
Missing Link: Bayesian detection and measurement of
intermediate-mass black-hole binaries

Philip B. Graff,1,2,3,* Alessandra Buonanno,4,1 and B. S. Sathyaprakash5,4
1Department of Physics, University of Maryland, College Park, Maryland 20742, USA

2Gravitational Astrophysics Laboratory, NASA Goddard Space Flight Center,
8800 Greenbelt Road, Greenbelt, Maryland 20771, USA

3Joint Space-Science Institute, University of Maryland, College Park, Maryland 20742, USA
4Max Planck Institute for Gravitational Physics (Albert Einstein Institute),

Am Mühlenberg 1, Potsdam-Golm 14476, Germany
5School of Physics and Astronomy, Cardiff University, Queens Building,

CF24 3AA Cardiff, United Kingdom
(Received 18 April 2015; published 20 July 2015)

We perform Bayesian analysis of gravitational-wave signals from nonspinning, intermediate-mass
black-hole binaries (IMBHBs) with observed total mass, Mobs, from 50M⊙ to 500M⊙ and mass ratio 1–4
using advanced LIGO and Virgo detectors. We employ inspiral-merger-ringdown waveform models based
on the effective-one-body formalism and include subleading modes of radiation beyond the leading (2,2)
mode. The presence of subleading modes increases signal power for inclined binaries and allows for
improved accuracy and precision in measurements of the masses as well as breaking of degeneracies in
distance, orientation and polarization. For low total masses, Mobs ≲ 50M⊙, for which the inspiral signal
dominates, the observed chirp mass Mobs ¼ Mobsη

3=5 (η being the symmetric mass ratio) is better
measured. In contrast, as increasing power comes from merger and ringdown, we find that the total mass
Mobs has better relative precision thanMobs. Indeed, at highMobs (≥ 300M⊙), the signal resembles a burst
and the measurement thus extracts the dominant frequency of the signal that depends on Mobs. Depending
on the binary’s inclination, at signal-to-noise ratio (SNR) of 12, uncertainties in Mobs can be as large as
∼20–25% while uncertainties in Mobs are ∼50–60% in binaries with unequal masses (those numbers
become ∼17% vs. ∼22% in more symmetric mass-ratio binaries). Although large, those uncertainties in
Mobs will establish the existence of IMBHs. We find that effective-one-body waveforms with subleading
modes are essential to confirm a signal’s presence in the data, with calculated Bayesian evidences yielding a
false alarm probability below 10−5 for SNR≳ 9 in Gaussian noise. Our results show that gravitational-
wave observations can offer a unique tool to observe and understand the formation, evolution and
demographics of IMBHs, which are difficult to observe in the electromagnetic window.
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I. INTRODUCTION

Advanced interferometric gravitational-wave (GW)
detectors LIGO and Virgo will be turned on in late 2015
(2016 for Virgo) and are expected to reach design sensi-
tivity by 2019 [1–4]. At design sensitivity these detectors
will operate in the frequency range from 10 Hz to 1 kHz,
with an almost flat sensitivity from 40 Hz to 1 kHz. In
Fig. 1, we show for the advanced LIGO-Virgo network, the
distance reach1 as a function of observed total mass for the
full inspiral-merger-ringdown signal of binaries consisting
of nonspinning black holes (BHs) and include several
multipole modes beyond the dominant ðl ¼ 2; m ¼ 2Þ

mode, as well as higher order post-Newtonian (PN)
corrections (see Sec. II for details) [5]. For nonspinning
binary black holes (BBHs) with mass-ratio 1 (mass-ratio 4)
of observed total mass ∼200M⊙ and ∼800M⊙, the distance
reach is ∼5 Gpc (respectively, ∼3 Gpc), with the largest
reach of ∼6.5 Gpc (respectively, ∼4 Gpc) for ∼400M⊙
(see Fig. 1). The intrinsic mass (i.e., the rest-frame mass) of
a binary M is related to the observed mass Mobs by
Mobs ¼ ð1þ zÞM, and so the intrinsic masses detected at
these redshifts are significantly smaller than the observed
masses. As we see from Fig. 1, subleading modes become
increasingly important close to coalescence and their
impact on the SNR is relevant for BBHs of total mass
≳200M⊙, especially for asymmetric binaries whose orbital
plane is inclined with respect to the line-of-sight.
The increase in the distance reach brought about by the

use of subleading modes is greater for these latter systems
as compared to face-on, equal-mass systems where the
increase is negligible. When spins are included, the

