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Phenomenology from the DSR-deformed relativistic
symmetries of 3D quantum gravity via the relative-locality
framework

Stefano Bianco
Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, D-14476
Potsdam, Germany

E-mail: stefanobianco3@gmail.com

Abstract. During the last decade, there have been relevant advances in the study of quantum gravity
coupled to point particles in 2+1 dimensions. In the emerging picture the momentum space of the particles
is curved, the spacetime coordinates are noncommuting and the symmetries are DSR-deformed relativistic
symmetries. In this article we study some phenomenological consequences of these features via the so-
called ”relative-locality” framework. We find that a ”dual-gravity” lensing effect appears as a consequence
of the relativity of spacetime locality associated to the deformed symmetries of the theory.

1. Introduction
The quantum properties of gravity are still elusive because of theoretical and experimental challenges.

From the theoretical point of view, the quantum-field-theory techniques that are very successful for
phenomena described by electro-weak and strong interactions lead to severe conceptual and technical
difficulties when applied to gravity. Also the brand new approaches that have being developed have
reached some partial results, but they still face key open problems.

From the experimental side, the energy scale at which quantum gravity is expected to become relevant
is given by the Planck mass Mp = 1019Gev, which is very distant from the energy scales that we can
reach in current and near-future laboratory experiments. This means that in order to probe the quantum
properties of gravity we need some amplification mechanisms that let the minute Planck-scale effects
manifest.

The severe technical difficulties that one encounters when trying to formulate a full-comprehensive
quantum theory of gravity have led to the extensive study of simpler systems that can provide theoretical
and experimental insights into the quantum-gravity realm. In the last decade, there has been a significant
progress in the quantum description of gravity coupled to point particles in 2+1 dimensions [1, 2, 3, 4, 5].
In particular, several approaches have led to the same class of results, which can now be considered as
robust. Among these results there is the fact that in 2+1 dimensions and with vanishing cosmological
constant the momentum space of a particle is described by the Lie group SL(2,R), which has a curved
(anti-deSitter) geometry. The departure from the flat (minkowskian) momentum space is controlled by
the gravitational constant G, which provides an energy scale in 2+1 dimensions since its dimension is
of the inverse of an energy. As a closely related feature one finds that the spacetime coordinates are
characterized by a noncommutativity of the type [xµ,xν] = ih̄`εµν

ρxρ, where by ` we denote the inverse
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of the energy scale given by G. These features result in a deformation in ` of the relativistic symmetries,
which are no more described by the Poincaré group, but by the quantum group DSO(2,1).

It is interesting to note that the Planck-scale deformation of momentum space was suggested by an
early argument by Born [6] and it is now supported by calculations in several quantum-gravity approaches
in 3+1 dimensions, such as loop quantum gravity [7], group field theory [8], noncommutative geometry
[9] and string theory [10].

It is important to remark that in the recent years there have been extensive studies on DSR-deformed
special relativistic theories [11, 12, 13, 15, 16, 17]. These are theories in which the special relativistic
symmetries are present but deformed by an energy scale which is expected to be the Planck scale, so that
they are relativistic theories with two invariant constants: the speed of light c and the Planck scale. This
class of theories have been shown to provide testable predictions for an important sort of quantum-gravity
experiments, i.e. the observation of high-energy particles from astrophysical sources [18, 19, 20, 21]
and, very recently, for cosmology [22, 23] (for more phenomenology coming from the Planck-scale
deformation of the Poincaré symmetries we refer to [24]).

Recently a framework which enables to derive a DSR-deformed relativistic theory from a Planck-
scale-curved momentum space has being developed and it goes under the name “relative-locality”
framework [25, 26]. As we will see in more detail below, in the relative-locality framework momentum
space is characterized by a metric and an affine connection which define respectively the (possibly-
deformed) on-shell relation and the (possibly-deformed) composition law of momenta [25, 26]. So that
thank to this framework one can study the kinematics of particles characterized by a curved momentum
space.

This proceeding reports the results of Ref. [27], which considers the above mentioned results obtained
in 3D quantum gravity with vanishing cosmological constant and extracts from them phenomenological
predictions via the relative-locality framework. In particular we will make use of the classical limit of
the structures appearing in 3D quantum gravity, as a first but very rich step of the analysis. In fact while
in this limit we will not have spacetime noncommutativity, the curvature of momentum space and the
deformation of the symmetries will be present, since, as we already noticed, in 3D the energy scale is
given by the inverse of G. We will show that a ”dual-gravity” lensing appears as a consequence of the
relativity of spacetime locality, which, as we will explain in more detail below, is an important feature of
DSR-theories.

