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Abstract
We investigate the influence of the appearance of excitonic states on van der Waals interactions
among two Rydberg atoms. The atoms are assumed to be in different Rydberg states, e.g., in the
ns∣ ñ and np∣ ñ states. The resonant dipole-dipole interactions yield symmetric and antisymmetric
excitons, with energy splitting that give rise to new resonances as the atoms approach each other.
Only away from these resonances can the van der Waals coefficients, C6

sp, be defined. We
calculate the C6 coefficients for alkali atoms and present the results for lithium by applying
perturbation theory. At short interatomic distances of several mm , we show that the widely used
simple model of two-level systems for excitons in Rydberg atoms breaks down, and the correct
representation implies multi-level atoms. Even though, at larger distances one can keep the two-
level systems but in including van der Waals interactions among the atoms .

Keywords: Rydberg atoms, Van der Waals interactions, excitons, resonant dipole-dipole
interactions, perturbation theory

(Some figures may appear in colour only in the online journal)

1. Introduction

Rydberg atoms, i.e. atoms with large principal quantum
numbers n 1 , have been the subject of extensive research
due to their unique optical and electrical features [1]. They are
an ideal platform for the study of a wide range of quantum
phenomena, mainly since their properties scale strongly with
n, and are often vastly exaggerated relative to those of
ground-state atoms. The property which has stimulated the
most recent experimental and theoretical work is strong
interactions among Rydberg atoms that are separated by
relatively large distances of several mm [2–7].

On the other hand, electronic excitations can be deloca-
lized among distant atoms through resonant dipole-dipole
interactions to form collective electronic excitations that are
termed excitons [8, 9]. Different processes of resonant energy
transfer are possible [10], here we concentrate on the
exchange type, e.g. ns np np ns+ « + . Excitons have been
introduced to a system of ultracold atoms in an optical lattice
with lowest excited states where van der Waals interactions
are negligible [11, 12]. The formation of excitons in a cluster
of Rydberg atoms has been investigated, but van der Waals

forces were completely neglected and the discussion limited
to two-level atoms [13–15]. In previous work we investigated
the influence of van der Waals interactions on the formation
of excitons in an aggregate of two-level Rydberg atoms [16].
Coherent energy transfer among Rydberg atoms that induce
by resonant dipole-dipole interaction has been realized
experimentally at large interatomic distances of tenths mm
where van der Waals forces are negligible [17, 18].

An excitonic state contains at least two different atomic
states. The simplest case is of two atoms in which one in the
ns∣ ñ state and the other in the np∣ ñ state. The discussion can be
limited to dipole-dipole interactions, where dipole-quadru-
pole, quadrupole-quadrupole and higher order interactions are
neglected. Approximate long-range potentials can be derived
by applying perturbation theory up to the second order in the
dipole-dipole interactions. The lowest order term of the per-
turbation series results in resonant dipole-dipole interaction of
the form C Rsp

3
3, where R is the interatomic distance with the

resonant dipole-dipole coefficient C3
sp. This interaction leads

to a coherent mixing of the two possible states, which are
ns np,∣ ñ and np ns,∣ ñ. The second order term is of the van der
Waals type of the form C Rsp

6
6, with the van der Waals
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coefficient C6
sp. As was shown in our previous work [16], van

der Waals interactions result in energy shifts that significantly
influence the formation of excitons when atoms approach
each other. Higher order terms play significant roles and can
change completely the long-range interaction potentials
[19, 20]. Furthermore, the appearance of resonances breaks
down the validity of the perturbative calculation and then
other techniques are required, e.g. in using direct Hamiltonian
diagonalization [21]. Moreover, non-adiabatic interactions
between Rydberg atoms in different electronic surfaces can be
important [22].

Long-range van der Waals interactions among pairs of
Rydberg atoms have been intensively investigated, mainly
using a perturbative approach [23–25]. The dispersion coef-
ficients of the type C6

ss, C6
pp and C6

dd, are calculated and listed
for homonuclear dimers of alkali metal atoms in the ns ns- ,
np np- and nd nd- states, where both atoms are in the
same state. These coefficients are of importance for experi-
mental and theoretical applications in strongly interacting
Rydberg gases, especially for the current cold and ultracold
Rydberg atom experiments, e.g., in the implementation of
dipole blockade phenomena for quantum information pro-
cessing [2, 3, 26]. But coefficients of the mixed type in which
atoms are in different electronic states, e.g., C6

sp, are not much
emphasized, while they are of importance for processes that
involve resonant energy transfer [16].

