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The nonlinear growth of  m/n=1/1 internal kink modes is studied numerically using two-

fluid equations. As already reported earlier [S. Günter, et al,  Plasma Phys.  Control. Fusion,

2015, 57, 014017], short sawtooth crash times (<100ms) are found for typical ASDEX Upgrade

parameters,  in  agreement  with  experimental  observations.  These  fast  sawtooth  crashes  are

associated with large parallel electric field perturbations, giving rise to the generation of supra-

thermal electrons. Slow sawtooth crashes (~ms) are obtained only for a sufficiently small (1-q0)

and a large local electron diamagnetic drift frequency at the q=1 surface, where q0 is the value

of the safety factor  q at the magnetic axis. Kink modes are shown to drive sheared plasma

rotation,  propagating from  the  q=1 surface towards the magnetic axis during the nonlinear

phase.  After  the sawtooth crash,  the  driven plasma  rotation is  in the co-  (counter-) current

direction inside (outside) the q=1 surface, as observed in experiments. 
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1.  Introduction 

Sawteeth are one of the most typical instabilities in tokamak plasmas [1], as the plasma

current density profiles usually result in values of the safety factor q below one on the magnetic

axis. Sawteeth flatten the plasma pressure profiles inside the q=1 surface on a very short time

scale due to a fast growing m/n=1/1 magnetic island, caused by an internal kink mode [1-26],

where  m and  n are  the poloidal and toroidal  mode numbers, respectively.  Large amplitude

sawtooth crashes can influence the plasma confinement outside the q=1 surface by triggering

other instabilities such as neoclassical tearing modes [27,28]. For a fusion reactor the a-particle

confinement  in  the  core  region  could  also  be significantly  affected  by  sawteeth.  The

understanding of the physics processes during sawtooth crashes thus remains to be an important

issue. 

Since their first discovery [l],  sawtooth  instabilities have attracted much research interest

[2-26].  Using a Sweet-Parker  type analysis [29,30],  the  sawtooth crash time was found by

Kadomtsev to be about (tAtR)1/2, where tA is the Alfvén time, and tR is the resistive time [2]. The

ideal  m/n=1/1 mode can  also  be unstable, but it was shown to saturate  at a small amplitude

[26].  The  nonlinear  mode  growth  is  therefore  determined  by  magnetic  reconnection.

Experimental  measurements  in  high  temperature  tokamak plasmas  showed  sawtooth  crash

times of about  100 ms or shorter  [3-5], much less than that predicted by Kadomtsev. Wesson

suggested that the reconnection would become much faster for high temperature plasmas when

taking into account the electron inertia effect [6]. Further studies have also been carried out to

include other effects such as anomalous current diffusion [7-l0], finite Larmor radius [12, 14-

16] and the parallel electron viscosity [17] to understand the fast growth of the m/n=1/1 island.

Alternatively, the nonlinear evolution of the internal kink mode has been treated as a sequence

of equilibria [11-14]. 
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In  this  paper  numerical  modelling  results  of  sawtooth  crashes,  based  on  two-fluid

equations,  are presented.  As already shown in [31],  fast sawtooth crashes,  with crash times

being about  100ms,  are  found for  typical  ASDEX Upgrade  parameters,  in  agreement  with

experimental observations. For such fast reconnection events, strong parallel electric fields are

induced in the x-point region of the magnetic island, giving rise to the generation of super-

thermal electrons.  Furthermore, sheared plasma flows are found to be driven by the internal

kink mode.

In  Section  2  our  theoretical  model  is  described.  The  numerical  results  obtained  with

ASDEX  Upgrade  relevant  parameters  as  input are  presented  in  Section  3.  Finally,  the

discussion and summary are presented in Section 4. 