We will adopt units such that c = 1 and, as already said, ` will denote the inverse of the Planck scale
in 3D. The antisymmetric tensor εµνρ is such that ε012 = −1 and indices are raised and lowered with
ηµν = (−1,1,1).

2. Momentum space emerging from 3D quantum gravity
We here look in more detail at the momentum space and the spacetime noncommutativity that arise in
3D quantum gravity in the case of vanishing cosmological constant. As we have already said in the
introduction the momentum space is described by the Lie group SL(2,R). We can easily see that this
momentum space is characterized by an anti-de-Sitter geometry. In fact we can write a generic element
p of SL(2,R) as a combination of the identity matrix and of the elements of a basis of sl(2,R)

p = uI−2ξµXµ, (1)

where I is the identity 2×2 matrix and the Xµ are

X0 =
1
2

(
0 1
−1 0

)
,X1 =

1
2

(
0 −1
−1 0

)
,X2 =

1
2

(
−1 0
0 1

)
, (2)

which is a basis of sl(2,R). The requirement of having determinant equal to one (detp = 1) implies that
the parameters (u,ξµ) satisfy

u2−ξ
µ
ξµ = 1 , (3)
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which is the definition of a 3 dimensional anti-de-Sitter hypersurface.
We notice that (2) implies that the Xµ satisfy (up to a dimensionful constant) the spacetime

commutation relations that arise in 3D gravity

[Xµ,Xν] = ε
µν

ρXρ . (4)

For our purposes we will adopt coordinates pµ on our momentum space1 such that

p =
√

1+ `2 pµ pµI−2`pµXµ : (5)

these pµ will be the observable momenta. With this coordinatization of momentum space it has been
shown [1, 2] that one finds a deformed onshell relation for the observbale momenta of the type

`−2
(

arcsin
(√
−`2 pµ pµ

))2

= m2 , (6)

where m is the mass of the particle. Moreover the group structure of momentum space implies a
deformation of the composition law of momenta. In fact if we multiply two group elements p and
q

p =
√

1+ `2 pµ pµI−2`pµXµ ,

q =
√

1+ `2qµqµI−2`qµXµ ,
(7)

we obtain a new element pq

pq=

(√
1+ `2 pµ pµ

√
1+ `2qνqν + `2 pµqµ

)
I−2`

(√
1+ `2qνqν pµ +

√
1+ `2 pν pνqµ− `ε νρ

µ pνqρ

)
Xµ,

(8)
where we made use of the identity

XµXν =
1
4

η
µνI+

1
2

ε
µν

ρXρ . (9)

From (8) we notice that the coordinates (p⊕ q)µ of pq are related to the coordinates of pµ,qµ of p,q in
the following way

(p⊕q)µ =
√

1+ `2qνqν pµ +
√

1+ `2 pν pνqµ− `ε νρ
µ pνqρ : (10)

this is the deformed composition law for the momenta pµ,qµ.

3. Deformed relativistic kinematics
We here describe the DSR-relativistic symmetries, that arise of 3D quantum gravity, in the classical
limit, which is the regime we will focus on in this article. These will be compatible with the spacetime
coordinates with Poisson brackets given by

{xµ,xν}= `ε
µν

ρxρ , (11)

and by a momentum space with coordinates pµ satisfying the onshell relation

`−2
(

arcsin
(√
−`2 pµ pµ

))2

= m2 , (12)

1 An alternative coordinatization is reported in Ref. [1]). It consists in coordinates Pα,Pβ,Pγ which are essentially Euler angles
and are connected to the coordinates of our Eq. (5) by the relations p0 = `−1 sin(Pα`)cosh(Pβ`), p1 = `−1 cos(Pγ`)sinh(Pβ`),
p2 = `−1 sin(Pγ`)sinh(Pβ`).
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and obeying the composition law

(p⊕q)µ =
√

1+ `2qνqν pµ +
√

1+ `2 pν pνqµ− `ε νρ
µ pνqρ . (13)

It is easy to see that the action of Lorentz-sector generators on momenta remains undeformed. In fact
the mass shell (12) is invariant and the composition law (13) is covariant when adopting the standard