*pgraff@umd.edu
1For a network consisting of two advanced LIGO and Virgo

detectors, we compute the distance reach as the root-mean-square
distance, averaged over the whole sky and polarization angle, at
which the network SNR is equal to 12. We do not average over
the inclination angle, but instead we use a typical value of π=3.
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distance reach can be a factor of two larger (for near
maximal BH spins aligned with the orbital angular momen-
tum) or smaller (for maximal spins antialigned with the
orbital angular momentum) [8–10]. Thus, advanced LIGO
and Virgo could detect BBHs in the hundred solar mass
range with a SNR ¼ 12 up to z ∼ 2, depending on the mass
ratio of the system and spin.
The above mass range falls in the domain of so-called

intermediate mass black holes (IMBHs). The formation
mechanism, evolutionary history and mass function of
IMBHs are largely unknown, as it is very difficult to observe
them and measure their masses in the electromagnetic
window. Several mechanisms have been proposed for their
birth and evolution [10–13]. There is now substantial
evidence that galactic nuclei contain massive BHs of
millions to billions of solar masses but they are believed
to have been seeded by lighter BHs of hundreds or thousands
of solar masses (for a review, see, e.g. Refs. [12,14]). While
there is also firm support for the existence of stellar mass BH
candidates [15], the IMBH population seems to be missing
and there is only indirect evidence of their existence. For
example, it is suspected that IMBHs could be responsible for
ultraluminous X-ray sources. While not all such sources are

believed to host an IMBH [16], some of them do show
evidence of BHs of tens to hundreds of solar masses. These
include a stellar mass BH of <15M⊙ in NGC7793 [17], a
more massive 20M⊙–30M⊙ BH inM101ULX-1 [18] and a
∼400M⊙ IMBH in M82 [19].
At present we do not know of any IMBH binaries

(IMBHB). However, astrophysical scenarios of their for-
mation have been proposed in the literature, which include
hierarchical growth of black holes at galactic nuclei by
accretion of gas, stars and compact objects (i.e. neutron
stars and black holes) and dynamical capture of smaller
black holes by nuclear black holes in stellar clusters.
Hierarchical models of structure formation predict that
supermassive BHs found in galactic nuclei might initially
be IMBHs that grow to their current size by accreting gas and
merging with other IMBHs [11,12,14,20–22]. In such a
scenario we might expect mergers of IMBHBs when the
Universe began assembling the large structure at high
redshift (z ∼ 10–20). Such mergers might have continued
in the local Universe, but it is very difficult to compute
merger rates as we do not fully understand the initial
conditions for IMBHs (mass function of seed BHs and their
spins), their binaries (orbital parameters at formation and
population as a function of mass ratio), or the process by
which they grow (accretion of gas and merger with
other BHs).
Besides growing their mass by dynamical capture in

stellar clusters, massive BHs may form from the collapse of
massive stars and until recently both observations and
theoretical arguments suggested that stars above 150M⊙ do
not form at nonzero metallicity. However, recent observa-
tions of several stars with current masses larger than 150M⊙
in theR136 region of theLargeMagellanicCloud triggered a
reanalysis [10] of the possibility that very massive BHs can
have stellar origin. Reference [10] found that very massive
stellar-origin BHs with mass larger than 100M⊙ can form
only in low-metallicity environments (i.e., Z ≤ 0.1–0.4Z⊙),
if the initial mass function extends above 500M⊙ and pair-
instability supernovae do not destroy stars with mass
above 500M⊙. Moreover, the formation of close massive
BH binaries requires that the very massive stars above
500M⊙ expand by a factor of 2 and go through and survive a
common envelope phase. If these requirements are met,
then massive BH binaries are expected to have mass ratios
of at most a few, spins primarily aligned with the orbital
angular momentum, and negligible eccentricity when they
enter the advanced LIGO band [23]. If the above require-
ments are not met, then they will have too wide a separation
to coalesce within a Hubble time. However, other phenom-
ena in dense stellar environments (e.g., cluster binary-single
interactions) and in low-density field populations (e.g,
Kozai mechanism in triple systems) can lower the coales-
cence time of wide massive BH binaries. The investigation
carried out in Ref. [10] concluded that on the order of a few
massive BH binaries of stellar-origin could be observed by

FIG. 1 (color online). We show the distance reach as a function
of the observed total mass Mobs for several values of the binary
mass ratio q. The reach is computed using a detector network
consisting of two advanced LIGO interferometers and advanced
Virgo, using a network SNR ¼ 12. Detector sensitivities are
given by the advanced LIGO and Virgo design curves [6]; the
advanced LIGO design is the zero-detuned high-power
(ZDHP) noise curve. The right y-axis shows the redshift
computed assuming cosmological parameters measured by the
Planck satellite [7]. The continuous curves use inspiral-merger-
ringdown waveforms with the most dominant five modes
(EOBNRv2HM), while the dashed curve only includes the (2,2)
mode (EOBNRv2). The values here are numerically averaged
over sky location and polarization, with fixed orbital phase and
inclination: fϕ; θJNg ¼ f0; π=3g rad. The coalescence time is
also fixed to a GPS time of tc ¼ 1000000008 s, corresponding to
Sept. 14, 2011 01:46:33 UTC.
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advanced LIGO and Virgo. However, due to astrophysical
and theoretical uncertainties, the number of detections per
year can be as high as hundreds or as low as zero.
In this paper we use state-of-the-art waveform models to

