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During voluntary action, dorsal premotor cortex (PMd) may exert
influences on motor regions in both hemispheres, but such inter-
regional interactions are not well understood. We used transcranial
magnetic stimulation (TMS) concurrently with event-related func-
tional magnetic resonance imaging to study such interactions
directly. We tested whether causal influences from left PMd upon
contralateral (right) motor areas depend on the current state of the
motor system, involving regions engaged in a current task. We
applied short bursts (360 ms) of high- or low-intensity TMS to left
PMd during single isometric left-hand grips or during rest. TMS to
left PMd affected activity in contralateral right PMd and primary
motor cortex (M1) in a state-dependent manner. During active left-
hand grip, high (vs. low)-intensity TMS led to activity increases in
contralateral right PMd and M1, whereas activity decreases there
due to TMS were observed during no-grip rest. Analyses of
condition-dependent functional coupling confirmed topographically
specific stronger coupling between left PMd and right PMd (and
right M1), when high-intensity TMS was applied to left PMd during
left-hand grip. We conclude that left PMd can exert state-
dependent interhemispheric influences on contralateral cortical
motor areas relevant for a current motor task.

Keywords: concurrent TMS-fMRI, effective connectivity, grip force,
motor preparation, transcallosal inhibition

Introduction

The dorsal premotor cortex (PMd) is a key structure for

selection and initiation of voluntary actions (Scott et al. 1997;

Grafton et al. 1998; Rushworth et al. 2003; Hoshi and Tanji

2004; Cisek and Kalaska 2005; Churchland et al. 2006). It is

reciprocally connected with ipsilateral (Lu et al. 1994; Wise

et al. 1997; Dum and Strick 2005) and contralateral (Marconi

et al. 2003) cortical motor areas, most notably primary motor

cortex (M1), parietal cortex, and contralateral PMd. During

simple unilateral hand movements, an increase in M1 activity is

seen predominantly in the contralateral hemisphere (Evarts

1966), whereas the increase in PMd activity is typically bilateral

in nonhuman primates (Tanji et al. 1988; Cisek et al. 2003) and

humans (Ward and Frackowiak 2003). The potential impor-

tance of ipsilateral premotor cortex for voluntary action is

further emphasized by findings that subcortical damage to

corticospinal pathways can lead to a functionally relevant in-

crease in PMd activity during movement of the affected

ipsilateral hand (Johansen-Berg et al. 2002; Ward et al. 2006,

2007). To date however, it remains unclear by what routes and

in what functional manner ipsilateral PMd may exert its

influences over contralateral cortical motor structures.

Several lines of evidence suggest the particular importance

of left PMd and its dominance for selection of both ipsilateral

and contralateral actions (Schluter et al. 1998, 2001; Rushworth

et al. 2003). Recent transcranial magnetic stimulation (TMS)

experiments have used an interhemispheric conditioning-test

paradigm, with 1 coil over premotor cortex and the other over

M1 in opposite hemispheres, finding that left PMd may change

excitability of contralateral M1, possibly directly via trans-

callosal projections (Mochizuki, Huang, et al. 2004a, 2004b;

Koch et al. 2006, 2007). This method therefore assesses the

causal impact of 1 brain region upon an interconnected area, at

high temporal precision, noninvasively in healthy human

subjects. However, conditioning-test TMS approaches for

studying influences of PMd on other areas must typically rely

on the induced motor response to an M1 pulse as their

dependent measure and therefore must ultimately highlight

influences converging on just M1 in particular. Moreover, they

cannot disclose the spatial specificity across cortical regions of

such influences. This is potentially important as left PMd also

has anatomical connections with several cortical structures

other than M1 in either hemisphere, notably with contralateral

right PMd (Lu et al. 1994; Wise et al. 1997; Marconi et al. 2003).

A very different approach has been to combine TMS with

physiological measures of induced changes in brain activity,

such as via positron emission tomography (Paus et al. 1997,

1998; Paus 1999), electroencephalography (Paus et al. 2001;

Massimini et al. 2005), or functional magnetic resonance

imaging (fMRI) (Bohning et al. 1998, 1999, 2000; Baudewig

et al. 2001; Kemna and Gembris 2003; Bestmann et al. 2004,

2005; Ruff and others 2006). Using such approaches, it has

been shown that stimulating left PMd with TMS at rest may

affect activity in putatively interconnected motor structures,

including contralateral (right) PMd, bilateral SMA, plus frontal

and parietal association cortices (Chouinard et al. 2003;

Bestmann et al. 2005).

However, to date such studies have not addressed any

dependence of remote causal influences from left PMd on the

current state of putatively interconnected motor regions. These

studies did not vary state due either to their use of prolonged

TMS stimulation protocols prior to scanning (Chouinard et al.

2003) and/or the absence of any varied task requirements

during scanning (Bestmann et al. 2005). Therefore, the nature

and spatial distribution across brain regions of functional

interplay between left PMd and interconnected cortical motor

regions for the control of voluntary movement remain unclear.

Due to recent technical advances, such potentially state-

dependent interplay between cortical regions can be studied
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noninvasively by combining TMS on line with event-related

fMRI (Bohning et al. 2000; Baudewig et al. 2001; Kemna and

Gembris 2003; Bestmann et al. 2004; Sack et al. 2007). This

approach applies short TMS events or stimulation trains that can

have immediate effects on brain activity lasting only a few

seconds (Romeo et al. 2000; Modugno et al. 2001) during

scanning. By concurrently assessing evoked activity changes

throughout the brain with fMRI, this approach can thus provide

a means of assessing interregional influences directly by using

the causal intervention or ‘‘perturbation’’ of TMS and then

measuring its remote effects as well as any local influences

(Paus 2005).

Accordingly, we examined the causal impact of left PMd

stimulation upon activity throughout the brain during 2

different contexts (ipsilateral grip task or no-grip rest). We

assessed any state-dependent remote effects of left PMd TMS,

and whether they might be distributed across all putatively

interconnected areas (potentially including, e.g., ipsilateral left

M1) or instead might be topographically restricted to task-

relevant brain regions during the left-hand movement (in-

cluding contralateral right M1 and right PMd). Such an out-

come would indicate some state specificity of causal influences

from left PMd during control of voluntary ipsilateral movement.

