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Summary. — The supply of free energy to our societies is today an intricate sys-
tem comprising the regimes of technologies, regulatory frameworks, socio-economic
impacts and techno-ecological interactions. As a consequence it is challenging to de-
fine clear directions or even device a master plan for the transformation of a single
national energy system into a sustainable future. Even the term “sustainable” needs
extensive discussion in this context that should not be defined solely in technological
or ecological senses. The contribution illustrates some of the elements of the energy
system and their interdependencies. It will become clear that multiple reasons exist
to change the traditional generation and use of energy even when climate protection
is not a sufficiently strong argument for a change.

The desire to transform national energy systems into more sustainable forms is a
growing global trend. The motivations behind this are, however, quite different. In Ger-
many the dominant official driving force is the desire to contribute to climate protection.
As the greenhouse gas emission (GHG) of Germany is limited (about 3%), the direct
effect of national measures remains small. The German GHG emissions are of the same
order of magnitude as the GHG emissions of single large industrial processes in the world
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Fig. 1. – GHG emissions in the world. Selected emittents are shown. The whole emission in the
world accumulated in 2013 to 35000 million tons CO2 equivalents. (Source BMWI, 2014.)

(ammonia synthesis, steel making) offering possibilities to their reduction in a much sim-
pler setting than the GHG reduction of a whole complex society. On the other hand,
if we cannot demonstrate that a sustainable energy system is compatible with societal
goals then we will not be able to make any impact on the energy issue on a global scale
(fig. 1).

In China air quality issues force a reduction of emissions of dust and of fossil combus-
tion products. In Japan energy supply issues force the use of natural gas and of criticised
nuclear power. In Russia, India and Canada expansive fossil combustion is justified with
economic growth requests.

A critical motivation for cutting back on fossil fuels for energy conversion is the
unclear future of the supply for gas and oil. The extreme changes of the oil price in the
last 30 years precludes the notion that supply and demand dictate the price that may
thus be used as indicator for the availability. The debate about “peak oil” and its quite
political interpretation as indicated in fig. 2 exemplifies that economic parameters are not
suitable as indicators for the systemic development of an energy system. The same can
be deduced in the gas market with the observed volatility of the price with the advent of
shale gas and expected uncertainty with the future of this heavily debated technology.

In summary, the energy supply of societies and countries is a hot political target with
multiple consequences for the evolution of our societies. Among the many scenarios for
its evolution the motivation to minimize the GHG emission is often advocated but much
less often put into the centre of practical measures. Many reasons ranging from “climate
change disbelief” (can an observation be “believed”?) to the uncontrolled maximization
of economic success impede practical measures. The long time scales involved and the
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Fig. 2. – Peak oil. Temporal evolution of the oil production in million barrels per day. Depending
on the way how known and unknown reserves are brought into the picture, we can see the
signature of a peak in conventional oil production that is, according to the projection of the
IEA (source, 2012) compensated by several measures.

absence of short-time return on investments are limiting factors as well the lack of general
orientation as to what are targets and what are measures. A minority of citizens strongly
demand the transformation of the energy system into a sustainable future by radical
measures and without a full view on all implications of their demands. Industry tried to
fight any changes until recently and now a concept that could serve as reliable “compass”
into the future is missing.

The term “sustainable” by itself is not well defined and contains many more elements
than “CO2 reduction” for which it is often used synonymously. In addition there are
complex technical issues that prevent the drop-in solution of replacing fossil by renewable
energy (REN). Although this is often demanded and supported with numerical arguments
based upon integrated data of production and consumption, it is a fundamental challenge
to replace a controllable form of free energy (fossil) by a non-controllable form (REN)
in the absence of powerful energy storage technologies and with inadequate grid and
demand side control.

In fig. 3 it is indicated without much discussion in the present context that the reduc-
tion of the energy transformation issue into a technical systemic problem is inadequate.
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Fig. 3. – The energy system as network representation. In the inner hierarchy some critical
components are shown. These consist of multiple sub-components from which some selected
items are shown in the outer hierarchy. The lines indicate important relations. It is obvious
that the technological aspects, although critically enabling the function of the energy systems
are by no means sufficient to define the energy system and its transformation.