In the present paper we study the influence of the for-
mation of excitons on van der Waals interactions among
Rydberg atoms. We check the validity of using the simple
model of two-level systems to describe excitons in interacting
Rydberg atoms. We start by developing simple models using
three and four atomic levels that provide a qualitative
understanding of the different interactions among Rydberg
atoms. In treating ns ns- and np np- Rydberg atoms we
extract the limit in which atom-atom interactions have the
forms C Rss

6
6 and C Rpp

6
6. For the case of ns np- Rydberg

atoms we derive the condition in which the interactions can
be described by C Rsp

3
3 and C Rsp

6
6 terms. Afterwards, we

exploit perturbation theory in order to get quantitative values
for all C3 and C6 coefficients by summing over all the allowed
atomic states. We treat Rydberg alkali metal atoms, and as an
example we present the values for lithium atoms.

We emphasize here van der Waals interactions of the
mixed type with coefficient C6

sp, and examine the effect of
resonant dipole-dipole transfer on van der Waals interactions.
The point is that as the two states ns np,∣ ñ and np ns,∣ ñ are
degenerate, perturbation theory implies the removal of these
degeneracy. But the states are coupled by resonant dipole-
dipole interactions and the diagonalization mixes and splits
them to yield symmetric and antisymmetric orthogonal states.
Then we use these orthogonal states as the zero order
eigenstates in the perturbative calculation of the van der
Waals interactions. We found that as the symmetric-anti-
symmetric splitting energy is R-dependent new resonances
appear as the interatomic distance decreases.

The paper is organized as follows. In section 2 we pre-
sent a qualitative study of van der Waals interactions among
two Rydberg atoms using multi-level simple models.

Quantitative derivations of van der Waals interactions appear
in section 3 using perturbation theory. Section 4 contains
calculations of van der Waals coefficients for alkali Rydberg
atoms, and the results are presented for lithium atoms in
section 5. A summary is given in section 6. The appendix
includes the angular parts of the dipole moment matrix
elements.

2. Rydberg atom interactions: simple models

We start by treating Rydberg atoms using models of two,
three and four-level systems. The derivations provide a qua-
litative understanding of the type of interactions that can
appear among Rydberg atoms and pave the way towards the
quantitative treatment presented in the next section. We
examine the validity of using two-level systems for describing
excitons in Rydberg atoms. The model of two-level systems is
widely used to describe Frenkel excitons in organic solids
involving lowest excited states where van der Waals inter-
actions result in small energy shifts [8, 9]. But for Rydberg
atoms van der Waals forces are significant and the appearance
of resonances is probable. Hence we examine the validity of
using the simple model of two-level systems for Rydberg
atoms. Our objective in this section is to extend the simple
model into multi-level systems, which are necessary in order
to exploit the appearance of resonances. We show that far
from resonances one can keep the simple model but in
including energy shifts due to van der Waals interactions,
which implies quantitative calculations of the van der Waals
coefficients that we calculate in the next section using per-
turbation theory.

2.1. Two atoms in the same Rydberg state

Let us assume the two atoms to be in the same internal atomic
level, say in the nl( ) state. The two-atom state is nl nl,∣ ∣pñ = ñ
of energy E E2i nl= . We assume a single channel to be close
to resonance with this state. Namely, we consider a process
of the transfer type nl nl n l n l+ « ¢ ¢ +  . We have two
possible degenerate final states n l n l,1∣ ∣r ñ = ¢ ¢  ñ and

n l n l,2∣ ∣r ñ =   ¢ ¢ñ, with the energy E E Ef n l n l= +¢ ¢  . The
states have the energy detuning E E Ef i n lD = - = ¢ ¢

E E2n l nl+ -  . We assume here coupling among the ∣pñ
state and each one of the 1∣r ñ and 2∣r ñ states, with the coupling
parameter J, which we specify later. We neglect coupling
among the 1∣r ñ and 2∣r ñ states. The Hamiltonian that is
restricted to the states defined above can be written as

H E E

J . 1

i f 1 1 2 2

1 2 1 2

( )
( )

