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We investigate the influence of the appearance of excitonic states on van der Waals interactions
among two Rydberg atoms. The atoms are assumed to be in different Rydberg states, e.g., in the
|ns〉 and |np〉 states. The resonant dipole-dipole interactions yield symmetric and antisymmetric
excitons, with energy splitting that give rise to new resonances as the atoms approach each other.
Only far from these resonances the van der Waals coefficients, Csp

6 , can be defined. We calculate
the C6 coefficients for alkali atoms and present the results for lithium by applying perturbation
theory. At short interatomic distances of several µm, we show that the widely used simple model
of two-level systems for excitons in Rydberg atoms breaks down, and the correct representation
implies multi-level atoms. Even though, at larger distances one can keep the two-level systems but
in including van der Waals interactions among the atoms.

PACS numbers: 32.80.Ee, 37.10.Jk, 71.35.-y

I. INTRODUCTION

Rydberg atoms, i.e. atoms with large principal quan-
tum numbers n ≫ 1, have been the subject of exten-
sive research due to their unique optical and electrical
features [1]. They are an ideal platform for the study
of a wide range of quantum phenomena, mainly since
their properties scale strongly with n, and often turn-
ing them extraordinary relative to those of ground-state
atoms. The property which has stimulated the most re-
cent experimental and theoretical work is strong interac-
tions among Rydberg atoms that are separated by rela-
tively large distances of several µm [2–7].

On the other hand, electronic excitations can be de-
localized among distant atoms through resonant dipole-
dipole interactions to form collective electronic excita-
tions that are termed excitons [8, 9]. Different processes
of resonant energy transfer are possible [10], here we con-
centrate on the exchange type, e.g. ns + np ↔ np + ns.
Excitons have been introduced to a system of ultracold
atoms in an optical lattice with lowest excited states
where van der Waals interactions are negligible [11, 12].
The formation of excitons in a cluster of Rydberg atoms
has been investigated, but van der Waals forces were
completely neglected and the discussion limited to two-
level atoms [13–15]. In previous work we investigated
the influence of van der Waals interactions on the for-
mation of excitons in an aggregate of two-level Rydberg
atoms [16]. Coherent energy transfer among Rydberg
atoms that induces by resonant dipole-dipole interaction
has been realized experimentally at large interatomic dis-
tances of tenths µm where van der Waals forces are neg-
ligible [17, 18].

An excitonic state contains at least two different

∗Electronic address: hashem.zoubi@aei.mpg.de

atomic states. The simplest case is of two atoms in which
one in the |ns〉 state and the other in the |np〉 state.
The discussion can be limited to dipole-dipole interac-
tions, where dipole-quadrupole, quadrupole-quadrupole
and higher order interactions are neglected. Approximate
long-range potentials can be derived by applying pertur-
bation theory up to the second order in the dipole-dipole
interactions. The lowest order term of the perturbation
series results in resonant dipole-dipole interaction of the
form Csp

3 /R3, where R is the interatomic distance with
the resonant dipole-dipole coefficient Csp

3 . This interac-
tion leads to a coherent mixing of the two possible states,
which are |ns, np〉 and |np, ns〉. The second order term
is of the van der Waals type of the form Csp

6 /R6, with
the van der Waals coefficient Csp

6 . As was shown in our
previous work [16], van der Waals interactions result in
energy shifts that significantly influence the formation of
excitons when atoms approach each other. Higher order
terms play significant roles and can change completely
the long-range interaction potentials [19, 20]. Further-
more, the appearance of resonances breaks down the va-
lidity of the perturbative calculation and then other tech-
niques are required, e.g. in using direct Hamiltonian di-
agonalization [21]. Moreover, non-adiabatic interactions
between Rydberg atoms in different electronic surfaces
can be important [22].

Long-range van der Waals interactions among pairs
of Rydberg atoms have been intensively investigated,
mainly using a perturbative approach [23–25]. The dis-
persion coefficients of the type Css

6 , Cpp
6 and Cdd

6 , are cal-
culated and listed for homonuclear dimers of alkali metal
atoms in the ns− ns, np− np and nd− nd states, where
both atoms are in the same state. These coefficients are
of importance for experimental and theoretical applica-
tions in strongly interacting Rydberg gases, especially
for the current cold and ultracold Rydberg atom exper-
iments, e.g., in the implementation of dipole blockade
phenomena for quantum information processing [2, 3, 26].
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But coefficients of the mixed type in which atoms are in
different electronic states, e.g., Csp

6 , are not much em-
phasized, while they are of importance for processes that
involve resonant energy transfer [16].
In the present paper we study the influence of the for-

mation of excitons on van der Waals interactions among
Rydberg atoms. We check the validity of using the simple
model of two-level systems to describe excitons in inter-
acting Rydberg atoms. We start by developing simple
models using three and four atomic levels that provide
a qualitative understanding of the different interactions
among Rydberg atoms. In treating ns− ns and np− np
Rydberg atoms we extract the limit in which atom-atom
interactions have the forms Css