Energy systems are made for human desires and needs and are controlled by human
activities. These control parameters are hierarchically nested in space and time and are
outside of any rational or political control.

We may thus infer that the mode of operation of the energy system at any dimension
of space and time cannot be described in a causal way and cannot be correctly modelled in
its responses. Nevertheless, multiple stakeholders make continuous modifications to the
system in uncoordinated manners creating a constant need for “quick fixes”. A consistent
energy policy or systemic development does not yet exist. Its formulation would require
using the network indicated in a quite primitive form in fig. 3. Alone describing the
function of this network is a formidable scientific challenge for which only limited efforts
are currently undertaken.

Taking this as caveat it is still useful to discuss the nature of the transformation of
a hypothetical energy system from a technically non-sustainable form into a sustainable
form. We define technical sustainability as the property of the system to close all its
material streams except those of oxygen and water, which we define as so abundant on
our planet that they cannot be changed by human activities. Our present system is then
represented by the scheme of fig. 4.
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Fig. 4. – A minimal representation of a typical present energy system. It is not sustainable in
the definition of this work, as the CO2 stream is not closed (arrow). Nuclear energy sources are
omitted for simplicity.

We see that almost all present free energy comes through chemical energy conversion
and storage from the Sun. In ancient times biomass was converted to fossil resources that
we oxidize to CO2 and water (not shown) to generate thermo-mechanical energy that we
convert in all useable forms of free energy. We further take most of our carbon-containing
materials from fossil sources and generate transportation fuels and fertilizers from them.
The CO2 emission shown in fig. 1 is the consequence of these activities. About 50% of
the emissions are retained in the global carbon cycle, the rest increases the CO2 content
of the atmosphere by about 2 ppm per year. Besides CO2, also other GHG contribute
to these processes whereby we note that some of these gasses are orders of magnitudes
more effective as climate changers [1] than CO2 itself.

If we want to avoid conducting an experiment with the global energy system with
unknown consequences, then we should stop the emission of CO2 and close its cycle by
using the natural and some synthetic components of the global carbon cycle. Technologies
like CCS are unacceptable [2] in this context, as they also do not close the cycle in a
controlled manner and give rise to possible modification of global material streams that
we cannot foresee. The effects of CCS do not disappear even in geological time scales,
as CO2 is a stable molecule and is not subject to a decay. It may be bound in the
underground but for chemical reasons only at the expense of liberation of other anionic
species (metathesis of carbonate against oxo-anions) with unforeseeable results.
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Fig. 5. – A sustainable energy system in the definition of this work. The CO2 cycle is closed
through reducing much of its volume by direct electricity generation and by chemical energy
conversion (CEC) using solar hydrogen. A parallel process leading to solar fuels may be the
direct photo-conversion of water and CO2 that should, however, always be secondary to direct
electricity generation due to the much higher efficiency of light-to-electricity conversion than
light-to-chemical conversion followed by combustion.

In fig. 5 we illustrate as an example how we avoid much CO2 formation by using sun-
light to generate electricity. The temporal excess is used to split water and to transform
hydrogen with excess CO2 in a solar refinery into solar fuels and carbon materials. Emis-
sion of CO2 from distributed sources can be collected by biomass. This non-food biomass
can be processed in a bio-refinery with solar hydrogen to give residues for combustion
and a valuable feedstock for chemical industry to generate materials. Such a system is
sustainable as no open material streams are left.

Fossil fuels are used as long as possible to back up the volatility of the electricity
generation. This is by far the most cost-effective way to help migrating the energy
system from a state shown in fig. 4 to the state described in fig. 5. On a very long
time scale this contribution will need to be replaced by storage and back-conversion,
being then technically possible but always more expensive due to the intrinsic losses and
the complexity increase of the system. This does not preclude small and decentralized
systems of electricity supply to operate independent of fossil backup already now using
batteries or CEC with solar hydrogen.
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Fig. 6. – Temporal evolution of GHG emission in Germany in CO2 equivalents. The data point
for 2020 is the set political target, the dashed line is a linear extrapolation of the trend. It is
likely that the target will not be met despite the massive use of renewable energy for power
generation. (Source: BMWI, 2014.)