∣ 〈 ∣

( )

p p r r r r

p r p r r p r p

= ñ + +

+ + + +

In matrix elements we have

H E
J J

J
J

1
0

0
0

. 2i
ˆ ( )= + D

D

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
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We diagonalize the matrix to get the characteristic equation
J2 02 2( )( )l l l- D - D - = , with the three solutions

J

J

2

1

2
8 ,

2

1

2
8 , . 3

1
2 2

2
2 2

3 ( )

l

l l

=
D

- D +

=
D

+ D + = D

In the far off-resonant limit, that is JD  , we get

E E
J

E E
J

E E2 , 2 , . 4i f f1

2

2

2

3 ( )» -
D

» +
D

=

Transfer processes are induced by resonant dipole-dipole
interaction that have the form J hC

R
3

3= - , where R is the
interatomic distance, and C3 will be calculated in details later.
We can also define D 2 hC

R

13
2

6

( )= -
D

, which is of the van der

Waals type. In the general case we have D hC

R
6

6= - , where
one need to calculate the van der Waals coefficient C6 for
each specific states by considering all possible atomic
transitions, which is the main aim in the next sections. Next
we consider the case of ns( ) state in details.

In the case of ns ns,∣ ∣pñ = ñ of energy E E2i ns= , we
have, e.g., the channel ns ns np n p1( )+ « + - , that is

np n p, 11∣ ∣ ( )r ñ = - ñ and n p np1 ,2∣ ∣( )r ñ = - ñ, with the
energy E E Ef np n p1( )= + - , and with the detuning

E E E2ss np n p ns1( )D = + -- , (see figure 1). The energy of
the two interacting atoms is E E D2ss ns ss= + , with the van

der Waals interaction D 2ss
hC

R

1ss

ss

3
2

6

( )= -
D

. In the general case

we can write Dss
hC

R

ss
6
6= - . Later on we calculate the C3

ss and
Css
6 coefficients in details. Similar consideration holds for the

case of two np( )-state atoms.

2.2. Two atoms in different Rydberg states

Here we consider the case in which the atoms are in different
states, e.g., one atom in the ns( )-state and the other in np( )
-state. We get two degenerate states np ns,1∣ ∣pñ = ñ and

ns np,2∣ ∣p ñ = ñ of energy E E Ei ns np= + . We have, e.g.,
the possible transfer channel of ns np n p1( )+ « -

n s1( )+ + . Further, we consider the two degenerate states
n s n p1 , 11∣ ∣( ) ( )r ñ = + - ñ and n p12∣ ∣( )r ñ = - , n s1( )+ ñ,

of energy E E Ef n s n p1 1( ) ( )= ++ - , (see figure 2). Their energy
detuning compared to ∣pñ state is E Esp n s ns1( )D = -+

E En p np1( )+ -- . The states np ns,1∣ ∣pñ = ñ and 2∣p ñ= ns np,∣ ñ
are coupled by the resonant dipole-dipole interaction of

strength J, where J
hC

R

sp
3
3= - . The state np ns,1∣ ∣pñ = ñ is

coupled to n s n p1 , 11∣ ∣( ) ( )r ñ = + - ñ by the resonant

dipole-dipole interaction of strength J′, and the state
ns np,2∣ ∣p ñ = ñ is coupled to n p n s1 , 12∣ ∣( ) ( )r ñ = - + ñ

with the same parameter J′. We neglect the resonant dipole-
dipole interaction among the n s11∣ ∣( )r ñ = + , n p1( )- ñ and

n p n s1 , 12∣ ∣( ) ( )r ñ = - + ñ states, due to their small
amplitudes.

The Hamiltonian can be then written as

H E E

J

J .

5

i f1 1 2 2 1 1 2 2

1 2 2 1

1 1 2 2 1 1 2 2

( ) ( )
( )
( )

( )

p p p p r r r r

p p p p

p r p r r p r p

= + + +

+ +

+ ¢ + + +

In matrix elements we get

H E

J J
J J
J

J

1

0 0
0 0
0 0

0 0

. 6i
sp

sp

ˆ ( )= +

¢
¢

¢ D
¢ D

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

We diagonalize the Hamiltonian, to get the characteristic
equations

J J J2 0, 7sp sp
2 2 2 2 4( )( ) ( ) ( )l l l l- D - - - D ¢ + ¢ =

with the four solutions

J
J J

J
J J

2

1

2
4 ,

2

1

2
4 . 8

sp
sp

sp
sp

1,2
2 2

3,4
2 2

( )

( ) ( )

l

l

=
D

- D  + ¢

=
D

+ D  + ¢





Figure 1. The three states ∣pñ, 1∣r ñ, and 2∣r ñ are illustrated, with the
coupling among them.

