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Abstract Homo naledi is a previously-unknown species of extinct hominin discovered within the

Dinaledi Chamber of the Rising Star cave system, Cradle of Humankind, South Africa. This species is

characterized by body mass and stature similar to small-bodied human populations but a small

endocranial volume similar to australopiths. Cranial morphology of H. naledi is unique, but most

similar to early Homo species including Homo erectus, Homo habilis or Homo rudolfensis. While

primitive, the dentition is generally small and simple in occlusal morphology. H. naledi has humanlike

manipulatory adaptations of the hand and wrist. It also exhibits a humanlike foot and lower limb.

These humanlike aspects are contrasted in the postcrania with a more primitive or australopith-like

trunk, shoulder, pelvis and proximal femur. Representing at least 15 individuals with most skeletal

elements repeated multiple times, this is the largest assemblage of a single species of hominins yet

discovered in Africa.

DOI: 10.7554/eLife.09560.001

Introduction
Fossil hominins were first recognized in the Dinaledi Chamber in the Rising Star cave system in

October 2013. During a relatively short excavation, our team recovered an extensive collection of

1550 hominin specimens, representing nearly every element of the skeleton multiple times (Figure 1),

including many complete elements and morphologically informative fragments, some in articulation,

as well as smaller fragments many of which could be refit into more complete elements. The collection

is a morphologically homogeneous sample that can be attributed to no previously-known hominin

species. Here we describe this new species, Homo naledi. We have not defined H. naledi narrowly

based on a single jaw or skull because the entire body of material has informed our understanding of

its biology.
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Order Primates LINNAEUS 1758

Suborder Anthropoidea MIVART 1864

Superfamily Hominoidea GRAY 1825

Family Hominidae GRAY 1825

Tribe Hominini GRAY 1825

Genus Homo LINNAEUS 1758

Homo naledi sp. nov. urn:lsid:zoobank.org:pub:00D1E81A-6E08-4A01-BD98-79A2CEAE2411

Etymology
The word naledi means ‘star’ in the Sotho language and refers to the Dinaledi Chamber’s location

within the Rising Star cave system.

Locality
The Dinaledi chamber is located approximately 30 meters underground, within the Rising Star cave

system at about 26˚1′13′′ S; 27˚42′43′′ E. The system lies within the Malmani dolomites, approximately

800 meters southwest of the well-known site of Swartkrans in the Cradle of Humankind World

Heritage Site, Gauteng Province, South Africa.

Horizon and associations
The present sample of skeletal material from the Dinaledi Chamber was recovered during two field

expeditions, in November 2013 and March 2014.

Six specimens from an ex situ context can be identified as bird bones, and few fragmentary rodent

remains have been recovered within the excavation area. Neither of these faunal constituents can

presently be associated with the hominin fossil collection (Dirks et al., 2015).

Aside from these limited faunal materials, the Dinaledi collection is entirely composed of hominin

skeletal and dental remains. The collection so far comprises 1550 fossil hominin specimens, this

number includes 1413 bone specimens and 137 isolated dental specimens; an additional 53 teeth are

present in mandibular or maxillary bone specimens. Aside from the fragmentary rodent teeth, all

dental crowns (n = 179) are hominin, recovered both from surface collection and excavation. Likewise,

aside from the few bird elements, all morphologically informative bone specimens are clearly hominin.

In all cases where elements are repeated in the sample, they are morphologically homogeneous, with

eLife digest Modern humans, or Homo sapiens, are now the only living species in their genus.

But as recently as 100,000 years ago, there were several other species that belonged to the genus

Homo. Together with modern humans, these extinct human species, our immediate ancestors and

their close relatives, are collectively referred to as ‘hominins’.

Now Berger et al. report the recent discovery of an extinct species from the genus Homo that was

unearthed from deep underground in what has been named the Dinaledi Chamber, in the Rising Star

cave system in South Africa. The species was named Homo naledi; ‘naledi’ means ‘star’ in Sotho (also

called Sesotho), which is one of the languages spoken in South Africa.

The unearthed fossils were from at least 15 individuals and include multiple examples of most of

the bones in the skeleton. Based on this wide range of specimens from a single site, Berger et al.

describe Homo naledi as being similar in size and weight to a small modern human, with human-like

hands and feet. Furthermore, while the skull had several unique features, it had a small braincase that

was most similar in size to other early hominin species that lived between four million and two million

years ago. Homo naledi’s ribcage, shoulders and pelvis also more closely resembled those of earlier

hominin species than those of modern humans.

The Homo naledi fossils are the largest collection of a single species of hominin that has been

discovered in Africa so far and, in a related study, Dirks et al. describe the setting and context for

these fossils. However, since the age of the fossils remains unclear, one of the next challenges will be

to date the remains to provide more information about the early evolution of humans and their close

relatives.

DOI: 10.7554/eLife.09560.002
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Figure 1. Dinaledi skeletal specimens. The figure includes approximately all of the material incorporated in this diagnosis, including the holotype

specimen, paratypes and referred material. These make up 737 partial or complete anatomical elements, many of which consist of several refitted

specimens. Specimens not identified to element, such as non-diagnostic long bone or cranial fragments, and a subset of fragile specimens are not shown

here. The ‘skeleton’ layout in the center of the photo is a composite of elements that represent multiple individuals. This view is foreshortened; the table

upon which the bones are arranged is 120-cm wide for scale.

DOI: 10.7554/eLife.09560.003
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variation consistent with body size and sex differences within a single population. These remains

represent a minimum of 15 hominin individuals, as indicated by the repetition and presence of

deciduous and adult dental elements.

The geological age of the fossils is not yet known. Excavations have thus far recovered hominin

material from Unit 2 and Unit 3 in the chamber (Dirks et al., 2015). Surface-collected hominin material

from the present top of Unit 3, which includes material derived from both Unit 2 and Unit 3,

represents a minority of the assemblage, and is morphologically indistinguishable from material

excavated from in situ within Unit 3. In addition to general morphological homogeneity including

cranial shape, distinctive morphological configurations of all the recovered first metacarpals, femora,

molars, lower premolars and lower canines, are identical in both surface-collected and excavated

specimens (see Figure 14 later in the text). These include traits not found in any other hominin species

yet described. These considerations strongly indicate that this material represents a single species,

and not a commingled assemblage.

Holotype, paratypes, and referred materials

Holotype
Dinaledi Hominin 1 (DH1) comprises the partial calvaria, partial maxilla, and nearly complete mandible of

a presumed male individual, based on size and morphology within the sample (Figure 2; Supplementary

file 1). The holotype was recovered in situ during excavations within the Dinaledi Chamber in March of

2014, embedded in unconsolidated fine clay matrix (Dirks et al., 2015). The holotype is housed in the

Evolutionary Studies Institute at the University of the Witwatersrand, Johannesburg, South Africa.

Paratypes
Dinaledi Hominin 2 (DH2) is a partial calvaria that preserves parts of the frontal, left and right parietals,

right temporal, and occipital (Figure 3; Supplementary file 1). Dinaledi Hominin 3 (DH3) is a partial

Figure 2. Holotype specimen of Homo naledi, Dinaledi Hominin 1 (DH1). U.W. 101-1473 cranium in (A) posterior and

(B) frontal views (frontal view minus the frontal fragment to show calvaria interior). U.W. 101-1277 maxilla in (C)

medial, (D) frontal, (E) superior, and (F) occlusal views. (G) U.W. 101-1473 cranium in anatomical alignment with

occluded U.W. 101-1277 maxilla and U.W. 101-1261 mandible in left lateral view. U.W. 101-1277 mandible in (H)

occlusal, (I) basal, (J) right lateral, and (K) anterior views. Scale bar = 10 cm.

DOI: 10.7554/eLife.09560.019

Berger et al. eLife 2015;4:e09560. DOI: 10.7554/eLife.09560 5 of 35

Research article Genomics and evolutionary biology

http://dx.doi.org/10.7554/eLife.09560.019
http://dx.doi.org/10.7554/eLife.09560


calvaria of a presumed female individual that pre-

serves parts of the frontal, left parietal, left temporal,

and sphenoid (Figure 4, Supplementary file 1).

Dinaledi Hominin 4 (DH4) is a partial calvaria that

preserves parts of the right temporal, right parietal,

and occipital (Figure 3; Supplementary file 1).

Dinaledi Hominin 5 (DH5) is a partial calvaria

that preserves part of the left temporal and

occipital (Figure 3; Supplementary file 1). U.W.

101-377 is a mandibular fragment that preserves

dental anatomy in an unworn state; at present it

cannot be definitively associated with any of

these Dinaledi Hominin (DH) individuals, and

indeed might represent another individual

(Figure 5; Supplementary file 1). These cranial

specimens agree closely in nearly all morpho-

logical details where they overlap in areas pre-

served except those we interpret as related

to sex.

Dinaledi hand 1 (H1) is a nearly complete

(missing only the pisiform) right hand, found

articulated in association, comprising specimens

U.W. 101-1308 to −1311, −1318 to −1321, −1325 to −1329, −1351, −1464, and −1721 to −1732
(Figure 6; Supplementary file 1). U.W. 101-1391 is a proximal right femur preserving part of the

head, the neck, some of the lesser and greater trochanter, and the proximal shaft (Figure 7;

Supplementary file 1). U.W. 101-484 is a right tibial diaphysis missing only the proximal end

(Figure 8; Supplementary file 1). Dinaledi foot 1 (F1) is a partial foot skeleton missing only the medial

Figure 3. Cranial paratypes. (A) DH2, right lateral view.

(B) DH5, left lateral view. (C) DH4, right lateral view.

(D) DH4, posterior view. Scale bar = 10 cm.

DOI: 10.7554/eLife.09560.005

Figure 4. Paratype DH3. (A) Frontal view. (B) Left lateral view, with calvaria in articulation with the mandible

(U.W. 101-361). (C) Basal view. Mandible in (D) medial view; (E) occlusal view; (F) basal view. DH3 was a relatively old

individual at time of death, with extreme tooth wear. Scale bar = 10 cm.