The light blue boxes in fig. 5 comprise critical contributions from chemistry. The
system cannot operate without these elements being effective and scalable to worldwide
application. Here we see a strategic contribution of chemistry to the energy issue. The
other likewise important contribution is supporting energy efficiency through dedicated
materials and through improved production processes. This field is so wide that it cannot
be discussed here. Its short mentioning is no sign, however, for secondary relevance. It is
stressed that according to fig. 3, energy-saving strategies will depend in their effectiveness
much more on non-scientific factors than only on technologically viable options.

The enabling character of chemistry for the energy transformation process remains
and represents a key challenge for those involved in the respective disciplines of funda-
mental and applied chemistry. The main and foremost obligation of chemistry is seen
in getting the blue boxes to work. This requires a massive, global and interdisciplinary
research effort bridging science and industrial application. Although many, who are re-
sponsible for organizing the necessary efforts, see this need, we still lose resources, time
and good ideas by multiple adverse phenomena within science and its organisations. The
author postulates that efforts are needed to straighten these activities as failure to de-
liver scalable solutions in time can hamper the whole transformation process of energy
systems and thus discredit science in the broader society

In Germany a substantial reduction of GHG emission was observed with respect to
the base year of 1990. From fig. 6 we see that after the rapid de-industrialization of
the former East Germany, a steady decline of GHG emission occurred with a recent
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Fig. 7. – Relations between CO2 emission (normalized to the value of 1990) and the German
GDP (normalized to 1990) (black) and the contribution of the production sector to the GDP
(red).

possible inversion of the trend. This trend was extrapolated (dashed line) by politics
in formulating GHG saving a target for 2020. It is most likely that the target will not
be met despite of the “German Energiewende”. An analysis of the origin of the trend
and its sustainability is complicated, as multiple aspects of economic development are
interwoven with underlying technical improvements, changes in agriculture and land use
and a modulation by annual weather changes.

The trend in fig. 6 that would save us from many challenges if it were a reliable
property of our economic and societal system (fig. 3) is difficult to assess for its stability.
The uncertainty associated with relevant arguments shall be illustrated with fig. 7. One
frequent argument is that the trend shall arise as the consequence of a market economy to
be energy-efficient with the cost of energy being the driving force in the wanted direction.

If one plots the relation between the change in German GDP and CO2 emission one
indeed finds such an underlying trend. Seeing, however, the reality of modern production,
we recognize an ever increasing replacement of human labour by electrically actuated
instrumentation and control systems. So it is no surprise that the specific energy intensity
of the production sector of our national economy becomes more energy intensive and thus
emits more CO2. That this trend is not more pronounced may well be the consequence
of the energy-saving efforts in industry that is a clear trend. In most industries the cost
of energy is, however, a minor factor in comparison to other influences. This reduces the
steering function of the price of energy in most but the energy-intensive industries. What
we see as trend to apparent energy-efficiency on the national scale is mainly caused by the
ongoing transformation of our economy away from production (only less than 15% total
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Fig. 8. – Some economic data in the German energy system. (A) Expenditure for energy for the
whole production industry, for the energy-intensive chemical industry (multiplied by10) and for
the private households. (B) Breakdown of energy expenditure for key applications. (C) Share
of cost factors for one kWh of electricity in Berlin in 2014. Source for (A,B): ref. [4], for (C):
VATTENFALL.

value) to services and financial activities that generate contributions to GDP without
requiring much energy. We can formulate that the positive trend of fig. 6 in Germany
is to a substantial degree the effect of transferring energy-intensive activities to other
countries where the CO2 emission is growing. We are thus winners of globalization
in our positive regional CO2 emission balance and contribute limited own efforts to the
climate protection issue. This is clearly not sustainable and requires additional dedicated
contributions.