6 /R
6 and Cpp

6 /R6. For the
case of ns − np Rydberg atoms we derive the condition
in which the interactions can be described by Csp

3 /R3

and Csp
6 /R6 terms. Afterwards, we exploit perturbation

theory in order to get quantitative values for all C3 and
C6 coefficients by summing over all the allowed atomic
states. We treat Rydberg alkali metal atoms, and as an
example we present the values for lithium atoms.
We emphasize here van der Waals interactions of the

mixed type with coefficient Csp
6 , and examine the effect

of resonant dipole-dipole transfer on van der Waals in-
teractions. The point is that as the two states |ns, np〉
and |np, ns〉 are degenerate, perturbation theory implies
the removal of these degeneracy. But the states are cou-
pled by resonant dipole-dipole interactions and the di-
agonalization mixes and splits them to yield symmetric
and antisymmetric orthogonal states. Then we use these
orthogonal states as the zero order eigenstates in the per-
turbative calculation of the van der Waals interactions.
We found that as the symmetric-antisymmetric splitting
energy is R-dependent new resonances appear as the in-
teratomic distance decreases.
The paper is organized as follows. In section 2 we

present a qualitative study of van der Waals interactions
among two Rydberg atoms using multi-level simple mod-
els. Quantitative derivations of van der Waals interac-
tions appear in section 3 using perturbation theory. Sec-
tion 4 contains calculations of van der Waals coefficients
for alkali Rydberg atoms, and the results are presented
for lithium atoms in section 5. A summary is given in
section 6. The appendix includes the angular parts of the
dipole moment matrix elements.

II. RYDBERG ATOM INTERACTIONS: SIMPLE

MODELS

We start by treating Rydberg atoms using models of
two, three and four-level systems. The derivations pro-
vide a qualitative understanding of the type of interac-
tions that can appear among Rydberg atoms and pave
the way towards the quantitative treatment presented in
the next section. We examine the validity of using two-
level systems for describing excitons in Rydberg atoms.
The model of two-level systems is widely used to describe

Frenkel excitons in organic solids involving lowest ex-
cited states where van der Waals interactions result in
small energy shifts [8, 9]. But for Rydberg atoms van
der Waals forces are significant and the appearance of
resonances is probable. Hence we examine the validity of
using the simple model of two-level systems for Rydberg
atoms. Our objective in this section is to extend the sim-
ple model into multi-level systems, which are necessary in
order to exploit the appearance of resonances. We show
that far from resonances one can keep the simple model
but in including energy shifts due to van der Waals in-
teractions, which implies quantitative calculations of the
van der Waals coefficients that we calculate in the next
section using perturbation theory.

A. Two atoms in the same Rydberg state

Let us assume the two atoms to be in the same internal
atomic level, say in the (nl) state. The two-atom state is
|π〉 = |nl, nl〉 of energy Ei = 2Enl. We assume a single
channel to be close to resonance with this state. Namely,
we consider a process of the transfer type nl + nl ↔
n′l′ + n′′l′′. We have two possible degenerate final states
|ρ1〉 = |n′l′, n′′l′′〉 and |ρ2〉 = |n′′l′′, n′l′〉, with the energy
Ef = En′l′ +En′′l′′ . The states have the energy detuning
∆ = Ef − Ei = En′l′ + En′′l′′ − 2Enl. We assume here
coupling among the |π〉 state and each one of the |ρ1〉
and |ρ2〉 states, with the coupling parameter J , which we
specify later. We neglect coupling among the |ρ1〉 and
|ρ2〉 states. The Hamiltonian that is restricted to the
states defined above can be written as

H = Ei |π〉〈π| + Ef (|ρ1〉〈ρ1|+ |ρ2〉〈ρ2|)
+ J (|π〉〈ρ1|+ |π〉〈ρ2|+ |ρ1〉〈π| + |ρ2〉〈π|) . (1)

In matrix elements we have

H = Ei1̂+





0 J J
J ∆ 0
J 0 ∆



 . (2)

We diagonalize the matrix to get the characteristic equa-
tion (λ − ∆)

(

λ2 − λ∆− 2J2
)

= 0, with the three solu-
tions

λ1 =
∆

2
−1

2

√

∆2 + 8J2, λ2 =
∆

2
+
1

2

√

∆2 + 8J2, λ3 = ∆.

(3)
In the far off-resonant limit, that is ∆ ≫ J , we get

E1 ≈ Ei − 2
J2

∆
, E2 ≈ Ef + 2

J2

∆
, E3 = Ef . (4)

Transfer processes are induced by resonant dipole-dipole
interaction that have the form J = −hC3

R3 , where R is the
interatomic distance, and C3 will be calculated in details

later. We can also define D = −2 (hC3)
2

∆
1
R6 , which is of

the van der Waals type. In the general case we have D =
−hC6

R6 , where one need to calculate the van der Waals
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|ρ1> |ρ2>

J

|π>

(n−1)p

ns

np

FIG. 1: The three states |π〉, |ρ1〉, and |ρ2〉 are illustrated,
with the coupling among them.

coefficient C6 for each specific states by considering all
possible atomic transitions, which is the main aim in the
next sections. Next we consider the case of (ns) state in
details.