Figure 2. The four states 1∣p ñ, 2∣p ñ, 1∣r ñ, and 2∣r ñ are illustrated, with
the coupling among them.
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In the far off-resonant limit, that is JspD ¢ , we get the
energies

E E E J
J

J

E E E
J

J

,

. 9

a b ns np
sp

c d n s n p
sp

,

2

, 1 1

2
( )( ) ( )

= + -
¢

D 

= + +
¢

D 
+ -



As far as JspD  the shifts are of the van der Waals type,
where D Jsp sp

2= - ¢ D . In general we can write

Dsp
hC

R

sp
6
6= - , where the C6 coefficient will be calculated later.

2.3. Two-level atoms

In the light of this result, we can go one step back and start
with two effective two-level atoms including van der Waals
interactions. We again treat the case of one atom in the ns( )
Rydberg state, and the other in the np( ) state, as seen in
figure 3. The atoms are separated by the distance R. We have
two states np ns,1∣ ∣pñ = ñ and ns np,2∣ ∣p ñ = ñ, and they are
degenerate with the energy E E E Dns np sp0 = + + , where we
include the van der Waals interaction among the two atoms
D hC Rsp

sp
6

6= - . The energy transfer parameter among the
two states is as before J hC Rsp

3
3= - . These consideration

exactly fits with the above four-level model in the limit of
JspD  , where the detuning spD is much larger than the

symmetric-antisymmetric splitting.
The Hamiltonian is now written as

H E J .

10

0 1 1 2 2 1 2 2 1( ) ( )
( )

p p p p p p p p= + + +

The Hamiltonian can be diagonalized by using the collective
states

2
,

2
, 11a b

1 2 1 2∣ ∣ ( )y
p p

y
p p

ñ =
+

ñ =
-

which gives

H E E , 12a a a b b b∣ 〈 ∣ ∣ 〈 ∣ ( )y y y y= ñ + ñ

with the energies E E Ja 0= + and E E Jb 0= - , which fit
exactly with the above derived energies.

As other states can be close to resonance with the con-
sidered states, the picture of two-level atoms breaks down at
short interatomic distances of several mm . Then, the excitonic
picture implies multi-level systems, as beside the considered
states, e.g. ns and np, the formalism must include all close to
resonance states, e.g n s1( )+ and n p1( )- , as treated
before. The model of two-level systems can be reserved for

larger interatomic distances when other states are off-reso-
nance, but in including van der Waals interactions among the
atoms. We adopted this direction in treating N Rydberg atoms
in our previous paper [16]. At much larger interatomic dis-
tances of tenth of mm the van der Waals interactions are
negligible.

After this qualitative study of the resonant dipole-dipole
and van der Waals interactions, we move to quantitative
calculations of the different C3 and C6 coefficients.

3. Dimeric energies in perturbation theory

We give first a general presentation of a perturbative treat-
ment for the electrostatic interactions among Rydberg
atoms. For a system of two atoms the Hamiltonian reads
H H H V1 2
ˆ ˆ ˆ ˆ= + + , where Ĥa is the α independent atom
Hamiltonian, and V̂ is the interaction among the two atoms.
We assume the independent atom eigenstates to be known
and given by H Ei i iˆ ∣ ∣f fñ = ña a a a , where the eigenstates are

orthonormal with j i
ij〈 ∣f f d dñ =b a ab , and 1

i
i i∣ 〈 ∣ ˆå f fñ =a a .

The lowest order interaction among neutral atoms is the
dipole-dipole one, where

V
R R

R R1

4
3 , 13

0
3 1 2

1 2
5( ) ( )( )ˆ ˆ · ˆ

ˆ · ˆ ·
( )

p
= m m -

m m
⎪ ⎪

⎧⎨
⎩

⎫⎬
⎭

with R R R1 2= - , and the interatomic distance is R R∣ ∣= .
Here m̂a is the dipole operator at atom α. We assume no
permanent dipoles to exist, and hence iim =a 0i i〈 ∣ ˆ ∣f fm ñ =a a a .
We have ij i j〈 ∣ ˆ ∣f fm = m ña a a a with i j( )¹ . The atoms are taken
to be localized along the z-axis, which is also the quantization
axis, hence

V
R

1

4
2 . 14x x y y z z

0
3 1 2 1 2 1 2{ }ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( )

p
m m m m m m= + -

We apply perturbation theory in order to calculate the
resonant dipole-dipole and van der Waals coefficients by
deriving the corrections to each dimer energy.