The debate about the energy transformation into a sustainable future in Germany has
turned away from climate change and reached a stage of particular emphasis on cost and
price of electrical energy. This hinders the view on the fact that energy supply of a society
is a system comprising societal, economic technical and resource subsystems [3]. It seems
evident that such a system should not be described and optimized by a sole economic
target function. Recent geopolitical events illustrate clearly that supply security and
economical-political dependencies are additional strong factors in controlling the energy
system. To rationalize the arguments in the present discussion we recall in fig. 8 some
economic data of the German energy system.

We see that the private households spend much more on energy than the produc-
ing industry with the ratio being roughly inverse of expenditures to the volume of end
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energies consumed. The chemical industry is a heavy user of energy and hence is strongly
affected by the evolution of energy prices. This industry together with few others is a
user of stoichiometric amounts of energy meaning that free energy is a constituent in
every molecule of their products. This is truly energy-intensive. We also can see that
the electricity bill is minor for private households in comparison to their expenditures
for heating and mobility. This sheds light on the systemic nature of the energy sys-
tem: as much as the generation of electricity is a main area of activity for the energy
transformation, as much the other sectors should obtain equal attention.

Figure 8(C) illustrates that the cost of electricity generation is only a minor factor
in the electricity bill of a private household. The cost of distribution is also substantial.
The implementation of the smart grid [5] designating a coupled power-data solution
exhibiting bidirectional distribution, metering and controlling functions will have still
unknown implications on amount and organization of private electricity consumption
and generation. Its existence is a pre-requisite for a structured use of renewable power.
We see further the dominant role of taxes and dues in determining the end user price of
electricity. This represents a critical intersection of the technical, economic and societal
subsystems of the national energy system explaining the intense public debate about
“the price”.

The energy system [6] may be described by a target function comprising three sets
of variables standing for availability, affordability and sustainability. The nature of a
target function requires that the sum of the three variables add up to unity with the
consequence that there is no possibility to optimize any of three variables independently
of the other two. This means in plain words that if we opt on high values for availability
and affordability then we have to compromise with sustainability. Conversely if we wish
to develop the system into high values of sustainability and keep our expectations on
availability, then affordability will become a challenge. The simplicity of this statement
vanishes quickly if we look into details of the definition of variables where we find multiple
interdependencies. It is in the end a societal decision as indicated in fig. 3 how to define
the target function.

Moreover, there is little agreement as to what values of the contributions to the target
function are desirable in different societies. The German quest for high sustainability
is not shared with many societies (not even in the European Union) struggling with
availability and others with affordability. Some nations have secured access to fossil or
nuclear energy resources whereas others have not and also the existing infrastructures are
grossly divergent. Without any intention to resolve these complex matters the following
discussion rests upon the German example. It is believed that many conclusions to be
reached are qualitatively generic for other energy systems and thus of general interest.

The energy transformation focuses on the electricity generation (see the last part of
ref. [3] and ref. [7]). This can be justified by the significant role [6] it plays in the green-
house gas emission. The overall limited conversion efficiency of about 40% represents a
lever in controlling CO2 emission. It is noted that radical modernization [8] of coal-fired
power stations with coupling to uses of low-temperature heat could half this lever. Even
more desirable would be flameless oxidation [9] with direct conversion into electricity.
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Fig. 9. – Temporal evolution of electricity generation and CO2 emission. (A) Sources of elec-
tricity and consumption of electricity in Germany. Note that the contribution from renewables
has crossed the contribution from nuclear power. (B) Sources of electricity in the U.S. Note the
different ordinates. Source for (A): ref. [4], for (B): ref. [10].

In fig. 9 we see the temporal evolution of the contribution of primary energy sources to
electricity generation in Germany and for comparison in the U.S. The differing trends
in figs. 9(A) and (B) underline the above statement about differing concepts of energy
system target functions. The differences in production volume contribute extensively to
the values in fig. 1.