In the case of |π〉 = |ns, ns〉 of energy Ei = 2Ens, we
have, e.g., the channel ns + ns ↔ np + (n − 1)p, that
is |ρ1〉 = |np, (n − 1)p〉 and |ρ2〉 = |(n − 1)p, np〉, with
the energy Ef = Enp + E(n−1)p, and with the detuning
∆ss = Enp + E(n−1)p − 2Ens, (see Fig. 1). The energy
of the two interacting atoms is Ess = 2Ens +Dss, with

the van der Waals interaction Dss = −2
(hCss

3
)2

∆ss

1
R6 . In

the general case we can write Dss = −hCss
6

R6 . Later on we
calculate the Css

3 and Css
6 coefficients in details. Similar

consideration holds for the case of two (np)-state atoms.

B. Two atoms in different Rydberg states

Here we consider the case in which the atoms are in
different states, e.g., one atom in the (ns)-state and the
other in (np)-state. We get two degenerate states |π1〉 =
|np, ns〉 and |π2〉 = |ns, np〉 of energyEi = Ens+Enp. We
have, e.g., the possible transfer channel of ns+np↔ (n−
1)p+ (n + 1)s. Further, we consider the two degenerate
states |ρ1〉 = |(n+1)s, (n−1)p〉 and |ρ2〉 = |(n−1)p, (n+
1)s〉, of energy Ef = E(n+1)s + E(n−1)p, (see Fig. 2).
Their energy detuning compared to |π〉 state is ∆sp =
E(n+1)s−Ens+E(n−1)p−Enp. The states |π1〉 = |np, ns〉
and |π2〉 = |ns, np〉 are coupled by the resonant dipole-

dipole interaction of strength J , where J = −hCsp
3

R3 . The
state |π1〉 = |np, ns〉 is coupled to |ρ1〉 = |(n + 1)s, (n −
1)p〉 by the resonant dipole-dipole interaction of strength
J ′, and the state |π2〉 = |ns, np〉 is coupled to |ρ2〉 =
|(n − 1)p, (n + 1)s〉 with the same parameter J ′. We
neglect the resonant dipole-dipole interaction among the
|ρ1〉 = |(n+ 1)s, (n− 1)p〉 and |ρ2〉 = |(n− 1)p, (n+ 1)s〉
states, due to their small amplitudes.

The Hamiltonian can be then written as

H = Ei (|π1〉〈π1|+ |π2〉〈π2|) + Ef (|ρ1〉〈ρ1|+ |ρ2〉〈ρ2|)
+ J (|π1〉〈π2|+ |π2〉〈π1|)
+ J ′ (|π1〉〈ρ1|+ |π2〉〈ρ2|+ |ρ1〉〈π1|+ |ρ2〉〈π2|) . (5)

|ρ2>|ρ1>

J

J’J’

(n−1)p

ns

np

(n+1)s
|π2>|π1>

FIG. 2: The four states |π1〉, |π2〉, |ρ1〉, and |ρ2〉 are illus-
trated, with the coupling among them.

In matrix elements we get

H = Ei1̂+







0 J J ′ 0
J 0 0 J ′

J ′ 0 ∆sp 0
0 J ′ 0 ∆sp






. (6)

We diagonalize the Hamiltonian, to get the characteristic
equations

(λ−∆sp)
2 (
λ2 − J2

)

−2λ (λ−∆sp)J
′ 2+J ′ 4 = 0, (7)

with the four solutions

λ1,2 =
∆sp ∓ J

2
− 1

2

√

(∆sp ± J)
2
+ 4J ′ 2,

λ3,4 =
∆sp ∓ J

2
+

1

2

√

(∆sp ± J)
2
+ 4J ′ 2. (8)

In the far off-resonant limit, that is ∆sp ≫ J ′, we get the
energies

Ea,b = Ens + Enp ∓ J − J ′ 2

∆sp ± J
,

Ec,d = E(n+1)s + E(n−1)p +
J ′ 2

∆sp ± J
. (9)

As far as ∆sp ≫ J the shifts are of the van der Waals
type, where Dsp = −J ′ 2/∆sp. In general we can write

Dsp = −hCsp
6

R6 , where the C6 coefficient will be calculated
later.