We specifically chose stimulation of left PMd because of its

suggested dominance for the selection and preparation of hand

movements (Schluter et al. 2001; Astafiev et al. 2003; Rush-

worth et al. 2003; Davare et al. 2006).

We applied short bursts of left PMd stimulation either during

an active force generation grip task with the ipsilateral left-

hand or during no-grip rest. We chose the grip task as its neural

substrates (in the absence of TMS) are already well character-

ized (e.g., Ehrsson et al. 2000, 2001; Ward and Frackowiak

2003). Moreover, it allowed TMS application to overlap tem-

porally with the active grip (see below). Our data reveal that

causal interactions of left PMd TMS on activity in intercon-

nected regions (including contralateral right PMd and right

M1) vary strongly with the current motor state in a manner

that is specific to relevant task-related motor cortical areas

contralateral to the gripping hand and thus contralateral to the

applied left PMd TMS.

Materials and Methods

Participants
Twelve right-handed healthy volunteers participated (3 females, mean

age 45.33 years, range 28--73 years) with neither history of neurological

or psychiatric illness nor regular medication. Participants were naive to

the purpose of the experiment. Full written consent was obtained from

all participants, in accord with local ethics approval. The wide age

range of participants (chosen here with a view for future possible

clinical studies of patients) was taken into account in analysis of the

results, which considered age as 1 possible factor.

Experimental Paradigm
A continuous scanning session (25 min 44 s) was conducted to measure

TMS influences in a 2 3 2 factorial event-related design with motor

state (grip, no grip) and TMS input to left PMd (TMShigh, TMSlow) as

experimental factors. In addition to 20 experimental trials per

condition, we also recorded 20 null events. These comprise trials

without experimental treatment and thus provide a baseline measure of

activity. All trials were pseudorandomized so that each trial type

occurred twice within 8 consecutive trials, with an average intertrial

interval of 16.11 s to minimize any carryover effects of TMS bursts

between successive trials (Modugno et al. 2001).

We varied the context in which TMS was applied using a simple left-

hand dynamic isometric grip task (Ward and Frackowiak 2003; Ward

et al. 2007). The grip manipulandum consisted of 2 force transducers

(Honeywell FSG15N1A; Honeywell, Harristown, NJ) moulded between

2 plastic bars (width 6 cm). Compression of the 2 bars during isometric

handgrip generated a differential voltage linearly proportional to the

exerted force. The signal was fed into an amplifier (CED 1902),

digitized (CED 1401; both Cambridge Electronic Design, Cambridge,

UK), and stored on a personal computer. A video projector at the bore

of the magnet projected visual stimuli onto a frosted screen, viewed via

a mirror system mounted atop the MR head coil. A centrally presented

visual columnar display gave visual feedback about any dynamic

changes in recorded voltage (and hence grip force) vertically. During

scanning, a visual cue indicated that participants should either perform

a single isometric left-hand grip or maintain rest. Target force levels for

all grip trials were set to 20% of individual maximum voluntary

contraction (MVC) and displayed as a horizontal yellow bar on the red

feedback column (Fig. 1A). This grip task was chosen based on pilot

work showing that participants could perform the task well even in the

presence of TMS (thus avoiding contamination of any neural effects of

TMS by overt behavioral changes, see Discussion). Furthermore, the

extended duration of each handgrip in the present task allowed TMS to

overlap with the active motor state, as confirmed below. Finally, the

neural substrates of this particular grip task have been well

characterized by prior fMRI studies (Ward and Frackowiak 2003).

On an unpredictable 50% of trials (grip condition), a left-hand arrow

as well as the grip-force target level were presented at trial onset (see

Fig. 1A). This cue started the trial, indicating that participants should

perform a brief single left-hand grip, until the column representing

force reached the horizontal target bar. The cue and target level were

displayed for 4 s, superimposed on the force column that was present

throughout the experiment. Participants were explicitly instructed that

speed was not critical and that they should generate a nonballistic

handgrip to approximately match the displayed target bar using a gentle

pace without major corrective movements.

On the other unpredictable 50% of trials (no-grip condition), a cross

(‘‘3’’ character) was shown instead of an arrow at trial onset (Fig. 1A).

This indicated that participants should withhold from making a left-

hand grip and instead keep the hands relaxed (no-grip rest condition).

This forewarning for a no-grip trial also served to prevent unintentional

grip force being generated when TMS pulses occurred. Only left-hand

grips were performed. However, participants held 1 manipulandum in

the right-hand to allow the assessment of any unintended mirror

movements or of undesired twitches during TMS. Neither was

observed here.

Two TMS intensities were applied over left PMd: for the TMShigh
condition, TMS was applied at 110% of individual resting motor (M1)

threshold (RMT; mean intensity [± SD] of 74% [±7%] of maximal

stimulator output, MSO), which is known to be effective in stimulating

PMd (Mochizuki, Huang, Rothwell 2004; Bestmann et al. 2005; Praeg

et al. 2005; Baumer et al. 2006; Koch et al. 2006; O’Shea et al., 2007).

RMT was determined for the right-hand when stimulating over left M1.

An unpredictable 50% of all trials during the fMRI experiment were in

this TMShigh condition (orthogonally to the grip/no-grip manipulation).

The other unpredictable half of trials during scanning provided the

TMSlow condition, which had the TMS intensity set to 70% of individual

active motor threshold (AMT), corresponding to a mean intensity (±SD)
of 42% (±4%) MSO. The seemingly rather high motor thresholds

(in terms of MSO) in our study reflect increased impedance of

the extended MR-compatible cabling running from the stimulator to

the coil.

A TMS train (5 pulses at 11 Hz) was applied on all trials to left PMd

(i.e., ipsilateral to the active hand for the grip task), starting 900 ms (10

echo-planar image [EPI] slice acquisitions) after presentation of the

instructional visual cue. We chose this fixed interval (rather than

triggering TMS from the actual movement onset on each trial) because

TMS pulse application had to be synchronized and interleaved with

high temporal precision in relation to each EPI slice acquisition (see

below and Fig. 1B). We later verified that participants were indeed

performing the grip task at the moment of TMS delivery on relevant

trials (see Results), as in previous work with the same behavioral grip
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task (Ward and Frackowiak 2003). In total, 400 TMS pulses were

applied during each scanning session, half of these at the low intensity

of 70% AMT. Our stimulation protocol thus conformed to published

TMS guidelines (Wassermann 1998).