DOI: 10.7554/eLife.09560.006
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cuneiform and the phalanges of rays II–V. Foot 1

is composed of specimens U.W. 101-1322, −1417
to −1419, −1439, −1443, −1456 to −1458,
−1551, −1553, −1562, and −1698 (Figure 9;

Supplementary file 1).

Referred material
Referred material is also listed in Supplementary

file 1. We refer to H. naledi all hominin material

from the Dinaledi collection that can be identified

to element; in total, the holotypes, paratypes and

referred material comprise 737 partial or com-

plete anatomical elements.

Specimen numbers in the collection are

assigned at the point of excavation. Later labora-

tory analyses allowed us to refit specimens into

more complete elements, which we have used as

units of anatomical study. Here we refer to

refitted elements by only a single specimen

number; either the number of the most constitu-

tive specimen, or the first diagnostic part to be

discovered. DH designations are reserved for

clearly associated individuals; at this time these

are limited to the five partial crania designated

above. Future excavation and analyses will certainly uncover more refits among specimens. As refits are

found, all numbers assigned to refitted elements will remain stable, and all numbers in Supplementary

file 1 will be retained.

The collection is morphologically homogeneous in all duplicated elements, except for those

anatomical features that normally reflect body size or sex differences in other primate taxa. Therefore,

although we refer to the holotype and the paratypes for differential diagnoses; the section describing

the overall anatomy encompasses all morphologically informative specimens.

Differential diagnosis
This comprehensive differential diagnosis is based upon cranial, dental and postcranial characters. The

hypodigms used for other species are detailed in the ‘Materials and methods’. We examined original

specimens for most species, except where indicated in the ‘Materials and methods’; when we relied on

other sources for anatomical observations we indicate this. A summary of traits of H. naledi in

comparison to other species is presented in Supplementary file 2. Comparative cranial and mandibular

measures are presented in Table 1, and comparative dental measures are provided in Table 2.

Cranium, mandible, and dentition (DH1, DH2, DH3, DH4, DH5, U.W.
101-377)
The cranium of H. naledi does not have the well-developed crest patterns that characterize

Australopithecus garhi (Asfaw et al., 1999) and species of the genus Paranthropus, nor the derived

facial morphology seen in the latter genus. The mandible of H. naledi is notably more gracile than

those of Paranthropus. Although maxillary and mandibular incisors and canines of H. naledi overlap in

size with those of Paranthropus, the post-canine teeth are notably smaller than those of Paranthropus

and Au. garhi, with mandibular molars that are buccolingually narrow.

H. naledi differs from Australopithecus afarensis and Australopithecus africanus in having

a pentagonal-shaped cranial vault in posterior view, sagittal keeling, widely spaced temporal lines,

an angular torus, a deep and narrow digastric fossa, an external occipital protuberance, an anteriorly

positioned root of the zygomatic process of the maxilla, a broad palate, and a small canine jugum

lacking anterior pillars. The anterior and lateral vault of H. naledi differs from Au. afarensis and

Au. africanus in exhibiting only slight post-orbital constriction, frontal bossing, a well-developed

supraorbital torus with a well-defined supratoral sulcus, temporal lines that are positioned on the

Figure 5. U.W. 101-377 mandible. (A) Lateral view;

(B) medial view; (C) basal view; (D) occlusal view. (D) The

distinctive mandibular premolar morphology with

elongated talonids in unworn state. Scale bar = 2 cm.

DOI: 10.7554/eLife.09560.007
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posterior rather than the superior aspect of the supraorbital torus, a root of the zygomatic process of

the temporal that is angled downwards approximately 30˚ relative to the Frankfort Horizontal (FH) and

which begins its lateral expansion above the mandibular fossa rather than the EAM, a mandibular

Figure 6. Hand 1. Palmar view on left; dorsal view on right. This hand was discovered in articulation and all bones are

represented except for the pisiform. The proportions of digits are humanlike and visually apparent, as are the

expanded distal apical tufts on all digits, the robust pollical ray, and the unique first metacarpal morphology.

DOI: 10.7554/eLife.09560.008

Figure 7. U.W. 101-1391 paratype femur. (A) Medial view; (B) posterior view; (C) lateral view; (D) anterior view. The

femur neck is relatively long and anteroposteriorly compressed. The anteversion of the neck is evident in medial view.

Scale bar = 2 cm.

DOI: 10.7554/eLife.09560.009
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fossa that is positioned medial to the wall of the temporal squame, a small postglenoid process that

contacts the tympanic, a coronally oriented petrous, and a small and obliquely oriented EAM. The

H. naledi mandible exhibits a more gracile symphysis and corpus, a more vertically inclined symphysis,

a slight mandibular incurvation delineating a faint mental trigon, and a steeply inclined posterior face

of the mandibular symphysis without a post incisive planum. The incisors of H. naledi overlap in size

with some specimens of Au. africanus, though the canines and post-canine dentition are notably

smaller, with relatively narrow buccolingual dimensions of the mandibular molars. The maxillary I1

lacks a median lingual ridge and exhibits a broad and uninflated lingual cervical prominence, the

lingual mesial and distal marginal ridges do not merge onto the cervical prominence in the maxillary I2,

the mandibular canine exhibits only a weak lingual median ridge and a broad and uninflated lingual

cervical prominence, and the buccal grooves on the maxillary premolars are only weakly developed.

H. naledi exhibits a small and isolated Carabelli’s feature in the maxillary molars, unlike the more

prominent and extensive Carabelli’s feature of Australopithecus. Moreover, the H. naledi mandibular

molars possess small, mesiobuccally restricted protostylids that do not intersect the buccal groove,

differing from the typically enlarged, centrally positioned protostylids that intersect the buccal groove

in Australopithecus.

The cranium of H. naledi differs from Australopithecus sediba (Berger et al., 2010) in exhibiting

sagittal keeling, a more pronounced supraorbital torus and supratoral sulcus, a weakly arched

supraorbital contour with rounded lateral corners, an angular torus, a well-defined supramastoid crest,

a curved superior margin of the temporal squama, a root of the zygomatic process of the temporal

that is angled downwards approximately 30˚ relative to FH, a flattened nasoalveolar clivus, weak

canine juga, an anteriorly positioned root of the zygomatic process of the maxilla, and a relatively

broad palate that is anteriorly shallow. The H. naledi mandible (DH1) has a mental foramen positioned

superiorly on the corpus that opens posteriorly, unlike the mid-corpus height, more laterally opening

mental foramen of Au. sediba. The maxillary and mandibular teeth of H. naledi are smaller than those

of Au. sediba, with mandibular molars that are buccolingually narrow. The lingual mesial and distal

marginal ridges do not merge onto the cervical prominence in the maxillary I2, the paracone of the

maxillary P3 is equal in size to the protocone, the

protoconid and metaconid of the mandibular

molars are equally mesially positioned, and the

lingual cusps of the molars are positioned at the

occlusobuccal margin while the buccal cusps are

positioned slightly lingual to the occlusobuccal

margin. Also, Au. sediba shares with other

australopiths a protostylid that is centrally lo-

cated and which intersects the buccal groove of

the lower molars, unlike the small and mesiobuc-

cally restricted protostylid that does not intersect

the buccal groove in H. naledi.

The cranium of H. naledi differs from Homo

habilis in exhibiting sagittal keeling, a weakly

arched supraorbital contour, temporal lines that

are positioned on the posterior rather than the

superior aspect of the supraorbital torus, an

angular torus, an occipital torus, only slight post-

orbital constriction, a curved superior margin of

the temporal squama, a suprameatal spine,

a weak crista petrosa, a prominent Eustachian

process, a small EAM, weak canine juga, and an

anteriorly positioned root of the zygomatic pro-

cess of the maxilla. Mandibles attributed to H.

habilis show a weakly inclined, shelf-like post

incisive planum with a variably developed supe-

rior transverse torus, unlike the steeply inclined

posterior face of the mandibular symphysis of H.

naledi, which lacks both a post incisive planum or

Figure 8. U.W. 101-484 paratype tibia. (A) Anterior view;

(B) medial view; (C) posterior view; (D) lateral view. The tibiae

are notably slender for their length. Scale bar = 10 cm.

DOI: 10.7554/eLife.09560.010

Berger et al. eLife 2015;4:e09560. DOI: 10.7554/eLife.09560 9 of 35

Research article Genomics and evolutionary biology

http://dx.doi.org/10.7554/eLife.09560.010
http://dx.doi.org/10.7554/eLife.09560


superior transverse torus. The H. naledi mandible

(DH1) has a mental foramen positioned superiorly

on the corpus that opens posteriorly, while the

mental foramen of H. habilis is at mid-corpus

height and opens more laterally. The maxillary

and mandibular dentitions of DH1 are smaller

than typical for H. habilis. The mandibular P3 of

H. naledi is more molarized and lacks the occlusal

simplification seen in H. habilis; it has a symmet-

rical occlusal outline, and multiple roots (two

roots: mesiobuccal and distal) not seen in H.

habilis. The molars of H. naledi lack crenulation,

secondary fissures, and supernumerary cusps that

are common to H. habilis. The protoconid and

metaconid of the mandibular molars are equally

mesially positioned.

The cranium of H. naledi differs from Homo

rudolfensis by its smaller cranial capacity, and by

exhibiting frontal bossing, a post-bregmatic de-

pression, sagittal keeling, a well-developed su-

praorbital torus delineated by a distinct

supratoral sulcus, temporal lines that are positioned on the posterior rather than the superior aspect

of the supraorbital torus, an occipital torus, an external occipital protuberance, only slight post-orbital

constriction, a small postglenoid process, a weak crista petrosa, a laterally inflated mastoid process,

a canine fossa, incisors that project anteriorly beyond the bi-canine line, and a shallow anterior palate.