We write the perturbative terms up to the second order
explicitly where the two atoms are assumed to be in the states
i and j. The lowest order correction to the free energy is
J V, ,ij kl i j k l,

1 2 1 2〈 ∣ ˆ ∣f f f f= ñ, where for the dimer we use a
product basis ,i j i j

1 2 1 2∣ ∣ ∣f f f fñ = ñ ñ. This term gives rise to
resonant dipole-dipole interaction that is responsible for the
energy transfer among atoms at different internal states. When
the two atoms are in the same ith quantum state one has

V, , 0i i i i
1 2 1 2〈 ∣ ˆ ∣f f f f ñ = . Only terms of i k( )¹ and j l( )¹ are

nonzero, with the appropriate selection rules. We define

Jij kl hC

R
,

ij kl
3

,

3= - , where now

C
1

4
2 , 15ij kl

x
ik

x
jl

y
ik

y
jl

z
ik

z
jl

3
,

0
1 2 1 2 1 2{ } ( )

p
m m m m m m= - + -

and the transition dipole matrix element is defined by

r
ij i

r
j〈 ∣ ˆ ∣m f m f= ña a a a , with r x y z, ,( )= .

Resonances can appear among the dimer states, e.g.,
for ,i j

1 2∣f f ñ and ,k l
1 2∣f f ñ states with the energy

Figure 3. The two states 1∣p ñ and 2∣p ñ are illustrated with the coupling
J among them.
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E E E Ek l i j
1 2 1 2+ = + , which implies the use of degenerate

perturbation theory. In the following we present separately the
degenerate and non-degenerate perturbation theory.

3.1. Non-degenerate states

For non-degenerate states ,i j
1 2∣f f ñ the first order term

V, ,i j i j
1 2 1 2〈 ∣ ˆ ∣f f f f ñ vanishes, because the atoms do not have a

permanent dipole. The second order term is

D
V V

E E E E

, , , ,
, 16ij

k l

i j k l k l i j

k i l j
,

1 2 1 2 1 2 1 2

1 1 2 2

ˆ ˆ
( )å

f f f f f f f f
= -

- + -

which results in van der Waals interactions. Since V̂ has a

R1 3 distance dependence, we can write Dij hC

R

ij
6
6= - , where

we have defined

C
E E E E

1

4

2
. 17ij

k l

x
ik

x
jl

y
ik

y
jl

z
ik

z
jl

k i l j6
0

2

,

1 2 1 2 1 2

2

1 1 2 2

( )
 åp

m m m m m m
=

+ -

- + -

⎛
⎝⎜

⎞
⎠⎟

The present perturbation theory can break down due to the
appearance of resonances at E E E Ek l j i

1 2 2 1+ = + , and one
appeals to other methods, e.g., to the direct Hamiltonian
diagonalization [21].

3.2. Degenerate states

We now consider states ,i j
1 2∣f f ñ for which a state ,k l

1 2∣f f ñ
with the same energy exists, i.e.E E E Ei j k l+ = + , and for
which also J V, , 0ij kl i j k l,

1 2 1 2〈 ∣ ˆ ∣f f f f= ñ ¹ . Then we have to
use degenerate perturbation theory and first diagonalize the
degenerate subspace. Here we concentrate in degenerate
states of the type ,i j

1 2∣f f ñ and ,j i
1 2∣f f ñ. The ’correct’ zero

order states have the form

, , , 18ij i j j i
1 2 1 2∣ ∣ ∣ ( )f f f f fñ = ñ  ñ

with energy

E E E J . 19ij i j ij
1 2 ( )= + 

The first order contributions then vanish and the second order
term, which has a R1 6 behavior is calculated by

D
V

E E E

,
, 20ij

k l

ij k l

k l ij
,

1 2
2

1 2

ˆ ∣
( )å

f f f
= -

+ -




where the sum over k and l includes all states but ij∣f ñ . Note
that resonances appear at E E Ek l ij

1 2+ =  and then a special
treatment is required.