2.  Theoretical model

The large aspect-ratio tokamak approximation is utilized.  The magnetic field is defined

as  B=B0t(et-eqkt/kq)+Ñy´et, where  y is the helical flux function,  kq=m/r and  kt=n/R are the

wave vector in eq (poloidal) and et (toroidal) direction, r and R are the minor and the major

radius, and the subscript 0 denotes an equilibrium quantity.  The ion velocity is given by v=v||

e||+v^,  where v|| and v^=Ñf´et are the parallel (to the magnetic field) and the perpendicular

velocity, respectively, and f is the stream function.

The electron continuity equation, generalized Ohm's law, the equation of motion in the

parallel  and  the  perpendicular  direction  (after  taking  the  operator  et×Ñ´),  and  the  electron

energy transport equation, are solved, to obtain y, v||, v^, the electron density ne and temperature

Te. Normalizing the length to the minor radius a, the time t to tR, y to aB0t, v to a/tR, and Te and

ne to their values at the magnetic axis, where a is the minor radius, and tR=a2/h is the resistive

time, these equations become [32-34] 
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where 

d/dt = ¶/¶t + v^×Ñ,  (6)

j = -Ñ^
2y - 2nB0t/mR (7)

is the plasma current density along the et direction, 

U=-Ñ^
2f (8)

is  the  plasma  vorticity,  m the  ion  viscosity,  c the  heat  conductivity,  and  D the  particle

diffusivity.  P=Pe=neTe, and the subscripts || and ^ denote the parallel and the perpendicular

components,  respectively.  Sn and  Sp are the particle and heat  source.  E0 is the equilibrium

electric field for maintaining the original equilibrium plasma current density. The parameters

in Equation (1)-(5) are given by  d1=wce/nei, W=bed1,  Cs=[Te/mi]
1/2/(a/tR), and  S=tR/tA, where

be=4pneTe/B0t
2, wce is the electron cyclotron frequency, me the electron perpendicular viscosity,

uei the electron-ion collisional frequency, tA=a/VA the Alfvén time, and VA is defined using the

toroidal field. Cold ions are assumed.

Equations (1)-(8) are the same  as those  used in  Reference [32-34],  but  the electron

inertia and the perpendicular viscosity have been additionally included into Ohm�s law, the 3rd

and 4th terms on the right hand of equation (2).
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3.  Numerical results

3.1 Fast sawtooth crash

The following simulations are based on typical ASDEX Upgrade experimental parameters,

except mentioned elsewhere. The toroidal magnetic field is B0t=2T, the plasma minor and major

radius  are  a=0.5m and  R=1.7m,  respectively.  At  the  q=1 resonant  surface  the  electron

temperature  is  Te=2keV,  and  the  electron  density  ne=3×1019m-3.  These  parameters  lead  to

S=2.65×108,  W=9.43×104,  Cs=2.05×107(a/tR),  d1=3.12×107,  c||=1.5×1010(a2/tR), and

nei=2.2×104/s.  Assuming  the  perpendicular  electron  thermal  heat  diffusivity  and  the  ion

viscosity to be at an anomalous transport level,  e.g.,  0.2m2/s, one finds  c^=m=18.8(a2/tR) in

normalized units.  Furthermore,  me/nei =10-4a2 and D^=m/5 are  taken. Only a single helicity,

m/n=1/1, is  considered. A monotonic profile for the safety factor  q is assumed with q0=0.91

and rq=1= 0.3a, where q0 is the safety factor at the magnetic axis, and rq=1 the minor radius of

the  q=1 surface. The initial equilibrium electron density is assumed to be constant along the

minor radius, and the equilibrium electron temperature profile is assumed to be   

 Te= Te0 [1-(r/a)2] k (9)

where k is an input parameter to define the original equilibrium electron temperature profile.

Figure 1 shows  the contours of constant  helical  flux,  y, at different times,  t=8760 (a),

8851 (b),  8956 (c),  and  9294tA (d)  for k=2.  A growing  m/n=1/1 magnetic  island  is  seen,

accompanied by a shrinking of the original core. The plasma core becomes elliptic later during

the nonlinear phase. At t=9294tA (d), the original core disappears. 