As in H. habilis, mandibles attributed to H. rudolfensis show a weakly inclined, shelf-like post incisive

planum with a variably developed superior transverse torus, unlike the steeply inclined posterior face

of the mandibular symphysis of DH1, the latter of which lacks either a post incisive planum or superior

transverse torus. The mandibular symphysis and corpus of H. naledi are more gracile than those

attributed to H. rudolfensis, and the H. naledi mandible (DH1) has a mental foramen positioned

superiorly on the corpus that opens posteriorly, unlike the mid-corpus height, more laterally opening

mental foramen of H. rudolfensis. The maxillary and mandibular dentition of H. naledi is smaller than

that of most specimens of H. rudolfensis, with only KNM-ER 60000 and KNM-ER 62000 appearing

similar in size for some teeth (Leakey et al., 2012). The molars of H. naledi lack crenulation, secondary

fissures, or supernumerary cusps common in H. rudolfensis. The buccal grooves of the maxillary

premolars are weak in H. naledi, and the protoconid and metaconid of the mandibular molars are

equally mesially positioned.

H. naledi lacks the typically distinctive long and low cranial vault of Homo erectus, as well as the

metopic keeling that is typically present in the latter species. H. naledi also differs from H. erectus in

having a distinct external occipital protuberance in addition to the tuberculum linearum, a laterally

inflated mastoid process, a flat and squared nasoalveolar clivus, and an anteriorly shallow palate. The

parasagittal keeling that is present between bregma and lambda in H. naledi (DH1 and DH3) is less

marked than often occurs in H. erectus, including in small specimens such as KNM-ER 42700 and the

Dmanisi cranial sample. Also unlike most specimens of H. erectus, H. naledi has a small vaginal

process, a weak crista petrosa, a marked Eustachian process, and a small EAM. The mandible of H.

erectus shows a moderately inclined, shelf-like post incisive planum terminating in a variably

developed superior transverse torus, differing from the steeply inclined posterior face of the H. naledi

mandibular symphysis, which lacks both a post incisive planum or a superior transverse torus. The

mental foramen is positioned superiorly and opens posteriorly in DH1, unlike the mid-corpus height,

more laterally opening mental foramen of H. erectus. The maxillary and mandibular incisors and

canines of H. naledi are smaller than typical of H. erectus. The mandibular P3 of H. naledi is more

molarized and lacks the occlusal simplification seen in H. erectus, they reveal a symmetrical occlusal

outline, and multiple roots (2R: MB+D) not typically seen in H. erectus. Furthermore, the molars of

H. naledi lack crenulation, secondary fissures, or supernumerary cusps common in H. erectus.

H. naledi lacks the reduced cranial height of Homo floresiensis, and displays a marked angular torus

and parasagittal keeling between bregma and lambda that is absent in the latter species. H. naledi

Figure 9. Foot 1 in (A) dorsal view; and (B) medial view.

(C) Proximal articular surfaces of the metatarsals of

Foot 1, shown in articulation to illustrate transverse arch

structure. Scale bar = 10 cm.

DOI: 10.7554/eLife.09560.011
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further has a flat and squared nasoalveolar clivus, unlike the pronounced maxillary canine juga and

prominent pillars of H. floresiensis. The mandible of H. floresiensis shows a posteriorly inclined post

incisive planum with superior and inferior transverse tori, differing from the steeply inclined posterior

face of the H. naledi mandibular symphysis, which lacks both a post incisive planum or a superior

transverse torus. Dentally, H. naledi is distinguishable from H. floresiensis by the mesiodistal

elongation and extensive talonid of the mandibular P4, and the lack of Tomes’ root on the mandibular

premolars. The molar size gradient of H. naledi follows the M1 < M2 < M3 pattern, unlike the M3 <
M2 < M1 pattern in H. floresiensis, and the mandibular molars are relatively mesiodistally long and

buccolingually narrow compared to those of H. floresiensis.

H. naledi differs from Middle Pleistocene (MP) and Late Pleistocene (LP) Homo (here we include

specimens sometimes attributed to the putative Early Pleistocene taxon Homo antecessor, and MP

Homo heidelbergensis, Homo rhodesiensis, as well as archaic Homo sapiens and Neandertals) in

exhibiting a smaller cranial capacity. H. naledi has its maximum cranial width in the supramastoid

region, rather than in the parietal region. It has a clearly defined canine fossa (similar to H. antecessor),

a shallow anterior palate, and a flat and a squared nasoalveolar clivus. H. naledi lacks the bilaterally

arched and vertically thickened supraorbital tori found in MP and LP Homo. H. naledi also differs in

exhibiting a root of the zygomatic process of the temporal that is angled downwards approximately

30˚ relative to FH, a projecting entoglenoid process, a weak vaginal process, a weak crista petrosa,

a prominent Eustachian process, a laterally inflated mastoid process, and a small EAM. The H. naledi

mandible tends to be more gracile than specimens of MP Homo. The mandibular canine retains

a distinct accessory distal cuspulid not seen in MP and LP Homo. Molar cuspal proportions for H.

naledi do not show the derived reduction of the entoconid and hypoconid that characterizes MP and

LP Homo. The mandibular M3 is not reduced in DH1, thus revealing an increasing molar size gradient

that contrasts with reduction of the M3 in MP and LP Homo.

H. naledi differs from H. sapiens in exhibiting small cranial capacity, a well-defined supraorbital

torus and supratoral sulcus, a root of the zygomatic process of the temporal that is angled downwards

approximately 30˚ relative to FH, a large and laterally inflated mastoid with well-developed

supramastoid crest, an angular torus, a small vaginal process, a weak crista petrosa, a prominent

Eustachian process, a small EAM, a flat and squared nasoalveolar clivus, and a more posteriorly

positioned incisive foramen. The H. naledi mandible shows a weaker, less well-defined mentum

osseum than H. sapiens, as well as a slight inferior transverse torus that is absent in humans. The

mental foramen is positioned superiorly in H. naledi, unlike the mid-corpus height mental foramen of

H. sapiens. The mandibular canine possesses a distinct accessory distal cuspulid not seen in H.

sapiens. Molar cuspal proportions for H. naledi do not show the derived reduction of the entoconid

and hypoconid that characterizes H. sapiens. The mandibular M3 is not reduced in H. naledi, thus

revealing an increasing molar size gradient that contrasts with reduction of the M3 in H. sapiens.

Hand (H1)
H. naledi possesses a combination of primitive and derived features not seen in the hand of any other

hominin. H1 is differentiated from the estimated intrinsic hand proportions of Au. afarensis in having

a relatively long thumb ((Mc1 + PP1)/(Mc3 + PP3 + IP3)) (Rolian and Gordon, 2013; Almécija and

Alba, 2014). It is further distinguished from Au. afarensis, Au. africanus, and Au. sediba in having

a well-developed crest for both the opponens pollicis and first dorsal interosseous muscles,

a trapezium-scaphoid joint that extends onto the scaphoid tubercle, a relatively large and more

palmarly-positioned capitate-trapezoid joint, and/or a saddle-shaped Mc5-hamate joint. H. naledi also

differs from Au. sediba in that it lacks mediolaterally narrow Mc2-5 shafts (Kivell et al., 2011). Manual

morphology of Au. garhi is currently unknown.

H1 is distinguished from H. habilis in having a deep proximal palmar fossa with a well-developed

ridge distally for the insertion of the flexor pollicis longus muscle on the first distal phalanx, and

a more proximodistally oriented trapezium-second metacarpal joint. It also differs from both H. habilis

and H. floresiensis by having a relatively large trapezium-scaphoid joint that extends onto the

scaphoid tubercle, and from H. floresiensis in having a boot-shaped trapezoid with an expanded

palmar surface, and a relatively large and more palmarly-positioned capitate-trapezoid joint (Tocheri

et al., 2005, 2007; Orr et al., 2013).

H1 is dissimilar to hand remains attributed to Paranthropus robustus/early Homo from Swartkrans

(Susman, 1988; Susman et al., 2001) in having a relatively small Mc1 base and proximal articular
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facet, a saddle-shaped Mc5-hamate joint, and more curved proximal and intermediate phalanges of

ray 2–5.

Manual morphology of H. rudolfensis is currently unknown, and that of H. erectus is largely

unknown. Still, H1 differs from a third metacarpal attributed to H. erectus s. l., as well as from Homo

neanderthalensis and H. sapiens by lacking a styloid process (Ward et al., 2013).

H1 is further distinguished from H. neanderthalensis and H. sapiens by its relatively small facets for

the Mc1 and scaphoid on the trapezium, its low angle between the Mc2 and Mc3 facets on the

capitate, and by its long and curved proximal and intermediate phalanges on rays 2–5.

H1 is differentiated from all known hominins in having a Mc1 that combines a mediolaterally narrow

proximal end and articular facet with a mediolaterally wide distal shaft and head, a dorsopalmarly flat

and strongly asymmetric (with an enlarged palmar-lateral protuberance) Mc1 head, and the

combination of an overall later Homo-like carpal morphology combined with proximal and

intermediate phalanges that are more curved than most australopiths. H1 also differs from all other

known hominins except H. neanderthalensis in having non-pollical distal phalanges with mediolaterally

broad apical tufts (relative to length).

Femur (U.W. 101-1391)
The femur of H. naledi differs from those of all other known hominins in its possession of two well-

defined, mediolaterally-running pillars in the femoral neck. The pillars run along the superoanterior

and inferoposterior margins of the neck and define a distinct sulcus along its superior aspect.

Tibia (U.W. 101-484)
The tibia of H. naledi differs from those of all other known hominins in its possession of a distinct

tubercle for the pes anserinus tendon. The tibia differs from other hominins except H. habilis,

H. floresiensis, and (variably) H. sapiens in its possession of a rounded anterior border.

Foot (F1)
The foot of H. naledi differs from the pedal remains of Au. afarensis, Au. africanus, and Au. sediba in

having a calcaneus with a weakly developed peroneal trochlea. F1 also differs from Au. afarensis in

having a higher orientation of the calcaneal sustentaculum tali. F1 can be further distinguished from

pedal remains attributed to Au. africanus in having a higher talar head and neck torsion, a narrower

Mt1 base, a dorsally expanded Mt1 head, and greater proximolateral to distomedial orientation of the

lateral metatarsals. The H. naledi foot can be further differentiated from the foot of Au. sediba in

having a proximodistally flatter talar trochlea, a flat subtalar joint, a diagonally oriented retrotrochlear

eminence and a plantar position of the lateral plantar process of the calcaneous, and dorsoplantarly

flat articular surface for the cuboid on the Mt4 (Zipfel et al., 2011). Pedal remains of Au. garhi are

currently unknown, and those of P. robustus are too poorly known to allow for comparison.