Prior to scanning, participants were pretrained outside the scanner

until comfortable with the grip task without TMS being applied. Once

inside the scanner, the TMS coil was carefully located over left PMd

(see below) and the task was briefly practiced again until participants

performed brief and nonballistic isometric handgrips that approxi-

mately reached the required force level on every trial. Some pre-

liminary TMS trains were applied at 110% RMT while the participant

was contracting their right-hand at around 20% MVC (i.e., with the

opposite hand to that used during the scanning paradigm). This

ensured that participants were comfortable with the TMS stimulation

protocol and also provided a check that no twitches were induced

contralaterally to TMS. No overt muscle responses were either

observed in any participant or later reported by participants.

Magnetic Resonance Imaging
MRI was conducted with a 1.5-T Magnetom SONATA system (Siemens

Medical Solutions, Erlangen, Germany) using the body-transmit coil and

the single-channel receive CP head array (30 cm diameter). Whole-

head T1-weighted anatomical images were acquired after the exper-

iment using a 3D MDEFT sequence with an isotropic resolution of 1

mm3 (Deichmann et al. 2004). Each scanning session comprised

functional T2*-weighted MRI transverse EPIs with blood oxygenation

level--dependent (BOLD) contrast, covering the dorsal convexity of the

brain down to the thalamus (848 volumes, 20 slices per volume, 64 3 96

matrix, 3 3 3 mm in-plane resolution with 50% oversampling in phase-

encoding direction, 2.5 mm slice thickness plus 50% spatial gap

between spatially adjacent slices, time repetition = 1800 ms; time

echo = 50 ms; a = 90�; echo spacing 500 ls; 2298 Hz/pixel bandwidth;

trapezoidal readout gradients with a ramp of 130 ls and a flat top of 240

ls; field of view: 192 3 192 mm; max slew rate 214.9 mT/m/ms). The

oversampling in the phase-encoding direction shifted residual Nyquist

ghosting (induced by the presence of the MR-compatible TMS coil

inside the scanner) outside of the brain image, without compromising

the spatial resolution of MR images. Physiological and technical artifacts

were monitored online during scanning (Weiskopf et al. 2007). The

first 5 volumes were discarded to allow for T1 equilibration effects.

Following the main experiment, whole-brain EPI volumes were

acquired using the same orientation to facilitate spatial normalization

of the spatially restricted functional image series.

Figure 1. Experimental setup and main effects of grip task. (A) Grip-force manipulandum and screen display for grip (arrow to left) and no-grip (central cross) trials. During grip
trials, a yellow target bar indicated the required force level of 20% MVC. The actual force exerted was indicated on line by a red column. Participants were instructed to generate
a nonballistic force matching the displayed target bar using a gentle pace without major corrective movements. TMS was applied in a train, starting 900 ms after presentation of
the target force bar, so as to overlap with performance of the grip. (B) Schematic of EPI-TMS pulse synchronization. On each trial, TMS was applied at 1 of 2 intensities (110%
RMT or 70% AMT). TMS pulses were applied every 90 ms during the waiting time between EPI navigator echoes and EPI data readout. Every slice was perturbed equally often
throughout a scanning session. TMS pulses were temporally separated from any slice selection gradients or excitation pulses (fat saturation pulse, trigger pulse, RF pulse, slice
selection gradient, refocusing gradient, and navigator echo) and EPI data readout-gradients. (C) Simple fMRI main effects of grip[ no grip, irrespective of TMS. Results of the
group random-effects analysis are projected onto a transparent schematic of the MNI template brain and on a transverse section (z 5 54) of the averaged normalized structural
scans of all participants. The height threshold was set at T[ 4, uncorrected for multiple comparisons across whole brain, and the extent (or cluster) threshold set at P\ 0.05,
corrected for multiple comparisons across whole brain. Left-hand grip evoked activity in right M1, extending into adjacent PMd and ventral premotor cortex, plus primary and
secondary somatosensory cortex. Additional activity increases were found in superior parietal cortex and intraparietal sulcus, reflecting the visuomotor processing involved in
handgrip trials. Note that we focused imaging largely on the dorsal part of the brain. Therefore, any ventral visual activations due to visual aspects of the grip task were outside
the field of view. R 5 right.
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Interleaved TMS-fMRI
TMS was implemented using a MagStim Rapid system (The Magstim

Company, Dyfed, UK) with a custom-built MR-compatible figure of 8

stimulation coil (2 windings of 10 turns each; inner wing diameter 53

mm, distance between outer coil surface and windings of 2--3 mm

[variation due to manufacturing tolerance]; coil inductance, including

cable, of 20 lH; and maximal current at 100% stimulator output of ~5
kA). The stimulation unit was housed inside the scanner room in

a shielded cabinet from which the stimulation coil cable was fed

through a custom filter box (The Magstim Company). Residual RF

transmission along the coil cable was further suppressed using ferrite

sleeves. The TMS coil was connected to the stimulator in parallel to

a high-voltage relay (Magstim ES9486, The Magstim Company). During

EPI acquisition, the relay was in closed mode, thereby effectively

preventing any residual leakage in current flow from the stimulator. The

relay was opened 50 ms prior to TMS pulse discharge and closed again 8

ms after termination of the last TMS pulse of a trial. The relay and TMS

were controlled with a unit developed in-house based on a BASIC Stamp

2 microcontroller (Parallax Inc, Rocklin, CA). TMS pulses were applied

during the dead time between the EPI navigator echoes and the EPI data

readout and separated from RF slice excitation pulses (Gaussian-like

symmetric sync, 2560-ms duration, Bestmann, Baudewig, Frahm 2003).

Throughout scanning, each slice coincided equally often with TMS

pulses to avoid any systematic influences on slice-by-slice variance.