C. Two-level atoms

In the light of this result, we can go one step back
and start with two effective two-level atoms including
van der Waals interactions. We again treat the case of
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|s>

|p>
|π1> |π2>

J

FIG. 3: The two states |π1〉 and |π2〉 are illustrated with the
coupling J among them.

one atom in the (ns) Rydberg state, and the other in the
(np) state, as seen in Fig. 3. The atoms are separated
by the distance R. We have two states |π1〉 = |np, ns〉
and |π2〉 = |ns, np〉, and they are degenerate with the
energy E0 = Ens + Enp + Dsp, where we include the
van der Waals interaction among the two atoms Dsp =
−hCsp

6 /R6. The energy transfer parameter among the
two states is as before J = −hCsp

3 /R3. These consider-
ation exactly fits with the above four-level model in the
limit of ∆sp ≫ J , where the detuning ∆sp is much larger
than the symmetric-antisymmetric splitting.
The Hamiltonian is now written as

H = E0 (|π1〉〈π1|+ |π2〉〈π2|) + J (|π1〉〈π2|+ |π2〉〈π1|) .
(10)

The Hamiltonian can be diagonalized by using the col-
lective states

|ψa〉 =
|π1〉+ |π2〉√

2
, |ψb〉 =

|π1〉 − |π2〉√
2

, (11)

which gives

H = Ea |ψa〉〈ψa|+ Eb |ψb〉〈ψb|, (12)

with the energies Ea = E0 + J and Eb = E0 − J , which
fit exactly with the above derived energies.
As other states can be close to resonance with the con-

sidered states, the picture of two-level atoms breaks down
at short interatomic distances of several µm. Then, the
excitonic picture implies multi-level systems, as beside
the considered states, e.g. ns and np, the formalism
must include all close to resonance states, e.g (n + 1)s
and (n − 1)p, as treated before. The model of two-level
systems can be reserved for larger interatomic distances
when other states are off-resonance, but in including van
der Waals interactions among the atoms. We adopted
this direction in treating N Rydberg atoms in our previ-
ous paper [16]. At much larger interatomic distances of
tenth of µm the van der Waals interactions are negligible.
After this qualitative study of the resonant dipole-

dipole and van der Waals interactions, we move to quanti-
tative calculations of the different C3 and C6 coefficients.

III. DIMERIC ENERGIES IN PERTURBATION

THEORY

We give first a general presentation of a perturbative
treatment for the electrostatic interactions among Ryd-
berg atoms. For a system of two atoms the Hamiltonian

reads Ĥ = Ĥ1 + Ĥ2 + V̂ , where Ĥα is the α independent
atom Hamiltonian, and V̂ is the interaction among the
two atoms. We assume the independent atom eigenstates
to be known and given by Ĥα|φiα〉 = Ei

α|φiα〉, where the

eigenstates are orthonormal with 〈φjβ |φiα〉 = δαβδij , and
∑

i |φiα〉〈φiα| = 1̂.
The lowest order interaction among neutral atoms is

the dipole-dipole one, where

V̂ =
1

4πǫ0R3

{

(µ̂1 · µ̂2)− 3
(µ̂1 ·R) (µ̂2 ·R)

R5

}

, (13)

with R = R1 −R2, and the interatomic distance is R =
|R|. Here µ̂α is the dipole operator at atom α. We
assume no permanent dipoles to exist, and hence µ

ii
α =

〈φiα|µ̂α|φiα〉 = 0. We have µij
α = 〈φiα|µ̂α|φjα〉 with (i 6= j).

The atoms are taken to be localized along the z-axis,
which is also the quantization axis, hence

V̂ =
1

4πǫ0R3
{µ̂1xµ̂2x + µ̂1yµ̂2y − 2µ̂1zµ̂2z} . (14)

We apply perturbation theory in order to calculate the
resonant dipole-dipole and van der Waals coefficients by
deriving the corrections to each dimer energy.
We write the perturbative terms up to the second or-

der explicitly where the two atoms are assumed to be in
the states i and j. The lowest order correction to the
free energy is J ij,kl = 〈φi1, φj2|V̂ |φk1 , φl2〉, where for the

dimer we use a product basis |φi1, φj2〉 = |φi1〉|φj2〉. This
term give rise to resonant dipole-dipole interaction that
is responsible for the energy transfer among atoms at
different internal states. When the two atoms are in the
same i-th quantum state one has 〈φi1, φi2|V̂ |φi1, φi2〉 = 0.
Only terms of (i 6= k) and (j 6= l) are nonzero, with the

appropriate selection rules. We define J ij,kl = −hCij,kl
3

R3 ,
where now

Cij,kl
3 = − 1

4πǫ0

{

µik
1xµ

jl
2x + µik

1yµ
jl
2y − 2µik

1zµ
jl
2z

}

, (15)

and the transition dipole matrix element is defined by
µij
αr = 〈φiα|µ̂αr |φjα〉, with (r = x, y, z).
Resonances can appear among the dimer states, e.g.,

for |φi1, φj2〉 and |φk1 , φl2〉 states with the energy Ek
1 +E

l
2 =

Ei
1 + Ej

2 , which implies the use of degenerate perturba-
tion theory. In the following we present separately the
degenerate and non-degenerate perturbation theory.

