polymer with TFO- and BF4
- anions were 

isolated by evaporation of acetonitrile under high vacuum at room temperature. Unfortunately, 

in spite of multiple attempts, direct radical polymerization of non-halide monomers failed to 

yield polymers of high molar mass. Thus, the synthesis of non-halide polymers was only 

performed via post-polymerization modification of P(MVBT+Cl-) though anion exchange. 

 

Figure 15. Synthetic route and chemical structures for the obtained thiazolium-type monomers 

and ionic polymers. 
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3.1.2 Characterization of 4-methyl-3-(4-vinylbenzyl)thiazolium-

type monomers and polymers 

For the thiazolium monomer, a quaternization reaction on nitrogen is preferred to 

a reaction on the sulfur atom. In order to confirm the chemical structure and purity of 

the synthesized monomer, proton-carbon heteronuclear single quantum coherence spectroscopy 

(1H-13C HSQC) and proton-carbon heteronuclear multiple bond correlation (1H-13C HMBC) 

spectroscopy measurements were employed (Figure 16, Figure 17). The spectral data fits well 

with the proposed product of the reaction. 1H-13C HSQC spectrum was initially employed to 

confirm the correct assignment of signals belonging to carbons and protons of the synthesized 

product. Afterwards, 1H-13C HMBC spectrum was used to detect multiband coupling between 

proton and carbons and therefore resolve the structure of the thiazolium monomer. The coupling 

between proton 10 and carbon 2 can be observed, but no coupling between proton 10 and carbon 

8 was found. 1H-13C HMBC reveals that carbon 10 is coupled to proton 1, but not to proton 8. 

This clearly indicates that the 4-methyl thiazole underwent a reaction with the 4-vinylbenzyl 

group exclusively on the nitrogen atom of the thiazolium ring, but not on the sulfur atom. 
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Figure 16. 1H-13C HSQC spectral data of MVBT+Cl-
. 

 

Figure 17. 1H-13C HMBC spectral data of monomer MVBT+Cl-
. 
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performed using a Novema column with a water/methanol mixture in the presence of an acetic 

buffer as eluent (Figure 18). These conditions were purposely chosen in order to avoid the 

possible binding of the polymers to the GPC column. P(MVBT+Cl-) displayed a monomodal 

molar mass distribution and an apparent number average molar mass of 15 kg/mol (calculated 

using PEO standard). Its Đ equals to 3.0, which is in the reasonable range for typical free radical 

polymerizations. Owing to the fact that other ionic polymers were synthesized via an anion 

exchange of P(MVBT+Cl-), their degree of polymerization should be identical to that of 

P(MVBT+Cl-). 

 

Figure 18. Molar mass distribution of P(MVBT+Cl-) obtained from GPC measurements.  

Anion exchange reactions can be conveniently characterized by ATR-FTIR 

spectroscopy (Figure 19). The FTIR pattern of MVBT+Cl- stems from the thiazolium cation, 
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antisymmetric stretching of PF6
-.104 When the Cl- anion is replaced by TFO-, the new vibration 

bands of the CF3 group (δaCF3 at 572 cm-1, δsCF3 at 756 cm-1, νsCF3 at1153 cm-1, and νaCF3 

at 1223 cm-1) can be detected. Additionally, signals resulting from vibrations of SO3 groups 

(δSO3 at 634 cm-1, νsSO3 at 1027 cm-1 and νaSO3 at 1256 cm-1) further confirm the efficient 

anion exchange. Finally, in a similar manner, exchange of Cl- with TFSI- was confirmed. Three 

sharp bands of CF3 groups (νaCF3 at 1182, δsCF3 at 741 and δaCF3 at 569 cm-1) as well as bands 

from the SO2 group of TFSI- (νaSO2 at 1346, νsSO2 at 1134, and δaSO2 at 609 cm-1) indicate 

successful incorporation of TFSI- into the structure of the thiazolium monomer. In addition, 

asymmetric (1047 cm-1), and symmetric (763 cm-1) stretching bands of the S-N-S group and 

symmetric stretching of C-S bond (792 cm-1) further confirm that anion exchange towards 

MVBT+TFSI- took place. 

 

Figure 19. ATR-FTIR spectra recorded for MVBT+X- monomers (X - PF6, BF4, TFO, 

  and TFSI). 

3200 3000 1600 1400 1200 1000 800 600

  

 

Wavenumber [cm
-1

]

MVBT
+
Cl

-

MVBT
+
BF

4

-

MVBT
+
PF

6

-

MVBT
+
TFO

-

MVBT
+
TFSI

-

monomer

825

1049

634

609

1038

1346

1328

1192
1182

1134

741
763

792

569

1047

756

102711531256

1223

572



 

38 
 

Analogously, the new ATR-FTIR bands were used to confirm the anion exchange 

reaction of P(MVBT+Cl-) (Figure 20). From the spectrum, the asymmetric stretching vibration 

of BF4
- anion gives broad bands of two absorption maxima at 1033 and 1051 cm-1. In the ATR-

FTIR spectrum of P(MVBT+PF6
-) a strong, broad signal at 821 cm-1 from the antisymmetric 

stretching vibration of PF6
- is observed. When TFO- is introduced into the structure of the 

thiazolium polymer, sharp vibrational signals of the CF3 group (δaCF3 at 573, δsCF3 at 756, νsCF3 

at 1152 and νaCF3 at 1223 cm-1) as well as of SO3 groups (δSO3 at 634, νsSO3 at 1026 and νaSO3 

at 1252 cm-1) are detected. Finally, the successful reaction of a polymer containing the 

TFSI- anion is indicated by the presence of peaks from CF3 groups (νsCF3 – shoulder at 1220, 

νaCF3 at 1176, δsCF3 at 740 and δaCF3 at 569 cm-1) and SO2 (νaSO2 at 1345, νsSO2 at 1131, δaSO2 

at 610 and δsSO2 at 599 cm-1). Moreover, the presence of bands as a result of vibrations of S-N-

S (νaSNS at 1051 cm-1 and νsSNS at 762 cm-1) and C-S bond (νsCS at 788 cm-1) also indicate 

that polymer underwent anion exchange reaction towards TFSI-. 

 

Figure 20. ATR-FTIR spectra recorded for P(MVBT+X-) polymers (X - PF6, BF4, TFO, 

  and TFSI). 
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The anion exchange reaction from Cl- to fluorinated counterions also causes change in 

deshielding of protons belonging to thiazolium ring. 1H-NMR spectroscopy measurements were 

employed in order to confirm anion exchange in the synthesized monomers and polymers. As 

an example, in MVBT+TFSI-, peaks assigned to protons of imidazolium ring shifted from 10.59 

and 8.14 ppm to 10.14 and 8.05 ppm, respectively, when compared to MVBT+Cl- (Figure 21). 

Analogous changes in the 1H-NMR spectrum were also observed when Cl- anions of 

P(MVBT+Cl-) became replaced by TFSI-. In this case, the resonance signals of protons of the 

thiazolium ring at 11.0 and 8.3 ppm as well as the peak of the -CH2- group at 6.1 ppm are all 

shifted towards lower ppm values at 10.1, 8.0 and 5.6 ppm respectively. The 1H-NMR spectra 

of the other anion-exchanged monomers and polymers resemble that of MVBT+TFSI- and 

P(MVBT+TFSI-), a further evidence to suggest a successful anion exchange reaction. 

 

Figure 21. 1H-NMR spectra of: A - monomer MVBT+Cl-
; B - monomer MVBT+TFSI-

; 

  C - polymer P(MVBT+Cl-); D) polymer P(MVBT+TFSI-). 
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anions from Cl- to TFSI- and TFO- yields ionic products being in a liquid state at 60 and 70 °C 

(Figure 22, Figure 23), respectively. Hence, MVBT+TFSI-, and MVBT+TFO- can be indeed 

classified as classic ILs and their corresponding polymers as PILs. It is worth noting that the 

melting temperatures of MVBT+Cl-, MVBT+BF4
- and MVBT+PF6

- exceed 100 °C. 

Thus, the latter 3 monomers are only considered within the general scope of organic salts and 

their polymers in the strict sense can be defined as ionic polymers rather than PILs. 

 

Figure 22. DSC curves recorded for thiazolium-based ionic monomers.  

 

 

Figure 23. Photographs of MVBT+TFSI- in the left red frame; and MVBT+TFO- in the right 

  green frame at room temperature (A, C) and at 80 °C (B, D). 
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Among several interesting features of PILs, a high, tunable thermal stability is of great 

importance when potential applications of PILs are considered. Therefore it was necessary to 

analyze the decomposition temperature of the newly synthesized family of thiazolium-type PILs 

and ionic polymers. The thermal stability of MVBT+Cl- and all other synthesized PILs and ionic 

polymers were determined by TGA measurement (Figure 24). MVBT+Cl- decomposes at 

170 °C (temperature of 10 % of weight loss). The initial weight loss of the MVBT+Cl- monomer 

at the temperature range 100-150 °C is associated with the evaporation of a trace amount of 

moisture due to limited drying temperature, which must remain low to avoid its thermal 

polymerization. The decomposition temperature of P(MVBT+Cl-) was found to be 200 ºC, that 

is, 30 °C higher than its monomer. It is in agreement with typical observation that PILs are 

slightly thermally more stable than corresponding ILMs. Analogously, decomposition 

temperatures of thiazolium-containing polymers can be also tuned by the choice of counterion. 

When Cl- is replaced with TFSI-, the thermal stability of the polymer increases substantially by 

80 ºC, i.e. the decomposition temperature of this polymer by a 10 % weight loss is 280 ºC. 

Surprisingly, P(MVBT+BF4
-) is even more stable than the polymer bearing TFSI-, which 

decomposes at 295 °C. Decomposition temperatures of P(MVBT+PF6
-) and P(MVBT+TFO-) are 

also higher than P(MVBT+Cl-), reaching values of around 260 ºC. Thus, thermal stability 

of thiazolium-containing PILs and ionic polymers decreases in the sequence of 

BF4
- > TFSI  > PF6

- ~ TFO- > Cl-. 
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Figure 24. TGA curves of the synthesized ionic polymers (measured at heating rate 

  10 K·min-1 and under nitrogen atmosphere). 
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solubility properties. The solubility of thiazolium polymers in water and various organic 
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Table 4. Solubility table of P(MVBT+X-) in different solvents. 

P(MVBT+X-) H2O MeOH Acetone DMF DMSO THF, EtAc, Toluene, CHCl3 

Cl- + + - - + - 

TFO- - + - + + - 

PF6
- - - + + + - 

BF4
- - - - + + - 

TFSI- - + + + + - 

3.1.3 Applications of 4-methyl-3-(4-vinylbenzyl)thiazolium-type 

polymers 

In the TGA analysis, a high content of residues obtained from P(MVBT+Cl-) above 

500 °C, (> 20 wt%, Figure 24) and the existence of sulfur and nitrogen atoms in the thiazolium 

ring suggest that such polymers may be interesting precursors for sulfur-nitrogen co-doped 

carbon materials. Carbonization of P(MVBT+Cl-) at 500, 800 and 1000 °C under nitrogen 

atmosphere was performed, and the resulting carbon materials were characterized by elemental 

analysis. The yield of P(MVBT+Cl-) carbonized at 500 °C was as high as 28.2 %, but it showed 

downturn as the carbonization temperature was increased of (20 % at 800 °C and 18 % at 

1000 °C, Figure 25). Elemental analysis revealed that the nitrogen content is around 2.5 % and 

only slightly depends on the carbonization temperature in the analyzed range of temperatures 

(Figure 25). Conversely, the sulfur content in the final product depends strongly on the 

carbonization temperature. It decreases from 2.5 % for carbons obtained at 500 °C to less than 

1.0 % at 1000 ºC. 
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Figure 25. Carbonization yield, sulfur and nitrogen content of P(MVBT+Cl-) as a function 

  of the carbonization temperature. 
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experiment, the MWCNTs/P(MVBT+Cl-) hybrids were precipitated from their aqueous 

dispersion by addition of KPF6 solution (Figure 26 E). This caused an anion exchange reaction 

of P(MVBT+Cl-), forming P(MVBT+PF6
-). Subsequently, the hydrophobic 

MWCNTs/P(MVBT+PF6
-) hybrids precipitated from water, which after separation were 

dispersible in acetone (Figure 26 F).  

 

Figure 26. A - Photographs of MWCNTs dispersion and P(MVBT+Cl-) stabilized MWCNTs 

dispersion immediately after sonication; B - Photographs of MWCTs suspension and 

P(MVBT+Cl-) stabilized MWCNs dispersion 24 h after sonication; C and D - TEM images of 

P(MVBT+Cl-) stabilized MWCNTs dispersion. E - P(MVBT+Cl-) dispersion in water after 

  the addition of KPF6 salt solution; F - P(MVBT+PF6
-) dispersion in acetone. 

3.2 3,4-Dimethyl-5-vinylthiazolium containing PILs 

The previous section described the method for obtaining thiazolium-type ionic polymers 

and PILs. However, it should be highlighted that the established synthetic route has several 

flaws. First of all, it failed in the attempt to produce PILs containing fluorinated counterions 

directly from their IL monomers. Instead, anion exchange reactions for polymers were 

employed which always bear a risk of non-quantitative anion replacement. Secondly, 

the synthesized thiazolium monomers contain a large phenylene group which makes their 
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divagations, the complex structure of the MVBT+X- monomers reduced the concentration of 

effective IL species in the final material, i.e. the styrenic unit stands for a large weight fraction. 

This in turn, may limit the potential to utilize such polymers in the production of nitrogen/sulfur 

co-doped carbons. These disadvantages triggered the follow-up work to prepare IL monomer 

with more compact structure and high fraction of thiaozolium cations. For this reason 4-methyl-

5-vinyl thiazole was used as monomer precursor. Such compound has the advantages of being 

structurally simple and commercially available. A direct consequence of this design of the 

chemical structure is an access to new monomers with lower melting points and PILs with 

higher charge density and boosted sulfur-nitrogen content.  

3.2.1 Synthesis of 3,4-dimethyl-5-vinylthiazolium containing PILs 

The synthetic route towards novel thiazolium-containing monomers as well as their 

corresponding polymers is presented in Figure 27. Firstly, the nitrogen atom of 

4-methyl-5-vinyl thiazole underwent quaternization reaction with methyl iodide, in order to 

obtain 3,4-dimethyl-5-vinylthiazolium iodide (MVT+I-). Afterwards, monomers containing 

PF6
-, TFSI- and BF4

- counter anions were synthesized by anion exchange reaction of MVT+I-. 