At  t=8851tA corresponding to figure 1(b), the contours of constant electron temperature

and stream function f are shown in figure 2 (a) and (b). The electron temperature is normalized

to the original electron temperature at r=0, and the stream function is normalized to a2/tR. At a
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later  time,  t=8956tA,  corresponding  to figure 1  (c), the  contours  of  constant  electron

temperature and stream function are shown in figure 2 (c) and (d). The electron temperature

contours are similar to that of the helical flux shown in figure 1, indicating the fast parallel heat

transport,  but  the  radial  gradient  of  the  electron  temperature  near  the  island's  x-point

significantly increases,  reaching a value  more than 10 times larger compared to the original

one. Strong vortex flow is built up inside the q=1 surface.

The time evolution of the helical flux at the x- and the o-point of the island as well as at the

original magnetic axis are shown in figure 3. The helical flux at the island�s o-point and at the

axis change little, as expected. The helical flux at the x-point varies from that at the island�s o-

point to that at the axis, indicating full magnetic reconnection. The reconnection process takes a

time period less than  100ms (1tA =8.7×10-8 s) when neglecting the small  flux  change in the

early phase when the island is still small. The corresponding time evolution of the radial island

width and the radial displacement  of the original magnetic axis are shown in  figure 4.  The

island width is about two times the radial core displacement, but it is larger than two times of

the minor radius of the original  q=1 surface before the core disappears.  The change of the

central plasma current density profile during sawtooth crash causes a slightly outward shift of

the q=1 surface as shown in figure 6. 

Figure 5 presents the radial profiles of the m/n=0/0 component of the electron temperature

at different times, showing the flattening of the electron temperature in the central region in a

short time period, in agreement with ASDEX Upgrade experimental results [19]. The electron

temperature  profile  becomes  hollow at  t=9133tA due  to  the  radial  hot  core  displacement

towards the q=1 surface, as seen from figure 2 (c). The local radial profiles of q0/0, the averaged

safety  factor calculated by using only the  m/n=0/0 component poloidal  field,  are  shown in

figure 6  at different times. The flattening of the plasma current density in the central region

leads to the outwards shift of the q0/0=1 surface.  It should be mentioned that q0/0 is of course
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not the real safety factor in the island region.

Similar to the single fluid case [35], secondary islands are often seen as well in two-fluid

simulations  for  sufficiently  high values  of  S and  low values  of  the  perpendicular  electron

viscosity  me. The formation of the secondary islands are due to the thin current layer formed

during  the  nonlinear  phase,  which  becomes  tearing  unstable  and  breaks  up  [31,35-39].

However, secondary islands do not significantly affect the sawtooth crash time. 

The amplitudes of high harmonic perturbations are usually found to be comparable to that

of the 1/1 component during the crash, as seen in experiments [19,20]. Fig. 7 shows the radial

profiles of the normalized (to  aB0t) flux functions y1/1,  y2/2,  y3/3 and y4/4 for the simulation of

figure 3 at the time t=8919tA. The solid (dashed) curves represent the real (imaginary) part. The

amplitude of the 2/2 component is about half of that of the 1/1 component. 

3.2 Sheared plasma rotation and parallel electric field induced by sawtooth crashes

The  internal  kink  mode  always  generated  an  m/n=0/0 sheared  plasma  rotation  in  our

simulations.  This can be explained  by the  difference  between  the mode frequency and the

electron fluid frequency,  as shown in figure 8, where the linear mode growth rate and mode

frequency are shown as a function of the local equilibrium electron diamagnetic drift frequency

w*e0 (normalized to tR) at the q=1 surface, obtained for Cs=me=0 and zero electron inertia. The

mode becomes stable for a sufficiently large value of w*e0, indicating the stabilizing effect of

the electron diamagnetic drift. The radial profiles of the radial ion velocity perturbation in the

linear  phase  is  shown  in  figure  9  for  w*e0 =5.0×104/tR  (W =104,  linearly  unstable)  and