{R, p0}= 0 , {N1, p0}= p1 , {N2, p0}= p2 , (14)
{R, p1}=−p2 , {N1, p1}= p0 , {N2, p1}= 0 , (15)
{R, p2}= p1 , {N1, p2}= 0 , {N2, p2}= p0 , (16)

where R is the generator of rotations, while N1 an N2 are the generators of boosts.
Now we study the action of the symmetry generators on the spacetime coordinates. We will show that

adopting undeformed Poisson brackets among translation generators

{pµ, pν}= 0 (17)

and undeformed action of rotations and boosts on the spacetime coordinates

{R,x0}= 0 , {N1,x0}=−x1 , {N2,x0}=−x2 , (18)

{R,x1}=−x2 , {N1,x1}=−x0 , {N2,x1}= 0 , (19)

{R,x2}= x1 , {N1,x2}= 0 , {N2,x2}=−x0 , (20)

the deformation will concern only the action of the translations generators on the spacetime coordinates
in order to have the Jacobi identity satisfied. From now on our analysis will be mainly concetrated on
results at leading order in `, and we will start showing that there is a unique Poisson bracket of {pµ,xν},
given by

{pµ,xν} ' −δ
ν
µ +

`

2
ε

νρ
µ pρ , (21)

which satisfies all the Jacobi identities, taking into account (15)-(21). To do this we start considering the
following general form for {pµ,xν} at leading order which gives the standard result in the limit `→ 0
limit

{pµ,xν}=−δ
ν
µ + ` f νρ

µ pρ . (22)

We begin determining the parameters f νρ
µ by considering the Jacobi identity

{pµ,{xν,xρ}}+{xρ,{pµ,xν}}+{xν,{xρ, pµ}}= 0 , (23)

which turns out to imply
f νρ
µ − f νρ

µ = ε
νρ

µ . (24)

This fixes the antisymmetric part of f νρ
µ in the indices νρ so that we can now write

f νρ
µ = t νρ

µ +
1
2

ε
νρ

µ , (25)

where t νρ
µ must be symmetric in the indices νρ. Then we consider the Jacobi identities for R, pµ,xν, for

N1, pµ,xν, and for N2, pµ,xν. These give the following equations

f νρ
µ ε

λ

γρ + f νλ

ρ ε
ρ

µγ + f ρλ
µ ε

ν

γρ = 0. (26)
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We rewrite these equations using (25) and we find that t νρ
µ must satisfy

t νρ
µ ε

λ

γρ + t νλ

ρ ε
ρ

µγ + t ρλ
µ ε

ν

γρ = 0 . (27)

Now using that t νρ
µ is symmetric for the exchange of indices νρ, one finds

t νρ
µ = 0 . (28)

So looking back at (25) we realize that the choice f νρ
µ = 1

2 ε
νρ

µ is unique. As an aside we note that the
following all-orders-in-` formula

{pµ,xν}=−δ
ν
µ

√
1+

`2

4
pρ pρ +

`

2
ε

νρ
µ pρ (29)

satisfies all the Jacobi identities exactly (no leading-order truncation), taking into account {xµ,xν} =
`ε

µν

ρxρ and (15)-(21).
We note that there is another source of deformation of the translational symmetry, which appears in

multiparticle systems. This deformation is due to the fact that the momentum charges are composed
following the deformed addition law (13). In fact if we consider for example a system of two particles,
with phase-space coordinates pµ,xν and qµ,yν, a translation with parameter bρ is generated by the
total-momentum charge (p⊕ q)ρ. For the particle with phase-space coordinates pµ,xν this translation
transformation results in

bρ{(p⊕q)ρ,xν} ' bρ{pρ,xν}− `bρ
ε

σγ

ρ qγ{pσ,xν} , (30)

which is a deformation of the usual translation due to the nonlinearity of the composition law and it
can be described by saying that the symmetries have the structure of a quantum group with nontrivial
coproduct for the translation generators.

We have thus characterized the DSR-symmetries that arise in 3D quantum gravity in the classical
limit and we have seen that they are such that the action of Lorentz-sector generators is undeformed
while the action of translation generators is deformed.

4. Kinenamics within the relative-locality framework
In this section we will first show how the onshell relation and the composition law of momenta can be
interpreted with the relative-locality framework in terms of the geometric properties of the momentum
space. Then we will see how using this framework one is able to describe the classical relativistic
kinematics of a system of particles characterized by the momentum space SL(2,R) which emerges from
3D gravity.