Similarly in the previous section, two methods were employed in anion exchange reactions. For 

the synthesis of 3,4-dimethyl-5-vinylthiazolium hexafluorophosphate (MVT+PF6
-) and 3,4-

dimethyl-5-vinylthiazolium bis(trifluoromethane sulfonate)imide (MVT+TFSI-) aqueous 

solutions of corresponding salts were added dropwise into that of MVT+I-. The immediate 

precipitation was a sign that hydrophilic I- of the monomers were replaced by hydrophobic, 

fluorinated TFSI- and PF6
-. Anion exchange from I- to BF4

- was performed by adding a AgBF4 

solution in a water/acetone mixture to a MVT+I- solution in water/acetone. The precipitate, i.e. 

AgCl salt, was centrifuged out, and the supernatant was collected, followed by evaporation of 
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acetone and subsequent lyophilization. MVT+BF4
- appears as a light yellow solid. The polymer 

containing I- counterions was accessed by free radical polymerization of MVT+I- in water. Other 

polymers containing fluorinated counterions were synthesized by two methods: bulk 

polymerization of the corresponding monomers and by solution polymerization in DMF. 

Moreover, polymers having PF6
- [P(MVT+PF6

-)], TFSI- [P(MVT+TFSI-)], and BF4
- 

[P(MVT+BF4
-)] counterions can be accessed by counterion exchange of P(MVT+I-) making the 

synthetic route for the different PILs straightforward and highly versatile. 

 

Figure 27. The synthetic route to thiazolium-type PILs and ionic polymers. 

3.2.2 Characterization of 3,4-dimethyl-5-vinylthiazolium 

containing monomers and polymers 

When the thiazole compounds are reacted with alkyl halides, an addition of alkyl chain to the 

nitrogen atom is typically expected.105 Such a synthetic pathway was verified using 
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1H-13C HSQC and 1H-13C HMBC spectroscopy (Figure 28, Figure 29). 1H-13C HSQC spectrum 

was initially employed to confirm assignment of signals belonging to carbons possessing 

directly attached protons. However, in order to analyze the position of methyl adduct, the prior 

assignment of 13C nuclear magnetic resonance (13C-NMR) signals of carbons 2 and 3 (Figure 

29) was essential. This problem cannot be solved using 1H-13C HSQC spectroscopy alone since 

the mentioned carbons are not directly connected to any protons. For this reason the structure 

of the obtained product was resolved using 1H-13C HMBC spectroscopy. Initially, the analysis 

of coupling between protons of the vinyl group with carbons of thiazolium ring was studied. In 

the 1H-13C HMBC spectrum, coupling between proton 4 and carbon 3 instead of carbon 2 can 

be detected. Moreover, carbon 3 is coupled with proton 5A, while no coupling between carbon 

2 and protons of vinyl group is observed. This confirms that signal 3 is due to the carbon atom, 

which is directly bounded to the vinyl group. Subsequently, coupling between protons 6 of the 

methyl adduct and carbons in the thiazolium ring was analyzed. If the above-mentioned methyl 

group was bound to sulfur, protons 6 would be coupled with carbon 3. The quaternization of 

nitrogen would couple protons 6 with carbon 2. The latter is true in the analyzed spectrum which 

clearly proves that reaction of 4-methyl-5-vinyl thiazole with methyl iodide leads exclusively 

to quaternization of the nitrogen atom of the thiazole ring.  

 

Figure 28. 1H-13C HSQC spectrum of MVT+I-. 
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Figure 29. 1H-13C HMBC correlation spectra of MVT+I-. 

The performed reactions were controlled by 1H-NMR spectroscopy. This method 

allowed validating the chemical structure of products and their purity. In addition to the analysis 

of 1H-13C HMBC spectrum, quaternization reaction of 4-methyl-5-vinyl thiazole was further 
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D’ at 7.19, 6.02 and 5.66 ppm, respectively, Figure 30) were not observed any more. In 

P(MVT+I-), these protons are converted into ones of the polymer backbone and consequently 

are observed in the high field range (peaks B”, C”, Figure 30). Thus, the successful 

polymerization reaction of MVT+I- was confirmed. Importantly, the synthesized polymer was 

free of non-reacted monomer.  
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Figure 30. 1H-NMR spectra of: A) 4-methyl-5-vinyl thiazole, B) MVT+I- and C) P(MVT+I-) 

(signals on 1H-NMR spectra: * - DMF, # - water). 

MVT+I- was then subjected to several anion exchange reactions for the synthesis of 

ILMs having fluorinated counterions. The replacement of counterions often causes substantial 

changes in ATR-FTIR spectra of ILs and PILs. Consequently, such spectra were recorder for 

all the synthesized monomers (Figure 31). Iodide counterion does not give any adsorption band 

in the IR range. Hence, in the spectrum of MVT+I- only the 4-methy-5-vinylthiazolium moiety 

is responsible for the recorded adsorption pattern. However, the presence of PF6
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BF4
- anions can be easily detected by FTIR. For MVT+BF4

- the broad signal at 1024 cm-1 

corresponds to the asymmetric stretching of BF4
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stretching bands of S-N-S group are observed, further proving the existence of 

TFSI- counterion.  

 

Figure 31. ATR-FTIR spectra recorded for all synthesized thiazolium monomers. 

To follow the strict classification of ILs, the melting points of these monomers were 

determined by DSC measurements (Figure 32). The trace recorded for MVT+I- revealed that it 

becomes liquid around 120 °C, followed by rapid, spontaneous thermal polymerization. 

MVT+PF6
- and MVT+BF4

- display analogous behavior but their melting points are shifted to 

135 °C and 60 °C, respectively. MVT+TFSI- becomes liquid at the temperature as low as 45 °C, 

but shows satisfactory thermal stability up to 150 °C. According to the DSC thermograms, 

MVT+BF4
- and MVT+TFSI- are liquids below 100 °C, thus belonging to the scope of ILMs 

while MVT+I- and MVT+PF6
- can be described as organic salts.  
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Figure 32. DSC thermograms recorded for all synthesized thiazolium monomers. 

As it was previously presented, high and anion-dependent thermal stability of PILs and 

ILs belongs to their intrinsic features and most significant advantages. It was scientifically 

intriguing to evaluate such properties of all the synthesized monomers and polymers. As the 

TGA measurement revealed, MVT+I- starts decomposing at 220 °C (decomposition temperature 

defined as temperature of 10 % weight loss, Figure 33). It is well-known from previous studies 

that exchanging counterions to large, fluorinated species leads to monomers of much higher 

thermal stability. Hence, I- was replaced by PF6
-, BF4

-, or TFSI-. Monomers bearing such anions 

do not decompose up to 345 °C, 355 °C, and 385 °C, respectively. Typically PILs possess 

slightly better thermally stability than their corresponding monomers. Unexpectedly, the 

thermal behavior of thiazolium-type PILs was opposite to the general trend reported in 

literature. Polymers, independent of the polymerization condition in bulk or in the solution were 

thermally less stable than their monomers. In the case of P(MVT+I-) polymerized in water, 

decomposition temperature is around 10 °C lower than its monomer. P(MVT+BF4
-) synthesized 

either by solution polymerization or in bulk decomposes at 310 °C, 45 °C lower than the 
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corresponding monomer. Polymer containing PF6
- anion decomposes at 270 °C when 

synthesized in bulk and at 315 °C when synthesized in solution. Those temperatures are much 

lower than that of MVT+ PF6
-. Only in the case of thiazolium polymer containing TFSI- 

counterion its thermal stability is similar to its monomer (obtained results are within the 

experimental errors). These results are unexpected and the exact reason responsible for such a 

thermal instability of thiazolium-type polymers, compared to their monomers, remains unclear 

yet and will be of interest for future study. It is worth noting that P(MVT+TFSI-) and 

P(MVT+BF4
-) are more thermally stable than their prototypes synthesized in the first part of this 

chapter [P(MVBT+TFSI-) and P(MVBT+BF4
-)] outmatching them in the terms of 

decomposition temperature for 100 °C and 15 °C, respectively (Figure 24). It can be 

summarized that simplification of the structure of thiazolium polymer led to a significant 

increase in thermal stability of such materials. 

 

Figure 33. TGA thermograms of all synthesized monomers and polymers (sol – polymer 

synthesized by solution polymerization; bulk – polymer synthesized by bulk polymerization). 

Not only bulk, but also solution properties of ILs and PILs are strongly affected by 
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and polymers in water and various organic solvents was tested at room temperature 

at the concentration of 1.0 wt% (Table 5). MVT+I- can be dissolved in water and MeOH. When 

a hydrophobic counterion BF4
- is introduced into the monomer structure, the product becomes 

soluble in acetonitrile while preserving its solubility in water. Reacting MVT+I- with KPF6 leads 

to the monomer MVT+PF6
-, which is soluble in acetone but insoluble in water. MVT+PF6

- 

possesses also certain solubility in THF and MeOH (between 0.1 wt% and 1.0 wt%). In the case 

of other tested solvents, the solubility of MVT+PF6
- is analogous to the solution properties of 

MVT+BF4
-. Eventually, introducing TFSI- to the monomer structure leads to the hydrophobic 

product which can be dissolved in all tested organic solvents (including chloroform, EtAc, and 

THF). After polymerization, the products are generally more hydrophobic and less soluble in 

most of the solvents that can dissolve the corresponding monomers. For example, 

polymerization of MVBT+I- leads to the ionic polymer which is not soluble in MeOH at the 

concentration of 1.0 wt% while its monomer shows good solubility in this solvent. Solubility 

of P(MVT+BF4
-) is analogous to its monomeric precursor. However, P(MVT+PF6

-) is insoluble 

in MeOH and THF. Chloroform and MeOH are bad solvents for P(MVT+TFSI-) yet they can 

dissolve its monomer. To be noted, all synthesized thiazolium-containing monomers and 

polymers possess good solubility in DMSO and DMF. 
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Table 5. Comparison of solubility properties of thiazolium-containing monomers 

and polymers in various solvents (”+”– soluble at 1 wt%,”+ -” – soluble at the concentration 

between 1 wt% and 0.1 wt%, ”-” – insoluble at 0.1 wt%). 

Compound H2O MeOH Acetone DMF DMSO THF EtOAc CHCl3 Acetonitrile 

MVT+I- + + - + + - - - - 

MVT+BF4
- + - - + + - - - + 

MVT+PF6
- - + - + + + + - - - + 

MVT+TFSI- - + + + + + + + + 

P(MVT+I-) + - - + + - - - - 

P(MVT+BF4
-) + - - + + - - - + 

P(MVT+PF6
-) - - + + + - - - + 

P(MVT+TFSI-) - - + + + + + - + 

3.2.3 Application of 3,4-dimethyl-5-vinylthiazolium containing 

polymers 

Recently, a potential of PIL nanoparticles to play a role as high performance binders for 

lithium-ion battery electrodes has been shown.56 Triggered by this research, P(MVT+TFSI-) was 

examined as a candidate for the binder in lithium-ion batteries (this part was performed in 

collaboration with Dr. Ken Sakaushi and Dr. Jung-Soo Lee). It is important to mention that 

when compared to the previous research not only the chemical composition of PIL was altered 

but a homogenous solution of a linear PIL was used instead of polymer nanoparticles. The 

reason to select P(MVT+TFSI-) is based on previous studies that ILs and PILs with TFSI- anion 

possess superior electrochemical stability among their counterparts. The performance of a 

P(MVT+TFSI-) binder was collated with the results obtained for a commercial binder 

poly(vinylidene fluoride) (PVDF). The full charge/discharge cycle tests (performed at 1C rate, 

that is charging to the full theoretical capacity of 170 mAh/g in the time of 1 hour) were 
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conducted in order to examine stability and specific capacity of electrodes composed of 80 wt% 

of LiFePO4, 10 w% of acetylene black and 10 wt% of binder material. P(MVT+TFSI-) favorably 

outperforms PVDF in terms of specific capacity and durability. Specific capacity of 

P(MVT+TFSI-) reached 140 mAh/g at 6th cycle and without a significant capacity loss after 100 

cycles (Figure 34, Figure 35). In comparison, the specific capacity value of PVDF achieves 

only 120 mAh/g and requires a long activation process (maximum specific capacity first at 20th 

cycle). Moreover, PVDF suffers from relatively high capacity loss of 1% after 100 cycles. A 

possible explanation of the improved performance in the case of P(MVT+TFSI-) ties this effect 

with better wettability of PIL than PVDF by electrolyte. 

 Finally, the long term stability test (performed at 5C rate correlates to charging to full 

capacity in 12 minutes, Figure 36) reveals that electrodes composed of individual binder 

materials - P(MVT+TFSI-) and PVDF are stable over the period of 400 cycles. Nevertheless, 

the specific capacity of electrode using P(MVT+TFSI-) binder is over 15 % higher than using 

PVDF binder, reaching a value over 100 mAh/g at the 400th cycle. Bearing these results in mind, 

the conclusion can be drawn that P(MVT+TFSI-) is a better candidate as binder for lithium ion 

battery than the current default choice PVDF.  

 

Figure 34. Stability test of P(MVT+TFSI-) and PVDF (results obtained for 1C test). 

0 20 40 60 80 100
0

20

40

60

80

100

120

140

 PVDF

 P(MVT
+
TFSI

-
)

 

 

C
a

p
a

c
it

y
 [

m
A

h
/g

]

Cycle number



 

57 
 

 

Figure 35. Voltage profile of P(MVT+TFSI-) and PVDF. 

 

Figure 36. Long term stability test of P(MVT+TFSI-) and PVDF (results obtained for 5C test). 
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polymer underwent further anion exchange reactions towards hydrophobic products bearing 

fluorinated counterions affecting thermal stability and solution properties of thiazolium 

materials. Eventually, sonication of the synthesized PILs with CNTs led to the stable dispersion 

of such CNTs which can be readily transferred into organic solvents. In the second part of this 

chapter, 4-methyl-5-vinyl thiazole was utilized as a structurally simple precursor of thiazolium 

monomer. Its quaternization with methyl iodide and subsequent counteranion exchange led to 

the series of thiazolium monomers. Each of them was then polymerized in solution and/or bulk 

to give corresponding polymers of high purity. These materials possess high thermal stability 

and solubility in a broad range of solvents outperforming previously described thiazolium-type 

counterparts. In addition, satisfactory electrochemical stability of P(MVT+TFSI-) enabled its 

application as a binder for electrodes in lithium-ion batteries. 
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4. BIO-DERIVED, TASK-SPECIFIC 

MAIN-CHAIN IMIDAZOLIUM-TYPE PILS 

Industry consumes around 4 % of world oil production as the feedstock for the plastic 

materials.106 This amount is even doubled when fossil fuels used as the energy sources in their 

manufacturing processes are taken into account. Thus, the production of polymers has a large 

share in the total release of CO2 which amounted to 31 Gt in 2011 (and is estimated to increase 

up to 37 Gt in 2035), contributing to the “greenhouse effect”.107 A possible way to reduce the 

overall dependence of the society on fossil fuels is the production of plastics from renewable 

resources. For this reason, the alternative and green synthetic pathways involving products 

exclusively or partially derived from biomass are highly demanded.108 A significant effort has 

already been made to produce bio-polymers for the common as well as sophisticated 

applications in such areas as packaging, electronics, medicine, and adhesives, to name only a 

few.109-111 The synthesis of more sustainable ILs and PILs has also attracted an increasing 

attention. For example, fructose-derived room-temperature ILs were reported by Dickenson et 

al. as good solvents for the Heck reaction of aryl iodides.112 Moreover, bio-derived ILs 

assembling into an amphotropic liquid crystalline phase and possessing anisotropic ion 

conductivity were described by Devaki et al.113 Rapid dissolution of DNA was achieved using 

cholinium type bio-derived ILs.114 Cholinium cations were also introduced into the polymer 

chains of PILs in order to obtain biocompatible ion gels and amphiphilic block copolymers of 

PIL and polylactide.62, 115 In addition, examples of PILs having bio-derived carboxylic acids as 

counterions were reported.62, 116 Hence, the growing interest of researchers to produce 

bio-derived ILs and PILs is currently becoming more pronounced.  