The growth of the infrastructure for renewable energy generation in Germany
(fig. 9(A)) has left the energy system with two independent and parallel infrastructures
for electricity generation. These systems are also regulated under different concepts. The
renewable system carries no responsibility for the stability and continuity of the electric-
ity system (frequency and power), as it delivers with priority electricity independent of
local and temporal needs. The fossil system alone has to guarantee availability and sta-
bility. A consequence of the non-synchronized operation of the two electricity generation
systems can be the formation of feedback loops that counteract the intentional reduction
of greenhouse gas emission from electricity generation as illustrated in fig. 10.

We consider the power demand as given. Then more renewable power means less
conventional power and hence less CO2 emission as the intended effect. This is regulated
by the German EEG and we all pay a price (see fig. 8(C)) for this contribution to climate
protection. Simultaneously a chain of unintended effects indicated in fig. 10 is put into
operation. They act both on the technological level (efficiency of power stations at
variable load) and on the economic level (runtime effects and specific fuel consumption)
of the energy system and lead to emission of more CO2. In Germany the effects led to a
substantial increase in the use of lignite coal in old power stations instead to the intended
use of dynamical and modern gas-fired power stations. The balance between the factors
decreasing total CO2 emission and increasing it depends on many factors such as the
relative proportion of the renewable vs. conventional power with respect to the base load
of the grid. As we see from fig. 10 this balance is presently negative and so we pay more
for “green” electricity and simultaneously emit more CO2. This is strong evidence for
the neglect of the systemic nature of an energy system also in its non-sustainable form
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Fig. 10. – Schematic representation of some intended (red) and unintended (blue) effects of
the co-existence of a conventional and a renewable power generation system under different
regulatory schemes.

as the stakeholders are so interlaced in details that the overall function of the system
has come out of sight. This is no surprise if we consider the complexity of the situation
indicated with fig. 3 and the deliberate unwillingness of some stakeholders to recognize
the systemic character. A documentation of the evolution of this situation can be found
on the Internet under www.solarify.de.

A solution to these unwanted effects could be the gradual removal of the fossil elec-
tricity generation system [11] (“decarbonization”). This would also have beneficial con-
sequences on the economics of electricity generation, as the dual cost of infrastructure
would reduce and we would pay a smaller fuel bill. Unfortunately, such a scenario is not
realistic without the contribution of chemistry allowing for grid-scale long-term energy
storage in the chemical bonds of solar fuels if we maintain high the target function of
availability of electricity. Figure 11 shows schematically the annual time profile of the
power load and of the contributions from renewable sources now and in estimated 30
years from now.

The data are schematic, as many influences [12] affect the detailed shapes of the curves
without, however, changing their generic aspects. The intermittent nature [12, 13] of
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Fig. 11. – Annual load profile of energy system. The schematic representation may be repre-
sentative for the German system. Blue: power demand, red: contribution of renewable sources
(wind, PV, ratio about 4:1) today, green: after 4-fold expansion of the renewable infrastructure.

primary electricity from light and wind leads to a delivery curve inherently different from
the load profile. Highly undesirable are the steep maximum and the long tail structure.
This cannot be compensated even by massive expansion of the installed capacity. The tail
end deficit in renewable power requires the use of chemical fuels compensating the lack
of wind and light. This means that for the required work during the last ca. 10% of the
year we need to maintain much of the conventional electricity generation infrastructure.
The consequences of fig. 10 can thus not be fully avoided by phasing out the existing
power generation technologies.

We thus will always need material energy carriers in the form of chemical [14] fuels.
This is not only true for the electricity sector of the energy system here considered but
likewise and even more critical for the transportation sector [15] not considered here.
The fuels can be either fossil or solar [16]. With high expectations in availability, climate
protection and independence, the contribution of solar fuels will become more relevant
and in long time scales of possibly a century indispensable. The size of the supply gap
and the existence of the fossil energy infrastructure both request that solar fuels should
be compatible with present fossil fuels. This is a challenge for chemistry as several
long-studied issues of catalytic petro-chemistry (such as Fischer-Tropsch synthesis [17],
methanol chemistry [14, 18] and CO2 methanation [19]) need better solutions than we
have today.