A. Non-degenerate states

For non degenerate states |φi1, φj2〉 the first order term

〈φi1, φj2|V̂ |φi1, φj2〉 vanishes, because the atoms do not have
a permanent dipole. The second order term is

Dij = −
∑

k,l

〈φi1, φj2|V̂ |φk1 , φl2〉〈φk1 , φl2|V̂ |φi1, φj2〉
Ek

1 − Ei
1 + El

2 − Ej
2

, (16)
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which results in van der Waals interactions. Since V̂ has

a 1/R3 distance dependence, we can write Dij = −hCij
6

R6 ,
where we have defined

Cij
6 =

(

1

4πǫ0

)2
∑

k,l

∣

∣

∣µik
1xµ

jl
2x + µik

1yµ
jl
2y − 2µik

1zµ
jl
2z

∣

∣

∣

2

Ek
1 − Ei

1 + El
2 − Ej

2

.

(17)
The present perturbation theory can break down due to
the appearance of resonances at Ek

1 + El
2 = Ej

2 + Ei
1,

and one appeals to other methods, e.g., to the direct
Hamiltonian diagonalization [21].

B. Degenerate States

We now consider states |φi1, φj2〉 for which a state
|φk1 , φl2〉 with the same energy exists, i.e. Ei + Ej =

Ek+El, and for which also J ij,kl = 〈φi1, φj2|V̂ |φk1 , φl2〉 6= 0.
Then we have to use degenerate perturbation theory and
first diagonalize the degenerate subspace. Here we con-
centrate in degenerate states of the type |φi1, φj2〉 and

|φj1, φi2〉. The ’correct’ zero order states have the form

|φij±〉 = |φi1, φj2〉 ± |φj1, φi2〉, (18)

with energy

Eij
± = Ei

1 + Ej
2 ± J ij . (19)

The first order contributions then vanish and the second
order term, which has a 1/R6 behavior is calculated by

Dij
± = −

∑

k,l

|〈φij± |V̂ |φk1 , φl2〉|2

Ek
1 + El

2 − Eij
±
, (20)

where the sum over k and l includes all states but |φij±〉.
Note that resonances appear at Ek

1 +El
2 = Eij

± and then
a special treatment is required.

IV. INTERACTIONS BETWEEN ALKALI

RYDBERG ATOMS

We calculate the C3 and C6 coefficients for specific
cases that include the |φns〉 and |φnp〉 states, and we
concentrate in interactions among alkali Rydberg atoms.
We use the nondegenerate perturbation theory in order to
calculate Css

6 and Cpp
6 coefficients. Next we calculate Csp

6

coefficients, and as here a resonance appears between the
states |φns1 , φnp2 〉 and |φnp1 , φns2 〉 we use degenerate pertur-
bation theory. Let us first present the atomic states for
alkali Rydberg atoms.

A. Atomic eigenstates

The atomic state is given by the wave function
ψnlm(r, θ, φ) = Rnl(r)Ylm(θ, φ), where Rnl(r) is the ra-
dial wavefunction and Ylm(θ, φ) is the spherical harmonic

function. In general the dipole moment matrix element
can be factorized as µnlm,n′l′m′

r = eµ̃lm,l′m′

r Inl
n′l′ , where

the radial integral is

Inl
n′l′ =

∫ ∞

0

dr r3Rn′l′Rnl, (21)

and the angular part is

µ̃lm,l′m′

i =

∫ π

0

dθ

∫ 2π

0

dφ sin θ Y ∗
lm(θ, φ)êiYl′m′(θ, φ).

(22)
Here êi are the axis unit vectors with

êx = sin θ cosφ, êy = sin θ sinφ, êz = cos θ. (23)

The radial wave function for alkali atoms in atomic
units is given by

Rnl(r) =
2

n⋆2

√

(n⋆ − l⋆ − 1)!

(n⋆ + l⋆)!

×
(

2r

n⋆

)l⋆

e−r/n⋆

L2l⋆+1
n⋆−l⋆−1

(

2r

n⋆

)

, (24)

where n⋆ = n − δnl and l⋆ = l − δnl + I(l), with the

quantum defect δnl = δl0 +
δl
2

(n−δl
0
)2
, and I(l) is the near-

est integer below or equal to δnl. For the energy we have
Enl = −1

2(n−δnl)2
. Moreover we neglect fine and hyper-

fine splitting, which is a good approximation for lithium
atoms that we present later.