4.1. On-shell relation from the relative-locality framework
In the relative-locality framework [25, 26], the onshell relation is encoded in the metric on momentum
space. In particular it is defined by the geodesic distance D(0, pµ) of the momentum pµ from the origin:

D2(0, pµ) = m2 , (31)

where D(0, pµ) =
∫ 1

0 gµνk̇µ(s)k̇µ(s)ds , kµ(0) = 0, kµ(1) = pµ and the geodesic is defined by the Levi-
Civita connection associated to the momentum space metric gµν.

We now find a metric on our momentum space SL(2,R) that encodes the onshell relation (42). To do
this we embed SL(2,R) in R2,2, which is characterized by the metric

ds2 =−du2− (dξ0)
2 +(dξ1)

2 +(dξ2)
2 . (32)
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So we can describe the metric on SL(2,R) as the metric induced by the R2,2 metric. The embedding
coordinates are YI = (

√
1+ `2 pµ pµ, `pµ) so that the pull-back of the metric (32) to our SL(2,R) gives

us2:

ds2 =−(d p0)
2 +(d p1)

2 +(d p2)
2−

`2 pµ pνd pµd pν

1+ `2 pµ pµ
, (33)

which will be the metric we adopt on SL(2,R).
Our next step is to compute D(0, pµ) using the metric (33) and to show that we are able to reproduce

the onshell relation (42). For our purpose it is convenient to describe the geodesics in the embedding
space R2,2. And we start noticing that on the anti-deSitter hypersurface, which is the image of our
embedding, a geodesic defined by the Levi-Civita connection associated to the metric (33) can be
described by the Lagrangian

L = Ẏ IẎI +λ(Y IYI +1) , (34)

where λ is a Lagrange multiplier, imposing that the motion should be on the anti-deSitter hypersurface.
We note that the equations of motion coming from the Lagrangian (34) are very simple:

ŸI = λYI
Y IYI +1 = 0. (35)

It is easy to see that when computing the geodesic distance we can distinguish three cases. In fact for the
geodesic going out from the origin and arriving at a point YI = (

√
1+ `2 pµ pµ, `pµ) we have

`2 pµ pµ = sinh2(D(0,YI)) , (36)

if pµ pµ > 0. If pµ pµ = 0 one gets D(0,YI) = 0 and finally, if pµ pµ < 0 one has

`2 pµ pµ =−sin2(D(0,YI)). (37)

Using that D(0,YI) = `D(0, pµ) = `m we rewrite the previous equations as

`2 pµ pµ = sinh2(`m) pµ pµ > 0 , (38)
pµ pµ = 0 pµ pµ = 0 , (39)

`2 pµ pµ =−sin2(`m) pµ pµ < 0 . (40)

Since our mass-shell condition should be a perturbation of the special relativistic one, the relevant cases
are the last two, that can be written together as

`2 pµ pµ =−sin2(`m) . (41)

Rewriting (41) in the spirit of (31), we finally have

`−2
(

arcsin
(√
−`2 pµ pµ

))2

= m2 , (42)

which reproduces the prediction (42) based on 3D-gravity results.
We note that the physical momentum space is defined by the condition

−`−2 ≤ pµ pµ ≤ 0, (43)

where the first inequality comes from the anti-deSitter nature of our momentum space and the second
one comes from the requirement for the mass-shell condition to have the right special relativistic limit.

2 The metric (33) on SL(2,R) can also be obtained by exploiting the fact that our momentum space is a Lie group and then
defining the metric over this space using the Killing form of its Lie algebra.
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4.2. Composition law of momenta from the relative-locality framework
In the relative-locality framework [25, 26], the law of composition of momenta is encoded in the
affine connection on momentum space, which is in principle not related to the metric which gives the
onshell relation. In the leading-order analysis we are interested in here, the momentum-space connection
coefficients Γ

νρ
µ (0) are the coefficients of the leading-order expansion of the composition law [25, 26]:

(p⊕q)µ ' pµ +qµ− `Γ νρ
µ (0)pνqρ + . . . (44)

Recalling that in our case we have

(p⊕q)µ ' pµ +qµ− `ε νρ
µ pνqρ . (45)

then the connection coefficients which encode the composition law in our case are

Γ
νρ
µ (0) = ε

νρ
µ . (46)