7.0×105/tR (W =1.4×105, linearly stable). The mode structure is similar to that of the resistive

internal kink mode for a small w*e0  but to that of the drift-tearing mode for a sufficiently large

w*e0 [32]. The singular layer width is larger for a larger w*e0. It is also seen from figure 8 that
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the mode frequency does not linearly  increase with  w*e0.  The difference between the mode

frequency and w*e0 leads to a plasma current density perturbation being out of phase with y. It

thus results in an m/n=0/0 component of an electromagnetic torque r�j×B, localized around the

q=1 surface and driving a sheared rotation. Such a mechanism is similar to the case of the

effect  of  resonant  magnetic  perturbations  on  tearing modes  [40].  The radial  profile  of  the

m/n=0/0 component  of the poloidal  electromagnetic  torque in  the linear  phase is  shown  in

figure 10  for  w*e0 =5.0×104tR (W =104).  When integrating over the plasma volume, both the

total torque and the total plasma angular momentum vanish, since there is no momentum source

in these calculations.

In the nonlinear phase,  both the q-profile and the electron pressure profile  significantly

change,  leading  to  a  change  of  the  electromagnetic  force  and  thus  of  the  sheared  plasma

rotation. The radial profiles of the m/n=0/0 component of poloidal plasma rotation velocity at

different times are shown in figure 11. The driven plasma rotation is in the counter (co-) current

direction  inside  (outside)  the  q=1 surface  in  the  linear  phase,  and  propagates  towards  the

magnetic axis during the nonlinear phase. After the sawtooth crash, the driven plasma rotation

is in the co- (counter-) current direction inside (outside) the  q=1 surface, in agreement with

TCV experimental observations [41,42] (The equilibrium plasma current density is in negative

direction in our calculations). The amplitude of the rotation velocity reaches the level of the

electron diamagnetic drift velocity.

During  the  sawtooth  crash,  strong  parallel  electric  fields  are  induced  at  the  x-point.

Contours of the negative parallel electric field,  �E�=dy/dt (in the unit  aB0t/tR), are shown at

different  times,  t=8760 (a),  8813 (b),  8851 (c),  and  8956tA (d)  in  figure 12.  The original

equilibrium electric field is  -0.55 (aB0t/tR).  The parallel electric field is increased during the

sawtooth crash compared to the equilibrium field by about  1000 times in the island's x-point

region. The maximum electron velocity produced by the reconnection can be computed by
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neglecting collisions and relativistic effects. From the equation of motion for a single electron,

y
dt

d
eeEv

dt

d
me =-= ||f , (10)

one finds by integration that  

( )rec
e

f m

e
v yD= (11)

if neglecting the initial electron speed (vf is the parallel electron speed, e is the electron electric

charge,  and  me is the electron mass).  Using the reconnected flux  (Dy)rec=0.0006(aBt) from

figure  3  and  the  input  parameters  mentioned  before,  a=0.5  m and  B0t=2.0 T,  an  electron

velocity of  vf =1.05×108 m/s is found, corresponding to an electron energy of 31.6 keV and a

collision time of 1.3 ms. This indicates that supra-thermal electrons can be generated during the

sawtooth crash in existing tokamak plasmas as observed in experiments [43,44]. It should be

kept  in  mind, however,  that  the above estimation only gives an upper  limit,  and a kinetic

treatment is  required to  accurately calculate  the induced super-thermal  electron energy and

distribution in such a process. 

For a full reconnection the reconnected flux is approximately given by [6]

(Dy)rec » (1-q0) Bps rq=1 /4 = (1-q0) B0t (rq=1)2/(4R), (12)

where Bps is the poloidal field at the q=1 surface. A q-profile with a smaller value of the safety

factor at the magnetic axis,  q0=0.71, (but keeping rq=1= 0.3a) would result in  (Dy)rec=0.0026

(aBt) and an order of magnitude increased electron energy. For such a case, contours of the

helical flux (a and c) and of the (negative) parallel electric field (b and d) are shown at two

different times in figure 13.