The H. naledi foot can be distinguished from the foot of H. habilis by the presence of a flatter,

non-sloping trochlea with equally elevated medial and lateral margins, a narrower Mt1 base, greater

proximolateral to distomedial orientation of the lateral metatarsals, and a metatarsal robusticity ratio

of 1 > 5 > 4 > 3 > 2. Pedal morphology in H. rudolfensis is currently unknown, and that of H. erectus is

too poorly known to allow for comparison. The H. naledi foot can be distinguished from the foot of

H. floresiensis by a longer hallux and shorter second through fifth metacarpals relative to hindfoot

length, and higher torsion of the talar head and neck.

The foot of H. naledi can be distinguished from the foot of H. sapiens only by its flatter lateral and

medial malleolar facets on the talus, its low angle of plantar declination of the talar head, its lower

orientation of the calcaneal sustentaculum tali, and its gracile calcaneal tuber.

Description
H. naledi exhibits anatomical features shared with Australopithecus, other features shared with Homo,

with several features not otherwise known in any hominin species. This anatomical mosaic is reflected

in different regions of the skeleton. The morphology of the cranium, mandible, and dentition is mostly

consistent with the genus Homo, but the brain size of H. naledi is within the range of Australopithecus.

The lower limb is largely Homo-like, and the foot and ankle are particularly human in their

configuration, but the pelvis appears to be flared markedly like that of Au. afarensis. The wrists,
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fingertips, and proportions of the fingers are shared mainly with Homo, but the proximal and

intermediate manual phalanges are markedly curved, even to a greater degree than in any

Australopithecus. The shoulders are configured largely like those of australopiths. The vertebrae are

most similar to Pleistocene members of the genus Homo, whereas the ribcage is wide distally like

Au. afarensis.

H. naledi has a range of body mass similar to small-bodied modern human populations, and is

similar in estimated stature to both small-bodied humans and the largest known australopiths. We

estimated body mass from eight femoral specimens for which subtrochanteric diameters can be

measured (‘Materials and methods’), with results ranging between 39.7 kg and 55.8 kg (Table 3). No

femur specimen is sufficiently complete to measure femur length accurately, but the U.W. 101-484

tibia preserves nearly its complete length, allowing a tibia length estimate of 325 mm (Figure 10).

Estimates for the stature of this individual based on African human population samples range between

144.5 and 147.8 mm. Again, this stature estimate is similar to small-bodied modern human

populations. It is within the range estimated for Dmanisi postcranial elements (Lordkipanidze et al.,

2007), and slightly smaller than estimated for early Homo femoral specimens KNM-ER 1472 and

KNM-ER 1481. Some large australopiths also had long tibiae and presumably comparably tall statures,

as evidenced by the KSD-VP 1/1 skeleton from Woranso-Mille (Haile-Selassie et al., 2010).

The endocranial volume of all H. naledi specimens is clearly small compared to most known

examples of Homo. We combined information from the most complete cranial vault specimens to

arrive at an estimate of endocranial volume for both larger (presumably male) and smaller (presumably

female) individuals (larger composite depicted in Figure 11). The resulting estimates of approximately

560cc and 465cc, respectively, overlap entirely with the range of endocranial volumes known for

australopiths. Within the genus Homo, only the smallest specimens of H. habilis, one single H. erectus

specimen, and H. floresiensis overlap with these values.

Despite its small vault size, the cranium of H. naledi is structurally similar to those of early Homo.

Frontal bossing is evident, as is a marked degree of parietal bossing. There is no indication of metopic

keeling, though there is slight parasagittal keeling between bregma and lambda, and some

prelambdoidal flattening. The cranial vault bones are generally thin, becoming somewhat thicker in

the occipital region. The supraorbital torus is well developed, though weakly arched, and is bounded

posteriorly by a well-developed supratoral sulcus. The lateral corners of the supraorbital torus are

rounded and relatively thin. The temporal lines are widely spaced, and there is no indication of

a sagittal crest or temporal/nuchal cresting. The temporal crest is positioned on the posterior aspect

of the lateral supraorbital torus, rather than on the superior aspect as in australopiths. At the

posteroinferior extent of the temporal lines, they curve anteroinferiorly presenting a well-developed

angular torus. The crania have a pentagonal outline in posterior view, with the greatest vault breadth

located in the supramastoid region. The nuchal region exhibits sexually dimorphic development of

nuchal muscle markings and the external occipital protuberance, and there is a clear indication of

Table 3. Dinaledi body mass estimates from femur specimens preserving subtrochanteric diameters

Specimen ID Side

AP subtrochanteric

breadth

ML subtrochanteric

breadth Mass (a) Mass (b)

U.W. 101-002 R 18.5 23.6 40.0 44.7

U.W. 101-003 R 21.6 31.4 54.5 55.8

U.W. 101-018 R 18.1 23.8 39.7 44.4

U.W. 101-226 L 19.1 24.0 41.3 45.7

U.W. 101-1136 R 16.9 25.5 39.7 44.4

U.W. 101-1391 R 18.8 23.9 40.8 45.3

U.W. 101-1475 L 18.8 29.0 46.5 49.7

U.W. 101-1482 L 20.7 28.9 49.7 52.1

Regression equations described in ‘Materials and methods’. Mass (a) based on forensic statures from European

individuals. Mass (b) based on multiple population sample. The two estimates diverge somewhat for smaller femora.
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a tuberculum linearum in addition to the external occipital protuberance. In superior view the vault

tapers from posterior to anterior, though post-orbital constriction is slight. The squamosal suture is

low and gently curved, and parietal striae are well defined. The lateral margins of the orbits face

laterally. A small zygomaticofacial foramen is typically present near the center of the zygomatic bone.

The root of the zygomatic process of the maxilla is anteriorly positioned, at the level of the P3 or the

P4. There is no indication of a zygomatic prominence, and the zygomatic arches do not flare laterally

to any extent. The root of the zygomatic process of the temporal is angled downwards approximately

30˚ relative to FH. The root of the zygomatic process of the temporal begins to laterally expand above

the level of the mandibular fossa, rather than above the level of the EAM as in australopiths. The

mandibular fossa is somewhat large, and moderately deep. The articular eminence of the mandibular

fossa is saddle-shaped, and oriented posteroinferiorly. Almost the entire mandibular fossa is

positioned medial to the temporal squama. The entoglenoid process is elongated and faces primarily

laterally. The postglenoid process is small and closely appressed to the tympanic, forming part of the

posterior wall of the fossa. The petrotympanic is distinctly coronally oriented. The vaginal process is

small but distinct. The crista petrosa is weakly developed and not notably sharpened. There is a strong

Eustachian process. The external auditory meatus is small, oval-shaped, and obliquely oriented, and

a distinct suprameatal spine is present. The mastoid region is slightly laterally inflated. The mastoid

process is triangular in cross-section, with a rounded apex and a mastoid crest. The digastric groove is

deep and narrow, alongside a marked juxtamastoid eminence. The canine juga are weakly developed

and there is no indication that anterior pillars would have been present. A shallow, ill-defined canine

fossa is indicated. The nasoalveolar clivus is flat and square-shaped. The parabolic-shaped palate is

broad and anteriorly shallow, becoming deeper posteriorly.

The mandibular dentition of H. naledi is arranged in a parabolic arch. The alveolar and basal margins

of the corpus diverge slightly. A single, posteriorly opening mental foramen is positioned slightly above

Figure 10. Maximum tibia length in H. naledi and other hominins. Maximum tibia length for U.W. 101-484,

compared to other nearly complete hominin tibia specimens. Australopithecus afarensis represented by A.L. 288-1

and KSD-VP-1/1 (Haile-Selassie et al., 2010); Homo erectus represented by D3901 from Dmanisi and KNM-WT

15000; Homo habilis by OH 35; Homo floresiensis by LB1 and LB8 (Brown et al., 2004; Morwood et al., 2005).

Chimpanzee and contemporary European ancestry humans from Cleveland Museum of Natural History (Lee, 2001);

Andaman Islanders from Stock (2013). Vertical lines represent sample ranges; bars represent 1 standard deviation.
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the mid-corpus level, between the position of the P3 and the P4. The mandibular corpus is relatively

gracile, with a well-developed lateral prominence whose maximum extent is typically at the M2. A slight

supreme lateral torus (of Dart) weakly delineates the extramolar sulcus from the lateral corpus. The

superior lateral torus is moderately developed, running anteriorly to the mental foramen where it turns

up to reach the P3 jugum. The marginal torus is moderately developed, and defines a moderate

intertoral sulcus. The posterior and anterior marginal tubercles are indicated only as slight roughenings

of bone. The gracile mandibular symphysis is vertically oriented. A well-developed mental

protuberance and weak lateral tubercles are delineated by a slight mandibular incisure, thereby

presenting a weak mentum osseum. The post-incisive planum is steeply inclined and not-shelf-like.

There is no superior transverse torus, while a weak, basally oriented inferior transverse torus is present.

The anterior and posterior subalveolar fossae are continuous and deep, overhung by a well-developed

alveolar prominence. The extramolar sulcus is moderately wide. The root of the ramus of the mandible

originates high on the corpus at the level of the M2. Strong ectoangular tuberosities are indicated.

A large mandibular foramen is present, with a diffusely defined mylohyoid groove.

Like the skull, the dentition of H. naledi compares most favorably to early Homo samples. Yet

compared to samples ofH. habilis, H. rudolfensis, and H. erectus, the teeth ofH. naledi are comparatively

quite small, similar in dimensions to much later samples of Homo. With both small post-canine teeth and

a small endocranial volume, H. naledi joins Au. sediba and H. floresiensis in an area distinct from the

general hominin relation of smaller post-canine teeth in species with larger brains (Figure 12).

In comparison to H. habilis, H. rudolfensis, and H. erectus, the teeth of H. naledi are not only small,

but also markedly simple in crown morphology. Maxillary and mandibular molars lack extensive

crenulation, secondary fissures and supernumerary cusps. The M1 has an equal-sized metacone and

paracone, and has a slight expression of Carabelli’s trait represented by a small cusp or shallow pit.