Adopting this geometric description, the algebraic properties of the composition law become
geometric properties, which can be analyzed through the computation of the torsion, curvature and
nonmetricity tensors. Following the definitions given in Refs. [25, 26], the torsion describes the
noncommutativity of the composition law and we find

T νρ
µ (0) =− ∂

∂pν

∂

∂qβ

((p⊕q)µ− (q⊕ p)µ)p=q=0 = 2`Γ[νρ]
µ (0) = `Γνρ

µ (0)−Γ
ρν
µ (0) = 2`ε νρ

µ . (47)

The curvature of the connection (evaluated in the origin) measures the nonassociativity of the
composition law and in our case it vanishes

Rνρσ
µ (0) = 2

∂

∂p[ν

∂

∂qρ]

∂

∂kσ

((p⊕q)⊕ k− p⊕ (q⊕ k))µ |p=q=k=0= 0 , (48)

meaning that the composition law is associative. We finally compute the value in the origin of the
nonmetricity tensor, which turns out to be 0:

Nρµν(0) = ∇
ρgµν(0) = gµν,ρ(0)+ `Γ

µρ

σ (0)gσν(0)+ `Γ
νρ

σ (0)gµσ(0) = 0.

4.3. Description of particles within the relative-locality framework
We here show with a simple example how one describes the kinematics of a system of interacting
particles characterized by a curved momentum space in the relative-locality framework. As we will
see, the key ingredients Refs. [25, 26] are the deformed onshell relation and boundary terms, enforcing
momentum conservation, at endpoints of wordlines, when an interaction occurs. For our analysis we
will adopt the SL(2,R) momentum space and the associated deformed relativistic kinematics described
previously, and we will be satisfied by considering formulas at leading order in `. In particular our
example is a single two-body-particle-decay process (see Fig. 1), and at leading order in ` with the
prescription given above it is described by the action [25, 26]:

S =
∫ s0

−∞

((δ
µ
ν−

`

2
ε

µσ

νkσ)zνk̇µ +Nk(kµkµ−m2))ds+
∫

∞

s0

((δ
µ
ν−

`

2
ε

µσ

ν pσ)xν ṗµ +Np(pµ pµ−m′2))ds

+
∫

∞

s0

((δ
µ
ν−

`

2
ε

µσ

νqσ)yνq̇µ +Nq(qµqµ−m′2))ds−ξ
µ
[0]K

[0]
µ (s0) .

(49)

CTCQG2014 IOP Publishing
Journal of Physics: Conference Series 634 (2015) 012003 doi:10.1088/1742-6596/634/1/012003

7



Here the Lagrange multipliers Nk,Np,Nq enforce the on-shell relation of particles, m represents the mass
of the incoming particle and m′ and m′′ the masses of the outgoing particles. We note that the symplectic
form is such that {xµ,xν}= `ε

µν

ρxρ, so that (see (29)) one has

{pµ,xν}=−δ
ν
µ +

`

2
ε

νσ
µ pσ . (50)

ξ
µ
[0] is a Lagrange multiplier enforcing the conservation law of momenta, and, on the basis of what we

have established in the previous sections, we have

K [0]
µ (s0) = (k)µ− (p⊕q)µ = kµ− pµ−qµ + `ε

νρ
µ pνqρ . (51)

Figure 1. We here show the decay process described in Eq. (49), with one incoming and two outgoing
particles.

It has been noticed [25, 26, 28] that the deformation of the relativistic symmetries produces relativity
of spacetime locality3. This amounts to the fact that an interaction event which is local in the description
of nearby observers, is not local in the description of distant observers. And this feature leads to the
conclusion that the description of an event made by distant observers is misleading and that one should
use the description of an event made by an observer which is near to it. We will see in the next section
that the relativity of spacetime locality will require to use both equations of motion and symmetry
transformations when deriving physical predictions from the theory.