As  the generated fast  electron energy is  proportional  to  the square of  (Dy)rec and thus

scales with (aB0t)2, relativistic runaway electrons could readily be generated during sawtooth

crashes in ITER or a fusion reactor, serving as seed for an avalanche in case of a subsequent

disruption.
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3.3 Effect of plasma parameters on sawtooth crash

Parameters  scans  have  been  carried  out  in  order  to  investigate  their  influence  on  the

sawtooth crash time. For sufficiently high S values the crash time is  no longer affected by

changes in S as expected for collisionless reconnection. Decreasing the value of S by one order

of  magnitude  to  S=2.65×107 essentially  showed  the  same  results.   For  vanishing  electron

viscosity but finite electron inertia, the calculated sawtooth crash time and the plasma current

layer width are very similar to the case for me/nei =10-4a2. Electron viscosity matters if electron

inertia is neglected. In that case, the crash time increases for vanishing electron viscosity, and

plasmoids appear for low electron viscosity. These findings suggest that the electron inertia and

the  parallel  electron  pressure  gradient  terms  in  the  generalized  Ohm's  law  are  the  most

important  terms  in  determining  the sawtooth crash  time.  Furthermore,  a  simple  estimation

demonstrates that the electron inertia term dominates over the electron viscosity  in the non-

linear phase: Using j'~j/d, j"=j/d2 with the radial current layer width d=0.0025a and the radial

velocity  vr (=1.5×105 a/tR)  obtained  from  our  numerical  results,  and  me/nei =10-4a2,  the

amplitude of the electron inertia term in the generalized Ohm�s law is estimated to be about 10

times larger than the viscosity term in the nonlinear phase. The effects of the parallel electron

pressure gradient can be divided into two contributions: one is the so-called finite rs effect, and

the other is the electron diamagnetic drift due to the radial electron pressure gradient, where rs

is the ion Larmor radius defined with the electron temperature. The island growth is found to be

faster for larger values of rs, while a large electron diamagnetic drift is stabilizing, as shown in

figure 8 and in Ref. [31].

Using the same q-profile as before, but a steeper temperature profile (larger  k value and

thus larger electron diamagnetic drift),  the time evolution of the electron temperature at the

minor radius both inside and outside the  q=1 surface is shown  in figure 14  for  k=3 and  8.
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When the island width is still small, the island growth is much faster for a smaller value of k

(or w*e0) due to a weaker stabilizing effect of the diamagnetic drift. However, a fast decrease in

the electron temperature is found for both cases once the island width is sufficiently large. This

can be explained by the flattening of the electron temperature profile inside a large island due

to the fast parallel heat transport, such that the stabilizing effect of the electron diamagnetic

drift decreases with increasing island width.  

Using a different q-profile with a larger q0 (q0=0.95) and rq=1=0.21a, the time evolution of

the electron temperature both inside and outside the  q=1 surface is  shown in figure 15 for

Te=300, 500 and 2000 eV. The mode growth is much faster in the linear phase for a lower Te.

Once the electron temperature begins to change, however, it decreases faster for Te=2 keV than

in case of Te=300 and 500 eV, indicating that the finite rs effect dominates the sawtooth crash

time for Te=2000 eV (rs=0.0092a).

Slow sawtooth  crashes are found only for  a  sufficiently small  (1-q0) and a large local

electron diamagnetic drift frequency at the q=1 surface. Figure 16 shows the time evolution of

the electron temperature both inside and outside the q=1 surface for q0=0.95 and rq=1=0.21a. In

this case,  a much longer crash time, ~  104tA ~10-3s , is found for  k =4 and  6. In the hybrid

operational  mode with small  (1-q0) and a weak magnetic  shear  in the central  region, slow

sawtooth  crashes  [45]  or  even  continuous  1/1 mode  activity  [46]  have  been  observed  in

experiments. The dependence on (1-q0) indicates the role of the local magnetic shear around the

q=1 surface as found in analytic theory [e.g. 14].  For small values of (1-q0), it approximately

equals the local shear  rq'/q at the q=1 surface.  Comparing the results shown in figures 14 and