 

60 
 

4.1 PILs from biomass – turning biomass into polyester 

stabilizers 

Recently, a green and straightforward synthetic route towards bifunctional imidazolium 

compounds deriving from biomass has been reported by Esposito et al.117 Imidazolium 

zwitterions were prepared via a modified Debus-Radziszewski reaction from various amino 

acids and bio-derived carbohydrates.118 This imidazolium zwitterion was consequently 

esterified with ethanol to form a room temperature IL which in the present study was used as a 

PIL precursor. The synthetic route to the ILM utilizes mostly substrates (such as amino acid 

glycine, pyruvaldehyde, formaldehyde, acetic acid, and ethanol) which can be accessed from 

renewable resources according to the following methods. The production of pyruvaldehyde 

involves the oxidation of glycerol, a byproduct of biodiesel production, followed by its 

dehydration.119, 120 Alternatively, pyruvaldehyde is an intermediate in the hydrothermal 

synthesis of lactic acid from sugars and can be accessed via retro-aldol mediated fragmentation 

of C6-carbohydrates (derivatives of cellulose).121 The synthesis of formaldehyde from bio-

sources involves fast pyrolysis of cellulosic biomass or catalytic oxidation of methanol.122, 123 

The common industrial way to obtain methanol requires the usage of synthetic gas or methane. 

However, it can be alternatively accessed from biomass by its gasification.124 Finally, ethanol 

is currently produced by fermentation of sugars or starch.125, 126 Moreover, plants producing 

lignocellulosic ethanol have recently come into operation. The synthesis of ILM from the 

above-mentioned compounds was developed and performed by Sarah Kirchhecker and 

Dr. Davide Esposito. As a part of this work, the described imidazolium diester was converted 

into bio-derived PILs by polycondensation with 1,3-propanediol, an alcohol that can be 

obtained in biotechnological processes from glycerol and corn syrup.127, 128  
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4.1.1 Synthesis of polyester type PILs 

Main chain imidazolium-type polyesters were synthesized by transesterification 

reaction of the imidazolium-type diester, 1,3-bis(2-ethoxy-2-oxoethyl)-5-methylimidazolium 

trifluoromethanesulfonate (denoted as ImDE+TFO-) and 1,3-propanediol, followed by anion 

exchange reactions (Figure 37). Synthesis of PIL from ImDE+TFO- (abbreviated as 

PImDE+TFO-) was performed in two steps. Firstly, one molar equivalent of diester, three molar 

equivalents of diol, and tin octanoate [Sn(Oct)2] as transesterification catalyst were reacted at 

160 °C for 3 h under inert atmosphere. The aim of this step was to perform a transesterification 

reaction, replacing at least part of ethoxy groups of the ImDE+TFO- with 3-oxypropan-1-ol. 

At this stage only products having low molar mass can be obtained, since a large excess of diol 

inhibits the formation of polymeric products. In the following step, high vacuum was applied 

and the reaction was continued for 4 h at 215 °C. The goal was to induce condensation of 

oligomeric chain-ends, generating products having higher molar mass and co-products of 

polycondensation reaction (ethanol, 1,3-propanediol, and possibly water). At these conditions 

the non-reacted diol and low molar mass byproducts of the transesterification reaction were 

being constantly removed under reduced pressure. Therefore, the initial excess of diol in regard 

to ImDE+TFO- was being gradually reduced leading to the increase in the molar mass of the 

product. The reaction temperature was optimized to be sufficiently high to obtain a satisfactory 

molar mass of polymers but to avoid in-situ thermal degradation.  

The polymer obtained directly from the transesterification of ImDE+TFO- carried TFO- 

as counterion. The PIL bearing hydrophilic Br- counterion (PImDE+Br-) was synthesized by 

anion exchange of PImDE+TFO-. The reaction was performed by addition of a PImDE+TFO- 

solution in acetone into tetra-n-butylammonium bromide (TnBABr) dissolved in a mixture of 

water/acetone (volume ratio ~ 1/1) and the precipitate of PImDE+Br- was filtered off. PILs with 
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PF6
- (PImDE+PF6

-) and TFSI- (PImDE+TFSI-) counterions were synthesized by addition of an 

aqueous solution of corresponding salt, KPF6 or LiTFSI into a solution of PImDE+Br- in water, 

yielding precipitates of corresponding polymers. 

 

Figure 37. The synthetic route towards ImDE and PImDEs. 

4.1.2 Characterization of polyester type PILs  

At room temperature ImDE+TFO- is a viscous liquid of a brown color. The DSC 

thermogram revealed that its Tg occurs at -15 °C (Figure 38). The presence of the endothermal 

peak over the baseline at the transition temperature can be associated with enthalpy 

relaxation.129 A thermal scan over a complete temperature range up to the thermal 

decomposition threshold reveals no detectable melting point. Hence, this monomer belongs to 

the general scope of ILs. 
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Figure 38. DSC thermogram of ImDE+TFO-. 

The transesterification reaction of ImDE+TFO- with 1,3-propanediol accompanied by 

a slow, continuous removal of low molar mass byproducts yielded PImDE+TFO-. The vanishing 

of ethoxy groups and the incorporation of 1,3 propanediol into the structure of product were 

confirmed by 1H-NMR and 13C-NMR spectroscopy. In the monomer spectrum, peaks of protons 

and carbon belonging to -CH3 groups of ethoxy substituents are clearly distinguished. In 

contrast they cannot be detected in the product of polycondensation, which confirms the 

removal of ethanol during the reaction. Moreover, the spectral data of PImDE+TFO- reveals the 

presence of new peaks at 1.8, 2.1 and 3.5 ppm (1H-NMR) and at 28.3, 27.2 and 66.3 ppm (13C-

NMR), which are due to the incorporation of methylene (-CH2-CH2OH, -CH2-CH2-COO-) and 

hydroxymethyl groups, respectively. The first step of the polycondensation reaction at 160 °C 

was carried out in a large excess of 1,3 propanediol. Therefore, the generated oligomer chain-

ends are composed of diol moieties being terminated with hydroxymethyl groups. In principle, 

the molar mass of the oligomer can be calculated on the basis of 1H-NMR data from the chain 

end fraction. Unfortunately, peaks of protons D (Figure 39), belonging to the terminal group, 

cannot be used to determine the molar mass of the product, since they overlap with signals of 

water or/and solvent in most of the common NMR solvents, such as DMSO-d6, MeOD and 
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DMF-d7. Instead, the peak C (Figure 39) is well separated from other peaks and was therefore 

used as reference to calculate the molar mass.  

 

Figure 39. 1H-NMR and 13C-NMR spectra of ImDE+TFO- and PImDE+TFO-
. 

As it was presented in the previous chapters, ATR-FTIR spectroscopy is an efficient and 

convenient method to confirm anion exchange reactions of PILs. Replacing counterions from 

TFO- to Br- causes the disappearance of IR bands of TFO- anion (Br- cannot be detected by 

FTIR). In the ATR-FTIR spectrum of PImDE+TFO- sharp peaks of the vibrations assigned to 

the CF3 group can be observed (δaCF3 at 573 cm-1, δsCF3 at 756 cm-1). In the case of PImDE+Br- 

they cannot be detected anymore. Moreover, the decrease in the intensity of bands at 1157 cm-

1 (νsCF3)
 and at 1221 cm-1 (νaCF3) further confirms successful anion exchange reactions. In the 

same region, the presence of less intensive bands in PImDE+Br- is due to symmetric and 

asymmetric stretching of imidazolium ring as well as of stretching of C=C and (N)CH2 bonds 

which also contribute to the peaks in the range from 1100 to 1250 cm-1. Lack of signals of 

vibrations of SO3 groups (δSO3 at 636 cm-1, νsSO3 at 1027 cm-1 and νaSO3 at 1251 cm-1) is a 

further confirmation of the successful replacement of TFO- by Br-
.
130-134 The exchange of Br- 

counterions of PImDE+Br- to fluorinated PF6
- and TFSI- was also detected by ATR-FTIR 

spectroscopy. PF6
- counterion gives a strong, broad signal at 821 cm-1, confirming the efficiency 
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of the employed methodology in anion metathesis reaction.104 For the PImDE+TFSI- , the 

shoulder peak at 1221 cm-1 as well as three sharp bands at 1170, 740 and 569 cm-1 can be 

assigned to νsCF3, νaCF3, δsCF3 and δaCF3 vibrations, respectively. Furthermore, strong peaks 

caused by stretching (νaSO2 at 1346 cm-1, νsSO2 at 1131 cm-1) and bending (δaSO2 at 613 cm-1 

and δsSO2 at 599 cm-1) vibrations of SO2 groups of TFSI- are present in the FTIR spectrum of 

PImDE+TFSI-. Eventually asymmetric (1051 cm-1), symmetric (763 cm-1) stretching bands of 

the S-N-S group and symmetric stretching of C-S band (789 cm-1) are also observed, proving 

the successful counterion exchange towards TFSI-.104, 130, 135  

 

Figure 40. ATR-FTIR spectra recorded for the synthesized PImDEs. 
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glycol) standards for the GPC data evaluation, whose solution behavior differs from that of the 

imidazolium polymers.  

DSC thermograms were recorded for all synthesized polymers as a method to 

characterize their Tg (Figure 41). When the Br- counterion was implemented into the structure 

of PILs, its Tg was detected at 80 °C. Exchanging counterion from Br- to PF6
- only slightly 

affected the Tg of synthesized polymer, shifting it to 70 °C. In contrast, introducing TFSI- and 

TFO- anions was an efficient method to lower the Tg of PImDEs to 20 °C and 55 °C, 

respectively. Obtained results are in agreement with previous reports for structurally different 

types of PILs, where a strong dependence of Tg on the type of counterion was observed.36  

 

Figure 41. DSC curves recorded for PImDEs. 

Thermal stability of the synthesized products was investigated by TGA. The recorded 
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PILs bearing halide as counterions possess relatively low decomposition temperature (when 

compared to other PILs). Herein, PImDE+Br- decomposes readily at 270 °C (Figure 42). 

Implementing of fluorinated counterions into the structure of PImDE substantially alters its 

thermal stability. For PImDE+PF6
-, the weight loss of 10 % was found at 340 °C. Introducing of 

TFSI- and TFO- counterions causes an increase of the decomposition temperature of PILs up to 

385 and 360 °C, respectively. Interestingly, for the stability of the polymer, the order in the 

dependence of counterion (TFSI>TFO>PF6>Br) is an inverse sequence when compared to their 

Tg. 

 

Figure 42. TGA thermograms recorded for ImDE+TFO- and PImDEs. 

Solution properties of PImDEs match the general scheme observed for PILs. 

PImDE with Br- counterion is a hydrophilic polymer, soluble in water and MeOH. Polymers 

with hydrophobic, fluorinated counterions like TFO- and TFSI- are not soluble in water, 

but soluble in polar oganic solvents, for instance in MeOH and acetone. Exchanging 

the counterion to PF6
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organic solvents like THF, EtOAc and CHCl3, which are good solvents for ImDE+TFO-. 

In addition, all the synthesized polymers were soluble in DMSO, but none of them nor 

the monomers can be dissolved in highly apolar solvents, like toluene. Thus, the simple anion 

exchange reactions lead to products with highly tunable solution properties. 

Table 6. Solubility table of ImDE and synthesized PImDEs (performed at 1 wt% of IL or PIL 

  sample in the solvent). 

Compound H2O MeOH DMSO Acetone THF EtOAc CHCl3 Toluene 

ImDE+TFO- - + + + + + + - 

PImDE+TFO- - + + + - - - - 

PImDE+Br- + + + - - - - - 

PImDE+PF6
- - - + + - - - - 

PImDE+TFSI- - + + + - - - - 

4.1.3 CO2 sorption of the polyester type PILs  

Due to the presence of imidazolium-cations and carbonyl groups in the structure of 

polyester-type PILs, they were considered as potential materials for CO2 sorption. To verify 

their performance, polymeric samples of PImDE+Br- and PImDE+PF6
-were placed in closed 

cells and gas sorption data points were acquired by monitoring the pressure drop after 

an addition of certain doses of CO2 (the measurements were performed at 0 °C). When 

the equilibrium between sorption and desorption is achieved, no further decrease in the gas 

pressure inside the cell is observed (Δp = 0, where Δp is defined as p0-p; p0 – pressure at 

the beginning of the measurement period, p – final pressure). An equilibrium is assumed when 

within the certain measurement time (Δt) the pressure drop is lower than the arbitrary set value, 

which depends on the accuracy of Quantochrome instrument (for the purpose of 

the measurement Δp = 0.0008 atm). Since an equilibration time has a strong effect on the CO2 
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uptake, the measurements were performed independently at two different settings of 

the  equilibration period (Δt = 3 min - named fast measurement and Δt = 99 min – named slow 

measurement). The CO2 sorption isotherms obtained for PImDE+Br- and PImDE+PF6
- are 

presented in Figure 43. Both of the investigated polymers display large desorption hysteresis as 

well as slow sorption. The latter is indicated by the higher measured sorption capacity in the 

slow than in the fast measurements, which arises from long required equilibration times. 

Moreover, especially in the slow measurements, the absorbed CO2 cannot be fully desorbed 

even at low pressure, which may indicate that CO2 capture is due to its chemisorption. It is in 

agreement with previously reported studies by Yuan et al. where authors proposed CO2 sorption 

mechanism for imidazolium-type PILs.136 Analogously to above mentioned studies, it can be 

assumed that counterions of PImDEs can act as a base which leads to deprotonation of 

imidazolium rings at C2 position. Subsequently, a transient N-heterocyclic carbene is formed, 

which can reversibly react with CO2 to yield a carboxylate-imidazolium zwitterion (Figure 44). 