The stimulation site over the left PMd was determined as the scalp

point 2 cm anterior and 1 cm medial to the so-called motor ‘‘hot spot’’

for evoking single muscle twitches in the contralateral first dorsal

interosseous (Schluter et al. 1998; Johansen-Berg et al. 2002; O’Shea

et al., 2007). Inside the scanner, the stimulation coil was placed over

the marked location using an MR-compatible, custom-built coil holder,

allowing stable positioning of the TMS coil with several degrees of

freedom. The coil was oriented tangential to the scalp, at approximately

45� from the mid-line, inducing a biphasic current with an initial

anteroposterior-induced direction. Foam-padded cushions were used

to restrict head movements.

All visual stimulation, grip-force data acquisition, TMS triggering and

intensity regulation, and relay settings were controlled using the

toolbox Cogent 2000 (Wellcome Department of Imaging Neuroscience,

London, UK; http://www.fil.ion.ucl.ac.uk/cogent) running under

Matlab (The Mathworks, Natick, MA). Participants wore earplugs (single

number ratings = 36 dB) to reduce acoustic noise from the scanner and

the TMS discharge sound.

Behavioral and fMRI Data Analysis
For each grip trial, we measured the movement onset, grip duration,

and peak force. Movement ‘‘onset’’ was defined as the latency between

the onset of the visual cue indicating a grip trial and the point when

grip force exceeded 20% of baseline value. This, however, means that

the cortical activity related to grip-force production probably started

several tens or hundreds of milliseconds before this level was reached.

Moreover, the extended nature of the TMS train (360-ms duration)

ensured that it would overlap with grip-related brain states during the

grip task. Grip duration was defined between the 2 successive time

points at which grip force exceeded the 20% of baseline boundary, and

the maximum force was determined during this period. Paired 2-

tailed t-tests were used for comparison of these parameters across

participants and stimulation conditions.

Following trajectory-based online reconstruction of functional

images (Josephs et al. 2000), EPI slices coinciding with TMS pulses

were replaced by interpolation between the previous and subsequent

acquisition of the same slice (Ruff et al. 2006). Additionally, any

remaining slices whose mean signal deviated from the mean signal of

the slice time series by more than 1.5 SD were replaced in the same

way (only 0.19% in total).

Imaging data were analyzed using Statistical Parametric Mapping

(SPM5, http://www.fil.ion.ucl.ac.uk/spm) implemented in Matlab 6. The

first 5 volumes were discarded, and all subsequent volumes were

realigned to the first volume in order to correct for interscan move-

ment. Additional unwanted variance related to interactions of head

motion and geometric distortions were removed using the ‘‘unwarp’’

toolbox as implemented in SPM5 (Andersson et al. 2001).

Thewhole-brain EPI imageswerenormalized to a standardEPI template

based on the Montreal Neurological Institute (MNI) reference brain in

Talairach space, using 4th degree b-spline interpolation, and resampled to

2 3 2 3 2 mm3 voxels. The resulting transformation parameters were

applied to the image volumes of the main experiment. Preprocessing

included detrending of time series in each voxel with a linear model of

theglobal signal (Macey et al. 2004); grandmean scalingof 100 over voxels

and scans, AR(1) model to account for serial autocorrelations of the data;

and spatial smoothing of normalized images with an isotropic 8-mm

full-width at half-maximum Gaussian kernel to allow for valid statistical

inference according to Gaussian random field theory.

Statistical analysis followed a 2-stage procedure. First, a single-subject

fixed-effects model was computed for each participant by multiple

regression of the voxelwise time series onto a composite model

containing the covariates of interest. Each of the 4 event-related trial

types (TMShigh-grip, TMSlow-grip, TMShigh-no grip, TMSlow-no grip) were

modeled as delta functions, with onsets defined as the first TMS pulse,

and were included as separate covariates. To account for any additional

variance induced by any slight trial-by-trial and or intersubject

variations in grip force and grip duration, additional covariates com-

prising a delta function scaled by the actual peak force and duration

exerted for each handgrip were included in the model. All covariates

were convolved with a canonical synthetic hemodynamic response

function in a general linear model (Friston et al. 1995, 1998) together

with a single covariate representing the mean (constant) term over

scans. Thus, for each participant, voxelwise parameter estimates for

each covariate were calculated, resulting from the weighted least

squares fit of the model to the data. The statistical parametric maps

(SPMs) of the t statistic resulting from linear contrasts of each covariate

were then generated and stored as separate images for each participant.

At a second level of analysis, contrast images for each participant and

covariate were entered into a 1-sample t-test for each covariate of

interest in a random-effects analysis across participants. Any age-related

changes in cortical connectivity (Della-Maggiore et al. 2000; Rowe et al.

2006) or PMd function (Ward and Frackowiak 2003) were considered

by including the age of each participant as a covariate in this second-

level model. This revealed no age-related influences for the critical

findings, namely for the main effect of TMS; the main effect of grip; or

their interaction, in any grip-task--related areas for the present dataset.

The height threshold for SPM{t} maps was set at T > 4, uncorrected for

multiple comparisons across the whole brain, and the extent (cluster)

threshold set at P < 0.05, corrected for multiple comparisons across

the whole brain.

The site of stimulation (left PMd) around the left precentral sulcus

(x, y, z = –26, –14, 62; see Amiez et al. 2006) was a priori defined as

a region of interest (ROI) for our fMRI analysis. This region corresponds

well to previously reported activity changes at the putative site of

stimulation following premotor repetitive TMS (Rowe et al. 2006).

Small volume correction for this ROI was applied by using a spherical

mask around this location with a diameter of 15 mm. Activity within

this ROI is reported at P < 0.05, cluster level corrected for multiple

comparisons within the spherical ROI.

Analysis of Condition-Dependent Functional Coupling between
Stimulated Left PMd and Other Brain Regions
In addition to the standard event-related analysis of fMRI activity by

condition described above, we also ran a supplementary analysis testing

for any changes in ‘‘functional coupling’’ or effective connectivity be-

tween areas as a function of condition (Friston et al. 1997; Gitelman

et al. 2003). Specifically, we tested for any regions showing higher

functional coupling with the targeted left PMd site when stimulated

with high versus low TMS under the active grip versus no-grip con-

ditions. To do so, we used the well-established ‘‘psychophysiological

interaction’’ or PPI approach (e.g., Friston et al. 1997; Gitelman et al.