explore how well advanced GW detectors can measure
the physical parameters of an IMBHB. Signals from
IMBHB coalescences have several important features that
should be incorporated in a study of how GWobservations
will help to measure the parameters of such systems. First,
as several previous studies have already pointed out (see,
e.g., Ref. [24] and references therein), in advanced GW
detectors, the plunge, merger and quasinormal-mode ring-
down phases of evolution contribute significantly to the
detectors’ distance reach if the binary has a total mass larger
than about ∼50M⊙. This means that we must use the full
signal, that is not only the adiabatic inspiral phase, but also
the merger and ringdown portions. Second, binaries formed
in the field will most likely have negligible eccentricity [25]
as they enter the sensitivity band of advanced detectors and
can be assumed to trace quasicircular orbits. For binaries
undergoing dynamical capture or Kozai mechanism in star
clusters, advanced LIGO and Virgo might detect mild
eccentricities [26], if Mobs ∼ 10–20M⊙. For massive BHs,
we expect negligible eccentricities when the binary enters
the detector band. Indeed, for a fixed mass ratio and speed at
infinity, the pericenter distance at capture is proportional to
the total mass [23]. Thus, the frequency at capture is
inversely proportional to the total mass. As a result, larger
total masses result in lower capture frequencies and thus
circularize more by the time the binary gets to a fixed
frequency, such as 10 Hz.
In this study we assume our systems to have zero

eccentricity. Thus the gravitational wave emission in
comparable mass binaries will be dominated by the ðl¼ 2;
m¼ 2Þ mode at twice the orbital frequency, at least
until merger. Asymmetric systems with unequal masses,
nevertheless, emit radiation at other multiples of the orbital
frequency or subleading modes (see, e.g., Sec. 10.4 in
Ref. [27]). As shown by several authors [28–35] these
subdominant modes can be important in the inspiral phase
in improving the accuracy with which parameters are
deduced from GW observations, especially when the mass
ratio of the binary is large. The amplitude of those
subleading modes grows more and more toward merger
[5,36–38]. As a consequence, relevant properties of the
progenitor binary can be recovered from the relative
amplitudes of the subdominant modes excited in the BH
remnant [39–44] and tests of general relativity [45,46] can
be carried out when those subdominat modes are included
during merger and ringdown. Moreover, for the purposes
of signal candidate detection in template bank searches,
Ref. [47] showed that when constructing banks for
BBH searches, the inclusion of subdominant modes
yielded improved sensitivity for systems with Mobs ≳
100M⊙ and q≳4 (where q≡m1=m2≥1 is the mass

ratio). Third, waveforms from nonspinning BH binaries
on quasicircular orbits are very simple chirplike signals,
with monotonically increasing frequency and amplitude.
However, BH spins can cause amplitude and phase
modulations, so one must ideally include spin effects
in the waveform model, unless the IMBH formation
scenario strongly suggests nonprecessing or negligible
spins [10], if the BHs grow their mass through multiple
mergers in stellar clusters. In this paper, however, we will
limit ourselves to nonspinning BH binaries as waveforms
that include both spin effects and subleading modes are
not yet available.
The rest of the paper is organized as follows. In Sec. II we

describe the inspiral, merger and ringdown template family
used in our analysis, its parameters and the main features
introduced by the subdominant modes. In Sec. III we review
the basics ofBayesian inference, the sampling technique that
we use (i.e., nested sampling) and the priors employed in our
study. In Sec. IV we discuss how the Bayesian evidence of
the GW signal can be used to confirm detection, how the
false alarm probability can be obtained from the Bayesian
evidence, and how the Bayesian evidence changes depend-
ing on the inclusion of the subdominant modes. In Sec. Vwe
discuss how Bayesian parameter measurement depends on
the binary’s total mass, mass ratio, inclusion of subleading
modes and priors, and compare our study to previous ones.
We also discuss the astrophysical implications of these
measurements of IMBHBs. Finally, in Sec. VI we draw our
main conclusions.

II. WAVEFORMS

In this section we will discuss the waveform family used
in this study and the parameters used to describe the signal
as observed by a detector. In particular, we discuss the
importance of the subleading modes and the merger and
ringdown phases of the signal for IMBHBs. We demon-
strate this by first plotting the signal as observed by an
advanced detector and discuss how the SNR is accumulated
as a function of time. We will also plot the signal power
spectrum and highlight the relevance of subleading modes
for unequal-mass systems whose orbital plane is inclined
with respect to the line-of-sight.

A. Inspiral-merger-ringdown waveforms
and parameters

In this study we employ nonspinning waveforms con-
structed within the effective-one-body (EOB) formalism
[48,49] and calibrated to highly-accurate numerical rela-
tivity (NR) simulations having typical length of 30–40 GW
cycles and mass ratios q ≤ 6 [5]. More specifically, we use
the EOBNRV2HM code in the LIGO Algorithm Library
(LAL) [50] to generate the EOB waveform model in
Ref. [5], which includes four subleading modes, namely
the ðl; mÞ ¼ ð2; 1Þ, (3,3), (4,4) and (5,5) modes, as well as
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the leading ðl; mÞ ¼ ð2; 2Þ mode.2 [These modes come
from the decomposition of the GW signal h ¼ hþ − ıh×
into −2 spin-weighted spherical harmonics −2Ylm [5].]
Consequently, GW signals that we study contain the first
five harmonics of the orbital frequency. During most of the
early inspiral phase only the (2,2) mode, and, in particular,
its Newtonian amplitude, will be the dominant component.
Other harmonics and PN corrections become increasingly
important as we get close to merger. The effect of these
higher modes is especially relevant when the binary in
question has its merger and ringdown frequencies in the
most sensitive part of a detector’s response. The ringdown
frequency of the final remnant of binaries consisting of
nonspinning BHs of total mass 50M⊙ to 500M⊙ varies
over the range 40 Hz to 400 Hz—the frequency range
where LIGO and Virgo have the best sensitivity, and this
provides the motivation for our choice of masses used in
this study.
A Markov-chain Monte-Carlo (MCMC) study [32]