I1 exhibits slight occlusal curvature with trace marginal ridges and variably small tuberculum dentale.

I2 exhibits greater occlusal curvature and tuberculum dentale expression but neither upper incisor has

double shovelling or interruption groove. The mandibular canines of H. naledi have a small occlusal

area, and have a distal marginal cuspule as a topographically distinct expression of the cingular

margin. The P3 is double-rooted, fully bicuspid with metaconid and protoconid of approximately

equal height and occlusal area separated by a distinct longitudinal groove, has a distally extensive

talonid, and an occlusal outline approximately symmetrical with respect to the mesiodistal axis.

P4 likewise has a distally extensive talonid and approximately symmetrical occlusal outline (Figure 5).

M1 and M2 lack cusp 6 and cusp 7, except for very slight expression in a small fraction of specimens,

and have a very faint subvertical depression rather than a distinct or extensive protostylid. Like

australopiths and some early Homo specimens, H. naledi has an increasing molar size gradient in the

mandibular dentition (M1 < M2 < M3).

The lower limb of H. naledi is defined not only by a unique combination of primitive and derived

traits, but also by the presence of unique features in the femur and tibia. Like all other bipedal

Figure 11. Virtual reconstruction of the endocranium of the larger composite cranium from DH1 and DH2 overlaid

with the ectocranial surfaces. (A) Lateral view. (B) Superior view. The resulting estimate of endocranial volume is 560cc.

Scale bar = 10 cm.
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hominins, H. naledi possesses a valgus knee and varus ankle. The femoral neck is long, anteverted, and

anteroposteriorly compressed. Muscle insertions for the M. gluteus maximus are strong and the femur

has a well-marked linea aspera with pilaster variably present. The patella is relatively anteroposteriorly

thick. The tibia is mediolaterally compressed with a rounded anterior border, a large proximal

attachment for the M. tibialis posterior, and a thin medial malleolus. The fibula is gracile with laterally

oriented lateral malleolus, a relatively circular neck and a convex surface for the proximal attachment of

the M. peroneus longus. Unique features in the lower limb of H. naledi include a depression in the

superior aspect of the femoral neck that results in two mediolaterally oriented pillars inferoposteriorly

and superoanteriorly, and a strong distal attachment of the pes anserinus on the tibia.

The foot and ankle of H. naledi are largely humanlike (Figure 9). The tibia stands orthogonally

upon the talus, which is moderately wedged, with a mediolaterally flat trochlea having medial and

lateral margins at even height, a form distinct from the strong keeling seen in OH 8 (H. habilis) and

several tali from Koobi Fora. The talar head and neck exhibit strong, humanlike torsion; the

horizontal angle is higher than in most humans, similar to that found in australopiths. The calcaneus

is only moderately robust, but possesses the plantar declination of the retrotrochlear eminence

and plantarly positioned lateral plantar process found in both modern humans and Au. afarensis.

The peroneal trochlea is small, unlike that found in australopiths and similar only to that in

H. sapiens and Neanderthals. The talonavicular, subtalar joints and calcaneocuboid joints are

humanlike in possessing minimal ranges of motion and evidence for a locking, rigid midfoot. The

intermediate and lateral cuneiforms are proximodistally elongated. The hallucal tarsometatarsal

joint is flat and proximodistally aligned indicating that H. naledi possessed an adducted, non-

grasping hallux. The head of the first metatarsal is mediolaterally expanded dorsally, indicative of

Figure 12. Brain size and tooth size in hominins. The buccolingual breadth of the first maxillary molar is shown here

in comparison to endocranial volume for many hominin species. H. naledi occupies a position with relatively small

molar size (comparable to later Homo) and relatively small endocranial volume (comparable to australopiths). The

range of variation within the Dinaledi sample is also fairly small, in particular in comparison to the extensive range of

variation within the H. erectus sensu lato. Vertical lines represent the range of endocranial volume estimates known

for each taxon; each vertical line meets the horizontal line representing M1 BL diameter at the mean for each taxon.

Ranges are illustrated here instead of data points because the ranges of endocranial volume in several species are

established by specimens that do not preserve first maxillary molars.

DOI: 10.7554/eLife.09560.017

Berger et al. eLife 2015;4:e09560. DOI: 10.7554/eLife.09560 21 of 35

Research article Genomics and evolutionary biology

http://dx.doi.org/10.7554/eLife.09560.017
http://dx.doi.org/10.7554/eLife.09560


a humanlike windlass mechanism. The foot possesses humanlike metatarsal lengths, head

proportions, and torsion.

The phalanges are moderately curved, slightly more so than in H. sapiens. The only primitive

anatomies found in the foot of H. naledi are the talar head and neck declination and sustentaculum tali

angles, suggestive of a lower arched foot with a more plantarly positioned and horizontally inclined

medial column than typically found in modern humans (Harcourt-Smith et al., 2015).

The axial skeleton presents a combination of derived (mainly aspects of the vertebrae) and

seemingly primitive (mainly the ribs) traits. The preserved adult T10 and T11 vertebrae are

proportioned similarly to Pleistocene Homo, with transverse process morphology most similar to

Neandertals. The neural canals of these vertebrae are large in comparison to the diminutive overall

size of the vertebrae, proportionally recalling Dmanisi H. erectus, Neandertals, and modern humans.

The 11th rib is straight (uncurved), similar to Au. afarensis, and the shape of the upper rib cage

appears narrow, as assessed from first and second rib fragments, suggesting that the thorax was

pyramidal in shape. The 12th rib presents a robust shaft cross-section most similar to Neandertals.

This combination is not found in other hominins and might reflect allometric scaling at a small

trunk size.

The Dinaledi iliac blade is flared and shortened anteroposteriorly, resembling Au. afarensis or

Au. africanus. The ischium is short with a narrow tuberoacetabular sulcus, and the ischiopubic and

iliopubic rami are thick, resembling Au. sediba and H. erectus. This combination of iliac and

ischiopubic features has not been found in other fossil hominins (Figure 13).

The shoulder of H. naledi is configured with the scapula situated high and lateral on the thorax,

short clavicles, and little or no torsion of the humerus. The humerus is notably slender for its length,

with prominent greater and lesser tubercles bounding a deep bicipital groove, with a small, non-

projecting humeral deltoid tuberosity and brachioradialis crest. Distally, the humerus has a wide

lateral distodorsal pillar and narrow medial distodorsal pillar, and a medially-displaced olecranon

fossa with septal aperture. The Dinaledi radius and ulna diaphyses exhibit little curvature. The radius

has a globular radial tuberosity, prominent pronator quadratus crest, and reduced styloid process.

The hand shares many derived features of

modern humans and Neandertals in the thumb,

wrist, and palm, but has relatively long and

markedly curved fingers (Kivell et al., 2015). The

thumb is long relative to the length of the

other digits, and includes a robust metacarpal with

well-developed intrinsic (M. opponens pollicis and

M. first dorsal interosseous) muscle attachments

(Figure 6). The pollical distal phalanx is large and

robust with a well-developed ridge along the distal

border of a deep proximal palmar fossa for the

attachment of flexor pollicis longus tendon. Ungual

spines also project proximopalmarly from a radio-

ulnarly expanded apical tuft with a distinct area

for the ungual fossa. The wrist includes a boot-

shaped trapezoid with an expanded non-articular

palmar surface, an enlarged and palmarly-expanded

trapezoid-capitate joint, and a trapezium-scaphoid

joint that extends further onto the scaphoid

tubercle. Overall, carpal shapes and articular

configurations are very similar to those of modern

humans and Neandertals, and unlike those of

great apes and other extinct hominins. However,

the H. naledi wrist lacks a third metacarpal styloid

process, has a more radioulnarly oriented capitate-

Mc2 joint, and has a relatively small trapezium-

Mc1 joint compared to humans and Neandertals.

Moreover, the phalanges are long (relative to the

palm) and more curved than most australopiths.

Figure 13. Selected pelvic specimens of H. naledi. U.W.

101-1100 ilium in (A) lateral view showing a weak iliac

pillar relatively near the anterior edge of the ilium, with

no cristal tubercle development; (B) anterior view,

angled to demonstrate the degree of flare, which is clear

in comparison to the subarcuate surface. U.W. 101-723

immature sacrum in (C) anterior view; and (D) superior

view. U.W. 101-1112 ischium in (E) lateral view; and (F)

anterior view, demonstrating relatively short tuberace-

tabular diameter. Scale bar = 2 cm.

DOI: 10.7554/eLife.09560.018
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Discussion
The overall morphology of H. naledi places it within the genus Homo rather than Australopithecus or

other early hominin genera. The shared derived features that connect H. naledi with other members of

Homo occupy most regions of the H. naledi skeleton and represent distinct functional systems,

including locomotion, manipulation, and mastication. Locomotor traits shared with Homo include the

absolutely long lower limb, with well-marked linea aspera, strong M. gluteus maximus insertions,

gracile fibula and generally humanlike ankle and foot. These aspects of the lower limb suggest

enhanced locomotor performance for a striding gait. The H. naledi hand shares aspects of Homo

morphology in the wrist, thumb and palm, pointing to enhanced object manipulation ability relative to

australopiths, including Au. sediba (Kivell et al., 2011; Kivell et al., 2015). H. naledi lacks the

powerful mastication that typifies Australopithecus and Paranthropus, with generally small teeth

across the dentition, gracile mandibular corpus and symphysis, laterally-positioned temporal lines,

slight postorbital constriction and non-flaring zygomatic arches. The upper limb, shoulder and ribcage

have a more primitive morphological pattern, but do not preclude affiliating H. naledi with Homo,

particularly considering that postcranial remains of H. habilis appear to reflect an australopith-like

body plan (Johanson et al., 1986). Locomotor, manipulatory, and masticatory systems have both

historical and current importance in defining Homo (Wood and Collard, 1999; Holliday, 2012; Antón

et al., 2014), and H. naledi fits within our genus in these respects.