B. Css

6 and C
pp

6 Coefficients

We present here detailed calculations of Css
6 and Cpp

6

coefficients for atoms in the (ns) and (np) states. We
concentrate on alkali metal atoms excited to Rydberg
states and hence we deal with a single electronic state at
each atom that is represented by three quantum numbers
(n, l,m), where n = 1, 2, · · · , l = 0, · · · , n − 1, and m =
−l, · · · ,+l.
We write the expression for the van de Waals coeffi-

cients as follows

Cns,ns
6 =

(

e2

4πǫ0

)2

Ans
ns,

Cnpm,npm̄
6 =

(

e2

4πǫ0

)2

Anpm
npm̄, (25)

where we defined

Anlm
nl̄m̄ =

′
∑

n′l′,n′′l′′

∣

∣

∣℘
lm,l′

l̄m̄,l′′

∣

∣

∣

2 |Inl
n′l′Inl̄

n′′l′′ |2

∆nl,nl̄
n′l′,n′′l′′

, (26)

and the prime over the summation indicates that nl 6=
n′l′ and nl̄ 6= n′′l′′. We have

∆nl,nl̄
n′l′,n′′l′′ = En′l′ + En′′l′′ − Enl − Enl̄, (27)
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and

|℘lm,l′

l̄m̄,l′′
|2 =

∑

m′,m′′

∣

∣

∣
µ̃lm,l′m′

x µ̃l̄m̄,l′′m′′

x + µ̃lm,l′m′

y µ̃l̄m̄,l′′m′′

y

− 2µ̃lm,l′m′

z µ̃l̄m̄,l′′m′′

z

∣

∣

∣

2

. (28)

As we treat two identical atoms, we dropped the atom
index. We calculate the radial parts, I, of the A pa-
rameters numerically, and the angular parts, |℘|2, are
calculated analytically and presented in the appendix.
We aim now to calculate the C3 coefficient, which can

be written as

Cs,pm
3 =

−1

4πǫ0
℘s,pm |Inp

ns |2 , (29)

where

℘s,pm = µ̃s,pm
x µ̃pm,s

x + µ̃s,pm
y µ̃pm,s

y − 2µ̃s,pm
z µ̃pm,s

z , (30)

and here we have ℘s,p0 = − 2
3 and ℘s,p±1 = 1

3 .

C. C
sp

6 Coefficients

One needs to be careful when calculating the Csp
6 co-

efficients, as the states |ns, np〉 and |np, ns〉 are degener-
ate, and perturbation theory implies the removal of this
degeneracy, as we presented before. The two states are
coupled by the resonant dipole-dipole interaction, which
yields two diagonal states of symmetric and antisymmet-
ric mixing, where these orthogonal states used as the zero
order basis for the second order perturbation theory.
The diagonal eigenstates are

|±〉 = |ns, npm〉 ± |npm, ns〉√
2

, (31)

with the diagonal energies

E±
n (R) = Ens + Enp ± Jns,npm(R), (32)

where

Jns,npm(R) = −hC
ns,npm
3

R3
. (33)

The diagonal states have splitting energy of 2Jns,npm(R).
We aim to calculate

Dns,npm
α = −

(

1

4πǫ0R3

)2

×
∑

k,l

∣

∣µαk
x µαl

x + µαk
y µαl

y − 2µαk
z µαl

z

∣

∣

2

Ek + El − Eα
n (R)

,(34)

with (α = ±), (k = n′l′m′) and (l = n′′l′′m′′).
The calculation yields

Dns,npm
± = −2

(

e2

4πǫ0R3

)2

×
′

∑

n′l′,n′′l′′

∣

∣

∣℘
s,l′

pm,l′′

∣

∣

∣

2 |Ins
n′l′I

np
n′′l′′ |2

∆ns,np
n′l′,n′′l′′ ∓ Js,pm

n (R)
. (35)

n
50 60 70 80 90 100

C
6ss

 [1
0

4
 G

H
z 

(µ
 m

)
6

-0.5

-0.4

-0.3

-0.2

-0.1

0

FIG. 4: Css

6 as a function of n for lithium atoms.

The R dependence in the denominator through
Js,pm
n (R) can bring new resonances as atoms approach

each other and then the present perturbation theory
breaks down. Event hough, far from resonance, that is
∆ns,np

n′l′,n′′l′′ ≫ Js,pm
n (R), the Csp

6 coefficients can be safely

defined by Dsp = −hCsp
6 /R6, where

Cns,npm̄
6 =

(

e2

4πǫ0

)2

Ans
npm̄. (36)

As before the radial parts are calculated numerically, and
the angular parts calculated analytically and presented
in the appendix.

V. VALUES FOR LITHIUM ATOM

We calculate now all C6 and C3 coefficients for lithium
atoms, by using the known defect parameters [27]. For
ns we have δs0 = 0.399 and δs2 = 0.03, for np we have
δp0 = 0.0473 and δp2 = −0.026, and for nd we have δd0 =
0.002 and δd2 = −0.015.
Converting the aboveA parameters to SI units requires

the change A→
(

4πǫ0a
5

0

e2

)

A, as we have a factor of e2

4πǫ0a0

from the energy, and a factor of a0 from the radial func-
tion I. We obtain Cns,ns

6 = BAns
ns and Dnpm̄,npm

6 =

BAnpm
npm̄, where B =

e2a5

0

4πǫ0
. Using ǫ0 ≈ 0.0055 e/(V Å),

and a0 ≈ 0.53 Å, we get B ≈ 0.6 eV Å6, or B = hB̄, with
h ≈ 4.135×10−15 eV S, we get B̄ ≈ 1.5×10−10 Hz(µm)6.