2003; Lee et al. 2003; Egner and Hirsch 2005; Wolbers et al. 2006),

a data-driven analysis that makes relatively minimal assumptions. We

tested for areas showing stronger functional coupling with left PMd

(i.e., higher covariation in residual activity patterns with the time

course of left PMd, once the mean condition-specific activations

identified by the main SPM analysis, as above, had been factored out

from all regions).
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Specifically, we extracted the first eigenvariate of the fMRI signal

from an 8-mm ROI sphere, centered around the group peak voxel for

the main effect of high- versus low-intensity TMS in the basic SPM

analysis (x, y, z = –18, –16, 62). We then tested for a PPI interaction,

namely a stronger covariation of left PMd with other areas related to

the motor task that was specific to high versus low TMS, during the

active grip-task versus the no-grip condition. To focus on the task-

related areas of interest, we restricted this PPI analysis to those regions

which had shown an overall activation for grip versus no grip (inclusive

masking at P < 0.05, uncorrected, but with the PPI itself thresholded at

our conventional threshold of T > 4 and extent (or cluster) threshold

set at P < 0.05, corrected for multiple comparisons across the whole

brain). At the second-level model, we included the age of each par-

ticipant as a covariate. Again, no age-related influences for the critical

contrast were observed.

For all fMRI analyses (except for the ROI consideration of left PMd),

allocation of BOLD signal changes to anatomical regions was made

according to anatomical landmarks identified from the mean T1-

weighted structural image of all participants with the aid of the atlas of

Duvernoy (Duvernoy 1991) as well as by using a 3-dimensional

probabilistic computerized cytoarchitectonic atlas (Eickhoff et al.

2005).

Results

Behavioral Results

None of the participants reported any adverse side effects.

Participants reached the desired target force level accurately

on grip trials (mean ± SD) 20.3 ± 1.5% of MVC, with left-hand

grip movements exceeding our criterion for movement onset

( >20% of baseline) on average 1.13 ± 0.21 s after the instruc-

tional cue and lasting for 1.1 ± 0.5 s. Note that here we used a

conservative measure for movement onset ( >20% of baseline).

Accordingly, neural changes related to grip probably started

several tens or hundreds of milliseconds prior to this, and given

the extended train of TMS (360-ms duration), some of this train

must overlap with neural states associated with the active grip.

Force level, movement onset, and movement duration within

participants were highly correlated across the 2 TMS stimula-

tion conditions within single subjects (all r > 0.7, P < 0.05),

indicating that performance was comparable across conditions.

There were no behavioral differences between the high and

low TMS condition in peak force (TMSlow mean ± standard

error of the mean: 20.3 ± 1.5% MVC, TMShigh: 20.3 ± 1.6% MVC,

t11 = –0.24, P = 0.81), grip duration (TMSlow: 1.12 ± 0.45 s,

TMShigh: 1.09 ± 0.43 s, t11 = 1.97, P = 0.08), or grip-onset time

(TMSlow: 1.13 ± 0.16 s, TMShigh: 1.15 ± 0.15 s, t11 = –1.02, P =
0.33). This was important for our design, as our aim was that

the motor task here should serve to manipulate the ‘‘motor

state’’ of the cortical network when high versus low TMS was

applied, rather than high TMS serving to disrupt performance

of the motor task (which might then have complicated

interpretation of any fMRI changes). Instead, the approach

here was to apply TMS as a physiological ‘‘perturbation’’ dur-

ing 1 motor state (active grip) versus another (rest) and

then measure the impact of this on remote but potentially

interconnected brain regions with fMRI. No mirror movements

of the right-hand occurred during TMS, as confirmed by the

right-hand grip-force recordings, in addition to participants’

self-report.

Functional Imaging Results: Activations by Condition

Figure 1C shows the main effect of the grip-force motor task as

compared with the no-grip condition, when pooling across the

2 TMS intensities: (TMShigh-grip + TMSlow-grip) – (TMShigh-no

grip + TMSlow-no grip). In accord with prior fMRI work with

this grip task (Ward and Frackowiak 2003), left-hand grip

induced largely right lateralized activity in primary sensorimo-

tor cortex, right PMd, supplementary and cingulate motor area,

ventral premotor cortex, secondary somatosensory cortex, and

intraparietal sulcus (see Fig. 1C; see also Table 1, grip > no

grip). Additional activity increases were observed in left PMd

(peak: x, y, z = –30, –8, 60), albeit at a lower threshold of

P < 0.001, uncorrected for multiple comparisons across the

brain.

By contrast, when participants had to withhold movements

(i.e., following appearance of an ‘‘3’’ symbol, rather than

a leftward arrow, at the start of no-grip trials, see Fig. 1A),

activity was significantly larger in left and right dorsolateral

prefrontal cortex, as compared with grip trials (see Table 1, no

grip > grip), possibly reflecting response inhibition in these

no-grip trials.

Turning to the impact of high- versus low-intensity TMS [i.e.,

(TMShigh-grip + TMShigh-no grip) – (TMSlow-grip + TMSlow-no

grip)], given that the TMS probe was located over left PMd, we

considered an a priori ROI for inspection of local TMS effects

(see Materials and Methods above). As shown in Figure 2, the

ROI analysis of left PMd revealed a significant activity increase

for TMShigh (vs. TMSlow), which was attributed to premotor area

6, with 80% probability, by a computerized cytoarchitectonic

atlas designed for use with SPM (Eickhoff et al. 2005). This

assignment would thus correspond to the PMd (Picard and

Strick 2001; Chouinard and Paus 2006; Mayka et al. 2006) (see

Table 1). Therefore, TMS at high (vs. low)-intensity elicited

a small yet significant relative activity increase at the putative

site of stimulation.

Comparing both types of TMS event (high and low together,

50% of which contained grip trials at each TMS intensity)

jointly against null events confirmed that presence versus

absence of any TMS stimulation activated bilateral auditory

cortex, as would be expected, due to the click sound inevitably

associated with TMS application (see Supplementary Fig. S1 and

Supplementary Table S1). This is consistent with all prior

combined TMS neuroimaging studies (e.g., Siebner et al. 1999).