The structural configuration of the H. naledi cranium, beyond the functional aspects of

mastication, is likewise shared with Homo. As in many specimens of H. erectus and H. habilis, the

H. naledi vault includes a well-developed and moderately arched supraorbital torus, marked from

the frontal squama by a continuous supratoral sulcus, frontal bossing. Further, as in many H. erectus

crania, H. naledi exhibits a marked angular torus and occipital torus. The H. naledi face includes a flat

and squared nasoalveolar clivus, comparable to H. rudolfensis (Leakey et al., 2012), and weak

canine fossae. While its anatomy places it unambiguously within Homo, the H. naledi cranium and

dentition lack many derived features shared by MP and LP Homo and H. sapiens. The australopith-

like features of the postcranium, including the ribcage, shoulder, proximal femur, and relatively long,

curved fingers, also depart sharply from the morphology present in MP humans and H. sapiens.

The similarities of H. naledi to earlier members of Homo, including H. habilis, H. rudolfensis, and

H. erectus, suggest that this species may be rooted within the initial origin and diversification of our

genus.

The fossil record of early Homo and Homo-like australopiths has rapidly increased during the last 15

years, and this accumulating evidence has changed our perspective on the rise of our genus. Many

skeletal and behavioral features observed to separate later Homo from earlier hominins were formerly

argued to have arisen as a single adaptive package, including increased brain size, tool manipulation,

increased body size, smaller dentition, and greater commitment to terrestrial long-distance walking or

running (Wood and Collard, 1999; Hawks et al., 2000). But we now recognize that such features

appeared in different combinations in different fossil samples (Antón et al., 2014). The Dmanisi

postcranial sample (Lordkipanidze et al., 2007) and additional cranial remains of H. erectus from

Dmanisi (Gabunia et al., 2000; Vekua et al., 2002; Lordkipanidze et al., 2013) and East Africa (Spoor

et al., 2007; Leakey et al., 2012), demonstrate that larger brain size and body size did not arise

synchronously with improved locomotor efficiency and adaptations to long-distance walking or running

in H. erectus (Holliday, 2012; Antón et al., 2014). Further, the discovery of Au. sediba showed that

a mosaic of Homo-like hand, pelvis and aspects of craniodental morphology can occur within a species

with primitive body size, limb proportions, lower limb and foot morphology, thorax shape, vertebral

morphology, and brain size (Berger et al., 2010; Carlson et al., 2011; Kivell et al., 2011; Churchill

et al., 2013; DeSilva et al., 2013; Schmid et al., 2013). H. naledi presents yet a different combination

of traits. This species combines a humanlike body size and stature with an australopith-sized brain;

features of the shoulder and hand apparently well-suited for climbing with humanlike hand and wrist

adaptations for manipulation; australopith-like hip mechanics with humanlike terrestrial adaptations of

the foot and lower limb; small dentition with primitive dental proportions. In light of this evidence from

complete skeletal samples, we must abandon the expectation that any small fragment of the anatomy

can provide singular insight about the evolutionary relationships of fossil hominins.

A recent phylogenetic analysis of fossil hominins based on craniodental morphology placed

Au. sediba at the base of the genus Homo (Dembo et al., 2015), in agreement with earlier analyses of
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this species (Berger et al., 2010). The cranial and dental affinities identified between Au. sediba and

Homo include many features shared by H. naledi. But H. naledi and Au. sediba share different

postcranial features with other species of Homo. Resolving the phylogenetic placement of H. naledi

will require both postcranial and craniodental evidence to be integrated together. Such integration

poses a challenge because of the poor representation of several key species both within and outside

of Homo, most notably H. habilis, for which postcranial evidence is slight, and H. rudolfensis for which

no associated postcranial remains are known. We propose the testable hypothesis that the common

ancestor of H. naledi, H. erectus, and H. sapiens shared humanlike manipulatory capabilities and

terrestrial bipedality, with hands and feet like H. naledi, an australopith-like pelvis and the H. erectus-

like aspects of cranial morphology that are found in H. naledi. Enlarged brain size was evidently not

a necessary prerequisite for the generally human-like aspects of manipulatory, locomotor, and

masticatory morphology of H. naledi.

Although it contains an unprecedented wealth of anatomical information, the Dinaledi deposit

remains undated (Dirks et al., 2015). Considering that H. naledi is a morphologically primitive species

within our genus, an age may help elucidate the ecological circumstances within which Homo arose

and diversified. If the fossils prove to be substantially older than 2 million years, H. naledi would be the

earliest example of our genus that is more than a single isolated fragment. The sample would illustrate

a model for the relation of adaptive features of the cranium, dentition and postcranium during

a critical time interval that is underrepresented by fossil evidence of comparable completeness. A

date younger than 1 million years ago would demonstrate the coexistence of multiple Homo morphs

in Africa, including this small-brained form, into the later periods of human evolution. The persistence

of such a species with clear adaptations for manipulation and grip, alongside MP humans or perhaps

even alongside modern humans, would challenge many assumptions about the development of the

archaeological record in Africa.

The depth of evidence of H. naledi may provide a perspective on the variation to be expected

within fossil hominin taxa (Lordkipanidze et al., 2013; Bermúdez de Castro et al., 2014). The entire

Dinaledi collection is remarkably homogeneous. There is very little size variation among adult

elements within the collection. Eight body mass estimates from the femur (Table 2) have a standard

deviation of only 4.3 kilograms, for a body mass coefficient of variation (CV) of only 9%. The CV of

body mass within most human populations is substantially higher than this, with an average near 15%

(McKellar and Hendry, 2009). Likewise, the size variation of cranial and dental elements is minimal.

With 11 mandibular first molars, the CV of buccolingual breadth is only 3.2% and for 13 maxillary first

molars the CV of buccolingual breadth is only 2.0% (buccolingual breadth is used because it is not

subject to variance from interproximal wear). Not only size, but also anatomical shape and form are

homogeneous within the sample. Almost every aspect of the morphology of the dentition, including

the distinctive form of the lower premolars, the distal accessory cuspule of the mandibular canines,

and the expression of nonmetric features that normally vary in human populations, is uniform in every

specimen from the collection. The distinctive aspects of cranial morphology are repeated in every

specimen, and even the aspects that normally vary among individuals of different body size or

between sexes exhibit only slight variation among the Dinaledi remains. One of the most unique

aspects of H. naledi is the morphology of the first metacarpal; the derived aspects of this anatomy are

present in every one of seven first metacarpal specimens in the collection (Figure 14). Unlike any other

fossil hominin site in Africa, the Dinaledi Chamber seems to preserve a large number of individuals

from a single population, one with variation equal to or less than that found within local populations of

modern humans.

The Dinaledi collection is the richest assemblage of associated fossil hominins ever discovered in

Africa, and aside from the Sima de los Huesos collection and later Neanderthal and modern human

samples, it has the most comprehensive representation of skeletal elements across the lifespan, and

from multiple individuals, in the hominin fossil record. The abundance of evidence from this

assemblage supports our emerging understanding that the genus Homo encompassed a variety of

evolutionary experiments (Antón et al., 2014), with diversity now evident for fossil Homo in each of the

few intensively explored parts of Africa (Leakey et al., 2012). But as much as it advances our

knowledge, H. naledi also highlights our ignorance about ancient Homo across the vast geographic

span of the African continent. The tree of Homo-like hominins is far from complete: we have missed key

transitional forms and lineages that persisted for hundreds of thousands of years. With an increasing

pace of discovery from the field and the laboratory, more light will be thrown on the origin of humans.
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Materials and methods

Comparative hominin specimens examined in this study
In the differential diagnosis of H. naledi, we have compared the holotype DH1, paratypes, and other

referred material to fossil evidence from previously-identified hominin taxa. Our goal is to provide

a diagnosis for H. naledi that is clear in reference to widely recognized hominin hypodigms. Different

specialists continue to disagree about the composition and anatomical breadth represented by these

hominin taxa and attribution of particular specimens to them (see e.g., Wood and Collard, 1999;

Lordkipanidze et al., 2013; Antón et al., 2014 on early Homo taxa). We do not intend to take any

position on such disagreements by our selection of comparative samples for H. naledi.

We have been cautious in our attribution of postcranial specimens to hominin taxa, particularly in the

African Plio-Pleistocene, where it has been demonstrated multiple hominin taxa coexisted in time, if not in

geographical space. Because the purpose of this study is differential diagnosis in reference to known taxa,

unattributed specimens are not germane, although in certain cases there are well-accepted attributions to

genus for specimens (e.g., Homo sp. or Australopithecus sp.) as cited below. We have included some

specimens in comparisons because they are relatively complete, even if they cannot be attributed to

a species, because few hominin taxa are represented by evidence across the entire skeleton. For some

anatomical characters, parts are preserved only for MP or later hominin samples, so we have included such

comparisons to make clear how H. naledi compares in these elements to the (few) known fossil examples.

This study relies upon observations and measurements taken from original fossils by the

authors, observations taken from casts, and observations taken from the literature. These

observations are in large part standard anatomical practice; where features are specially

described in previous studies we have referenced those here. For this study, a cast collection was

assembled including the Phillip V. Tobias research collection at the University of the

Witwatersrand and loans of cast materials from the University of Wisconsin–Madison, University

of Michigan, American Museum of Natural History, New York University, University of Colorado–

Denver, University of Delaware, Texas A&M University, and the personal collections of Peter

Schmid, Milford Wolpoff and Rob Blumenschine. We extend our gratitude to the curators of fossil

Figure 14. First metacarpals of H. naledi. Seven first metacarpals have been recovered from the Dinaledi Chamber. U.W. 101-1321 is the right first

metacarpal of the associated Hand 1 found in articulation. U.W. 101-1282 and U.W. 101-1641 are anatomically similar left and right first metacarpals, which

we hypothesize as antimeres, both were recovered from excavation. U.W. 101-007 was collected from the surface of the chamber, and exhibits the same

distinctive morphological characteristics as all the first metacarpals in the assemblage. All of these show a marked robusticity of the distal half of the bone,

a very narrow, ‘waisted’ appearance to the proximal shaft and proximal articular surface, prominent crests for attachment of M. opponens pollicis and

M. first dorsal interosseous, and a prominent ridge running down the palmar aspect of the bone. The heads of these metacarpals are dorsopalmarly flat

and strongly asymmetric, with an enlarged palmar-radial protuberance. These distinctive features are present among all the first metacarpals in the

Dinaledi collection, and are absent from any other hominin sample. Their derived nature is evident in comparison to apes and other early hominins, here

illustrated with a chimpanzee first metacarpal and the MH2 first metacarpal of Australopithecus sediba.