16, the critical island width, above which the electron temperature rapidly decreases, is found to

be larger for a smaller magnetic shear. This is consistent with the  fact that  the parallel heat

transport is slower  for smaller  island width and magnetic  shear  [e.g.  47,  48],  such that  the

diamagnetic drift has a stabilizing effect up to a larger island width. 
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4. Discussion and summary

Using  the  large aspect  ratio  approximation and  realistic  input  parameters for  ASDEX-

Upgrade, extensive calculations have been carried out in order to investigate the sawtooth crash

time as well as the physics involved.  Our physics model includes all the relevant  two-fluid

effects,  such as the  electron pressure gradient, electron inertia and perpendicular viscosity in

Ohm's law as well as the parallel and perpendicular electron particle and energy transport. We

were able to reproduce important experimental observations, such as the fast  sawtooth crash

and the resulting mean shear flow. However, we have not found partial reconnection yet. In

Ref. [25] it was reported that partial reconnection might occur for a sufficiently large electron

pressure  and  diamagnetic  drift  frequency,  but  it  was  mentioned  that  the  input  parameters

utilized there are not realistic for tokamak plasmas [25]. 

The large parallel electric  fields associated  with the fast  reconnection events might  be

sufficient  to  generate  supra-thermal  electrons  in  medium size  tokamaks  or  even  runaway

electrons in ITER.  It  should be noticed, however,  that  the possible  kinetic effect for such

super-thermal electrons have not been included in our calculations.  

In summary, the growth of m/n=1/1 magnetic islands is studied using two-fluid equations.

It is found that:

(1) For typical ASDEX Upgrade parameters, the sawtooth crash time is about 100ms or shorter,

in agreement with experimental observations and earlier numerical results [31]. The amplitudes

of higher harmonics are quite large, in particular the m/n=2/2 component helical flux becomes

about half of that of the 1/1 component during the crash. 

(2)  Slow sawtooth crashes were found only  for a sufficiently small value of  (1-q0) and large

local electron diamagnetic drift frequencies.

(3) Sheared plasma rotation is driven by the internal kink mode, propagating from the original
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q=1 surface towards the magnetic axis during the nonlinear phase. After the sawtooth crash, the

driven plasma rotation is in the co- (counter-) current direction inside (outside) the q=1 surface,

in agreement with experiments. 

(4) The parallel electric field is increased by three to four orders of magnitude in the island�s x-

point region during the sawtooth crash, possibly generating super-thermal electrons during the

crash in existing tokamaks and runaway electrons in a fusion reactor.
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CAPTION

Figure 1 Constant-y contours in the R-Z plane at t=8760 (a), 8851 (b), 8956 (c), and 9294tA

(d) for k=2, where R=0 corresponds to the major radius of the original magnetic axis, and Z is

pointing  along  the  vertical  direction,  being  normalized  to  the  plasma  minor  radius  a.  At

t=9294tA (d), the original core disappears. 

Figure 2 For the time t=8851tA of figure 1 (b), the contours of constant electron temperature

and stream function are shown in  (a) and (b). At  t=8956tA of figure 1 (c), the contours of

constant  electron temperature  and  stream function  are  shown  in  (c)  and (d).  The electron

temperature contours are similar to  that of the helical flux,  indicating the fast  parallel  heat

transport. Strong vortex flow is built up inside the q=1 surface.

Figure 3 Time evolution of the normalized (to aB0t) helical flux at the x- and o-points of the

island and at the original  magnetic  axis.  The helical  flux at  the island�s o-point  and at the

original magnetic axis changes little, while the helical flux at the x-point varies from that at the

island�s o-point to that at the original magnetic axis, indicating a full magnetic reconnection,

which takes a time period of less than 100ms (1tA =8.7×10-8 s). 

Figure 4 Time evolution of the radial island width and the radial displacement of the original

magnetic axis for the same simulation as shown in Fig. 3. The island width is about two times

of the radial core displacement, but it is larger than two time of the minor radius of the original

q=1 surface at the end of sawtooth crash.