demonstrated that the EOB waveforms of Ref. [5] are
indistinguishable from the NR waveforms [52] used to
calibrate them up to SNR ¼ 50 for advanced LIGO detec-
tors. Subsequent investigations carried out in Ref. [53]
verified the accuracy of these nonspinning EOB waveforms
in the entire sensitivity band of advanced LIGO detectors
and suggested that the EOBmodel be accurate even outside
the region of calibration, i.e. when q > 6. This expectation
was verified by the very good agreement found against the
q ¼ 10 NR waveform of 20 GW cycles in Ref. [54] and,
especially, against the q ¼ 7 NR waveform of 350 GW
cycles recently produced by the SXS collaboration [55].
Since in our study we consider BBHs in quasicircular

orbits with negligible spins, the system can be described by
nine parameters: θ ¼ fm1; m2; dL; tc; δ;α; θJN;ψ ;ϕg. The
parametersm1 andm2 are the masses of the individual BHs.
From these quantities we define the total intrinsic mass,
M ¼ ðm1 þm2Þ, the total observed mass, Mobs¼Mð1þzÞ
with z being the redshift, the mass ratio, q ¼ m1=m2 ≥ 1,
the symmetric mass ratio, η ¼ m1m2=ðm1 þ m2Þ2 ¼
q=ð1 þ qÞ2, the intrinsic chirp mass, M ¼ Mη3=5 and
the observed chirp mass, Mobs ¼ Mð1þ zÞ. The param-
eter dL is the luminosity distance and when combined with
the declination δ and right ascension α, it defines the sky
location of the binary. The time of the peak in the (2,2)
mode of the waveform, as measured at the geocenter, is
given by tc; this serves as an approximation of the merger
time. The angle θJN measures the inclination of the binary’s
total angular momentum J (equal to the orbital angular
momentum, L, as the holes are nonspinning) with respect
to the line of sight from the detectors n (geocenter). The

polarization ψ and the phase ϕ provide the additional Euler
angles necessary to describe the rotation from n to J.

B. Accumulation of SNR in waveforms

In this paper we are interested in studying the effect on
parameter estimation of binary systems with larger and
larger total masses. When we maintain a constant SNR
and increase the binary’s total mass, the signal moves
downward in frequency space, resulting in more power
from the merger and ringdown portions as opposed to the
inspiral. The merger occurs at approximately the frequency
of the last stable orbit (LSO), which in the case of a
Schwarzschild BH is fLSO ≃ 4400ðM⊙=MÞ Hz. We begin
our integration at fmin ¼ 10 Hz, so for systems with
Mobs ≥ 400M⊙ there will be little power from the inspiral
portion of the waveform. As the inspiral evolution is
dominated by Mobs and the merger and ringdown are
dominated by Mobs, we expect the character of the
parameter estimation to transition from one to the other
(see Sec. V).
To demonstrate this expectation, we compare in Fig. 2

two waveforms with Mobs ¼ 50M⊙ and 400M⊙. We show
both the original waveform and the waveform normalized
by the advanced LIGO zero-detuned high-power (ZDHP)
power spectral density (PSD), SnðfÞ; the normalized wave-
form has been rescaled so that it has the same amplitude
at t ¼ 0 as the original. The comparisons clearly show that
for the ðMobs;qÞ¼ð50M⊙;1Þ waveform, 90% of the power
(SNR2) has been accumulated during the inspiral and that
the merger and ringdown play only a minor role. On the
other hand, for the ðMobs; qÞ ¼ ð400M⊙; 1Þ waveform,
only 10% of the power is collected during the inspiral
and now the merger and ringdown are predominant
features. In Fig. 3 we show the amplitudes of the wave-
forms in frequency space in comparison to the advanced
LIGO ZDHP and advanced Virgo design

ffiffiffiffiffiffiffiffiffiffiffi
SnðfÞ

p
. We

can see in Fig. 3 that for the higher-mass waveforms, the
entire inspiral signal is strongly down-weighted by the
rising of the amplitude spectral density with the merger
occurring as

ffiffiffiffiffiffiffiffiffiffiffi
SnðfÞ

p
reaches a minimum. For the lower-

mass waveforms, much of the inspiral is in the frequency
band where the amplitude spectral density is at or near
minimum, thereby allowing this part of the waveform to
dominate.