4. Interactions between alkali Rydberg atoms

We calculate the C3 and C6 coefficients for specific cases that
include the ns∣f ñ and np∣f ñ states, and we concentrate on
interactions among alkali Rydberg atoms. We use the non-
degenerate perturbation theory in order to calculate C6

ss and
C6
pp coefficients. Next we calculate C6

sp coefficients, and as
here a resonance appears between the states ,ns np

1 2∣f f ñ and

,np ns
1 2∣f f ñ we use degenerate perturbation theory. Let us first

present the atomic states for alkali Rydberg atoms.

4.1. Atomic eigenstates

The atomic state is given by the wave function
r R r Y, , ,nlm nl lm( ) ( ) ( )y q f q f= , where Rnl(r) is the radial

wavefunction and Y ,lm ( )q f is the spherical harmonic func-
tion. In general the dipole moment matrix element can be
factorized as er

nlm n l m
r
lm l m

n l
nl, ,˜ m m=¢ ¢ ¢ ¢ ¢
¢ ¢, where the radial

integral is

dr r R R , 21n l
nl

n l nl
0

3 ( ) ò=¢ ¢

¥

¢ ¢

and the angular part is

d d Y Yesin , , .

22

i
lm l m

lm i l m
,

0 0

2
˜ ( ) ˆ ( )

( )

*ò òm q f q q f q f=
p p

¢ ¢
¢ ¢

Here eiˆ are the axis unit vectors with

e e esin cos , sin sin , cos . 23x y zˆ ˆ ˆ ( )q f q f q= = =

The radial wave function for alkali atoms in atomic units
is given by

R r
n

n l

n l

r

n
e L

r

n

2 1

2 2
, 24

nl

l
r n

n l
l

2

1
2 1

( )
( )( )

!
!

( )



 

 

 




 


=
- -

+

´ -
- -
+⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

where n n nl
 d= - and l l I lnl ( ) d= - + , with the

quantum defect nl
l

n0

l

l
2

0
2( )

d d= + d
d-

, and I(l) is the nearest

integer below or equal to nld . For the energy we have
Enl n

1

2 nl
2( )

=
d

-
-

. Moreover we neglect fine and hyperfine

splitting, which is a good approximation for lithium atoms
that we present later.

4.2. C6
ss and C6

pp Coefficients

We present here detailed calculations of C6
ss and C6

pp coeffi-
cients for atoms in the ns( ) and np( ) states. We concentrate on
alkali metal atoms excited to Rydberg states and hence we
deal with a single electronic state at each atom that is repre-
sented by three quantum numbers n l m, ,( ), where
n 1, 2,= , l n0, , 1= - , and m l l, ,= - + .

We write the expression for the van de Waals coefficients
as follows

C
e

A

C
e

A

4
,

4
, 25

ns ns
ns
ns

npm npm
npm
npm

6
,

2

0

2

6
,

2

0

2

( )¯
¯





p

p

=

=

⎛
⎝⎜

⎞
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⎛
⎝⎜

⎞
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where we defined

A , 26nl m
nlm

n l n l
l m l
lm l

n l
nl

n l
nl

n l n l
nl nl

,
,
, 2

2

,
,

∣
( )¯ ¯ ¯ ¯

¯

¯

 
å= Ã

D¢ ¢  

¢


¢ ¢ ¢  

¢ ¢  

and the prime over the summation indicates that nl n l¹ ¢ ¢ and
nl n l¯ ¹  . We have

E E E E , 27n l n l
nl nl

n l n l nl nl,
, ( )¯

¯D = + - -¢ ¢   ¢ ¢  

and

2 . 28

l m l
lm l

m m
x
lm l m

x
l m l m

y
lm l m

y
l m l m

z
lm l m

z
l m l m

,
, 2

,

, , , ,

, , 2

∣ ∣ ˜ ˜ ˜ ˜

˜ ˜ ( )

¯ ¯
¯ ¯ ¯ ¯

¯ ¯

å m m m m

m m

Ã = +

-


¢

¢ 

¢ ¢   ¢ ¢  

¢ ¢  

As we treat two identical atoms, we dropped the atom index.
We calculate the radial parts,  , of the A parameters
numerically, and the angular parts, 2∣ ∣Ã , are calculated
analytically and presented in the appendix.