Figure 5 Radial profiles of the  m/n=0/0 component of the electron temperature at various

times for the simulation of Fig. 3. The profiles flatten during a short time period. 

Figure 6 Local radial profiles of  q0/0 at various times (corresponding to simulations of Fig.

3), where  q0/0 is the  averaged safety factor calculated by using only the  m/n=0/0 component

poloidal field. The flattening of the plasma current density profile in the central region leads to
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the outwards shift of the q0/0=1 surface in the nonlinear phase.

Figure 7 Local radial profiles of the normalized (to aB0t) perturbed fluxes y1/1, y2/2, y3/3 and

y4/4 for t=8919tA of Fig. 3. The solid (dashed) curves correspond to the real (imaginary) part. 

Figure 8 Linear mode growth rate and mode frequency as a function of the normalized local

electron diamagnetic drift frequency w*e0tR at the q=1 surface, obtained for Cs=me=0 and zero

electron inertia. The mode becomes stable for a sufficiently large w*e0, indicating the stabilizing

effect of the diamagnetic drift. Note that the mode frequency is not linearly proportional to w*e0.

Figure 9 Radial profiles of the radial ion velocity perturbation during the linear phase for

w*e0 =5.0×104tR (W =104, linear unstable) and 7.0*105tR (W =1.4×105, linear stable). The solid

(dashed) curves correspond to the real (imaginary) part. The mode structure is similar to that of

the resistive  internal  kink  mode  for  a  small w*e0  but  to  that  of  a  drift-tearing mode  for  a

sufficiently large w*e0. The singular layer width is larger for a larger value of w*e0. 

Figure 10 Radial profile of the  m/n=0/0 component of  electromagnetic torque in the linear

phase for w*e0 =5.0×104tR (W =104). The total torque, obtained by integrating over the plasma

volume, vanishes as no momentum input is provided.

Figure 11 Radial profiles of the m/n=0/0 component of the poloidal plasma rotation velocity

Vp for various times in the simulation of figure 3. The driven plasma rotation is in the counter

(co-)  current  direction  inside  (outside)  the  q=1 surface in  the  linear  phase  and  propagates

towards the magnetic axis during the nonlinear phase.  After  the sawtooth crash,  the  driven

plasma rotation is in the co- (counter-) current direction inside (outside) the q=1 surface.

Figure 12 Contours of the negative parallel electric field,  �E�=dy/dt (in the unit  aB0t/tR), at

t=8760  (a),  8813  (b),  8851  (c),  and  8956tA (d), corresponding  to  figure  3.  The  original

equilibrium electric field is -0.55 (aB0t/tR). The parallel electric field is increased by about 1000

times in the island�s x-point region during the sawtooth crash. 
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Figure 13 Contours of the helical flux (a and c) and the negative parallel electric field (b and

d) are shown at two different time during the mode growth for q0=0.71 and rq=1  = 0.3a.  The

original equilibrium electric field is  -0.55 (aB0t/tR). The parallel electric field is increased by

four orders of magnitude in the island�s x-point region during the sawtooth crash. 

Figure 14 Time evolution of the m/n=0/0 component electron temperature at  minor  radius

inside and outside the  q=1 surface  for k=3 and  8, using the same q-profile as for figure 3.

When the island width is small, the island growth is much faster for a smaller value of k (or

w*e0). Fast electron temperature decrease is found however for both cases when the island width

is sufficiently large. 

Figure 15 Time evolution of the m/n=0/0 component electron temperature at  minor  radius

inside and outside the q=1 surface for Te=300, 500, and 2000 keV, obtained with q0=0.95 and

rq=1=0.21a. The electron temperature decreases faster for  Te=2 keV than for Te=300 and 500

eV, once the electron temperature begins to change.

Figure 16 Time evolution of the m/n=0/0 component electron temperature at  minor  radius

inside and outside the q=1 surface for  k =4 and 6, obtained with q0=0.95 and rq=1=0.21a.  In

this case the crash time is much longer. 
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