DOI: 10.7554/eLife.09560.004
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collections and the generosity of these institutions in facilitating this research, both in South Africa

and throughout the world.

This list of skeletal materials extends the list of craniodental comparative material used in

diagnosing Au. sediba, with many of the hypodigms identical to that study (Berger et al., 2010).

Where we have had first-hand access to original specimens, we rely upon our own observations; we

therefore do not refer readers to other sources for these data.

Australopithecus afarensis
The samples attributed to Au. afarensis from Hadar, Laetoli, the Middle Awash, Woranso-Mille and

Dikika were utilized. For this taxon we relied upon published reports (Johanson et al., 1982; Kimbel

et al., 2004; Drapeau et al., 2005; Alemseged et al., 2006; Haile-Selassie et al., 2010; Ward et al.,

2012), in addition to our own observations on original fossils and casts.

Australopithecus africanus
The samples attributed to Au. africanus from Taung, Sterkfontein and Makapansgat were employed.

Original specimens were examined first-hand by the authors.

Australopithecus garhi
The cranium BOU-VP-12/130 from Bouri was included, with data taken from a published report

(Asfaw et al., 1999).

Australopithecus sediba
The partial skeletons MH1 and MH2 from Malapa, South Africa were included in this study, based on

examination of the original specimens by the authors.

Paranthropus aethiopicus
The cranium KNM-WT 17000 was examined first-hand for this study.

Paranthropus boisei
Samples from the Omo Shungura sequence, East Lake Turkana, Olduvai Gorge and Konso were

included in this study. Original specimens from Olduvai Gorge and East Lake Turkana were examined

first-hand, while casts and published reports (Tobias, 1967; Suwa et al., 1996, 1997; Domı́nguez-

Rodrigo et al., 2013) were used to study the Omo and Konso materials. Our postcranial

considerations of P. boisei are very limited and we did not rely upon the association of KNM-ER

1500 (Grausz et al., 1988) to derive information about the postcranial skeleton of P. boisei.

Paranthropus robustus
The samples from Kromdraai, Swartkrans, Sterkfontein, Drimolen, Gondolin, and Coopers were included

in this study. First-hand observations of original specimens from all localities were used with the exception

of Drimolen fossils, which were compared using published reports (Keyser, 2000; Keyser et al., 2000).

Homo habilis
Samples from Olduvai Gorge, East Lake Turkana, the Omo Shungura sequence, Hadar, and

Sterkfontein were included in this study. Original Olduvai Gorge and East Lake Turkana fossils were

examined first-hand, while for the Omo and Hadar materials we relied on our original observations on

casts and originals and published reports (Boaz and Howell, 1977; Tobias, 1991; Kimbel et al.,

1997). We include the following fossils in the hypodigm of H. habilis: A.L. 666-1, KNM-ER 1478, KNM-

ER 1501, KNM-ER 1502, KNM-ER 1805, KNM-ER 1813, KNM-ER 3735, OH 4, OH 6, OH 7, OH 8, OH

13, OH 15, OH 16, OH 21, OH 24, OH 27, OH 31, OH 35, OH 37, OH 39, OH 42, OH 44, OH 45, OH

62, OMO-L894-1, and Stw 53. We recognize that some authors (including some of the authors of this

paper) prefer to classify OH 62, Stw 53 and A.L. 666-1 outside of H. habilis, (e.g., as Homo

gautengensis which we do not recognize as valid), or even outside the genus Homo; these specimens

expand the morphological and temporal variability encompassed within H. habilis.

Homo rudolfensis
Samples from Olduvai Gorge, East Lake Turkana, and Lake Malawi were included in this study. The

East Lake Turkana fossils available prior to 2010 were examined first-hand, while for the Olduvai and

Lake Malawi fossils and KNM-ER 60000, 62000, and 62003 we relied on original observations on

fossils and casts as well as published reports (Schrenk et al., 1993; Blumenschine et al., 2003;

Leakey et al., 2012). We include the following fossils in the hypodigm of H. rudolfensis: KNM-ER 819,
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KNM-ER 1470, KNM-ER 1482, KNM-ER 1483, KNM-ER 1590, KNM-ER 1801, KNM-ER 1802, KNM-ER

3732, KNM-ER 3891, KNM-ER 60000, KNM-ER 62000, KNM-ER 62003, OH 65, and UR 501. We do

recognize that KNM-ER 60000 and KNM-ER 1802 present some conflicting anatomy that some

authors have argued precludes them as conspecific specimens (Leakey et al., 2012); by considering

both, we aim to be conservative as they encompass more variation within H. rudolfensis.

Homo erectus
Samples from Buia, Chemeron, Daka, Dmanisi, East and West Lake Turkana, Gona, Hexian, Konso,

Mojokerto, Olduvai Gorge, Sangiran, Swartkrans, Trinil, and Zhoukoudian were included in this study.

South African material is of special interest in this comparison because of the geographic proximity, and

because of the difficulty of clearly identifying Homo specimens within the large fossil sample from

Swartkrans. In particular, the following specimens from Swartkrans are considered to represent H. erectus:

SK 15, SK 18a, SK 27, SK 43, SK 45, SK 68, SK 847, SK 878, SK 2635, SKW 3114, SKX 257/258, SKX 267/

2671, SKX 268, SKX 269, SKX 334, SKX 339, SKX 610, SKX 1756, SKX 2354, SKX 2355, SKX 2356, and SKX

21204. It has been suggested (Grine et al., 1993, 1996) that SK 847 and Stw 53 might represent the

same taxon, and that this taxon is a currently undiagnosed species of Homo in South Africa. However, we

agree with Clarke (1977; 2008) that SK 847 can be attributed to H. erectus, and that Stw 53 cannot.

Because there is no clear indication that more than one species of Homo is represented in the Swartkrans

sample, we consider all this material to belong to H. erectus. We considered ‘Homo ergaster’ (and also

‘Homo aff. erectus’ from Wood, 1991) to be synonyms of H. erectus for this study; Turkana Basin

specimens that are attributed to H. erectus thus include KNM-ER 730, KNM-ER 820, KNM-ER 992, KNM-

ER 1808, KNM-ER 3733, KNM-ER 3883, KNM-ER 42700, KNM-WT 15000. Olduvai specimens include OH

9, OH 12 and OH 28. Original fossil materials from Chemeron, Lake Turkana, Swartkrans, Trinil, and

Dmanisi were examined first-hand by the authors, while the remainder were based on casts and published

reports (Weidenreich, 1943; Wood, 1991; Antón, 2003; Rightmire et al., 2006; Suwa et al., 2007).

A large number of postcranial specimens have been collected from the Turkana Basin and appear

consistent with the anatomical range otherwise found in Homo, and inconsistent with known samples of

Australopithecus and Paranthropus from elsewhere. These include KNM-ER 1472, KNM-ER 1481, KNM-

ER 3228, KNM-ER 737, and others. We may add other fossils from other sites lacking association with

craniodental material, such as the partial BOU-VP 12/1 skeleton and even the Gona pelvis. These

specimens attributable to Homo but not necessarily to a particular species did inform our understanding

of variability within the genus, but for the most part these specimens do not inform our differential

diagnosis of H. naledi relative to particular species. For example, the key element of femoral

morphology of H. naledi in contrast to other species is the presence of two well-defined mediolaterally

running pillars in the femoral neck; the isolated specimens of early Homo do not contradict this apparent

autapomorphy. Likewise, no isolated specimens inform us about the humanlike aspects of foot

morphology in H. naledi. In these cases, the lack of associations for this evidence actually is less

important than the lack of specimens that replicate the distinctive features of the H. naledi morphology.

Middle Pleistocene Homo
Specimens from the latest Lower Pleistocene and MP of Europe and Africa that cannot be attributed

to H. erectus were included in our comparisons. These include fossils that have been attributed to

H. heidelbergensis, H. rhodesiensis, ‘archaic H. sapiens’, or ‘evolved H. erectus’ by a variety of other

authors. Specimens attributed to MP Homo include materials from Eliye Springs, Arago, Atapuerca

Sima de los Huesos, Bodo, Broken Hill, Cave of Hearths, Ceprano, Dali, Elandsfontein, Jinniushan,

Kapthurin, Mauer, Narmada, Ndutu, Petralona, Reilingen-Schwetzingen, Solo, Steinheim, Swan-

scombe. This grouping includes the following specimens: KNM-ES 11693, Arago 2, Arago 13, Arago

21, Atapuerca 1, Atapuerca 2, Atapuerca 4, Atapuerca 5, Atapuerca 6, Cave of Hearths, SAM-PQ-

EH1, Kabwe, Mauer, Ndutu, Salé, Petralona, Reilingen-Schwetzingen, Steinheim.

Homo floresiensis
Specimens from Liang Bua, Flores as described by Brown et al., 2004; Morwood et al., 2005,

Jungers et al., 2009a, Jungers et al., 2009b, and Falk et al., 2005 were included in this study.

Scanning and virtual reconstruction methods
The calvariae (DH1-4) were scanned using a NextEngine laser surface scanner (NextEngine, Malibu, CA)

at the following settings: Macro, 12 divisions with auto-rotation, HD 17k ppi. Depending on the
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complexity of the surface relief, either two or three

complete scanning cycles were completed per

specimen, resulting in multiple 360˚ scans. Each

individual scan was trimmed, aligned, and fused

(volume merged) in the accompanying ScanStudio

HD Pro software. For each specimen, the individ-

ual 360˚ scans were then aligned and merged in

GeoMagic Studio 14.0 (Raindrop Geomagic, Re-

search Triangle Park, NC), creating a final three-

dimensional model of the specimen. Given the

fragmented nature of the calvariae specimens,

both the ectocranial and endocranial surfaces

were captured in the scans.