However, such considerations are tangential to the hypothesis-

driven focus on motor-related regions here and cannot explain

our other fMRI findings.

The critical question in the present study was how the

high > low TMS manipulation (which activated the target site

in left PMd, see Fig. 2) would interact with the current motor

state, that is, (TMShigh-grip – TMSlow-grip) – (TMShigh-no grip –

TMSlow-no grip). Critically, we found (Fig. 3A) a significant

crossover interaction between motor state and TMS intensity to

left PMd, arising in right M1 hand region (BA4a) and the caudal

aspect of right PMd (BA6). Figure 3B plots the parameter

estimates (proportional to percent signal change) for the peak

voxels within each of these areas for each of the 4 main

conditions. This reveals that during the grip task that activated

the motor network, TMShigh (versus TMSlow) to left PMd led to

relative increases in contralateral right PMd and M1. By

contrast, when TMShigh was applied to left PMd during no-grip

rest, this led to relative decreases instead in contralateral motor

and premotor activity, as compared with TMSlow (see Fig. 3B).

Note that due to its ‘crossover’ nature, this interaction cannot

simply be explained away by scaling effects, changes in baseline

activity per se; nor can it be explained by age-dependent
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changes in PMd function, as we had assessed any such

influences in our analysis. The critical interaction remained

significant after taking into account these factors.

Functional Imaging Results: Condition-Specific
Functional Coupling with Left PMd

In addition to assessing the overall activations per condition, as

analyzed above, we also implemented a PPI analysis for

any condition-specific functional coupling between TMS-

stimulated left PMd (which provided the ‘‘seed’’ area) and

other brain regions, with a particular interest in those related

to the grip task. The resulting SPM for the PPI seeded with left

PMd (i.e., testing for covariations in any other brain regions,

with the residual time course of left PMd) confirmed that TMS-

stimulated left PMd showed significantly higher effective

connectivity with contralateral PMd (x, y, z = 36, –14, 56) and

contralateral M1 (x, y, z = 36, –24, 64) during grip than for the

no-grip condition (see Fig. 3C). Thus, these right hemispheric

motor regions showed stronger functional coupling with the

stimulated left PMd during voluntary control of left-hand grip

than in the no-grip condition.

Discussion

Using short bursts of TMS to left PMd during fMRI, we showed

state-dependent causal influences of left PMd on activity levels

in remote anatomically interconnected regions (right PMd and

M1). Whereas previous work had shown that more extended

TMS (for 10 s or more) to PMd can produce some remote

activity increases in cortical motor structures distant to the

stimulation site (Chouinard et al. 2003; Bestmann et al. 2005),

the new finding here was that such remote influences can vary

depending on the current motor state. Moreover, they can do

so in an event-related fashion, when the motor state changes

unpredictably from trial to trial, and TMS is applied in short

bursts.

This state dependence arose predominantly for motor

structures engaged in the current motor behavior (i.e., within

the network activated by the left-hand grip task), rather than

being broadly distributed across the entire range of potentially

interconnected brain regions (including ipsilateral M1). Al-

though, TMS is known to produce some unspecific secondary

activity changes (see Supplementary Fig. S1), as, for example, in

auditory cortex (Siebner et al. 1999), the present findings

cannot be readily explained away or attributed merely to such

undesired stimulation effects. In particular, the crossover

Figure 2. Local effect of TMS stimulation on BOLD signal from left PMd ROI analysis
for TMShigh [ TMSlow, irrespective of grip, in an a priori defined ROI (sphere of 15
mm diameter, illustrated by the white circle) centered around the site of stimulation
in the left PMd (x, y, z: �24, �14, 62). TMShigh versus TMSlow induced more activity
in this area (P\ 0.05, corrected for multiple comparisons at the cluster level within
ROI). Thus, TMS at 110% of RMT evoked a local activity increase, relative to
stimulation at the low intensity (70% AMT). Activations are projected onto the
average normalized structural scans of all participants. R 5 right.

Table 1
Imaging results

Anatomical/functional region MNI coordinates Peak voxel Cluster

x y z Z score T score P value

Simple effect grip[ no grip (irrespective of TMS)
R M1/PMd 38 �22 54 4.85 10.29 \0.001
R postcentral sulcus 40 �34 54 5.56 15.37 \0.001
Supplementary motor area/cingulate motor area 2 �4 54 5.28 13.05 \0.001
BL supplementary motor area 0 �4 70 5.07 11.62 \0.001
BL cingulate cortex 0 �22 48 4.42 8.17 \0.001
R posterior superior parietal cortex 8 �78 52 3.79 5.90 0.002
R posterior intraparietal sulcus 24 �74 30 5.02 11.32 \0.001
R ventral premotor cortex 54 6 38 4.35 7.87 \0.001
L superior occipital gyrus �24 �86 26 3.79 5.91 \0.02
L superior parietal cortex �26 �60 54 4.33 7.79 \0.001
R thalamus 8 �12 10 3.92 6.31 \0.02

Simple effect no grip[ grip (irrespective of TMS)
L medial frontal gyrus �32 28 52 4.93 10.75 \0.001
R medial frontal gyrus 32 36 50 4.32 7.74 \0.01

Simple effect TMShigh [ TMSlow (irrespective of grip)
R inferior temporal gyrus 46 �20 8 3.80 5.93 \0.05
L precentral sulcus �18 �16 62 3.21 4.40 \0.05*

Simple effect TMSlow [ TMShigh (irrespective of grip)
R anterior inferior parietal cortex 54 �58 42 4.48 8.44 \0.005
L superior parietal cortex �26 �46 66 4.35 7.87 \0.05

Interaction (TMShigh-no grip--TMSlowno grip) � (TMShigh-grip--
TMSlow-grip)
R precentral gyrus 34 �16 58 4.58 8.88 \0.05
R central sulcus 36 �26 62 4.11 6.93 \0.05

Note: Height threshold of T[ 4, uncorrected for multiple comparisons across whole brain, and extent (or cluster) threshold set at P\ 0.05, corrected for multiple comparisons across whole brain. R,

right; BL, bilateral; L, left.