The interactions of carbonyl groups of PImDEs with CO2 however cannot be excluded. It was 

already reported that the presence of electron-donating functional groups may cause Lewis acid-

base interactions with CO2, improving the CO2 capture capacity of polymers.137 At the pressure 

of 760 mmHg, a significantly higher CO2 uptake value was obtained for both polymers in the 

slow measurements (0.32 mmol CO2/g of PImDE+Br- and 0.31 mmol CO2/g of PImDE+PF6
-) 

than in the fast measurements (0.074 mmol CO2/g of PImDE+Br- and 0.091 mmol CO2/g of 

PImDE+PF6
-). This is understandable, since diffusion of CO2 in the bulk of non-porous 

polymers is a slow process, which requires long equilibration time. The absorption power of 

PImDE+Br- and PImDE+PF6
- is in the same range of values. A deduction from this experiment 

is that the choice of counterions in the polyester-type PILs only slightly affects the CO2 sorption 

capacity.  
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In order to evaluate the obtained results, CO2 sorption capacity of PImDEs was collated 

to the literature data recorded for comparable PILs of low surface area. As an example, in the 

study of Yuan et al.1-cyanomethyl-3-vinyl imidazolium PILs having Br- counterion shows CO2 

sorption capacity of 0.12 mmol CO2/g (results obtained at the condition identical to the 

described here as the slow measurement).136 Owing to this fact, PImDE possessing the same 

counterion has more than 2.5 higher CO2 uptake (per gram of polymer) than 1-cyanomethyl-3-

vinyl imidazolium PILs. However, in the latter case, exchanging counterion to acetate increases 

its CO2 sorption capacity up to 0.6 mmol CO2/g, significantly outmatching the performance of 

PImDEs. This indicates that the proper choice of counterion plays an important role in the CO2 

sorption efficiency. In another study, structurally similar to PImDEs, main-chain imidazolium 

polyester-type PILs were studied for CO2 uptake.138 At the CO2 pressure of 650 mmHg and the 

temperature of 25 °C such PILs with PF6
- and BF4

- counteranions showed CO2 sorption of 0.10 

and 0.12 mmol CO2/g, respectively. At the pressure of 650 mmHg CO2,  PImDEs synthesized 

in this thesis showed the CO2 uptake of 0.22 mmol CO2/g. Unfortunately, these results cannot 

be directly compared, since the temperature of the measurements differed as much as 25 °C (it 

was presented by Yuan et al. that CO2 uptake is sensitive to the temperature136). 

 

Figure 43. CO2 adsorption/desorption isotherms of PImDE+Br- and PImDE+PF6
-) obtained 

at 0 °C, at different equilibration time (fast and slow measurements); STP – standard 

temperature and pressure. 
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Figure 44. Proposed mechanism of CO2 absorption in the synthesized PImDEs. 

4.2 One-pot synthesis of PILs via Debus-Radziszewski reaction 

The previous chapters contain a description of state-of-the-art methods which are 

employed in the preparation of PILs. It can be concluded that the formation of PILs typically 

requires at least several synthetic steps of a different level of complexity. For instance, 

imidazolium-type polymers can be accessed from basic, structurally simple molecules 

as follows. In the industrial method, imidazole is firstly synthesized from glyoxal, 

formaldehyde, and ammonia via Debus-Radziszewski reaction.139 This is followed by a base-

catalyzed addition of acetylene to imidazole which yields vinyl imidazole. Vinyl imidazole 

in turn, is a commercially available chemical, frequently utilized for the synthesis of ILMs. 

Such monomers are typically accessed by a quaternization of vinyl imidazole with alkyl halide. 

In order to synthesize PILs, ILMs can either be directly polymerized or beforehand an additional 

step, anion exchange is performed. Complicated synthetic pathways impose obvious effect on 

the final cost of PILs, which is considered as one of the key factors to limit their applicability. 

In addition, the employment of organic solvents and toxic chemicals which usually derive from 

fossil fuels leave the footprint on the environment. Certain efforts to synthesize PILs in a more 

sustainable fashion have been done, albeit they do not yield products which can be described as 
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fully bio-derived. As an attempt to improve the current synthetic state, the development of a 

completely new synthetic approach is described in this section. In order to decrease the final 

cost as well as the synthetic complexity, imidazolium-type main chain PILs are synthesized in 

water via one-pot modified Debus-Radziszewski reaction utilizing simple compounds. 

Moreover, such a method can be employed to synthesize PILs exclusively from bio-derived 

(although not always bio-friendly) molecules.  

The industrially applied Debus-Radziszewski reaction is widely-known in organic 

chemistry as a synthetic route towards tri-substituted imidazole compounds. It is based upon 

the condensation of an aldehyde, 1,2-dicarbonyl compound, and ammonia. In the first step, the 

dicarbonyl molecule reacts with ammonia to yield diimine (Figure 45). Subsequently, the 

diimine undergoes a condensation with an aldehyde eventually forming an imidazole ring. 

By varying the type of dicarbonyl and aldehyde species a wide range of imidazoles bearing 

different substituents are accessible.  

 

Figure 45. Debus-Radziszewski imidazole synthesis (R1, R2, R3 – H or alkyl chains). 

Recently, a convenient and green synthetic route towards ILs via modification of 

the Debus-Radziszewski reaction was reported (Figure 46).117 In contrast to the standard 

approach, in this method ammonia was replaced with amines (in the specific case with 

aminoacids) and the synthesis was carried out in the presence of acetic acid. Thus, 
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1,3-disubtituted imidazolium-type compounds were obtained in a single step from bio-derived, 

small molecules. It is worth noting that in the other study, modification of Debus-Radziszewski 

reaction was also efficiently applied in order to cross-link polymer chains bearing pending 

amino groups, providing a new platform to merge such synthetic method with polymer 

chemistry.140  

 

Figure 46. Modified Debus-Radziszewski imidazolium synthesis. 

The above-mentioned one-pot synthesis of imidazolium compounds was accomplished 

at ambient conditions in water. Triggered by simplicity and high efficiency of the modified 

Debus-Radziszewski imidazolium synthesis, a follow-up study was performed as a part of this 

PhD thesis. It was anticipated that by substitution of monoamines with diamine compounds the 

main-chain imidazolium polymers of satisfactory high molar mass can be accessed. Moreover, 

since produced from bio-mass diamines (e.g. cadaverine), aldehydes, and 1,2-dicarbonyls are 

commercially available, this method would lead to fully bio-derived PILs. In the following 

sections, an investigation of a one-step synthesis of PILs via modified Debus-Radziszewski 

reaction in water (without using elevated temperature or atmosphere of an inert gas) is 

presented. 
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4.2.1 Facile synthesis of main-chain imidazolium-type PILs 

The novel one-pot synthesis of the main-chain imidazolium-type PIL which is fully 

composed of bio-derived compounds (PILC5+Ac-) is presented in Figure 47. Glacial acetic acid 

was added dropwise under vigorous stirring to the mixture of cadaverine and water. 

Subsequently, the prepared solution was added to pyruvaldehyde and formaldehyde. 

In a standard procedure, 1.2 molar equivalents of aldehydes and 6.0 molar equivalent of acetic 

acid regarding cadaverine were reacted for 24 hours at room temperature. The crude product 

was purified by dialysis against water using the 3.5 kDa tubing. Several parameters of the 

above-presented synthesis were tuned in order to optimize the reaction conditions and study 

their influence on the molar mass of the final product. In this regard, the reaction time was 

varied from 15 minutes up to 3 days, the temperature was changed in the range from room 

temperature up to 60 °C, and the molar ratio of aldehydes in respect to amine was tuned in the 

range from 1.0 to 1.2. It is worth highlighting that linear, main-chain imidazolium-type PILs 

possessing similar structures to above-presented have been reported by Ho et al.141 In their 

work, imidazolium cation did not have any alkyl substituent at C4 carbon and the length of the 

alkyl spacer varied from 3 to 6 methylene groups. However, their method did not utilize bio-

derived compounds and was much more complex than the one established herein. In their 

exemplary synthesis, imidazole was firstly reacted with 1-bromo-5-chloropentane in the 

presence of Lithium hydride (LiH, the reaction was carried out under nitrogen in dry THF). The 

synthesis was terminated with water and the product was extracted with dichloromethane. In 

the final step, the monomer underwent self-polymerization in ethylene glycol at 90 °C. By the 

comparison to the above-mentioned study, the progress achieved by using one-step modified 

Debus-Radziszewski reaction is even more pronounced, since it remarkably simplifies the 

synthetic pathway towards PILs and makes it truly sustainable.   
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Figure 47. The one-pot synthetic route towards bio-derived PIL. 

The conditions established for the reaction of cadaverine were employed in the synthesis 

of a series of main-chain imidazolium PILs with different charge densities. Cadaverine was 

replaced with other linear diamines (Figure 48) in order to investigate versatility of the new 

synthetic pathway. In these synthesizes, six different terminal diamines containing from two to 

twelve carbon atoms in their structure were reacted with 1.2 molar excess of pyruvaldehyde and 

formaldehyde in the presence of 6.0 molar excess of acetic acid (regarding diamines) forming 

PILs of different concentration of imidazolium cations (PILCX, where X is the number of 

carbon atoms in the structure of diamine precursor). The synthesis was performed in an 

analogous way to the one developed for PILC5+Ac-. Amines were dissolved in water/acetic acid 

mixture and then added dropwise to the mixture of pyruvaldehyde and formaldehyde. After 24 

h, the synthesized products were diluted with water and dialyzed against MiliQ® water using 

3.5 kDa dialysis tubes.  

 

Figure 48. The one-pot synthetic route towards PILs having different charge densities. 

To increase the library of main-chain imidazolium PILs, the synthetic strategy was 

further extended to polymers which possess imidazolium as well as phenylene groups in their 
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backbone. For this purpose, p-phenylenediamine and p-xylylenediamine were reacted with 

pyruvaldehyde, formaldehyde, and acetic acid following the synthetic pathway developed for 

PILC5 (Figure 49). In the case of p-phenylenediamine, the reaction at the standard conditions 

led to products which possessed very low solubility in water, even upon treatment with a strong 

ultrasonic horn device. Owing to this fact, much lower concentrations (40 mL of water was used 

for 1.0 g of diamine instead of 5.0 mL as in the standard experiment) and shorter reaction time 

(15 min rather than 24 h) were used to slow down the process and consequently halt it at the 

stage of water-soluble, oligomeric product.  

 

Figure 49. The one-pot synthetic route towards PILs bearing imidazolium 

  and phenylene groups in the main chain. 

Eventually, anion exchange reactions were performed to vary electrochemical 

and physical properties of the synthesized PILs (Figure 50). Synthesis of PILs bearing TFSI 

and dicyanamide [N(CN)2] counterions were carried out in water. The solution of LiTFSI 

or NaN(CN)2 (1.2 and 5 molar equivalents calculated with respect to the theoretical amount of 

product, respectively) was added dropwise to the solution of PILs (obtained from the dialysis 

according to aforementioned methods). After stirring the reaction mixture for 30 min, the brown 

precipitate was collected and washed several times with water.  
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Figure 50. The PIL anion exchange reactions.  

4.2.2 Characterization of PILs and their performance 

as precursors for nitrogen-doped carbon materials 

The established one-pot method towards bio-derived PIL (PILC5+Ac-) is the first 

example of a direct synthesis of such polymers via the modified Debus-Radziszewski reaction. 

Thus, it was absolutely essential to precisely confirm the structure of the obtained PIL and to 

investigate the effect of the reaction parameters on its molar mass. 1H-NMR and 13C-NMR 

spectra of PILC5+Ac- were recorded in D2O. All the detected peaks can be clearly assigned to 

the corresponding protons and carbons of the anticipated product (Figure 51 A, B). The low 

intensity of the peak of proton A (at 8.37 ppm on 1H-NMR spectrum) is commonly observed 

on 1H-NMR spectra of imidazolium molecules recorded in D2O. Due to the acidic character of 

such proton, it undergoes exchange with deuterium atoms of the solvent, leading to the loss of 

the intensity of the corresponding signal. This can be even amplified by the very harsh 

conditions (high temperature, long time) of the process of dissolution PILC5+Ac- in D2O (since 

re-dissolving a completely dried PILC5+Ac- is challenging). The proton-exchange affects also 

the pattern of 13C-NMR spectrum of PILC5+Ac-. The altered chemical environment around 

carbon A (Figure 51 B), which may occur when neighboring protons are replaced by deuterium, 

changes the chemical shift of its signal. It eventually leads to the splitting and loss of the 
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intensity of 13C-NMR peak belonging to carbon A. Due to the complications which were caused 

by the proton exchange in D2O and problems with direct dissolution of previously dried 

PILC5+Ac- in other solvents, the 1H-NMR spectrum of anion exchanged PILC5+TFSI- was 

recorded in DMSO-d6 (Figure 52). The presence of two explicit peaks which can be assigned 

to protons of imidazolium ring (protons A and C Figure 52), as well as the clear assignment of 

other NMR signals (except the peaks of protons E and I which overlap with the signal of water 

at 3.9 ppm), confirms that the proposed method can be used for the synthesis of PILC5. 

The signal of water in DMSO-d6 is typically observed at 3.3 ppm. However, the blank 

experiment confirmed that when water content in DMSO-d6 becomes significant, the peak of 

water appears at higher ppm values, which is in agreement with results presented in Figure 52. 

The successful formation of imidazolium rings in the synthesized products can be further 

confirmed using ATR-FTIR spectroscopy (Figure 53). In the collected spectrum of PILC5+Ac-, 

νC-N vibration of imidazolium rings gives a strong band at 1151 cm-1. Moreover,  bands of ring 

asymmetric in-plane stretching, νCC, and ν(N)CH2 at 1390 cm-1 as well as peaks of CH2(N), 

and asymmetric ring in-plane stretching vibrations at 1558 cm-1 can be detected.83  

  
Figure 51. 1H-NMR and 13C-NMR of PILC5+Ac- in D2O. 
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Figure 52. 1H-NMR of PILC5+TFSI- in DMSO-d6. 

 

Figure 53. ATR-FTIR spectrum of PILC5+Ac-. 

From the synthetic point of view, it was interesting to study the effect of reaction 

conditions, such as temperature, reactant ratio, and reaction time on molar mass of 

the synthesized polymer (Figure 54 A, B C). As GPC measurements revealed, the reaction 

develops very fast within the first hour. The polymer synthesized after 5 min of the reaction 

achieves Mn = 10 kg/mol, having dispersity index (Đ) of 1.4. Carrying out the synthesis for one 

hour leads to the product having Mn (19 kg/mol) almost twice of the one synthesized after 5 min. 