We aim now to calculate the C3 coefficient, which can be
written as

C
1

4
, 29s pm s pm

ns
np

3
,

0

, 2 ( )



p

=
-

Ã

where

2 , 30s pm
x
s pm

x
pm s

y
s pm

y
pm s

z
s pm

z
pm s, , , , , , ,˜ ˜ ˜ ˜ ˜ ˜ ( )m m m m m mÃ = + -

and here we have s p, 0 2

3
Ã = - and s p, 1 1

3
Ã = .

4.3. C6
sp Coefficients

One needs to be careful when calculating the C6
sp coefficients,

as the states ns np,∣ ñ and np ns,∣ ñ are degenerate, and pertur-
bation theory implies the removal of this degeneracy, as we
presented before. The two states are coupled by the resonant
dipole-dipole interaction, which yields two diagonal states of
symmetric and antisymmetric mixing, where these orthogonal
states used as the zero order basis for the second order per-
turbation theory.

The diagonal eigenstates are

ns npm npm ns, ,

2
, 31∣ ∣ ∣ ( ) ñ =

ñ  ñ

with the diagonal energies

E R E E J R , 32n ns np
ns npm,( ) ( ) ( )= + 

where

J R
hC

R
. 33ns npm

ns npm
, 3

,

3
( ) ( )= -

The diagonal states have splitting energy of J R2 ns npm, ( ). We
aim to calculate

D
R

E E E R

1

4

2
, 34

ns npm

k l

x
k

x
l

y
k

y
l

z
k

z
l

k l n

,

0
3

2

,

2

( )
( )



å

p

m m m m m m

=-

´
+ -

+ -

a

a a a a a a

a

⎛
⎝⎜

⎞
⎠⎟

with ( )a =  , k n l m( )= ¢ ¢ ¢ and l n l m( )=    . The calcula-
tion yields

D
e

R

J R

2
4

. 35

ns npm

n l n l
pm l
s l n l

ns
n l
np

n l n l
ns np

n
s pm

,
2

0
3

2

,
,

, 2
2

,
, ,

∣
( )

( )



 
å

p
= -

´ Ã
D



¢ ¢  

¢


¢ ¢ ¢  

¢ ¢   

⎛
⎝⎜

⎞
⎠⎟

The R dependence in the denominator through J Rn
s pm, ( )

can bring new resonances as atoms approach each other and
then the present perturbation theory breaks down. Even
though, far from resonance, that is J Rn l n l

ns np
n
s pm

,
, , ( )D ¢ ¢    , the

C6
sp coefficients can be safely defined by D hC Rsp sp

6
6= - ,

where

C
e

A
4

. 36ns npm
npm
ns

6
,

2

0

2

( )¯
¯p

=
⎛
⎝⎜

⎞
⎠⎟

As before the radial parts are calculated numerically, and the
angular parts calculated analytically and presented in the
appendix.

5. Values for lithium atom

We calculate now all C6 and C3 coefficients for lithium
atoms, by using the known defect parameters [27]. For ns we
have 0.399s

0d = and 0.03s
2d = , for np we have 0.0473p

0d =
and 0.026p

2d = - , and for nd we have 0.002d
0d = and

0.015d
2d = - .

Converting the above A parameters to SI units requires

the change A Aa

e

4 0 0
5

2( ) p , as we have a factor of e

a4

2

0 0p
from

the energy, and a factor of a0 from the radial function  .
We obtain C BAns ns

ns
ns

6
, = and D BAnpm npm

npm
npm

6
,¯

¯= , where

B e a

4

2
0
5

0
=

p
. Using e V0.00550 ( Å) » , and a 0.530 Å» , we

get B eV0.6 6Å» , or B hB̄= , with h eVS4.135 10 15» ´ - ,
we get B Hz1.5 10 m10 6¯ ( )m» ´ - . Moreover, we have

Figure 4. C6
ss as a function of n for lithium atoms.
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C Fs pm s pm
ns
np

3
, , 2∣ ∣= - Ã , where F a e

4
0
2 2

0
=

p
. We use F hF̄=

with F Hz10 m3 3¯ ( )m»
We plot now the results for all C6

ss, C6
pp and C3

sp coeffi-
cients ranging from n = 50 up to n = 100. In figure 4 we plot
C6
ss, and in figure 5 we plot C p p

6
0, 0, C p p

6
0, 1 and C p p

6
1, 1  .