*P\ 0.05 cluster level corrected for multiple comparisons across whole across small volume of interest in a priori defined area of stimulation.
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interaction (see Fig. 3B) from our random-effects analysis

shows that the effect of TMShigh versus TMSlow to left PMd on

right PMd and right M1 depends on the current motor state.

This is also unlikely to be accounted for by any scaling effects,

changes in baseline activity per se, or any conceivable artifacts

generated by the TMS pulse.

We argue below that the present findings most likely reflect

event-related such changes in the effective connectivity of left

PMd with contralateral (right) motor areas. Note also that our

TMS-fMRI study demonstrated state-dependent interactions

not only between left PMd and right M1 (potentially consistent

with Koch et al. 2006, 2007 work with conditioning-test

double-coil approaches) but also for left PMd influences on

right PMd. This goes beyond what could be achieved with

conditioning-test double-coil TMS techniques alone, as those

must always rely on an induced electromyography (EMG)

response and thus are ultimately confined to considering pos-

sible effects on M1.

The contralateral activity decrease resulting from PMd

stimulation reported here, under no-grip rest, seems broadly

compatible with previously described transcallosal inhibition

between M1 in both hemispheres during rest (Ferbert et al.

1992). For example, recent conditioning-test TMS studies

show that PMd stimulation at rest can decrease contralateral

corticospinal excitability, as measured by the EMG response to

a subsequent TMS pulse over M1 of the other hemisphere

(Mochizuki, Huang, Rothwell 2004; Mochizuki, Terao, et al.

2004; Baumer et al. 2006; Koch et al. 2006, 2007). The specific

latencies at which PMd stimulation influences contralateral M1

excitability favor a direct transcallosal mechanism (Mochizuki

et al. 2004a, 2004b; Baumer et al. 2006; Koch et al. 2006, 2007).

Whereas callosal fibers are predominantly excitatory (Innocenti

1986; Bloom and Hynd 2005), transcallosal inhibition is thought

to be mediated by these excitatory fibers projecting onto c-
aminobutyric acidergic inhibitory neurons (Ferbert et al. 1992).

In our particular case, this would suggest that the con-

tralateral reduction in BOLD fMRI signal observed for TMShigh
versus TMSlow during the no-grip condition may reflect a

transcallosally mediated net activity decrease contralateral to

the site of stimulation. This finding is similar to the relative

contralateral BOLD signal reductions previously observed at

rest when using more prolonged TMS to M1 (Bestmann,

Baudewig, Siebner, et al. 2003; Bestmann et al. 2004). However,

here we demonstrate that this can arise in both right PMd and

right M1 due to left PMd TMS, even for short stimulation

periods of just a few 100 ms applied in an event-related manner.

By contrast, when participants were performing a single

isometric left-hand grip we found instead a relative activity

increase (rather than decrease, i.e., the opposite BOLD effect)

in PMd and M1 contralateral to the site of stimulation, for

TMShigh versus TMSlow to left PMd. Thus, during a left-hand grip

task, left PMd TMShigh now led to a boost in activity in

contralateral motor regions. Our data thus lend credence to the

concept of transcallosal signaling as a dynamic process, such

that at a functional level either (or both) interhemispheric

transcallosal inhibition and excitation may arise, with the

relative dominance of these depending on the current state

(Bloom and Hynd 2005). In our case, interhemispheric facil-

itatory effects of PMd stimulation become more influential

during voluntary left-hand action. Facilitatory interneurons in

M1/PMd may then have a lowered threshold for being activated

by transcallosal pathways, as targeted by our PMd stimulation.

Recent findings from conditioning-test double-coil studies

corroborate this idea: inhibitory and excitatory interactions

from left PMd to contralateral right M1 interact differentially

with motor state during movement of the left-hand (Koch et al.

2006) as opposed to rest. Notably, here we found analogous

BOLD consequences for right PMd as well as right M1. We

suggest that here either left PMd stimulation may have direct

effects on both right M1 and PMd or that the stimulation effect

may first be transmitted to transcallosally to right PMd and then

propagated to right M1. These different possibilities might be

differentiated by applying the present new paradigm to

patients with right PMd lesions that spare right M1. We should

note, however, that relating BOLD signal increases or decreases

Figure 3. Interaction between TMS intensity and current motor state for BOLD
signals. (A) SPMs showing a significant interaction [(TMShigh-no grip � TMSlow-no
grip) � (TMShigh-grip�TMSlow-grip)] in right PMd contralateral to TMS stimulation (x,
y, z: 34, �16, 58; assigned to area 6 with a 50% (30--70%) probability, [Eickhoff et al.
2005]) and right M1 (36, �26, 62; assigned to area 4a with a 60% probability). These
same regions were also modulated by the grip task (i.e., were active during left-hand
grip), see Table 1, Figure 1C. (B) SPM parameter estimates showing that TMShigh to
left PMd at rest led to a relative activity decrease in contralateral PMd and M1
(BA4a), as compared with TMSlow. By contrast, when applied during active left-hand
grip, TMShigh to left PMd now led instead to a relative increase in activity in these
regions. This illustrates the state-dependent influence of left PMd TMS on
contralateral motor areas, which are implicated in hand movement control. (C)
Regions implicated in the grip task that also show changes in functional coupling (as
revealed by an independent PPI analysis) with the site of TMS stimulation (left PMd)
as a function of event-related condition. A significant context-dependent covariation
with left (stimulated) PMd was revealed in 2 similar clusters as for the SPM
interaction analysis located in contralateral right PMd (x, y, z 5 36, �14, 56) and
right M1 (x, y, z5 36, �24, 64). Thus, the functional coupling between left PMd and
right PMd and right M1 was stronger for TMShigh versus TMSlow during grip than
during no grip. Results are projected onto the average normalized structural scans of
all participants (random-effects analysis, corrected for multiple comparisons across
the whole brain at T[ 4, and extent [cluster] threshold of P\ 0.05). R 5 right.
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to actual inhibitory or excitatory neural activity is a complex

issue that cannot be resolved directly by fMRI alone but

inevitably requires combination of more invasive recordings of

neural activity with fMRI (Logothetis et al. 2001; Logothetis and

Wandell 2004). Although the present study found that remote

BOLD effects of left PMd TMS could reverse in direction with

current motor state, in apparent analogy to recent twin-coil

findings (Koch et al. 2006), the relation between BOLD changes

and neural firing must always be considered with care. We note

also that TMS to left PMd did not alter grip behavior, although

we did observe a clear effect on BOLD signal in right PMd and

right M1 that reversed during rest. Our design has in fact aimed

to avoid any behavioral changes due to TMS, as otherwise those

might have further complicated interpretation of the BOLD

effects. We therefore conclude that the observed BOLD

changes were caused by the physiological TMS intervention

here, rather than reflecting differences in behavior.