However, this is accompanied by the increase in the dispersity index of the product (Đ = 1.6). 

Further extension of the reaction time leads to the polymer with higher molar mass, but such 

increase is substantially slower than at the beginning of the reaction (Mn = 22 kg/mol after 8 h, 
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Mn = 25 kg/mol after 12 h). This is also accompanied by the steady broadening distribution of 

molar masses of the synthesized product (Đ = 1.9 after 8 h, Đ = 2.4 after 12 h of the reaction). 

In addition, the effect of the temperature and molar ratio of aldehyde and dicarbonyl compound 

in relation to diamine was studied by GPC. However, the obtained data showed that the reaction 

temperature only slightly affects the molar mass of the polymer. Also excess of carbonyl 

compounds does not induce strong effect on molar mass of the synthesized imidazolium 

polymers. Surprisingly, even when 1.2 molar excess of formaldehyde and pyruvaldehyde in 

regards to diamine was used, molar mass of the product was almost identical with the product 

obtained from equimolar ratio of reagents. This is in contrary to typical polycondensation 

reactions which are usually sensitive to non-equimolar ratio of reagents and non-equimolar ratio 

leads to the drop of the expected molar mass of the product. In the case of Debus-Radziszewski 

reaction such unusual effect can be associated with the two-step reaction mechanism, which 

forms imidazolium ring. First in the reversible step, diimine and water as two products are 

formed.117 In the second step, a reaction of diimine with formaldehyde leads to the irreversible 

formation of imidazolium ring. When the synthesis is performed in water and in excess of 

carbonyl compounds, it can be expected that the equilibrium of the first reaction is shifted 

towards the substrates. However, even small amount of the diimine intermediate product can 

be directly consumed in the irreversible ring-closing reaction, resulting in the increase of 

molecular weight of polymeric product. Thus, for the rest experiments an excess of carbonyl 

(1.2 molar excess in regards to diamine) compounds was used. Such conditions were selected 

in order to assure that the propagation of polymer chain and formation of imidazolium ring will 

not be halted due to the lack of pyruvaldehyde or highly volatile formaldehyde. 
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Figure 54. Molar mass distribution of PILC5+Ac- obtained after various synthesis time.  

The successful reaction towards PILC5+Ac- initiated the follow-up studies, which 

targeted at broadening of the library of PILs accessed by the newly established method. For this 

reason, the length of the alkyl spacers which separate imidazolium moieties from each other in 

the PILs backbone was altered. This led to the synthesis of PILs which possess different charge 

densities. In regard to the synthetic route established for PILC5+Ac, cadaverine was replaced 

by the terminal diamines possessing from 2 to 12 methylene groups between amine 

functionalities. The structure of the products was investigated by 1H-NMR spectroscopy (Figure 

55, Figure 56). 1H-NMR spectra of PILs having from 4 to 12 methylene units in the alkyl linkers 

clearly confirm that the desired structures were obtained (Figure 55). The pronounced increase 

in the intensity of the peaks in the alkyl region indicates that amines of different length were 

successfully incorporated into the structure of PILs. The lack of the signal which could be 

assigned to the acidic proton denoted as A (analogously to the case of PILC5+Ac-) can be 

correlated to the exchange of such proton in D2O (the process of dissolution of the samples was 

conducted at 90 °C for 24 h). Unfortunately, due to the insolubility of fully dried PILC2+Ac- in 

D2O (even at 90 °C), the attempts to use the same method for the preparation of the 1H-NMR 

of this material failed. In order to overcome this obstacle, a dialyzed solution of PILC2+Ac- was 

10
4

10
5

10
6

Molar mass [gmol
-1
]

  

 

 5 min

 10 min

 30 min

 1 h

 8 h

 12 h



 

82 
 

concentrated, followed by the addition of DMSO-d6 and continuous evaporation of solvents (in 

order to minimize the amount of water). When the desired polymer concentration was achieved, 

the 1H-NMR spectrum was recorded. However, possibly due to the low solubility of PILC2+Ac- 

in DMSO, this method failed to confirm the structure of the obtained polymer.  

 

Figure 55. 1H-NMR spectra of PILCX+Ac- [X=4 (black line), 6 (green line), 8 (red line), 

10 (blue line) or 12 (purple line)] recorded in D2O [normalized to the height of the peaks 

  at 4.02 ppm, y - number of units containing protons f; in the scheme 𝑦 =
𝑋−4

2
]. 

 

Figure 56. 1H-NMR spectra of PILC2+Ac- recorded in DMSO. 
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1H-NMR samples of the products of reactions with p-phenylenediamine (PILPh+Ac-) 

and p-xylylenediamine (PILC2Ph+Ac-) were prepared according to the procedure described for 

PILC2+Ac-. The structure of PILC2Ph+Ac- can be clearly verified by this method (Figure 57). 

However, presumably due to the low solubility of PILPh+Ac- in DMSO, its 1H-NMR spectrum 

does not provide a clear evidence for the formation of the designed product.  

 

Figure 57. 1H-NMR spectra of PILPh+Ac- and PILC2Ph+Ac-recorded in DMSO. 

Imidazolium polymers whose structure was previously confirmed by NMR 

spectroscopy were characterized using GPC. Prior to the measurements, all the polymers were 
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was performed in the eluent composed of acetate buffer / MeOH mixture (numbear and weight 
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1,4-daminobutane was used as the polymer precursor, the obtained product displayed a Mn of 
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PILC8+Ac-, 42 kg/mol for PILC10+Ac-, 44 kg/mol for PILC12+Ac-). Đ values of these polymers 

varied in the range from 1.6 to 2.0 which can be considered as typical results 
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for polycondensation processes. Imidazolium polymer having phenylene group in its structure 

(obtained from the reaction with p-xylylenediamine) has Mn of 29 kg/mol and Đ = 1.7. 

Therefore it can be concluded that the developed synthetic method is a facile way to obtain 

various imidazolium polymers having satisfactory molar masses. Among the performed 

reactions, only a slight effect of the choice of diamine compound on the molecular weight of 

the product was observed. In general, the dialyzed imidazolium polymers show monomonal 

molar masses distribution, having typically Mn in the range from 30 to 45 kg/mol and Đ values 

slightly below 2. However, the above-mentioned results were calculated using pullalan 

standards which do not fully mimic the solution behavior of PILs. Thus, the obtained values are 

only apparent molar masses and they may substantially differ from the absolute molar masses 

of imidazolium polymers. 

 

Figure 58. Molar mass distribution of the selected PILs (smoothing function was applied to to 

the plotted data). 
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synthesized PILs having alkyl spacers and Ac- counteranion decompose at relatively lower 

temperatures. For instance, PILC5+Ac- decomposes at 260 °C (the temperature of 10 % of 

weight loss). Nonetheless, exchanging counterion to TFSI- leads to the polymers having 

a superior thermal stability. PILC5+TFSI- is thermally stable up to 440 °C (Figure 59), among 

the most stable PILs reported in literature. PILs bearing Ac- anions and p-phenylene 

or p-xylylene spacers between imidazolioum-moieties decompose relatively early, at 255 °C 

and 210 °C, respectively. Nevertheless, at 1000 °C their TGA traces display high residues 

content (PILPh+Ac-, - 38 %, PILC2Ph+Ac-, - 32 %, Figure 60) indicating that these PILs can be 

potentially used as precursors for carbon materials. In order to increase the carbonization yield 

in the TGA measurement even more, counterions of such polymers were exchanged to TFSI- 

and N(CN)2
-. PILC2Ph+N(CN)2

- and PILPh+TFSI-
 display similar thermal properties. They 

decompose at 320 °C and leave more that 40 % of solid residues at 1000 °C. However, both of 

them are significantly outperformed by PILPh+N(CN)2
-, which in addition to the high 

decomposition temperature (385 °C) leaves 65 % of the carbonized material at 1000 °C. Such 

high carbonization yield could derive from the material properties of PILPh+N(CN)2
- or be an 

artifact due to the contamination of the sample. The presence of inorganic impurities such as 

sodium salts (which are reactants used in the PILs anion exchange) could distort the obtained 

results, artificially increasing the carbonization yield. For this reason, the residues obtained 

from TGA were characterized by elemental analysis. However, the obtained results revealed 

that such carbon material constitutes of 87 % of carbon, 10.6 % of nitrogen and 1.5 % of 

hydrogen, thus is free of the relevant amounts of inorganic impurities.  

The above-mentioned values were compared with the results reported for nitrogen-

doped carbons synthesized from ILs and PILs. ILs and PILs are not volatile, but at elevated 

temperatures they often decompose creating well volatile products. Due to such reason, 

very often during heating up to 1000 °C under atmosphere of an inert gas they decompose 
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completely or leave small amount of residual mass (less than 30 %),142 despite one 

1,3_bis(cyanomethyl)imidazolium IL gave carbonization yield as high as 53 % (at 800 °C).143 

Specifically, when PILs were applied as precursors for carbon materials, the typical values of 

carbonization yields obtained at 1000 °C amount to 20 %.144 This comparison highlights the 

importance of the results obtained as a part of this PhD work. However, further studies must be 

performed to investigate and tune the graphitization degree as well as porosity of carbon 

materials obtained from PILPh+X-, which may impact the properties of the final materials, such 

as its conductivity, oxidation stability, and catalytic activity.142 

 

Figure 59. TGA thermograms recorded for PILs having alkyl spacers. 
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Figure 60. TGA thermograms of PILs having p-phenylene or p-xylylene linkers. 

4.3 Conclusion 

To sum up, in the first section of this chapter, a new synthetic method for polyester-type 

PILs which are partially derived from bio-mass was established. Several PILs bearing different 

counterions were successfully synthesized. It was presented that such PILs are interesting 

candidates for CO2 capture materials. In the latter section, a one-step synthetic route towards 

main-chain imidazolium-type PILs was developed. Interestingly, this method requires neither 

sophisticated reaction conditions nor elevated temperatures. Moreover, it utilizes mostly or 

exclusively simple compounds which can be accessed from bio-resources. Finally, the novel 

PILs can serve as good precursors for nitrogen-doped carbon materials since they display very 

high carbonization yields in the TGA measurements.  
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5. SUMMARY AND OUTLOOK 

The research described in this PhD work succeeded in developing new chemical 

structures of PILs and establishing novel synthetic pathways towards such polymers and their 

hybrid composites. Various PILs were efficiently applied as stabilizers, phase transfer agents, 

binders, and CO2 capture materials.  

In chapter 2, the main objective of using a common imidazolium-type PIL as stabilizer 

for CNFs was to enable processing of CNFs in organic media to unleash their full potential. 

Since a direct mixing of a cationic PIL and anionic CNFs yielded only the precipitation of a non-

dispersible polylelectrolyte complex, the in situ polymerization of ILMs in water in the presence 

of CNTs was applied for the electrostatic grafting of PILs onto CNFs. As a result, a well 

dispersed PIL-CNF hybrid material which preserved fibrillar, bundle-free morphology was 

obtained. Such hybrid merged advantages of both its components: superior mechanical strength 

of CNFs and versatile solution properties of PILs. The omnidispersible CNFs@PILs were easily 

transferred from water to organic solvents by simple anion exchange and further incorporated 

into porous polyelectrolyte membranes. Eventually, the reinforced membranes containing only 

5 % of hybrids possess around 30 % higher tensile strength and Young’s modulus than its 

hybrid-free counterpart, outperforming also analogous polyelectrolyte porous membranes 

described in the literature. 

Chapter 3 describes the synthesis of two series of PILs which bear in their structure 

thiazolium cations as functional, ionic moieties. In the first part, thiazolium-type monomer was 

synthesized from 4-methylthiazole by its quaternization with 4-chloromethylostyrene. The 

subsequent polymerization of this ionic monomer yielded a hydrophilic polymer having tunable 

thermal and solution properties. To vary such features of thiazolium PILs, their Cl- counterions 
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were replaced with TFSI-, TFO-, BF4
-, and PF6

-. Decomposition temperature of the polymers 

strongly depends on the employed anion and increases in the order of Cl- > PF6
-, TFO- > TFSI- 

> BF4
- varying in the range from 200 °C to 295 °C. Moreover, the products exhibited versatile, 

anion-reliant solubility in water and organic solvents, i.e. MeOH, acetone, DMF, and DMSO. 

As an exemplary application, the thiazolium-polymers served as precursors for sulfur-nitrogen 

doped carbons and as stabilization and phase transfer agents for CNTs in aqueous and organic 

media. In the 2nd part of Chapter 3, the structure of thiazolium-containing monomers and 

polymers was simplified in order to increase the concentration of IL species in bulk PILs. For 

this reason 4-methyl-5-vinyl thiazole was utilized as a monomer precursor and underwent 

quaternization with methyl iodide. Counteranions of MVT+I- were exchanged to PF6
-, BF4

-
, and 

TFSI- to generate ILMs of various types. Consequently, each of these monomers was 

independently polymerized in solution and/or bulk. This synthetic pathway has an advantage 

over the previous approach, since it yielded PILs and ionic polymers of the high purity, free of 

non-exchanged counterion contaminants. TGA measurements revealed that structural 

modification of the polymeric backbone led to PILs whose thermal stability increased up to 385 

°C. Among these PILs, P(MVT+TFSI-) was applied as a binder for electrodes in lithium-ion 

batteries. Such electrodes showed an excellent stability up to 400 cycles at 5C charge/discharge 

test and high specific capacity of 140 mAh/g at 1 C test, outperforming for more than 15 % 

specific capacities measured for electrodes containing commercially used PVDF binder. The 

studies conducted in this thesis can be regarded as initial research on thiazolium polymers and 

likely to attract more scientific interest. 

In Chapter 4, substrates originating from biomass were successfully harnessed to 

synthesize main-chain imidazolium-type PILs. In the initial section, a polyester-type 

imidazolium PILs was formed from bio-derived compounds, such as 1,3-propanediol and 

a room temperature IL, which partially derives from pyruvaldehyde, glycine, and formaldehyde. 
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Further anion exchange reactions led to the polymers having adjustable solution and thermal 

properties. These PILs were tested for CO2 sorption, reaching capacity up to 0.32 mmol CO2/g. 

In the latter section, the new synthetic method towards PILs utilizing diamine compounds for a 

modified Debus-Radziszewski method was developed. The advantage of this route was that 

polymers with high molar masses were accessible by one-step synthesis performed in water, at 

ambient temperature, and without the necessity of using oxygen-free conditions. Moreover, 

such PILs derived partly or exclusively from simple molecules which stem from bio-resources. 