5. Dual-gravity lensing
We here analyze a phenomenological consequence deriving from adopting the SL(2,R) momentum space
and associated deformed relativistic kinematics described in the previous sections. To do this we will
consider the process depicted in Fig. 2, which is described within the relative-locality framework by the
following action

S =
∫ s0

−∞

((δ
µ
ν−

`

2
ε

µσ

ν pσ)xν ṗµ +Np(pµ pµ−m2))ds+
∫ +∞

s0

((δ
µ
ν−

`

2
ε

µσ

νkσ)zνk̇µ +Nk(kµkµ

−m′2))ds+
∫ s1

s0

((δ
µ
ν−

`

2
ε

µσ

ν p′σ)x
′ν ṗ′µ +Np′(p′µ p′µ−m′′2))ds+

∫ s1

−∞

((δ
µ
ν−

`

2
ε

µσ

νqσ)yνq̇µ

+Nq(qµqµ−µ2))ds+
∫ +∞

s1

((δ
µ
ν−

`

2
ε

µσ

ν p′′σ)x
′′ν ṗ′′µ +Np′′(p′′µ p′′µ)−µ′2))ds+

∫ +∞

s1

((δ
µ
ν

− `

2
ε

µσ

νq′σ)y
′νq̇′µ +Nq′(q′µq′µ−µ′′2))ds−ξ

µ
(0)K

[0]
µ (s0)−ξ

µ
(1)K

[1]
µ (s1) ,

(52)

3 The relativity of spacetime locality can also be seen as a consequence of the addtional invariant (energy) scale that is present
in DSR theories. In fact, in a similar way, in the passage from galilean to special relativity, the introduction of the invariant
constant c, renders simultaneity an observer dependent feature.
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Figure 2. We here show the process described in Eq. (52), involving two causally-connected interactions.

where (m,m′,m′′,µ,µ′,µ′′) are the masses of the particles. The conservation laws are encoded in K [0]
µ (s0)

and K [1]
µ (s1), for which we follow the prescription given in Ref. [26], for having causally-connected

interactions preserving translational invariance, so that we have

K [0]
µ (s0) = (q⊕ p)µ− (q⊕ p′⊕ k)µ = pµ− p′µ− kµ− `ε

αβ
µ (qα pβ−qα p′

β
−qαkβ− p′αkβ) (53)

and

K [1]
µ (s1) = (q⊕ p′⊕ k)µ− (p′′⊕q′⊕ k)µ = qµ + p′µ− p′′µ−q′µ− `ε αβ

µ (qα p′
β
+qαkβ + p′αkβ− p′′αq′

β

−p′′αkβ−q′αkβ) .
(54)

The equations of motion and the boundary conditions at endpoints of worldlines (which come by the
presence of the boundary terms devoted to enforce the conservation laws for an interaction event) are
derived by varying (52) keeping momenta fixed [25, 26] at ±∞. Then for the equations of motion one
finds

ṗµ = 0 , q̇µ = 0 , q̇′µ = 0 , k̇µ = 0 , ṗ′µ = 0 , ṗ′′µ = 0 , (55)

Cp = 0 , Cq = 0 , Cq′ = 0 , Ck = 0 , Cp′ = 0 , Cp′′ = 0 , (56)

ẋµ = 2Np pµ , ẏµ = 2Nqqµ , ẏ′µ = 2Nq′q′µ , (57)

żµ = 2Nkkµ , ẋ′µ = 2Np′ p′µ , ẋ′′µ = 2Np′′ p′′µ , (58)

and the boundary conditions are

zµ(s0) =−ξ
ν

[0]
δK [0]

ν

δkσ

(δ
µ
σ +

`

2
ε

µ ρ

σ kρ) = ξ
µ
[0]−

`

2
ε

µα

ν (kα−2qα−2p′α)ξ
ν

[0] ,

xµ(s0) = ξ
ν

(0)
δK (0)

ν

δpσ

(δ
µ
σ +

`

2
ε

µ ρ

σ pρ) = ξ
µ
[0]−

`

2
ε

µα

ν (pα−2qα)ξ
ν

[0] ,

x′µ(s0) =−ξ
ν

[0]
δK [0]

ν

δp′σ
(δ

µ
σ +

`

2
ε

µ ρ

σ p′ρ) = ξ
µ
[0]−

`

2
ε

µα

ν (p′α−2kα +2qα)ξ
ν

[0] ,

x′µ(s1) = ξ
ν

[1]
δK [1]

ν

δp′σ
(δ

µ
σ +

`

2
ε

µ ρ

σ p′ρ) = ξ
µ
[1]−

`

2
ε

µα

ν (p′α−2kα +2qα)ξ
ν

[1] ,

x′′µ(s1) =−ξ
ν

[1]
δK [1]