Here C6
ss coefficients are negative that lead to repulsive van

der Waals forces, and C6
pp are positive that lead to attractive

ones. The results for C s p
3

, 0 and C s p
3

, 1 are plotted in figure 6.
C s p

3
, 0 coefficients are positive that lead to attractive resonant

dipole-dipole interactions, andC s p
3

, 1 are negative that lead to
repulsive ones.

Now we present the results for Dsp
 energies that were

derived by using the diagonal states as zero order in pertur-
bation theory for lithium atoms. The main feature of Dsp

 is in
their R dependent. We present the plots for different intera-
tomic distances. In figure 7 we plot Ds p, 0

+ and D s p, 0
- for

R 7 mm= , and in figure 8 for R 2 mm= . It is clear that
resonances start to appear at smaller n as atoms approach each
other. The Ds p,

+ and D s p,
- energies are different due to the

symmetric-antisymmetric energy splitting, but for small n as
the splitting is much smaller than the energy detuning then the
coefficients become equal, and in this limit one can define C6

sp

coefficients. In figure 9 we plot C s p
6

, 0( ) and C s p
6

, 1( ) coeffi-
cients from n 20( )= up to n 70( )= . In this region no reso-
nances appear down to small interatomic distances of 2 mm ,
as it is clear from the above plots. Here the C s p

6
, 0( ) coefficients

Figure 5.C p p
6

0, 0, C p p
6

0, 1 and C p p
6

1, 1  as a function of n for lithium
atoms.

Figure 6. C s p
3

, 0, and C s p
6

, 1 as a function of n for lithium atoms.

Figure 7. Ds p, 0
+ and D s p, 0

- as a function of n for R 7 mm= of lithium
atoms.

Figure 8. Ds p, 0
+ and D s p, 0

- as a function of n for R 2 mm= of lithium
atoms.

Figure 9. C s p
6

, 0( ) and C s p
6

, 1( ) as a function of n for lithium atoms.
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are negative for n 30> and then the van der Waals interac-
tion is repulsive, but the C s p

6
, 1( ) coefficients are positive and

the interaction is attractive.

6. Conclusions

In summary we investigated van der Waals interactions
among two Rydberg atoms for the case where the atoms are in
different internal states. For example, we looked in detail at
the case with one atom in the ns( )-state and the other in np( )
-state. The simplest model for achieving a qualitative under-
standing of the interactions is of four-level atoms, e.g., with
ns∣ ñ, np∣ ñ, n p∣ ¢ ñ and n s∣  ñ states of energies Ens, Enp, En p¢ and
En s , respectively. The two states ns np,∣ ñ and np ns,∣ ñ are
degenerate and couple by resonant dipole-dipole interaction
of the type J hC Rsp

sp
3

3= - , which mixes and splits the states
to give symmetric and antisymmetric orthogonal ones. We
show that van der Waals interaction among the two atoms can
be formulated as D hC Rsp

sp
6

6= - in the limit of off-reso-
nance, that is in the limit E E Ens np n p∣ + - ¢ E Jn s sp∣ ∣ ∣-   .
In this limit the model of two-level atoms is valid, but in
including van der Waals interactions.

Next we presented a quantitative calculation of van der
Waals coefficients among two alkali Rydberg atoms in con-
sidering all allowed electronic states. Due to the resonance
among the states ns np,∣ ñ and np ns,∣ ñ we applied degenerate
perturbation theory. The zero order states used in perturbation

theory are the orthogonal states nsp ns np np ns, ,

2
∣ ∣ ∣ñ =

ñ ñ with

energies E E E J Rnsp
ns np nsp ( )= +  . We found that due to

the symmetric-antisymmetric energy splitting dependence on
R new resonances appear when atoms approach each other,
and only far from these resonance one can define C6

sp

coefficients. Moreover, using non-degenerate perturbation
theory we calculated all van der Waals coefficients among
alkali Rydberg atoms in the same state, mainly for the ns ns,∣ ñ
and np np,∣ ñ states, and we presented the results for lithium
atoms.
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Appendix. Angular Part of Dipole Moment Matrix
Elements

In this appendix we present the angular part calculations of
the dipole moment matrix elements. Direct calculations yield

the non-zero matrix elements

i i
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and all the others vanish. The angular factors of equation (28)
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