Our further PPI analysis revealed significantly enhanced

functional coupling (covariation in BOLD signal) between left

PMd and right PMd/M1, specifically for TMShigh versus TMSlow
in the grip versus no-grip conditions. That is, functional

coupling between these regions was strongest when high-

intensity TMS was applied to left PMd during the active grip

condition, consistent with variations in activity for this stimu-

lated region then propagating in a corresponding manner to

right PMd and right M1, in the context of the left-hand grip

task. This provides further evidence that a voluntary motor task

with the left-hand leads to facilitatory interactions between left

PMd and right PMd/M1, rather than just transcallosal inhibition

as is typically found at rest. Moreover, our data suggest that the

topography of these interregional influences is specific to brain

regions engaged in the current task. This implies that while the

effects of TMS are not restricted to the site of stimulation, they

are also not broadcasted across the entire range of putatively

interconnected brain regions, as, for example, ipsilateral M1. In

addition, TMS here predominantly influenced currently task-

relevant brain regions that are intimately connected to the

stimulation site and concerned with the generation of move-

ment (Ehrsson et al. 2000, 2001; Ward et al. 2007), whereas

other regions activated during the task such as contralateral,

parietal, and somatosensory cortex were not influenced by TMS

in a context-dependent way.

The present study demonstrates how concurrent TMS-fMRI

can be used to characterize context- or state-dependent inter-
actions between remote but interconnected regions of the

motor system. TMS-fMRI may have some advantages over

classical TMS approaches relying on EMG measures after

stimulation of M1, and of other sites as in conditioning-test

approaches, in addition to allowing measurement of activity

levels in numerous brain regions concurrently. Quantification

of peripheral muscle responses during contraction can become

ambiguous because different I-waves (Amassian and Stewart

2003) are recruited during motor behavior than at rest. During

voluntary action, it can thus remain unclear whether any

changes in peripheral muscle responses (e.g., due to M1 TMS,

in the context of a conditioning pulse elsewhere or not) reflect

different I-wave recruitment or the stimulation of different

intracortical pathways. Whereas, the BOLD signal itself has to

be interpreted with some caution (Logothetis and Wandell

2004), it can nevertheless provide a very different, potentially

complementary measure of the cortical areas affected during

stimulation of primary and secondary motor areas, and of their

functional interplay, without having to rely on peripheral

muscle responses or direct M1 stimulation.

We had chosen to target left PMd with TMS here, while

varying the requirements for an ipsilateral handgrip task,

precisely because we did not seek to disrupt performance via

TMS but rather to ‘‘inject’’ a well-controlled input into PMd and

then measure its remote causal influences with fMRI, while

varying context in an event-related manner. The present ap-

proach thus extends previous repetitive TMS (Plewnia et al.

2003; Schambra et al. 2003) or ‘‘off-line’’ TMS studies that were

combined with neuroimaging measures (Paus 1999; Chouinard

et al. 2003; Siebner et al. 2003; Tegenthoff et al. 2005), which

had disclosed some network activity changes following ex-

tended stimulation of sensorimotor areas. The more ‘‘online’’

combination of fMRI with interleaved short bursts of TMS in

the scanner, as used here, can evidently disclose rapid event-

related effects and their spatial topography within the sen-

sorimotor network. Although, we had specifically chosen to

stimulate left PMd here because of its suggested dominance for

the selection and preparation of hand movements (Schluter

et al. 2001; Astafiev et al. 2003; Rushworth et al. 2003; Davare

et al. 2006), we would not make any strong claims for

hemispheric specialization based on the current data. It may

be useful to extend the same approach as introduced here to

stimulation of right PMd instead in future work and indeed to

stimulation of numerous different motor sites.

Other approaches in fMRI research without TMS (e.g.,

Worsley et al. 1998; Friston et al. 2003; Roebroeck et al.

2005; Patel et al. 2006) have also emphasized that ‘‘functional

coupling’’ or ‘‘effective connectivity’’ between interconnected

brain regions may vary with the current state. This may dy-

namically reconfigure how much influence a given brain region

has upon certain others. The present combined TMS-fMRI

approach may provide a particularly direct empirical approach

to such theoretical issues concerning interregional influences.

We thus think our study establishes and corroborates a

methodological approach that may be of more general use in

studying how motor networks may be reconfigured as a

function of the current state (Massimini et al. 2005; Paus 2005).

In conclusion, by obtaining fMRI measures of brain activity

during event-related TMS, rather than relying on peripheral

muscle activity (as required in the standard conditioning-test

TMS method), we were able not only to confirm previous

hypotheses of interhemispheric causal influences between

(left) PMd and contralateral (right) M1 but also to reveal these

for contralateral right PMd. Moreover, we showed that con-

trolling hand movements engages interhemispheric interplay

specifically within a network of movement-related cortical

motor structures. Finally, we found that the nature of this

functional interplay between interconnected motor areas de-

pended critically on the current motor state. For future studies,

the current approach might be extended to clinical applica-

tions to assess how the observed interplay between intercon-

nected brain regions might be affected in disease states; how

this reacts to damage of other parts of the brain, after stroke;

and how the observed remote effects of PMd TMS might

change in patients with recovery, either spontaneously over

time since brain injury or after specific interventions.

Supplementary Material

Supplementary figure S1 and table S1 can be found at: http://

www.cercor.oxfordjournals.org/.
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