III. BAYESIAN INFERENCE

This section will provide a short background to Bayesian
inference. We will focus on the application of Bayesian
analysis to the problems of detection, parameter estimation
and model selection that will be used in Secs. IV and V in
the context of GW observations of IMBHBs. After a brief
introduction to the basics of Bayesian methods, we will
discuss a specific technique called nested sampling that is
used to efficiently compute Bayesian evidence, followed by

2An EOB model with different parametrization was sub-
sequently calibrated to the same set of NR waveforms used in
Ref. [5] and provides two subleading modes ðl; mÞ ¼ ð2; 1Þ and
(3,3) [51], besides the leading one.
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a description of our choice of prior probabilities for
various parameters and how we compute the likelihood
function.

A. Basics of Bayesian methods

Bayesian inference provides a statistically rigorous
method of measuring the probability distribution of a set
of parameters θ given a model or hypothesisH and a set of
data D. Bayes’ theorem states that

PrðθjD;HÞ ¼ PrðDjθ;HÞ PrðθjHÞ
PrðDjHÞ ; ð1Þ

where PrðθjD;HÞ is the posterior probability distribution
of parameters used for making inferences about which
signal parameters θ best fit the data and what the corre-
sponding credible regions are; PrðDjθ;HÞ is the likelihood
of obtaining the data given the specific model and param-
eters, for which we use the shorthand LðθÞ; PrðθjHÞ is the
prior probability of the parameters for the model that
represents our knowledge of these values before looking
at the data (a priori); and PrðDjHÞ is the Bayesian
evidence, which is commonly abbreviated as Z.

FIG. 2 (color online). We display EOBNR waveforms with subleading modes used in this study. We plot the plus polarization of each
waveform: original (dotted blue), and normalized by the PSD (and then scaled to have equal amplitude at t ¼ 0 as original) (solid red).
The plots in the top row haveMobs ¼ 50M⊙ and in the bottom row haveMobs ¼ 400M⊙; the left column has q ¼ 1 and the right column
has q ¼ 4. The time axis is scaled by the observed total mass of the system. Vertical lines are at intervals of 10% of signal power with the
right most line at 99%. All systems are observed at an inclination of θJN ¼ π=3 rad and a distance of dL ¼ 1 Gpc.

FIG. 3 (color online). We show the Fourier-domain amplitudes
of the waveforms displayed in Fig. 2. Extra structure from
subdominant modes can be clearly seen in the nonequal mass
cases. For comparison, we also display the advanced LIGO
ZDHP and advanced Virgo design amplitude spectral densityffiffiffiffiffiffiffiffiffiffiffiffi

SnðfÞ
p

. For all waveforms we use dL ¼ 1 Gpc and θJN ¼
π=3 rad.
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The evidence is the factor needed to normalize the posterior
distribution and can therefore also be expressed as

Z ¼
Z
Θ
LðθÞ PrðθjHÞdNθ; ð2Þ

whereN is the dimensionality of the parameter space. Since
Z is independent of the parameters, it can be safely ignored
for parameter estimation problems, but it is still useful in
model comparison.
When comparing two models,H0 andH1, one can write

their relative probabilities as

PrðH1jDÞ
PrðH0jDÞ ¼

Z1

Z0

PrðH1Þ
PrðH0Þ

; ð3Þ

where we used Bayes’ theorem again and have canceled out
PrðDÞ and substituted in Zi ¼ PrðDjHiÞ as appropriate.
The relative probability of the two models is thus the ratio
of their Bayesian evidences multiplied by the relative
probability prior to considering the data. In our analysis,
we will take the latter to be 1 and consider the ratio of
the Bayesian evidences, which is called the odds ratio. In
the problem of signal detection, H0 can be considered the
noise-only model while H1 is the signal-plus-noise model.
Therefore, an odds ratio much greater than 1 indicates a
strong belief in the presence of a signal. This method
naturally incorporates Occam’s razor, such that more
complicated models are penalized and must sufficiently
improve the fit to the data to be favored.

B. Nested sampling and MULTINEST

Nested sampling [56] is a Bayesian inference technique
developed for the calculation of the evidence, through
which posterior probability samples are produced as a
by-product. This is done by transforming the N-
dimensional integral for Z into a 1-dimensional integral
over the prior volume. We define the prior volume X by
dX ¼ PrðθjHÞdNθ. We can therefore write the prior prob-
ability volume enclosed within a contour (in parameter
space) of constant likelihood λ as

XðλÞ ¼
Z
LðθÞ>λ

PrðθjHÞdNθ: ð4Þ

The evidence integral of Eq. (2) can be rewritten as

Z ¼
Z

1

0

LðXÞdX; ð5Þ

where LðXÞ is the inverse of Eq. (4) (returns the likelihood
at which a prior volume of X is enclosed) and is a
monotonically decreasing function of X (i.e. more prior
volume implies lower likelihood contour bound). If we can
evaluate likelihood values Li ¼ LðXiÞ such that Xi is a

sequence of monotonically decreasing values, the evidence
can be computed as a simple sum

Z ¼
XM
i¼1

Liwi: ð6Þ

Here, the wi are weights which can be taken from a simple
trapezium rule such that wi ¼ 1

2
ðXi−1 − Xiþ1Þ.