The structures of PILs with different charge density and chemical composition of spacers 

between imidazolium rings were synthesized and characterized. Interestingly, in the case of 

PILs possessing phenylene linkers, the exchange of counterions from acetate to TFSI- and 

N(CN)2
- yielded products of significantly increased thermal stability and carbonization yield 

(reaching over 60 %), respectively. Thus, such polymers can be recognized as promising 

precursors of N-doped carbon materials. The presented here synthetic route serves as a powerful 

tool giving an easy access to various structures of PILs. Exemplarily, it can be exploited for the 

synthesis of various functional PILs having for instance pH responsive or fluorescent properties, 

which depend on the proper selection of diamine. Certain features of PILs can be also altered 

by the proper choice of carbonyl compounds.  In addition, a reaction with multivalent amines 

for the one-step synthesis of nanogels will be performed in the follow up studies. 
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A. LIST OF ABBREVIATIONS 

13C-NMR 13C nuclear magnetic resonance 

1H-13C HMBC Proton-carbon heteronuclear multiple bond correlation 

1H-13C HSQC Proton-carbon heteronuclear single quantum coherence spectroscopy 

1H-NMR Proton nuclear magnetic resonance 

AFM Atomic force microscopy 

ATR-FTIR Attenuated total reflection Fourier transform infrared spectroscopy 

BF4
- Tetrafluoroborate 

CHCl3 Chloroform 

CNF Cellulose nanofiber 

CNF@PIL-X PIL grafted onto CNFs hybrid material (X – counterion) 

CNT Carbon nanotube 

CRP Controlled radical polymerization 

Đ Dispersity index 

DLS Dynamic light scattering 

DMF Dimethylformamide 

DMSO Dimethylsulfoxide 

EtAC Ethyl acetate 

EtOH Ethanol 

EVIm+Br- 1-ethyl-3-vinylimidazolium bromide 

GPC Gel permeation chromatography 

hv High vacuum 

IL Ionic liquid 

ILM Ionic liquid monomer 

ImDE+TFO- 
1,3-bis(2-ethoxy-2-oxoethyl)-5-methylimidazolium 

trifluoromethanesulfonate 
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MeOH Methanol 

Mn Number average molar mass 

MVBT+X- 4-Methyl-3-(4-vinylbenzyl)thiazol-3-ium X- (X- - counterion) 

MVT+X- 3,4-Dimethyl-5-vinylthiazolium X- (X- - counterion) 

MWCNT Multiwalled carbon nanotube 

N(CN)2 Dicyanamide 

P(MVBT+X-) 
Poly[4-methyl-3-(4-vinylbenzyl)thiazolium) chloride]  

(X- - counterion) 

P(MVT+X-) Poly(3,4-dimethyl-5-vinylthiazolium X-) (X- - counterion) 

PAA Poly(acrylic acid) 

PCMVImPF6 Poly(3-cyanomethyl-1-vinylimidazolium hexafluorophosphate) 

PF6
- Hexafluorophosphate 

PIL Poly(ionic liquid), Polymerized ionic liquid 

PVDF Poly(vinylidene fluoride) 

SEM Scanning electron micrograph 

STP Standard temperature and pressure 

SWCNT Single walled carbon nanotube 

TEMPO 2,2,6,6-tetramethylpiperidine-1-oxyl 

TFO- Triflurosulfonate 

TFSI- Bis(trifluoromethane sulfonate)imide 

Tg Glass transition temperature 

TGA Thermogravimetric analysis 

THF Tetrahydrofuran 

TnBABr Tetra-n-butylammonium bromide 

VA86 2,2'-azobis[2-methyl-N-(2-hydroxyethyl) propionamide] 
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B. INSTRUMENTATION AND CHARACTERIZATION 

METHODS 

Atomic Force Micrographs were taken using Nanoscope MultiMode 8 atomic force 

microscope (Bruker, Santa Barbara, CA) equipped with an E-scanner operating in tapping 

mode using a Tap150 cantilever (Bruker, Camarillo, CA). Freshly cleaved mica was used 

as substrate. In the case of CNF@PIL-Br hybrids, the substrate was immersed in 0.02% 

sample solution for 10 sec, then rinsed with water, and blown dry with a flow of filtered 

nitrogen gas. For the CNF, mica was first immersed into 0.01 g/L polyethylenimine for 

1 sec, followed by rinsing with water. Afterwards such pre-treated substrate was immersed 

in CNF (0.02 % w/w) for 60 seconds, rinsed with water and blown dry with a flow of 

filtered nitrogen gas. All measurements were performed in air at room temperature. 

Attenuated Total Reflection Fourier-transform infrared spectroscopy (ATR-FTIR) was 

performed at room temperature with a BioRad 6000 FT-IR spectrometer equipped with a Single 

Reflection Diamond ATR. 

Differential scanning calorimetry (DSC) measurements were done under nitrogen flow using 

Perkin-Elmer DSC-1 instrument.  

Dispersibility tests were performed by mixing 20 mg of CNFs or CNF@PIL hybrids with 

10 mL of different solvents followed by sonication for 30 sec using an ultrasonic finger at 50% 

of full amplitude.  

Electrochemical analysis: The electrodes were prepared by spreading slurry of acetylene 

black, binder and lithium iron phosphate (LiFePO4) in N-methyl-2-pyrrolidone on an aluminum 
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foil current collector. The ratio was kept constant in all 80% LiFePO4, 10% acetylene black, 

and 10% binder material. The electrodes were dried at 80 °C for 3 h followed by drying at 120 

°C for 24 h. The loading of mixture was controlled at ~2.5mg. The electrodes were assembled 

in two-electrode Swagelok-type cells. Assembling process was performed inside glovebox 

under atmosphere of argon. Lithium foil was used as a counter electrode and glass fiber 

membrane was employed as a separator. As the electrolyte solution, 1 M lithium 

hexafluorophosphate in mixture of ethylene carbonate and dimethyl carbonate (1:1 volume 

ratio) was used. The cells were cycled in potential window between 2 and 4 V vs Li/Li+ using 

multichannel potentiostatic / galvanostatic system (Bio-Logic). The C-rate was calculated on 

the basis of LiFePO4 assuming a theoretical specific capacity of 170 mAh/g. 

Elemental analysis was accomplished as a combustion analysis using a Vario Micro device.  

Gel permeation chromatography (GPC) was performed using: 

Chapter 2: TSK Gel Guard (50 x 7.5mm) + 6000 + 5000 + 4000 + 3000 (300x7.5mm, 10µm) 

column with 0.2M Na2SO4 + 1% acetic acid solution in water (flow rate 1.00 mL/min, Pullulan 

PSS Polymer Standard Service 0.342kD – 710kD, equipped with UV-Detector  Spectra System 

UV 2000 and double detector  WGE SEC-3010). 

Chapter 3 and chapter 4.1 Gel permeation chromatography was performed using NOVEMA-

column with mixture of 80 % of acetate buffer and 20 % of methanol (flow rate 1.00 mL·min-1, 

PEO standards using RI detector - Optilab-DSP-Interferometric Refractometer 

(Wyatt-Technology) 
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Chapter 4.2 Gel permeation chromatography was performed using NOVEMA Max linear XL-

column with mixture of 80 % of acetate buffer and 20 % of methanol (flow rate 1.00 mL min-

1, Pullalan standards using RI detector - RI -101 Refractometer (Shodex) 

Grafting density was calculated for CNF@PIL-Br hybrids. The determined C/N ratio of 

CNF@PIL-Br hybrid was 4.23. It was confirmed that CNFs do not contain nitrogen (<0.05 

wt%). For the calculation of the amount of grafted polymer, C/N for the hybrid material was 

compared with the theoretical C/N value for pure PIL-Br polymer. The calculated weight ratio 

of grafted PIL-Br to CNFs was 2.45:1. The calculations were performed as follows: Firstly, 

surface area of CNFs in the sample of CNF@PIL-Br hybrid material  

(of weight 𝑚; 𝑚 = 𝑚𝐶𝑁𝐹 + 𝑚𝑃𝐼𝐿; according to elemental analysis 𝑚𝑃𝐼𝐿 = 2.45 ∙ 𝑚𝐶𝑁𝐹) was 

calculated according to the following equation: 

𝐴 =
2 𝑚𝐶𝑁𝐹

𝜌 ∙ 𝑟
 

Where 𝐴 is the surface area of CNFs, 𝑚𝐶𝑁𝐹  - the weight of the CNFs in the sample of hybrid 

material, 𝜌 the density of nanocellulose (1.45 g∙cm-3), and 𝑟 is the radius of CNFs (5 nm, 

the  alue obtained from AFM image - Figure 4)  

Then grafting density (𝜎) was calculated according to the following equation: 

𝜎 =
2.45 ∙ 𝑚𝐶𝑁𝐹 ∙ 𝑁𝐴

𝐴 ∙ 𝑀𝑛
= 0.15 [𝑐ℎ𝑎𝑖𝑛𝑠 ∙ 𝑛𝑚−2] 

Where 2.45 ∙ 𝑚𝐶𝑁𝐹 is the weight of PIL-Br in the sample of CNF@PIL-Br hybrid material, 𝑁𝐴 

is the Avogadro number and 𝑀𝑛 the number average molar mass of PIL-Br.81 

Nuclear Magnetic Spectroscopy (NMR): Carbon nuclear magnetic resonance (13C-NMR) 

spectra were recorded at room temperature using a Bruker DPX-400 spectrometer operating at 

400.1 MHz. Proton nuclear magnetic resonance (1H-NMR) spectra were recorded at room 
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temperature using a Bruker DPX-400 spectrometer operating at 400.1 MHz. Heteronuclear 

multiple bond correlation (1H-13C HMBC) NMR spectra were recorded at room temperature 

on a VARIAN 400-MR (400 MHz) spectrometer.  

Scanning electron microscopy (SEM) was performed on a GEMINI LEO 1550 microscope at 

3 kV acceleration voltage. 

Solubility tests were performed by mixing 10 mg of samples with different solvents (1 wt%) 

in 5 mL vials. After 24 hours of shaking vials, the presence of solid inside vials was checked. 

Sonication Branson Digital Sonifier model W450D was used for the ultrasound treatment. A 

microtip (1/8´´ in diameter) was immersed in the dispersion and the sonifier was run at different 

amplitudes. Dispersions were cooled in an ice batch during the whole process.  

Tensile tests were performed using a custom-made instrument equipped with a video 

extensometer. For this purpose membrane strips (2 mm wide, 60-140 µm thick and around 

2.5 cm long) were glued onto metal plates (distance between metal plates was in the range 1.3-

1.5 cm), which were fixed on the tensile tester by a pin and hole assembly to allow for sample 

alignment in the strain direction during the tensile test. Samples were kept in the wet state during 

whole process of sample preparation as well as during stress/strain measurement.  

Thermogravimetric analysis (TGA) experiments were performed under nitrogen flow at 

a heating rate of 10 K min-1 using a Netzsch TG209-F1 apparatus. 

Transmission electron microscopy (TEM) measurements were performed on a Zeiss EM 912 

Omega microscope operating at 120 kV. TEM samples were prepared by dropping 5 µL of a 

diluted stabilized CNTs suspension on a 200 mesh carbon-coated copper TEM grid.  
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C. MATERIALS 

Acids: Trifluoromethanesulfonic acid (98 +%, Alfa Aesar), acetic acid (≥ 99%, Sigma). 

Diamines: Ethylenediamine (99 %, Alfa Aesar), 1,4-diaminobutane (99 %, Aldrich), 

1,5-diaminopentane (98 %, Acros Organics), 1,6-diaminohexane, (98 +%, Alfa Aesar), 

1,8-diaminooctane (98 %, Aldrich), 1,10-diamidodecane (97 %, Aldrich), 

1,12-diaminododecane (98 %, Aldrich), p-phenylenediamine (≥ 99 %, Aldrich), 

p-xylylenediamine (99 %, Aldrich). 

Halogenated alkyls: Bromoethane (Aldrich 98 %), 1-bromobutane (99 %, Sigma-Aldrich), 

4-vinylbenzyl chloride (90%, Acros), methyl iodide (99 %, Alfa Aesar). 

Monomer precursors: 1-vinylimidazole (Aldrich 99 %) 4-Methylthiazole, (99 %),4-Methyl-

5-vinylthiazole (≥ 97 %, Sigma Aldrich). 

Polymerization initiators: 2,2′-Azobis(2-methylpropionitrile) (Sigma Aldrich, 98 %) was 

recrystallized from methanol. 2,2'-azobis[2-methyl-N-(2-hydroxyethyl)propionamide] (Wake 

Chemicals) was used without further purification. 

Salts: Lithium bis(trifluoromethylsulfonyl) imide (99 %, Io-li-tec), Potassium 

hexafluorophosphate (99 %, Alfa Aesar), Tetra-n-butylammonium bromide (98 +%, Alfa 

Aesar) sodium trifluoromethanesulfonate (98 %, Alfa Aesar), sodium tetrafluoroborate (98 %, 

Sigma Aldrich), silver tetrafluoroborate (98 %, Aldrich), sodium dicyianamide (≥ 97 %, 

Aldrich), Lithium Iron Phosphate (MES) 
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Other reagents: formaldehyde (37 % aqueous solution, Applichem), glycine (> 99 %,  Merck), 

1,3-Propanediol (98 %, Aldrich), pyruvaldehyde (40 % aqueous solution, Sigma), poly(acrylic 

acid) (PAA, solid powder, Mw = 1800 g/mol, Sigma-Aldrich) Inhibitor 2,6-ditertbutylo 4-methyl 

phenol (99.0 %; Aldrich), Catalysts Tin (II) 2-ethylhexanoate (95 %, Aldrich), Single-walled 

carbon nanotubes (Sigma-Aldrich), multi-walled carbon nanotubes (Baytubes® C150P) were 

used as received.  

TEMPO oxidized cellulose nanofibers were obtained from a defibrillation process of soft 

wood pulp.145 In brief, an aqueous suspension of pulp from Norwegian spruce was subjected to 

an enzymatic pre-treatment to liberate wood fibers followed by a TEMPO-mediated oxidation 

step to render carboxylated fibers (600 mmol/g charge). Subsequent subjection of the fibers to 

mechanical disintegration using a high-pressure microfluidizer equipped with a 100 m 

chamber (Microfluidizer M-110EH, Microfluidics Corp., USA) provides fully defibrillated 

cellulose nanofibers. This mechanical treatment renders a highly viscous CNF dispersion with 

a concentration of about 1 wt%. The CNFs are long and flexible fibers with a thickness of 5 nm 

and 1-2 m in length (Figure 4 A).81 

1-Cyanomethyl-3-vinylimidazolium bromide (CMVImBr), and 3-ethyl-1-vinylimidazolium 

bromide was synthesized according to the method described in the literature.54, 146 Poly(3-

cyanomethyl-1-vinylimidazolium hexafluorophosphate (PCMVImPF6) was prepared by anion 

exchange of PCMVImBr with KPF6 salt in aqueous solution.  