ν

δp′′σ
(δ

µ
σ +

`

2
ε

µ ρ

σ p′′ρ) = ξ
µ
[1]−

`

2
ε

µα

ν (p′′α−2q′α−2kα)ξ
ν

[1] ,

yµ(s1) = ξ
ν

[1]
δK [1]

ν

δqµ
(δ

µ
σ +

`

2
ε

µ ρ

σ qρ) = ξ
µ
[1]−

`

2
ε

µα

ν (qα−2p′α−2kα)ξ
ν

[1] ,

(59)
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y′µ(s1) =−ξ
ν

[1]
δK [1]

ν

δq′σ
(δ

µ
σ +

`

2
ε

µ ρ

σ q′ρ) = ξ
µ
[1]−

`

2
ε

µα

ν (q′α−2kα +2p′′α)ξ
ν

[0] ,

K [0]
µ (s0) = 0 , K [1]

µ (s1) = 0 ,
δK [0]

µ

δqν

= 0 ,
δK [1]

µ

δkν

= 0 .

(60)

We note that when all the particles are ”soft”, i.e. they have energies small enough that the `-
deformation can be ignored, one finds the standard special-relativistic situation.

Here we will look in particular at what the theory predicts for the particle exchanged between the two
interactions, assuming it is a massless particle. To do this we will consider an observer Alice who is
placed where the interaction characterized by the conservation law K [0]

µ = 0 occurs, and an observer Bob
who is placed where the interaction with conservation law K [1]

µ = 0 occurs. And for our purposes we will
assume that Bob is at rest with respect to Alice and that Bob’s and Alice’s coordinatizations are related
by a translation along the x1 axis. We start analyzing what happens in the case in which all particles
are soft, which gives the special-relativistic situation. In this case Alice’s description of the exchanged
massless particle is

x′1A(s) = x′0A(s) , x′2A(s) = 0 , (61)

where we assumed that the first interaction happens in Alice’s origin, and that the massless particle
exchanged between the two interactions propagates along the x1 axis in Alice’s coordinatization. The
index (s) introduced in (61) will be used to identify quantities related to a soft particle. Now we
require that the massless particle exchanged between the two interactions is detected, through the second
interaction, in Bob’s origin. This implies that Bob is related to Alice by a translation of parameters
bµ = (b0,b1,0) with b0 = b1, and it is easy to see that the worldline in Bob’s description is

x′1B(s) = x′0B(s)+b0−b1 = x′0B(s) , x′2B(s) = 0 . (62)

which has the same form of the worldline in Alice’s description.
Now we analyze what happens if the interactions are not soft and then the `-corrections become

important. For our analysis we choose the momentum of the exchanged particle to be (in Alice’s and
Bob’s frames):

p′1 = p′0 cosθ ,
p′2 =−p′0 sinθ ,

(63)

where θ is a free parameter. Requiring that the particle is emitted from Alice’s origin, one finds that the
worldline in Alice’s description is

x′1A = x′0A cosθ ,
x′2A =−x′0A sinθ .

(64)

Now we want to check for which values of θ the exchanged particle crosses Bob’s origin. For this, due
to the relativity of spacetime locality mentioned in the previous paragraph, we need to determine Bob’s
description of the worldline of the exchanged particle. We start noting that the translation transformations
which are symmetry of the action (52) are [25, 26]:

x′µB = x′µA +bν{(q⊕ p′⊕ k)ν,x′µ}= x′µA −bµ +bν `

2
ε

µρ

ν (p′ρ +2kρ−2qρ) ,

xµ
B = xµ

A +bν{(q⊕ p)ν,x
µ
A}= xµ

A−bµ +
`

2
ε

µρ

ν (pρ−2qρ)bν ,

yµ
B = yµ

A +bν{(q⊕ p′⊕ k)ν,y
µ
A}= yµ

A−bµ +
`

2
ε

µρ

ν (qρ +2p′ρ +2kρ)bν ,

zµ
B = zµ

A +bν{(q⊕ p′⊕ k)ν,z
µ
A}= zµ

A−bµ +
`

2
ε

µρ

ν (kρ−2qρ−2p′ρ)b
ν ,

x′′µB = x′′µA +bν{(p′′⊕q′⊕ k)ν,x
′′µ
A }= x′′µA −bµ +

`

2
ε

µρ

ν (p′′ρ +2q′ρ +2kρ)bν ,

y′µB = y′µA +bν{(p′′⊕q′⊕ k)ν,y
′µ
A }= y′µA −bµ +

`

2
ε

µρ

ν (q′ρ +2kρ−2p′′ρ)b
ν .