The individual prior weight of each sampled point can
also be estimated from the sequence of Xi values. This may
be combined with the computed likelihood for that point
and the evidence to produce a final posterior probability for
the point. The full sequence of points can then be resampled
accordingly to the points’ individual probabilities to pro-
duce a set of samples from the posterior.
Nested sampling operates by starting with an initial set of

“live” points sampled from the prior distribution. Iterations
are then performed whereby the point with lowest like-
lihood value is removed from the live point set and a new
point is sampled from the prior with the restriction that it
has higher likelihood than the point just removed. This
removal and replacement is continued until a stopping
condition is reached (e.g., a tolerance on the evidence
calculation). The difficult task here lies in the efficient
sampling of new points under this restriction. As the
likelihood contour moves upward, the volume of the prior
within that contour will decrease to very small values,
making direct sampling of the prior very inefficient. The
MULTINEST algorithm [57–59] addresses this by enclosing
the live points in clusters of ellipsoids. A new sample can
then be made from the ellipsoids very quickly and as they
shrink along with the live points, they create effective
likelihood contours to be sampled from, thereby greatly
increasing the sampling efficiency. The ellipsoids can be
distributed to enclose degenerate and multimodal distribu-
tions, making this approach very robust.
MULTINEST is implemented within BAMBI [60], which

is linked with the LALINFERENCE [61] code of LAL. The
lalinference_bambi sampler is used for analysis of
simulated signals in this study.

C. Priors used

The priors used in this analysis are flat in the component
masses, with fm1; m2g ∈ ½10; 600�M⊙ and m1 ≥ m2. In
Sec. V D, we assess the effect of changing the prior by
implementing an alternative mass prior that is flat in the log
of chirp mass for M ∈ ½2.45; 435.275�M⊙ and flat
over η ∈ ½0.03; 0.25�.
In both setups, the source location prior is uniform in

volume, thus proportional to d2L for dL ∈ ½100 Mpc;
10 Gpc� and flat in sinðδÞ and α for δ ∈ ½0; π� rad and
α ∈ ½0; 2πÞ rad. We use a prior flat in coalescence time
that is centered on the true value with Δtc ∈ ½−0.1; 0.1� s.
The orientation angles are assumed to be isotropically
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distributed, thus flat in sinðθJNÞ, ψ , and ϕ for
θJN ∈ ½0; π� rad, ψ ∈ ½0; πÞ rad, and ϕ ∈ ½0; 2πÞ rad.

D. Likelihood function

In general, the data obtained from advanced LIGO and
Virgo detectors is the sum of signal, h, and noise, n,

d ¼ hþ n: ð7Þ

The signal in a given detector is given by

h ¼ Fþðα; δ;ψÞhþ þ F×ðα; δ;ψÞh×; ð8Þ

where hþ;× are the two independent GW polarizations
and Fþ;×ðα; δ;ψÞ are the antenna response functions [62]
that depend on the source location and polarization. The
antenna response is slowly varying in time due to the
rotation of the Earth, but this effect is small for the short
duration of the signals considered in this study (<2 min).
The noise is modeled as independent and Gaussian in

each frequency with a mean of zero and variance given by
the detector’s PSD. Therefore, the probability of a data
stream, da, in detector a containing a given signal, hðθÞ, is
given by the probability of the resulting noise realization,
n ¼ d − hðθÞ. This is given by the product (sum in log-
space) of the probability of the noise for each frequency
bin [61]:

logLaðθÞ ¼ log PrðdajHS; θ; SnðfÞÞ

¼ −
1

2

X
i

�
4

T
j ~da;i − ~hiðθÞj2

SnðfiÞ
þ log

�
πTSnðfiÞ

2

��
;

ð9Þ

where T is the segment length, the tilde indicates the
discrete Fourier transform of the function, and i is an index
over frequency bins. The noise power spectral density
SnðfÞ will vary from detector to detector and here we use
the ones at design sensitivity for advanced LIGO and Virgo
[6].3 Hs indicates that we are using the signal model that
assumes a signal is present; this will be compared to the
noise-only model,Hn, where h ¼ 0. The final likelihood is
the product of likelihoods from the individual detectors,

logLðθÞ ¼
X
a

logLaðθÞ: ð10Þ

To simulate the sensitivity for advanced LIGO and Virgo
detectors, we use a minimum frequency of fmin ¼ 10 Hz.
In order to include the highest ringdown mode for the
lowest possible total mass system, we use a sampling rate
of 4096 Hz, giving a Nyquist frequency of fNyq ¼ 2048 Hz

for the upper bound of our likelihood sum. A segment
length of 128 s ensures that no waveforms are cut off
in-band.