Green muscovite mica obtained from AXIM Enterprises (New York, US) was used in the 

AFM studies. Polyethylenimine with a molar mass of about 60 000 g/mol (supplied by Arcos 

organics, US) was used as received.  

All used solvents were of analytic grade. 
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D. EXPERIMENTAL 

D.1 Chapter 2 

In situ stabilization of CNFs and the anion exchange 

CNF dispersion (10 g, 1 wt%) was diluted with MiliQ® water (40 mL) and sonicated 

using an ultrasonic horn (10 min. of active sonication at 10% of full amplitude, 3 sec on/3 sec 

off cycles, followed by 10 minutes of active sonication at 50% of full amplitude, 3 sec on/3 sec 

off cycles). Subsequently, additional amount of MiliQ® water (120 mL) was added and the 

dispersion was sonicated for 10 min (at 50 % of full amplitude, 3 sec on/3 sec off cycles). 

During the sonication processes the sample was immersed in an ice bath. 1-Ethyl-3-

vinylimidazolium bromide monomer solution (4.0 g, 19.70 mmol in 20 mL of MiliQ® water) 

and VA86 initiator solution (80 mg, 0.277 mmol in 10 mL of MiliQ® water) were added 

dropwise to vigorously stirred CNFs dispersion, followed by charging into a 250 mL Schlenk 

flask and 5 cycles of degassing – filling with argon. The polymerization reaction was performed 

under argon at 85 °C for 20 h. The crude product was purified from free polymer by the 

ultrafiltration method (filters with 50 nm pores). For the anion exchange, one batch of the 

stabilized CNF dispersion (100 mL of suspension) was dispersed using an ultrasonic horn 

device (10 minutes of active working at 50% of amplitude, 3 sec on/3 sec off cycles) and 

solutions of KPF6 (400 mg, 2.17 mmol in in 50 mL of MiliQ® water) or LiTFSI (624 mg, 2.17 

mmol in 50 mL of MiliQ® water) was added dropwise into vigorously stirred suspension of 

CNFs. After one hour of stirring of such mixtures, products were purified by ultrafiltration 

(filters with 50 nm pores). 
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Membranes preparation 

PCMVImPF6 (1.0 g) was dissolved in DMSO (9.0 g). Poly(acrylic acid) (PAA) (2.58g, 

Mw: 1800 g/mol) was dissolved in DMSO (10.0 g). PAA solution (1.258 g of the sulution) was 

added to PCMVImPF6 solution (10.0 g) and stirred for 1 h. Then 1.5 g of such mixture was cast 

onto a clean glass plate and dried in air at 80 °C for 3h, followed by immersing in 0.2 wt% 

aqueous ammonia (pH=10.8, 20 °C, 2 h). After 2 h, a flexible, yellowish freestanding membrane 

was detached from the glass surface and washed with demineralized water. 

Reinforced membranes were prepared in an analogous way to the above-mentioned, 

but in the first step PCMVImPF6 (1.0 g) was dissolved in DMSO followed by the addition 

of 63 mg of CNF@PIL-PF6 hybrid dispersed in a stock solution in DMSO (the 

concentration of CNF@PIL-PF6 hybrid in the stock solution was determined by TGA 

measurement) and tuning the overall amount of DMSO to 9.0 g. Then 1.258 g of PAA 

solution was added to the mixture followed by the sonication using ultrasonic horn device 

(10 minutes of active working, 50 % of full amplitude in 3 sec on/3 sec off cycles). During 

the sonication process the sample was immersed in an ice bath.81 

Characterization of free-standing polymer 

For the characterization of free-standing polymer, the filtrate eluting during the 

ultrafiltration process was concentrated under the reduced pressure and dried for 24 h at 40 

°C. Subsequently, Mn and Đ of the free PIL chains were determined by GPC (calculated 

against pullalan standards) to be 35 kg/mol and 1.5, respectively.  
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D.2 Chapter 3.1 

Monomers Synthesis 

4-methyl-3-(4-vinylbenzyl)thiazol-3-ium chloride (MVBT+Cl-): 4-methylthiazole (20.0 

g; 0.20 mol), 2,6-ditertbutylo4-methyl phenol (0.300 g, 1.36 mmol) and EtAc (100 mL) were 

loaded into a 250 mL round bottom flask. 4-Chloromethyl styrene (102.6 g; 0.61 mol) was 

added to the flask under vigorous stirring and stirred at 70 °C for 20 days. Every 5 days, the 

precipitate was collected by filtration, washed several times with ethyl acetate and dried under 

high vacuum at 40 °C for 24 h (21.45 g, yield 42%). 1H-NMR (400.1 MHz, D2O): 7.87 (s, 1H, 

CH), 7.6 (d, 2H; ArH), 7.3 (d, 2H; ArH), 6.8 (q, 1H; CH), 5.9 (d, 1H; CH2), 5.64 (s, 2H; CH2), 

5.4 (d, 1H; CH2), 2.50 (s, 3H; CH3); the peak of the acidic proton of imidazolium ring is absent 

due to a fast proton exchange in D2O. However, its existence was confirmed by 1H NMR 

analysis in DMSO-d6. 

4-methyl-3-(4-vinylbenzyl)thiazol-3-ium bis(trifluoromethylsulfonyl) imide 

(MVBT+TFSI-): MVBT+Cl- (1.50 g, 5.96 mmol) was dissolved in MiliQ® water (10 mL). 

LiTFSI (1.82 g, 6.34 mmol) was dissolved in MiliQ® water (40 mL) and added dropwise to the 

monomer solution under vigorous stirring. Phase separation was observed. After 24 h the upper 

phase was decanted. The bottom part was washed 3 times with MiliQ® water, dissolved in 

methanol (50 mL), and re-precipitated from MiliQ® water. The product was collected and dried 

under high vacuum at 40 °C for 48 h (2.10 g, yield 71%). 1H-NMR (400 MHz, DMSO-d6): 

10.14 (s, 1H, CH), 8.05 (s, 1H, CH), 7.5 (d, 2H; ArH), 7.3 (d, 2H; ArH), 6.8 (q, 1H; CH), 5.9 

(d, 1H; CH2), 5.7 (s, 2H; CH2), 5.3 (d, 1H; CH2), 2.4 (s, 3H; CH3) 
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4-methyl-3-(4-vinylbenzyl)thiazol-3-ium hexafluorophosphate (MVBT+PF6
-): was 

synthesized according to the analogous procedure that the one established for MVBT+TFSI- 

except that acetone was used instead of methanol for dissolving the crude product. (2.15 g, yield 

76% ). 1H NMR (400 MHz, DMSO-d6): 10.14 (s, 1H, CH), 8.05 (s, 1H, CH), 7.6 (d, 2H; ArH), 

7.3 (d, 2H; ArH), 6.8 (q, 1H; CH), 5.9 (d, 1H; CH2), ), 5.7 (s, 2H; CH2), 5.3 (d, 1H; CH2), 2.4 

(s, 3H; CH3)  

Synthesis of 4-methyl-3-(4-vinylbenzyl)thiazol-3-ium tetrafluoroborate (MVBT+BF4
-): 

MVBT+Cl- (1.5g, 6.0 mmol), NaBF4 (0.73 g, 6.5 mmol) and acetonitrile (100 mL) were charged 

into a beaker and stirred at room temperature for 72 h. Afterwards, solid particles were 

centrifuged out. The supernatant was collected and solvent was removed under reduced 

pressure. The product was dried under high vacuum at 40 °C for 48 h (1,63 g of MVBT+BF4
-, 

yield 90 %). 1H NMR (400 MHz, DMSO-d6, δ): 10.13 (s, 1H, CH), 8.05 (s, 1H, CH), 7.6 (d, 2H; 

ArH), 7.3 (d, 2H; ArH), 6.8 (q,  1H; CH), 5.9 (d, 1H; CH2), ), 5.74 (s, 2H; CH2), 5.3 (d, 1H; 

CH2), 2.44 (s, 3H; CH3) 

4-methyl-3-(4-vinylbenzyl)thiazol-3-ium trifluoromethanesulfonate (MVBT+TFO-): 

MVBT+Cl- (1.00 g, 4,0 mmol), sodium trifluoromethanesulfonate (NaTFO; 0.70 g, 4.0 mmol) 

and acetonitrile (100 mL) were loaded into a beaker and stirred at room temperature for 72 h. 

Afterwards, the solid particles were centrifuged out and the supernatant was collected. 

Acetonitrile was removed using under reduced pressure, using rotary evaporator. The product 

was dried under high vacuum at 40 °C for 48 h. (1,44 g of MVBT+TFO-, yield 99 %). 1H-NMR 

(400 MHz, DMSO-d6, δ): 10.14 (s, 1H, CH), 8,05 (s, 1H, CH), 7.6 (d, 2H; ArH), 7.3 (d, 2H; 

ArH), 6.8 (q,  1H; CH), 5.9 (d, 1H; CH2), 5.74 (s, 2H; CH2), 5.3 (d, 1H; CH2), 2.44 (s, 3H; CH3) 

Polymer synthesis 



 

103 
 

P(MVBT+Cl-): MVBT+Cl- (7.6 g, 30.1 mmol) and 2,2'-azobis[2-methyl-N-(2-

hydroxyethyl)propionamide] (0.23 g, 0.79 mmol) were charged into a 100 mL Schlenk flask 

and dissolved in MiliQ® water (40 mL). The mixture underwent 3 cycles of freeze-pump-thaw 

procedure. Polymerization was performed under atmosphere of an inert gas at 90 °C for 48 h. 

Crude product was purified by dialysis against MiliQ® water and lyophilized (6.35 g, yield 84 

%). 

P(MVBT+TFSI-): P(MVBT+Cl-) (1.00 g) was dissolved in MiliQ® water (30 mL). 

LiTFSI (1.25 g, 4.35 mmol) solution in MiliQ® water (20 mL) was added dropwise under 

vigorous stirring. White precipitate was observed. After 24 h precipitate was filtered off on 

a Büchner funnel, washed several times with MiliQ® water and dried at 40 °C for 48 h (1.63 g, 

yield 89%). 

P(MVBT+PF6
-) was obtained in the analogous procedure to the one established for 

P(MVBT+TFSI-), but KPF6 (0.81 g, 4.36 mmol) was used for an anion exchange. Crude product 

was purified by centrifugation and 5 times of washing with MiliQ® water (1.03 g, yield 72%).  

P(MVBT+TFO-): P(MVBT+Cl-) (100 mg), NaTFO (77.0 mg, 0.448 mmol), and 

acetonitrile (20.0 mL) were stirred in a beaker at room temperature for 24 h. Then, solid particles 

were centrifuged out. The supernatant was collected and acetonitrile was removed under 

reduced pressure. The crude product was washed with MiliQ® water and dried under high 

vacuum at 40°C for 48 h (109.1 mg, yield 75%). 

P(MVBT+Cl-) (100 mg), NaBF4 (77,0 mg, 0,448 mmole) and acetonitrile (20.0 mL) 

a beaker and stirred at room temperature for 24 h. Afterwards, solid particles were centrifuged 

out. The supernatant was collected followed by removal of acetonitrile under reduced pressure. 
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The crude product was washed with water, dried under high vacuum at 40 °C for 48 h [122 mg 

of P(MVBT+ BF4
-), yield 99 % ] 

Stabilization of CNTs and carbonization 

In the case of stabilization of MWCNTs and SWCNTs, CNTs (1.0 mg), P(MVBT+Cl-) 

(100 mg), and water (25 mL) were charged into a beaker. Afterwards, the mixture was sonicated 

using Branson Digital Sonifier model W450D (60 % of amplitude, 10 min. of active sonication, 

5 sec. on/15 sec. off). During the sonication process the beaker was cooled in an ice bath. The 

sonication of such mixture yielded stable for weeks, black dispersion. For anion exchange, 

MWCNTs/P(MVBT+Cl-) dispersion (15 mL) was transferred to 25 mL vial and the solution of 

KPF6 (80 mg, 0.43 mmol  KPF6 in 10 mL of MiliQ® water) was added dropwise. After 24 

hours, black precipitate was separated by centrifugation, washed 5 times with water, and re-

dispersed in acetone.  

Carbonization of P(MVBT+Cl-) 

 100 mg of P(MVBT+Cl-) was charged into a crucible placed in the oven and flushed 

with nitrogen for 30 min. Afterwards, the sample was heated to a final temperature at a heating 

rate of 3 K min-1 and carbonized for 1 hour (the whole carbonization process was performed 

under nitrogen). 
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D.3 Chapter 3.2 

Monomers synthesis: 

3,4-Dimethyl-5-vinylthiazol-3-ium iodide (MVT+I-): Methyl iodide (0.31 mol, 19.5 mL) 

was added dropwise under vigorous stirring to the mixture of 4-methyl-5-vinylthiazole (20.0 g, 

0.155 mol) and 2,6-ditertbutylo-4-methylphenol (100 mg, 0.45 mmol) into 250 mL round 

bottom flask. The flask was closed with a stopper and thermostated at 40 °C for 20 h. The solid 

product was dissolved in DMSO (200 mL) and subsequently precipitated from 4.0 L of 1:1 

volume mixture of diethyl ether and THF. The precipitate was filtered on a Büchner funnel, 

washed with 1:1 volume mixture of diethyl ether and THF, and dried overnight at 40 °C, at high 

vacuum (37.6 g of MVT+I-, 88% yield). 1H-NMR (400 MHz, DMF-d7) δ 10.38 (s, 1H), 7.19 

(dd, J = 17.2, 11.1 Hz, 1H), 6.02 (d, J = 17.2 Hz, 1H), 5.66 (d, J = 11.1 Hz, 1H), 4.36 (s, 3H), 

2.69 (s, 3H); 13C-NMR (101 MHz, DMF- d7) δ 158.38, 144.50, 135.92, 125.98, 121.95, 41.81, 

12.50. 