Moreover, we have Cs,pm
3 = −F℘s,pm |Inp

ns |2, where F =
a2

0
e2

4πǫ0
. We use F = hF̄ with F̄ ≈ 103 Hz(µm)3

We plot now the results for all Css
6 , Cpp

6 and Csp
3 co-

efficients ranging from n = 50 up to n = 100. In Fig. 4
we plot Css

6 , and in Fig. 5 we plot Cp0,p0
6 , Cp0,p±1

6 and

Cp±1,p±1
6 . Here Css

6 coefficients are negative that lead to
repulsive van der Waals forces, and Cpp

6 are positive that

lead to attractive ones. The results for Cs,p0
3 and Cs,p±1

3

are plotted in Fig. 6. Cs,p0
3 coefficients are positive that

lead to attractive resonant dipole-dipole interactions, and
Cs,p±1

3 are negative that lead to repulsive ones.
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n
50 60 70 80 90 100

C
6pp

 [1
0

4
 G

H
z 

(µ
 m

)
6
]

0

0.5

1

1.5

2

2.5

C
6
p(0),p(0)

C
6
p(+1),p(0)

C
6
p(+1),p(+1)

C
6
p(+1),p(-1)

FIG. 5: C
p0,p0
6 , Cp0,p±1

6 and C
p±1,p±1
6 as a function of n for

lithium atoms.

n
50 60 70 80 90 100

C
3sp

 [G
H

z 
(
µ

 m
)

3
]

-100

-50

0

50

100

150

C
3
s,p(0)

C
3
s,p( ± 1)

FIG. 6: Cs,p0
3 , and C

s,p±1
6 as a function of n for lithium atoms.

Now we present the results for Dsp
± energies that de-

rived in using the diagonal states as zero order in per-
turbation theory for lithium atoms. The main feature of
Dsp

± is in their R dependent. We present the plots for

different interatomic distances. In Fig. 7 we plot Ds,p0
+

and Ds,p0
− for R = 7µm, and in Fig. 8 for R = 2µm. It

is clear that resonances start to appear at smaller n as
atoms approach each other. The Ds,p

+ and Ds,p
− energies

are different due to the symmetric-antisymmetric energy
splitting, but for small n as the splitting is much smaller
than the energy detuning then the coefficients become
equal, and in this limit one can define Csp

6 coefficients.

In Fig. 9 we plot C
s,p(0)
6 and C

s,p(±1)
6 coefficients from

(n = 20) up to (n = 70). In this region no resonances
appear down to small interatomic distances of 2 µm, as

it is clear from the above plots. Here the C
s,p(0)
6 coeffi-

cients are negative for n > 30 and then the van der Waals

interaction is repulsive, but the C
s,p(±1)
6 coefficients are

positive and the interaction is attractive.

VI. CONCLUSIONS

In summary we investigated van der Waals interac-
tions among two Rydberg atoms for the case where the

n
70 80 90 100

D
sp

 [G
H

z]

-2

0

2

4

6

8

D
-
s,p(0)

D
+
s,p(0)

FIG. 7: D
s,p0
+ and D

s,p0
− as a function of n for R = 7µm of

lithium atoms.

n
70 80 90 100

D
sp

 [G
H

z]
-1000

-500

0

500

1000

D
-
s,p(0)

D
+
s,p(0)

FIG. 8: D
s,p0
+ and D

s,p0
− as a function of n for R = 2µm of

lithium atoms.

atoms are in different internal states. For example, we
treated in details the case with one atom in the (ns)-
state and the other in (np)-state. The simplest model
for achieving a qualitative understanding of the interac-
tions is of four-level atoms, e.g., with |ns〉, |np〉, |n′p〉
and |n′′s〉 states of energies Ens, Enp, En′p and En′′s,
respectively. The two states |ns, np〉 and |np, ns〉 are
degenerate and couple by resonant dipole-dipole inter-
action of the type Jsp = −hCsp

3 /R3, which mixes and
splits the states to give symmetric and antisymmet-
ric orthogonal ones. We show that van der Waals in-
teraction among the two atoms can be formulated as
Dsp = −hCsp

6 /R6 in the limit of off-resonance, that is
in the limit |Ens + Enp − En′p − En′′s| ≫ |Jsp|. In this
limit the model of two-level atoms is valid, but in includ-
ing van der Waals interactions.

Next we presented a quantitative calculation of van
der Waals coefficients among two alkali Rydberg atoms
in considering all allowed electronic states. Due to
the resonance among the states |ns, np〉 and |np, ns〉
we applied degenerate perturbation theory. The zero
order states used in perturbation theory are the or-

thogonal states |nsp〉± = |ns,np〉±|np,ns〉√
2

with energies

Ensp
± = Ens + Enp ± Jnsp(R). We found that due to the

symmetric-antisymmetric energy splitting dependence on
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n
20 40 60

C
6sp

 [1
0

3
 G

H
z 

(µ
 m

)
6
]

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

C
6
s,p(0)

C
6
s,p( ± 1)

FIG. 9: C
s,p(0)
6 and C

s,p(±1)
6 as a function of n for lithium

atoms.