IV. BAYESIAN DETECTION

It is computationally infeasible to perform a Bayesian
analysis over the entire detector data set, for all signal types,
at all times. Therefore, alternative analysis pipelines are
used to first produce candidate triggers for follow-up
analyses using Bayesian inference over a small data set
and parameter space [63,64]. In the search for BBHs, a
discrete bank of template waveforms [65–67] is used to
perform matched filter analysis of the data. The matches
that cross a preset threshold are ranked by a reweighted
SNR [63,64] and their significance is measured by com-
parison to the estimated background (i.e. noise-generated)
triggers. This is a frequentist method of detection (and
significance measurement) and is very useful for generating
triggers which then receive a more detailed follow-up with
Bayesian analysis and other tools. It is the first step in
identifying and confirming a GW signal with LIGO
and Virgo.
In Bayesian inference, one can make claims on the

presence of a signal in data by means of model comparison.
This is not the same as trigger/candidate finding, but rather
looking at the evidence that the candidate is indeed a real
GW signal. We compare the signal-plus-noise and noise-
only models,Hs andHn, and their respective evidences,Zs
and Zn. The probability that random noise would produce
an evidence ratio Zs=Zn is the false alarm probability
(FAP). This is given by

FAP ¼ 1

1þ Zs=Zn
: ð11Þ

The relative log-evidence (logZs − logZn) is output by
LALINFERENCE. The FAP can be converted into a false
alarm rate (FAR) by dividing it by the length of the time
window [68]. This accounts for the amount of time in
which we searched for a signal in the data and assumes that
all such time intervals are independent.

FAR ¼ 1

1þ Zs=Zn
×

1

Δt
: ð12Þ

The time window used in our prior is Δt ¼ 0.2 s.
We compute the Bayesian evidences of the signal plus

Gaussian noise model for all simulated signals using
injections at SNRs ranging from 6 to 18. Total observed
masses ranged from 50M⊙ to 500M⊙, mass ratios were
q ¼ f1.25; 4g, and inclinations were θJN ¼ f0; π=3; π=2g.
In Fig. 4 we show the median FAP and FAR calculated over
all signals as a function of the SNR. The shaded area covers
the range from minimum to maximum computed FAPs.
Confident detection can be claimed for a network SNR≳ 9,

3See https://dcc.ligo.org/LIGO‑P1200087‑v19/public for PSD
data files
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as this corresponds to a detection outside of the �6-σ
region (FAP <10−5). This should be taken with a grain of
salt, however, as real data will contain non-Gaussian and
nonstationary noise features that will need to be addressed
with noise modeling [69,70]; SNRs ∼12 are needed in
reality for the same significance in real data that is often
non-Gaussian and nonstationary.
In systems where the subleading modes contribute

significantly to the SNR, not including them can result
in not recovering the full power of the signal. This means
that using a (2,2)-only template (EOBNRv2) will yield a
lower Bayesian evidence than a more complete template
(EOBNRv2HM) for the same signal. This loss in evidence
will lead to a greatly increased FAP and FAR. A model
comparison between the two will favor the complete model
when these modes are significant—inclined systems with
larger mass ratios. Fig. 5 shows that in these cases the
EOBNRv2HM waveform model including subleading
modes will be strongly favored; when subleading modes
contribute little SNR, neither waveform model is strongly
favored over the other [slight preference for (2,2)-only
when θJN ¼ 0 and slight preference for subleading modes
when θJN > 0 and q is close to 1].
The importance of including subleading modes in search

pipelines was investigated in Ref. [47]. They found that
using waveforms with subdominant modes increases the
sensitive region only for high total masses (Mobs ≳ 100M⊙)
and asymmetric (q ≳ 4) IMBHBs. Furthermore, they found
that the most significant gains are in regions of the
parameter space with the lowest expected event rates.
Although the study of Ref. [47] was limited to component
masses mi ≤ 200M⊙ and Mobs < 360M⊙, we can expect

the trends to continue for larger masses. The result that
subleading modes are significant in detection only for
asymmetric and large total mass systems is consistent with
our findings described in this section.

V. MEASUREMENT

After the detection of a GW signal from a binary system,
we perform parameter estimation analysis, which involves
producing a sufficient number of samples from the pos-
terior distribution so that we are able to measure peaks and
analyze correlations and degeneracies. Since we expect our
first detections to be at just above threshold, all analyses in
this section—unless otherwise stated—use injected signals
with a network SNR of 12. This is achieved by adjusting
the distance of the signal to obtain this exact value.
In the following sections we discuss our ability to perform

parameter estimation under varying conditions. We estimate
the statistical uncertainty and bias in the measurement of
signal parameters; these are the width of the posterior
distribution and the distance between the peak and the true
values, respectively. In creating the data to be analyzed, no
noise realization is added. This eliminates additional uncer-
tainty and bias introduced by a randomnoise realization; zero
noise is the most probable realization. This is different from
averaging over many noise realizations, as the latter would
result in increased uncertainty even as the biases cancel out
(and would also require many more runs to be performed).
Results presented are predominantly for q ¼ f1.25; 4g

systems. Analyses were also performed where injected
waveforms had q ¼ f1; 2; 3g; we found the results to be
consistent with those discussed here. We limited q ≤ 4 for
injected signals due to the increased computational cost for
higher mass-ratio waveforms.

FIG. 4 (color online). False alarm probabilities and rates
computed using Bayesian inference for signals buried in Gaus-
sian noise as a function of the injected signal’s SNR. The solid
line is the median FAP/FAR and the shaded area covers the range
from minimum to maximum values of FAP/FAR. Confident 5-σ
significance detections can be claimed for SNR≳ 9 but SNRs
∼12 are needed in reality for the same significance in real data
that is often non-Gaussian and nonstationary.