The urgency of the integration of excess renewable electricity in the demand structure
of the existing electricity supply is illustrated with fig. 12. The accumulated contribution
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Fig. 12. – Electrical power generated in Germany during 3 days in April 2013. The light green
bar indicates the power requirement during this time. Note the enormous flexibility of the
conventional generation park required to accommodate the REN. Adapted from ref. [20].

of REN and conventional power generation at 3 time points (morning, noon and evening)
is indicated as produced power in relation to the demand given as range over the 3 days
shown. The enormous excess power from the solar-generating infrastructure can be seen.
It is to be noted that also for this unneeded power we have to pay the EEG fee.

The excess primary electricity shown in figs. 11 and 12 creates a challenge for the
distribution system and for the overall economics of the energy system if not adequately
treated. The steep initial spike in REN (fig. 11) should not be fully used in the long-
distance distribution system in order to avoid system capacity that is used only for a
minimal time during the year. The power may be given away for free locally on grounds
of its unpredictable availability or it should not be generated. The remaining excess over
the demand may be used by a combination of applications. The part of short temporal
availability could be used by applications that require minimal investment cost (thermal
applications e.g. in central heating plants and in installations for co-generation of heat
and power). Chemical energy storage is the adequate solution for the remaining more
frequently available surplus. Hydrogen from water electrolysis can be used in a solar
refinery to produce with CO2 chemicals for use in other sectors of the energy system
(power to chemicals [21], power to gas [13]). Due to its low overall efficiency, back-
generation to electricity is only a solution with lower short-term priority. The production
of chemicals has the dual function of saving CO2 emission in other parts of the system
and of consuming CO2 from preferably stationary sources. Some of these will have to
prevail for a long time [16] in order to fill the supply gap between demand and primary
electricity shown in fig. 11.

Chemical energy storage as indicated in fig. 5 is an essential part of an electrical
power system based largely on renewable generation. The required capacity for the
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storage part is a fraction of about 10–20% of the grid capacity depending on the efficiency
and cost of conversion electricity in chemical bonds. As long as sufficient fossil fuel is
available it will be economical and useful to convert electricity into higher value energy
carriers than electricity (transportation fuels [22], feedstock for chemical industry [23]).
This application allows for the development of the technologies and is expected to bring
down the specific cost of the conversion processes. This relatively small part of the
power system is important for the overall economics as it solves a substantial part of the
integration problem between supply and demand illustrated in fig 11. The time span for
this development may be estimated [14] to be about 20 years.

This long time to realization does not mean that we may slow down our activities in
chemical energy conversion research (see the first part of ref. [21] and ref. [24]). None
of the technology components needed for grid scale application in intermittent operation
are available [13] in any verified form. The key critical components are the generation of
chemical bonds from electrical energy. Water splitting and generation of solar hydrogen
most easily accomplish this. The challenges are the same if this is done directly by photo-
electro-catalysis or by electrolysis. Not issues of technical optimization but fundamental
challenges in the understanding of the elementary steps during water splitting [25] are
here the challenges.

It is then desirable to use hydrogen only for large-scale energy storage but not to bring
it into the hands of end users. Both power density arguments and the missing infrastruc-
ture as well as the need to develop novel combustion strategies with fuel cells (possible but
systemically unnecessary at present) request that at least for a first period in sustainable
energy supply the combustion devices that we know (IC motors, turbines, power stations)
should remain in use and we better transform the hydrogen with CO2 into carbon-based
solar fuels. We accept the loss in total energy efficiency and the complexity of the closed
CO2 cycle indicated in fig. 5 for the enormous simplification of integrating REN and
solar fuels into the multiple energy systems existing in the world now. One further must
not underestimate economic and societal resistances to massive large-scale infrastructural
changes and new uses of energy when one plans for a migration path of the energy system.