R new resonances appear when atoms approach each
other, and only far from these resonance one can define
Csp

6 coefficients. Moreover, using non-degenerate pertur-
bation theory we calculated all van der Waals coefficients
among alkali Rydberg atoms in the same state, mainly
for the |ns, ns〉 and |np, np〉 states, and we presented the
results for lithium atoms.
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Appendix A: Angular Part of Dipole Moment

Matrix Elements

In this appendix we present the angular part calcu-
lations of the dipole moment matrix elements. Direct

calculations yield the non-zero matrix elements

µ̃00,1±1
x =

∓1√
6
, µ̃10,2±1

x =
∓1√
10
,

µ̃1±1,20
x =

±1√
30

, µ̃1±1,2∓2
x =

∓1√
5

µ̃00,1±1
y =

−i√
6
, µ̃10,2±1

y =
−i√
10
,

µ̃1±1,20
y =

i√
30

, µ̃1±1,2∓2
y =

i√
5
,

µ̃00,10
z =

1√
3
, µ̃10,20

z =

√

2

15
,

µ̃1±1,2∓1
z =

−1√
5
, (A1)

and all the others vanish. The angular factors of equation
(28) are

∣

∣℘s,p
s,p

∣

∣

2
=

2

3
,
∣

∣℘s,p
p0,s

∣

∣

2
=

4

9
,
∣

∣℘s,p
p±1,s

∣

∣

2
=

1

9
,

∣

∣

∣℘
s,p
p0,d

∣

∣

∣

2

=
14

45
,
∣

∣

∣℘
s,p
p±1,d

∣

∣

∣

2

=
19

45
,

∣

∣

∣℘
p0,s
p0,s

∣

∣

∣

2

=
4

9
,
∣

∣

∣℘
p1,s
p−1,s

∣

∣

∣

2

=
∣

∣

∣℘
p−1,s
p1,s

∣

∣

∣

2

=
1

9
,

∣

∣

∣
℘p±1,s
p0,s

∣

∣

∣

2

=
∣

∣

∣
℘p0,s
p±1,s

∣

∣

∣

2

= 0 ,
∣

∣

∣
℘p1,s
p1,s

∣

∣

∣

2

=
∣

∣

∣
℘p−1,s
p−1,s

∣

∣

∣

2

= 0,

∣

∣

∣℘
p0,s
p0,d

∣

∣

∣

2

=
8

45
,
∣

∣

∣℘
p±1,s
p0,d

∣

∣

∣

2

=
1

15
,
∣

∣

∣℘
p0,s
p±1,d

∣

∣

∣

2

=
4

15
,

∣

∣

∣℘
p1,s
p1,d

∣

∣

∣

2

=
∣

∣

∣℘
p−1,s
p−1,d

∣

∣

∣

2

=
1

45
,
∣

∣

∣℘
p1,s
p−1,d

∣

∣

∣

2

=
∣

∣

∣℘
p−1,s
p1,d

∣

∣

∣

2

=
2

15
,

∣

∣

∣℘
p±1,d
p0,d

∣

∣

∣

2

=
∣

∣

∣℘
p0,d
p±1,d

∣

∣

∣

2

=
23

75
,

∣

∣

∣℘
p1,d
p−1,d

∣

∣

∣

2

=
∣

∣

∣℘
p−1,d
p1,d

∣

∣

∣

2

=
73

225
,

∣

∣

∣℘
p0,d
p0,d

∣

∣

∣

2

=
34

225
,
∣

∣

∣℘
p1,d
p1,d

∣

∣

∣

2

=
∣

∣

∣℘
p−1,d
p−1,d

∣

∣

∣

2

=
16

75
. (A2)
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9

053426 (2014).
[17] S. Ravets, H. Labuhn, D. Barredo, L. Beguin, T. lahaye,

and A. Browaeys, Nature Phys. 10, 914 (2014).
[18] D. Barredo, H. Labuhn, S. Ravets, T. lahaye,

A. Browaeys, and C. S. Adams, Phys. Rev. Lett. 114,
113002 (2015).

[19] C. Boisseau, I. Simbotin, and R. Cote, Phys. Rev. Lett.
88, 133004 (2002).

[20] S. G. Porsev, M. S. Safronova, A. Derevianko, and C. W.
Clark, Phys. Rev. A 89, 012711 (2014).

[21] A. Schwettmann, J. Crawford, K. R. Overstreet, and J. P.
Shaffer, Phys. Rev. A 74, 020701 (2006).

[22] F. Robicheaux, J. V. Hernandez, T. Topcu, and L. D.

Noordam, Phys. Rev. A 70, 042703 (2004).
[23] K. Singer, J. Stanojevic, M. Weidemüller, and R. Côté,
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