DH3 consisted primarily of portions of the

right calvaria. However, a small section of the

frontal and the parietal crossed the mid–sagittal

plane. For this reason, it was possible to mirror

image the surface scan to approximate the left

calvaria and obtain a more complete visualization

of the complete calvaria (Figure 15). The virtual

specimen of DH3 was mirrored in GeoMagic

Studio, and manually registered (aligned) using

common points along the frontal crest and

sagittal suture. The registration procedure in GeoMagic Studio is an iterative process that refines

the alignment of specimens to minimize spatial differences between corresponding surfaces. In this

manner, the program is able to match the position overlapping surfaces, in addition to their

angulation and curvature.

The same procedures were used to mirror image and create a virtual reconstruction of DH2 and the

occipital portion of DH1 (Figure 16). The occipital and vault portions of DH1 were reconstructed

based on the anatomical alignment of the sagittal suture, sagittal sulcus, parietal striae, and the

continuation of the temporal lines across both the specimens.

Virtual reconstruction of composite crania and estimation of cranial capacity
In order to virtually estimate the cranial capacity, composite crania were constructed from the surface

scans and mirror imaged scans of the calvariae. Two separate composite crania were created; the

relatively smaller-sized calvariae (DH3 and DH4) were combined into one composite, and the larger-

sized calvariae (DH1 and DH2) composed the larger composite cranium.

Figure 15. Posterior view of the virtual reconstruction of

DH3. The resultant mirror image is displayed in blue.

The antimeres were aligned by the frontal crest and

sagittal suture using the Manual Registration function in

GeoMagic Studio 14.0.

DOI: 10.7554/eLife.09560.020

Figure 16. Virtual reconstruction of (A) DH2 and (B) occipital portion of DH1. The actual specimen displays its

original coloration and the mirror imaged portion is illustrated in blue.

DOI: 10.7554/eLife.09560.021
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The smaller composite cranium, DH3 was mirrored in GeoMagic Studio 14.0, and merged with the

original scan as outlined above. The surface scan of DH4 was uploaded and registered (aligned) to the DH3

model using overlapping temporal features (e.g., the external auditory meatus). No scaling was performed.

DH4 was then mirror imaged to complete the occipital contour. The resultant model suggests a general

concordance between the specimens in both size and shape with a close alignment of vault surfaces and

anatomical features between specimens (Figure 17).

For the larger composite cranium, the surface model of DH2 and its mirror image was then

uploaded, registered (aligned), and merged with the mirror-imaged model of DH1. No scaling was

performed. The congruency between the specimens in the resultant model suggests that DH1 and

DH2 are similar in both size and vault shape (Figure 18).

Virtual reconstruction of cranial capacity
The composite model of DH3 and DH4 was used to estimate the cranial capacity for the smaller

morphotype. In GeoMagic Studio 14.0, the endocranial surface of the composite was carefully

selected from the ectocranial surface and copied as a new object. In order to obtain a volume

calculation the model has to be a closed surface, meaning that all of the holes in the surface model

had to be filled. Small holes in the model were filled using the ‘Fill by Curvature’ function. Larger holes

were filled in by sections. For example, the cranial base was filled in using a number of transverse

sections, so that in the absence of the cranial base the contour of the various cranial fossae and the

petrous portions of the temporal could be preserved as best as possible. When appropriate

(e.g., around angular portions of the petrous bone), small sections were filled using a flat hole filling

function. The new surfaces created by the hole-filling mechanism were carefully monitored and

repeated until an acceptable model that appeared to best approximate the missing portions was

obtained. The result is a closed model approximation of the endocranium, of which a volume can be

Figure 17. Postero-lateral view of the virtual reconstruction of a composite cranium from DH3 and DH4. (A) The

surface scan of DH3 was mirror imaged and merged as described in Supplementary Note 8. (B) The scan of DH4 was

aligned to the DH3 model. (C) DH4 was then mirror imaged to complete the occipital contour (D).

DOI: 10.7554/eLife.09560.022

Figure 18. Virtual reconstruction of a composite cranium from DH1 and DH2. The surface model of DH2 (blue),

consisting of the original scan merged with the mirror image, was then uploaded and aligned with the mirror-

imaged DH1 model (pink). Note the similarity in size and shape between DH1 and DH2 observed in the posterior

(A) anterior (B) lateral (C) and superior (D) views.

DOI: 10.7554/eLife.09560.023
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calculated by GeoMagic Studio (Figure 19, Figure 20). The volume of the smaller composite cranium

(DH3 and DH4) indicates a cranial capacity of approximately 465 cm3.

In order to determine whether significant errors were being introduced in the manner that the

cranial base was filled in the above procedures, the endocranial volume of DH3/DH4 was also virtually

calculated using the cranial base of Sts 19 as a model. A 3D model of Sts 19 was mirrored and aligned

to the DH3/DH4 model using the external auditory meatus and common points on the internal surface

of the petrous portion as a guide (Figure 21). The Sts 19 model was then scaled by 0.97 to obtain an

optimal fit between the two models.

After the Sts 19 model was merged with the DH3/DH4 model, the endocranial surface was

extracted and reconstructed as described above (Figure 22). The resultant endocranial volume using

the Sts 19 cranial base was 465.9 cm3. This value is in agreement with the first estimate and suggests

that using a model cranial base did not significantly alter the results.

The larger composite cranium, consisting of DH1 and DH2, lacks most of the frontal region. In

order to create a closed endocranial surface for a volume estimate, the frontal region from the smaller

composite cranium was scaled by 5%, and then registered (aligned) and merged to the model of the

larger composite cranium. As with the smaller composite cranium, the endocranial surface was then

selected and converted to a new object, and the remaining holes filled based on the curvature of the

surface. The volume of the closed endocranial model was calculated using GeoMagic Studio. The

cranial capacity (endocranial volume) of the larger composite model is approximately 560cc.

Body mass estimation methods
Eight femoral fragments from the Dinaledi collection allow a direct measurement of the

subtrochanteric anteroposterior and mediolateral diameters (Table 3). We developed two regression

Figure 19. Virtual reconstruction of the endocranium of the composite cranium from DH3 and DH4. (A) Lateral view.

(B) Superior view. (C) Inferior view. In all views, anterior is to towards the left.

DOI: 10.7554/eLife.09560.024

Figure 20. Virtual reconstruction of the endocranium of the composite cranium from DH3 and DH4 overlaid with the

ectocranial surfaces. (A) Lateral view. (B) Superior view.

DOI: 10.7554/eLife.09560.025
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equations to estimate body mass from these diameters based on the masses of modern human

samples. MCE measured body masses of a sample of 253 modern European individuals, 128 males

and 125 females, collected from the Institute for Forensic Medicine in Zurich, Switzerland. Body

masses were taken at time of forensic evaluation. This sample yields the following regression equation

relating body mass to subtrochanteric diameter, where FSTpr refers to the product of the femoral

subtrochanteric mediolateral and anteroposterior breadths:

Body Mass= 0:060× FSTpr+ 13:856; SEE= 6:78; r= 0:50;p=<0:001:

We further examined a broader sample of 276 modern humans taken from a number of populations

around the world, with data measured by TWH. The body masses of individuals were estimated from

femur head diameter, using the average of results obtained from Grine et al. (1995) and Ruff et al.

(1997). The sample includes 115 females, 155 males, and 6 individuals of indeterminate sex.

Body Mass= 0:046× FSTpr+24:614;SEE= 5:82; r= 0:82;p<0:001:

Stature estimation methods
We collected data from skeletal material representing two African population samples. We use only

African populations in this comparison because the ratio of tibia length to femur length, and thereby

the proportion of stature constituted by tibia length, varies between human populations both today

and prehistorically. Although we do not know this proportion for H. naledi, we adopt the null

hypothesis that they likely had tibia/femur proportions similar to other African population samples.

95 male and female Kulubnarti individuals from medieval Nubia are curated at the University of

Colorado, Boulder. Data were collected by HMG, including estimates of living stature based on the

Fully method (Fully, 1956; Raxter et al., 2006), and these were used to develop a regression

equation relating tibia length to stature. The

resulting equation is:

Stature= 0:295×TML+48:589;

SEE= 3:13; r= 0:90;p< 0:001:

We (HMG and TWH) collected measurements

from 38 African males and 38 females curated

within the Dart Collection of the University of the

Witwatersrand. Specimens were randomly cho-

sen with no preference for specific African ethnic

groups. Cadaveric statures are documented for

this collection, the regression equation relating

tibia length to stature in this sample is:

Stature= 0:223×TML+75:350;

SEE= 6:50; r= 0:63;p< 0:001:

Figure 21. Virtual reconstruction the DH3/DH4 cranial base using a model of Sts 19. (A) Right lateral view. (B) Left

lateral view. (C) Posterior view. (D) Inferior view.

DOI: 10.7554/eLife.09560.026

Figure 22. Virtual reconstruction the DH3/DH4

endocranial volume using a cranial base model of Sts

19. Right lateral view.

DOI: 10.7554/eLife.09560.027
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Nomenclatural acts
The electronic edition of this article conforms to the requirements of the amended International Code

of Zoological Nomenclature, and hence, the new name contained herein is available under that Code

from the electronic edition of this article. This published work and the nomenclatural acts it contains

have been registered in ZooBank, the online registration system for the ICZN. The ZooBank LSIDs (Life

Science Identifiers) can be resolved and the associated information viewed through any standard web

browser by appending the LSID to the prefix ‘http://zoobank.org/’. The LSID for this publication is:

urn:lsid:zoobank.org:pub:00D1E81A-6E08-4A01-BD98-79A2CEAE2411. The electronic edition of this

work was published in a journal with an ISSN (2050-084X) and has been archived and is available from

the following digital repositories: PubMed Central and LOCKSS.

Access to material
All Dinaledi fossil material is available for study by researchers upon application to the Evolutionary

Studies Institute at the University of the Witwatersrand where the material is curated (contact

Bernhard Zipfel [Bernhard.Zipfel@wits.ac.za]). Three-dimensional surface renderings and other digital

data are available from the MorphoSource digital repository (http://morphosource.org).
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