The dimension [12] of about 10% of the volumes shown in fig. 9(A) lets us expect that
decades are required to develop the existing approaches into proven technologies with
operational practice and reliable figures of merit. In order to generate the knowledge
required for chemical energy storage we formulate 5 lines of research [26] desires:

– Systems research is needed to understand the overall systemic boundary conditions
of the integration of renewable energy. As the boundary conditions in the 4 subsys-
tems (electricity, mobility, process heat, heating and cooling of houses) of a given
energy system change with time and there are several types of energy systems in the
world we have to expect continuous work on system analysis delivering parameters
for all subsystems (design parameters, resource estimates, regulatory conditions ac-
ceptance parameters). The results should help guiding the other research lines that
in turn provide input into the scenario definitions required. Effects as indicated in
figs. 10, 11, 12 must be avoided.
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– Energy storage systems of grid scale [13,27] need to be built as demonstrators using
the existing technologies with their deficits. With such projects being exposed to
influences of the whole energy system (intermittent operation, unexpected events)
it will be possible to identify critical needs in science, to get practical system oper-
ation experience including safety and reliability information and to collect econom-
ical information. Non-technical aspects of such path finding large-scale projects
(planning with society, financing) can be solved and the acceptance in the society
for these technologies should be sought.

– A test phase of operating these installations with transparent results will have to
follow. During this test phase essential improvements in materials, components
and in the energy system integration are expected to result from targeted research.
Some of these aspects such as the use of earth-abundant materials and the intermit-
tent operation cause challenges that need to be addressed at the earliest possible
time.

– Solutions for chemical energy conversion that emerged conceptually [19, 28] but
were not yet sufficiently developed to reveal their technological potential should be
moved forward to a demonstration scale of about 0.1 MW electrical energy equiv-
alent. This is still small for application but sufficiently large to discover many
hurdles [13, 14, 29] for implementation. Such scaled instruments will create many
new research challenges both in process and material sciences.

– Fundamental science is needed to support the grid-scale demonstrators and the
associated applied research. It will have to deal with a spectrum of topics [30]
including the mechanisms of key chemical reactions involved, chemical engineering,
material science and with operational aspects. These efforts need complementing
by searches for novel solutions of chemical energy storage [31] within boundary
conditions of integration and sustainability. In this way a portfolio of technology
options can emerge that we may need to meet the specifically different challenges of
energy systems. As example, the storage technologies in Germany [12] may be cen-
tral, large and complex whereas the same purpose can only be met with simple and
decentralized systems [32] in countries without a fully developed grid infrastructure.

Although these tasks require already the coordinated response of chemical science there
are additional research areas of high priority for the energy transformation. Among
them are processes and materials for increased energy efficiency. Besides revolutionary
projects such as flameless oxidation for power generation [9] (all types of fuel cells) the
wide area of material improvements [33] for incremental optimization of the generation
and utilization of energy are most relevant. This is well known [14,34], yet not well solved.
The management of the raw material change of the chemical industry [35] and material
requests from the building industry (cement, insulation) are as relevant as chemical
solutions for better batteries [36]. Effective exploitation of biomass [30, 37] and waste
resources hold complex challenges for designing reactions and processes. Chemistry has
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developed a large number of potential concepts also in the storage of surplus electricity
such as electro-reduction [38] or photo-electro-reduction [39] of CO2 for fuel generation
addressing these challenges. Their transformation into impacting technologies is difficult.
Fundamental aspects of chemical knowledge are missing precluding rational development
strategies for potential solutions found by synthetic intuition. Critical to this end is a
continuous exchange of information between science and economy orchestrated by politics
as advocated in fig. 3. This exchange includes also a constant debate about priorities
with an understanding of the different time scales required for different tasks

This enumeration is not simply a wish list for more resources in science (although pos-
sibly needed) but brings with it the request for prioritizing projects. The research topics
indicated are critical bottlenecks for integrating fossil and renewable energy streams.
Without solving these tasks and in particular learning the conversion of electrical energy
into chemical energy at large scales, the usefulness of REN remains limited and at a mere
conceptual level. Consequently, research into alternatives or optimization of electricity
generation with solar energy is still important but gets a lower priority as in the fore-
seeable future integration is more important for the energy system transformation than
optimization.