3,4-Dimethyl-5-vinylthiazol-3-ium bis(trifluoromethylsulfonyl) imide (MVT+TFSI-): 

LiTFSI solution (52.11 g, 180 mmol in 500 mL of MiliQ® water was added dropwise to the 

solution of MVT+I- (40.0 g, 150 mmol in 1L of MiliQ® water) followed by stirring for 2 h. The 

precipitate was separated on by vacuum filtration on a Büchner funnel and washed with MiliQ® 

water. The product was dried overnight at 40 °C degree at high vacuum (36.96 g 3,4-dimethyl-

5-vinylthiazol-3-ium bis(trifluoromethylsulfonyl) imide, 59 % yield). 1H-NMR (400 MHz, 

DMF- d7) δ 10.28 (s, 1H), 7.17 (dd, J = 17.2, 11.1 Hz, 1H), 6.03 (d, J = 17.3 Hz, 1H), 5.69 (d, 

J = 11.1 Hz, 1H), 4.33 (s, 3H), 2.68 (s, 3H); 13C-NMR (101 MHz, DMF-d7) δ 158.29, 144.43, 

136.07, 125.98, 122.78, 121.96, 119.59, 116.39, 41.40, 12.04. 
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3,4-Dimethyl-5-vinylthiazol-3-ium hexafluorophosphate (MVT+PF6
-): KPF6 solution 

(44,5 mmol, 8.35 g in 100 mL of MiliQ® water) was added dropwise, under vigorous stirring 

to the solution MVT+I- (8.0 g, 30.0 mmol in 100 mL of MiliQ® water). After stirring for 30 min, 

the brown precipitate was centrifuged out and washed twice with water. The product was dried 

overnight at 40 °C, at high vacuum (4.36 g of MVT+PF6
-, 51 % yield). 1H-NMR (400 MHz, 

DMF-d7) δ 10.24 (s, 1H), 7.16 (dd, J = 17.2, 11.1 Hz, 1H), 6.03 (d, J = 17.3 Hz, 1H), 5.69 (d, J 

= 11.1 Hz, 1H), 4.32 (s, 3H), 2.74 (s, 3H); 13C NMR (101 MHz, DMF-d7) δ 158.00, 144.29, 

135.93, 125.69, 121.88, 41.27, 11.89. 

3,4-Dimethyl-5-vinylthiazol-3-ium tetrafluoroborate (MVT+BF4
-): MVT+I- (4.0 g, 15.0 

mmol) was dissolved in the mixture of 30.0 g of MiliQ water ad 90.0 g of acetone. AgBF4 (2.95 

g 15.0 mmol) was dissolved in the mixture of 10.0 g of MiliQ water and 30.0 g of acetone, 

following by adding dropwise, under vigorous stirring to the MVT+I- solution. After 30 min, 

the yellow precipitate was centrifuged out. The supernatant was collected and dried by 

evaporation of acetone under reduced pressure followed by lyophilization. (3.20 g of MVT+BF4
-

, 94 % yield). 1H NMR (400 MHz, DMF-d7) δ 10.23 (s, 1H), 7.17 (dd, J = 17.3, 11.1 Hz, 1H), 

6.03 (d, J = 17.3 Hz, 1H), 5.68 (d, J = 11.1 Hz, 1H), 4.32 (d, J = 0.8 Hz, 3H), 2.67 (s, 3H), 13C 

NMR (101 MHz, DMF) δ 158.07, 144.40, 135.94, 125.81, 121.90, 41.32, 11.95. 

Polymers synthesis: 

Poly(3,4-dimethyl-5-vinylthiazol-3-ium iodide) [P(MVT+I-)]: MVT+I- (4.0 g, 

15.0 mmol), 2,2'-azobis[2-methyl-N-(2-hydroxyethyl)propionamide] (0.10 g, 0.35 mmol) and 

8.0 mL of MiliQ®  water were loaded into a 50 mL Schlenk flask and stirred. The flask was 

5 times degassed / filled with argon and reaction was carried out under argon at 90 °C for 20 h. 

The mixture was diluted with 5.0 mL of MiliQ®  water and precipitated from 300 mL of 
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acetone. The product was collected by filtration and dried overnight at 80 °C, at high vacuum 

[2,9 g of P(MVT+I-), 73 % yield].  

Poly(3,4-dimethyl-5-vinylthiazol-3-ium bis(trifluoromethylsulfonyl) imide) 

[P(MVT+TFSI-)]: MVT+TFSI- (2.0 g, 4.8 mmol) and AIBN (40 mg, 0.24 mmol) were loaded 

into a 50 mL Schlenk flask together with the stirring bar. The flask was 5 times degassed / filled 

with argon and bulk polymerization was carried out under argon at 120 °C for 6 h. The crude 

product was dissolved in 5.0 mL of acetone followed by precipitation from 100 mL of 

chloroform. The product was collected by filtration and dried overnight at 100 °C, at high 

vacuum [1.8 g of poly(3,4-dimethyl-5-vinylthiazol-3-ium bis(trifluoromethylsulfonyl) imide), 

90 % yield).  

Poly(3,4-dimethyl-5-vinylthiazol-3-ium hexafluorophosphate) [P(MVT+PF6
-)]:  a) bulk 

polymerization: MVT+PF6
- (0.50 g, 1.75 mmol) was loaded into a 50 mL Schlenk flask together 

with the stirring bar. The flask was 5 times degassed / filled with argon and bulk polymerization 

was carried out under argon at 170°C for 8 h. The crude product was dissolved in 3.0 mL of 

DMF followed by precipitation from 50 mL of THF. The product was collected by 

centrifugation and dried overnight at 80 °C, at high vacuum [0.45 g of P(MVT+PF6
-), 90 % 

yield); b) polymerization in solution: MVT+PF6
- (1.0 g, 3.5 mmol), AIBN (20 mg, 0.12 mmol) 

were charged into 10 mL Schlenk flask and dissolved in DMF (1.0 g). The mixture was 5 times 

degassed / filled with argon and polymerization was conducted for 24 h at 90 °C. The crude 

product was dissolved in 4.0 mL of DMF and precipitated from 100 mL of THF. The precipitate 

was collected by centrifugation, washed with THF and dried overnight at 80 °C (940 mg of 

P(MVT+PF6
-), 94 % yield).   
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Poly(3,4-dimethyl-5-vinylthiazol-3-ium tetrafluoroborate) [P(MVT+BF4
-)]: a) bulk 

polymerization: MVT+BF4
- (1.0 g, 4.4 mmol) was loaded into a 50 mL Schlenk flask together 

with the stirring bar. The flask was 5 times degassed / filled with argon and bulk polymerization 

was carried out under argon at 170 °C for 8 h. The crude product was dissolved in 10 mL of 

DMF followed by precipitation from 100 mL of acetone. The product was collected by 

centrifugation and dried overnight at 80 °C, at high vacuum [0.83 g of P(MVT+BF4
-)], 83 % 

yield); b) polymerization in solution: MVT+BF4
- (1.0 g, 4.4 mmol), AIBN (20 mg, 0.12 mmol) 

were charged into 10 mL Schlenk flask and dissolved in DMF (2.0 g). The mixture was 5 times 

degassed / filled with argon and polymerization was conducted for 24 h at 90 °C. The crude 

product was dissolved in 3.0 mL of DMF and precipitated from 100 mL of acetone. The 

precipitate was collected by centrifugation and dried overnight at 80 °C (810 mg of 

P(MVT+BF4
-), 81 % yield).   

D.4 Chapter 4.1 

1,3-bis(carboxymethyl)-5-methylimidazolium acetate was synthesized by Sarah 

Kirchhecker according to the published method.117 In a typical reaction, pyruvaldehyde (0.05 

mol), glycine (0.1 mol) and formaldehyde (0.05 mol) were dissolved in water (100 mL) in 

a round bottom flask. Acetic acid (0.3 mol) was added and the reaction was stirred for 1 h at 

room temperature. The reaction mixture was then freeze-dried. The residue was washed with 

acetic acid and dried under high vacuum at 40 °C for 24 hours (6.83 g of 1,3-

bis(carboxymethyl)-5-methylimidazolium acetate, 74 % yield). 

1,3-bis(2-ethoxy-2-oxoethyl)-5-methylimidazolium trifluoromethanesulfonate was 

synthesized by Sarah Kirchhecker according to the following procedure: 

1,3-bis(carboxymethyl)-5-methylimidazolium acetate (4.0 g, 0.02 mol), 
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trifluoromethanesulfonic acid (1.95 mL, 0.022 mol) and ethanol (200 mL) were charged under 

argon into 250 mL round bottom flask equipped with a Soxhlet apparatus containing 3Å 

molecular sieves, and a condenser. The reaction was carried out for 12 h at 120 °C. Conversion 

to 1,3-bis(2-ethoxy-2-oxoethyl)-5-methylimidazolium trifluoromethanesulfonate (calculated 

from 1H-NMR spectra) was 97 %. After the reaction, ethanol was removed under reduced 

pressure. The product was stored under high vacuum at 40 °C.  

Polymer TFO (PImDE+TFO-): Before polymerization, the purification step was 

performed for 1,3-bis(2-ethoxy-2-oxoethyl)-5-methylimidazolium trifluoromethanesulfonate 

in order to remove an excess of triflic acid. In a typical purification process, 1,3-bis(2-ethoxy-

2-oxoethyl)-5-methylimidazolium trifluoromethanesulfonate (3.0 g) was dissolved in 3.0 g of 

THF followed by precipitation from diethyl ether (150 mL). Above mentioned sequence was 

repeated 2 times. Afterwards crude product was dried under high vacuum at 40 °C for 20 h 

(2.55 g of 1,3-bis(2-ethoxy-2-oxoethyl)-5-methylimidazolium trifluoromethanesulfonate was 

obtained). Subsequently, 1,3-bis(2-ethoxy-2-oxoethyl)-5-methylimidazolium 

trifluoromethanesulfonate (623 mg, 1.154 mmol) and 1,3-propanediol (353 mg, 4.634 mmol) 

were charged into a 100 mL Schlenk flask. A reflux condenser was closed from the top with 

a rubber balloon and attached to the flask. The set-up was 5 times evacuated-filled with argon. 

Afterwards Sn(Oct)2 (10 µL, 31 µmol) was added under argon and set-up was placed into an oil 

bath, thermostated at 160 °C. After three hours reflux condenser was replaced with a stopper 

and high vacuum was slowly applied. Reaction mixture was heated up to 215 °C within 30 min 

and then stirred at 215 °C under high vacuum (hv) for 4 h. Afterwards, the mixture was cooled 

down to room temperature and crude product was dissolved DMF (5.0 mL) followed by 

precipitation from THF (100 mL). Separated product was dried under high vacuum, at 60 °C 

for 20 h (251 mg of PImDE TFO was obtained, 42 % yield). 
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Polymer Br (PImDE+Br-): The purified according to the above-mentioned procedure 

1,3-bis(2-ethoxy-2-oxoethyl)-5-methylimidazolium trifluoromethanesulfonate (2.36 g, 

5.85 mmol) and 1,3-propanediol (1.33 g, 17.48 mmol) were charged into 100 mL Schlenk flask. 

A reflux condenser was closed from the top with rubber balloon and attached to the flask. The 

set-up was 5 times evacuated-filled with argon. Afterwards Sn(Oct)2 (38 µL, 117 µmol) was 

added under argon and set-up was placed into an oil bath, thermostated at 160 °C. After three 

hours reflux condenser was replaced with a stopper and high vacuum was applied. Reaction 

mixture was heated up to 215 °C within 30 minutes and then stirred at 215 °C under hv for 4 h. 

TnBABr (1.60 g, 4.96 mmol) was dissolved in the mixture of 40 mL of acetone and 2 mL of 

water. Product of the reaction was dissolved in 40 mL of acetone and added dropwise, under 

vigorous stirring to the solution of TnBABr. Mixture was stirred for 30 min and then the 

precipitate was separated via centrifugation. To purify the product from the excess of salt, it 

was dissolved in dimethylformamide (5.0 mL) followed by precipitation from the mixture of 

acetone and water (60 mL of acetone and 2.0 mL of water). Separated product was dried under 

high vacuum, at 60 °C for 20 h (0.98 g of PImDE+Br-, 52 % yield).  

PImDE+TFSI-: For the anion exchange, PImDE+Br- (91.8 mg, 0.29 mmol) was dissolved 

in 4.0 mL of MiliQ® water. LiTFSI (100 mg, 0.35 mmol) was dissolved in 2.0 mL of MiliQ® 

water and added dropwise under vigorous stirring to the polymer solution. After 30 min of 

stirring, the liquid was decanted, followed by rinsing of a crude product with MiliQ® water. In 

order to remove excess of LiTFSI salt, the product was dissolved in 500 mg of acetone and 

precipitated from 10 mL of MiliQ® water. The collected product was dried overnight under 

high vacuum, at 80 °C (116 mg of PImDE+TFSI-, 78 % yield). 

PImDE+PF6
-
: For the anion exchange, PImDE+Br- (283 mg, 0.89 mmol) was dissolved 

in 15.0 mL of water. KPF6 (183 mg, 0.98 mmol) was dissolved in 40.0 mL of water and added 
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dropwise under vigorous stirring to the polymer solution. After 30 min of stirring, the precipitate 

was separated via centrifugation. The product was dissolved in 500 mg of acetone and 

precipitated from 20.0 mL of water in order to remove traces of salt. The collected product was 

dried overnight under high vacuum, at 80 °C (262 mg of PImDE+PF6
-, 77 % yield). 

D.5 Chapter 4.2 

In the typical reaction, MiliQ® water (3.7 mL) and glacial acetic acid (3.3 mL, 57 mmol) 

were added under vigorous stirring to 1.0 g (9.4 mmol) of cadaverine. Such mixture was then 

injected to the mixture of methylglyoxal (1.46 mL, 9.0 mmol) and formaldehyde (0.71 mL, 9.0 

mmol). The solution was stirred for 24 h, diluted with MiliQ® water and dialyzed against 

MiliQ® water using 3.5 kD tubing.  

In the case of other diamines (except p-phenylenediamine) the synthetic procedure was 

analogous. 1.0 g of diamine was mixed with water (the overall amount of water, also being 

a part of aldehydes solutions, was tuned to 5.0 mL) and 6.0 molar excess of acetic acid (in regard 

to diamine) was used for the reaction. Such mixture was then added to 1.2 molar excess 

(regarding diamine) of formaldehyde and pyruvaldehyde. The solutions were stirred for 24 h, 

diluted with MiliQ® water and dialyzed against MiliQ® water using 3.5 kDa tubing. 

The reaction with p-phenylenediamine was analogous to the above mentioned, but 

overall amount of water was tuned to 40 mL (from which 10 mL were added to the mixture of 

aldehydes). The reaction time was 15 min. 

For the anion exchange to TFSI, 1.2 molar excess of LiTFSI solution (calculated to the 

theoretical amount of imidazolium rings at 100 % of conversion) in MiliQ® water (20 mL) was 
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added to the dialyzed solution of polymers. After 30 min. the precipitate was centrifuged out 

and 3 times washed with water/centrifuged. Anion exchange to N(CN)2 was performed in an 

analogous method to the above-mentioned, but 5.0 molar excess of NaN(CN)2 dissolved in 100 

mL of water was used for the reactions. 
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