(65)
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Then using the translation transformation for the coordinate of the exchanged particle, specializing it
to the case of a translation from Alice to Bob for which the translation parameter is bµ = (b,b,0) and
combining it with (64) , one finds that Bob’s description of the worldline is

x′1B = cosθ x′0B + cosθ∆
0−∆

1 , (66)
x′2B =−sinθx′0B − sinθ∆

0−∆
2 , (67)

where ∆
µ ≡ bµ− `

2
ε

µρ

ν (p′ρ + 2kρ− 2qρ)bν. Now we observe that the equation of motion can be easily
rearranged as follows

x′2B =− tanθx′1B − tanθ∆
1−∆

2 ,

x′0B =
x′1B − cosθ∆0 +∆1

cosθ
.

(68)

And finally enforcing that the particle goes through the space origin of Bob x′1B = x′2B = 0 we find that

tanθ =−∆2

∆1 ,

x′0B =
∆1

cosθ
−∆

0 .

(69)

From the first equation we have

θ' tanθ=−∆2

∆1 =−
b`(k1−q1 + k0−q0)+b `

2(p′0 + p′1)

−b−b`(k2−q2)−b `
2 p′2

≈ b`(k1−q1 + k0−q0)

b+b`(k2−q2)
' `(k1−q1+k0−q0) ,

(70)
which implies that the worldline of hard particle that reaches Bob from Alice is not parallel to the
wordline of a soft particle that reaches Bob from Alice. This is the feature known as “dual-gravity
lensing” in the relative-locality literature [29, 30]. Before commenting more on this effect, we now
compute the time at which the hard particle crosses Bob’s spatial origin. This can be done by using our
result for θ in the second of Eqs. (69):

x′0B =
∆1

cosθ
−∆

0 ≈ ∆
1−∆

0 ≈ b+b(k2−q2)−b−b(k2−q2) = 0 . (71)

So we have that the hard particle crosses the spacetime origin of Bob.
We make two further comments on the dual-gravity lensing we have found here and that we represent

pictorially in Fig. 3. First we notice that, as in the previous studies which have considered this effect,
relative locality plays a key role [29, 30]. In fact if we look at the event where the soft (red) worldline
crosses Bob and the event where the hard (blue) worldline crosses Bob, we notice that these two events
are coincident in the coordinatization of the nearby observer Bob, while in the description of the distant
observer Alice they are not coincident. So in order to characterize the dual-gravity lensing it has been
crucial not to rely only on the description of one observer, but to consider the description of the observer
local to the event under consideration. Finally we make a remark on the energy dependence of the dual-
gravity lensing we have found here. We notice that the angle θ goes like `E?, where E? is the energy scale
of the particles involved. Then considering a case with some E? and a case with some E ′? bigger than E?

we have that the difference between the angles of the two cases is θ′−θ≈ `E ′?−`E?. This contributes to
the investigation of the energy dependence of the dual-gravity lensing. In fact, before our investigation,
there have been the studies of [30] which predicts, as we do, θ′−θ to be proportional to the difference
of the energy scales involved, E ′?−E?, while the study [29] predicts θ′−θ, to be proportional to the sum
E ′?+E?.
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Figure 3. The worldline of a hard (high-energy) particle emitted at Alice and reaching Bob forms a
non-zero angle with the wordline of a soft (low-energy) particle also emitted at Alice and reaching Bob.
We note that the angle θ (whose value is determined by our Eq. (70)) is very small (for example if the
energy of the particles are of the order of 1TeV , then the angle θ is of order 10−16.).

6. Outlook
We have seen how DSR-studies enhances the capacity of results from 3D quantum gravity, such as

a curvature of momentum space, spacetime noncommutativity and deformed relativistic symmetries,
to suggest interesting phenomenology. On the other hand 3D quantum gravity is helpful for DSR-
research since DSR-models derived by 3D quantum gravity can be a guidance in the investigation of
DSR-theories.

An interesting development of this study would be to investigate the phenomenology deriving by the
quantum effects related to the deformation of the symmetries in 3D gravity. Similar studies have been
performed only very recently in the context of κ-Minkowski noncommutativity [32, 33], and we feel that
a good starting point to do this in the context of 3D gravity is constituted by the results in Ref. [31].
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