In conclusion, the now more clearly visible requirements for the desired transformation
of the energy systems towards more sustainability require from chemistry substantial
efforts. Solutions for chemical energy conversion are needed as fast as possible to gain
operational experience and to demonstrate the viability of the approach. The lack of
chemical energy storage now should, however, not be used as excuse for discontinuing
the implementation of primary electricity generation under suitable regulatory conditions
for all technologies of power generation. Chemistry has to fulfil further numerous tasks
in material development (see the last part of ref. [33] and ref. [40]), for energy efficiency
projects [14, 41] and in the design and implementation of novel concepts for solar fuels
independent from electrical power generation [42] (artificial leaf, see fig. 5). The function
of chemistry in the power-generating arena is seen, however, as vital for bringing forward
the whole energy system transformation that has already implemented irreversibly the
infrastructure of renewable power generation.

The true grand challenge of the energy system transformation initiated in some coun-
tries is not to locally optimize the system to sustainability as defined by climate protec-
tion. Then only a limited effect can be achieved as seen from fig. 1. In addition, the
economic and societal costs are enormous as incurred with the complex societal system
(see fig. 3) and will not lead to the intended climate effect. This can be presently studied
in the German energy system. The problem of energy supply lies much deeper. If the
world population grows in size and energy demand as presently, then there will not be
sufficient resource supply for all of us. Political instability and warfare will grow to get
access to the necessary resources. It is thus one of the most pressing challenges of science
and politics to provide a model of a migration path on how an existing society with its
economy (or even the global economy) can transform from a fossil into a post-fossil era.
This is critically necessary outside and beyond the climate protection issue and may be
considered as a protection measure for the whole mankind.
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Fig. 13. – Annual consumption of electrical energy in different countries in 2012. The numbers
indicate kWh per person. (Source BMWI 2014.)

Fig. 14. – Hypothetical CO2 emissions in an energy system where an average 7000 kWh/persona
is characteristic and the generation is done largely with a technology mix as today. Disclaimer:
This is not a scenario or a prediction!

Some numbers may illustrate this ultimate motivation for an engagement in energy
science and technology. If we consider the consumption of electricity per person in
different countries then we recognize enormous imbalances. This can be seen from fig. 13.

If we compare the numbers between India and the average values of the “first world”
(Europe) and consider the different numbers of people in these regions then we can see
the dynamics and also the stress on our global resources, independent from the change
in global CO2 emission. The following Gedankenexperiment should illustrate this. We
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extrapolate the CO2 emission data from fig. 1 into a hypothetical future in which we
define that the global electricity consumptions should not exceed 7000 kWh/a and person.
This would mean some savings in Europe, some massive reductions in USA, a moderate
increase in China and a massive increase in India. We omit here growth rates in Africa,
as no good numbers were available. The trend is estimated to be the same and the
consequences will even be more dramatic than under the strongly simplified assumptions
made. The hypothetical CO2 emission diagram like in fig. 1 would then look as shown
in fig. 14.

This diagram is no scenario or prediction but merely an illustration for the above
made points. It is extremely urgent, to begin with the evolution of the migration path
that helps China and India to cope with the energy system change. The energy sys-
tem change in Germany is irrelevant for global effects. Its only purpose can be to
generate role models and migration options in the working environment of a wealthy
economy. We have to illustrate that it is possible to generate a sustainable energy sys-
tem without ruining economic opportunities. We further should develop, implement and
export the necessary technologies to be used in generation, distribution and conversion
of sustainable energy systems. The local and personal “cosiness factor” in Germany,
the economic battles of our industries and our ideological debates we currently see on
extreme options for the energy system transformation are highly counterproductive to
any good intention, be it climate protection of preservation of peace and fruitful societal
development.
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[23] Peters M., Köhler B., Kuckshinrichs W., Leitner W., Markewitz P. and Müller

T. E., ChemSusChem, 4 (2011) 1216.
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