FIG. 5 (color online). We show the difference in log-evidence
between using EOBNRv2HM and EOBNRv2 templates for recov-
ering EOBNRv2HM signals. In cases with significant contribution
from subleading modes the EOBNRv2HM model is strongly
favored.
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A. Measuring variance with increasing
binary’s total mass

In our first set of comparisons, we study the effect of the
total mass of the system on the estimation of the source’s
intrinsic parameters. Specifically, we investigate the

statistical errors on the measurement of Mobs, M, η, m1,
and m2. Posterior distributions over ðMobs;MobsÞ-space
and ðm1; m2Þ-space are shown for various values of Mobs
(always using q ¼ 4 and θJN ¼ π=3) in Fig. 6. These are
summarized in the left panel of Fig. 7, which shows the

FIG. 6 (color online). Posterior distributions of the mass estimation. All values are presented as fractional errors, i.e., ðx − xtrueÞ=xtrue.
The left column displaysm2 vs.m1 and the right column displaysMobs vs.Mobs. The rows are of increasingMobs fromMobs ¼ 50M⊙ at
the top toMobs ¼ 500M⊙ at the bottom. For all systems, q ¼ 4 (η ¼ 0.16) and θJN ¼ π=3. The star indicates the point with highest logL
and the contours are at 50%, 90%, and 95% credible levels (inside to outside). In the left column, the solid lines are of constantMobs and
the dashed lines are constantMobs; in the right column, solid is constantm1 and dashed is constantm2. In all cases the lines intersect the
true values at ðx; yÞ ¼ ð0; 0Þ.
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relative widths of the 95% (�2-σ) credible intervals (i.e.,
ðx97.5% − x2.5%Þ=xtrue) for the various mass parameters. At
the lower mass end (Mobs ¼ 50M⊙), uncertainty is low
due to how well the chirp mass Mobs is measured from
the inspiral phase of a waveform. As the total mass
increases, the uncertainty increases and for Mobs ≥
150M⊙ the uncertainty in Mobs is similar to or greater
than that in Mobs. This change is due to less inspiral
signal being present in the most sensitive band of the
detector; the ringdown is predominantly dependent on
Mobs and therefore this parameter is measured more
accurately. However, the inspiral measures Mobs better
than the ringdown measures Mobs, so the resulting
uncertainty is larger. Above Mobs ¼ 300M⊙, the uncer-
tainty decreases slightly; this is due to the ringdown
matching up better with the minimum of the advanced
LIGO/Virgo PSD and the subleading modes moving into
more sensitive regions of the PSD.
When these same systems are face-on (θJN ¼ 0) or

have lower q (more equal component masses), the
uncertainties for the (2,2)-only waveform closely resem-
ble those for the waveform with all modes, just a little
larger. This can be seen in the right panel of Fig. 7 and
it is what would be expected for systems with little
contribution from the subleading modes. In all cases, the
templates that include subleading modes of radiation
have lower uncertainty than those using only the (2,2)

mode. Additionally, for inclined and asymmetric sys-
tems, as Mobs increases from 300M⊙ to 500M⊙, the
uncertainty when using (2,2)-only templates grows
significantly while that from using templates with
subleading modes slightly decreases. This is due to
the fact that the subleading modes provide information
about the mass ratio of the system in their relative
amplitudes and phases. This information contained in
the subdominant modes breaks the model degeneracies
and allows us to better infer the component masses as
the ringdown phase of the waveform enters the most
sensitive region of the PSD. These results can also be
seen in Fig. 6. Being able to accurately measure the
component masses is important in allowing us to make
inferences on the source population of these massive
BHs [10].
Thus, we observe that at a SNR of 12 uncertainties for

Mobs can reach ∼20–25% in asymmetric binaries while
uncertainty in Mobs reaches up to ∼50–60% (these
numbers are ∼17% vs. ∼22% in more symmetric mass
ratio binaries).
In the Appendix, we provide summary tables of relative

95% credible intervals for measurements of the masses,
luminosity distance, and coalescence time. These are given
over a range of SNRs for two mass ratios (q ¼ f1.25; 4g)
and several observed total masses at the inclinations
of θJN ¼ fπ=3; 0g.

FIG. 7 (color online). Uncertainty in the measurement of different mass parameters:Mobs,M, and η. Results here are for a system with
(left panel) q ¼ 4 (η ¼ 0.16) and (right panel) q ¼ 1.25 (η ¼ 0.247). In both cases, θJN ¼ π=3 and SNR ¼ 12. The solid lines are for
templates with subleading modes and the dashed lines are for templates with the (2,2) mode only. The relative width is given by
ðx97.5% − x2.5%Þ=xtrue.
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B. Measuring degeneracies with increasing
binary’s total mass

As the IMBHB systems increase in total mass, there
are distinct changes in the two-dimensional posterior
probability distributions. As the inspiral phase evolution
strongly constrains Mobs and η, in that order, lower mass
systems will have degeneracies that follow contours in
these parameters. With increasing total mass, however,
the inspiral becomes less important and the merger-
ringdown part of the signal contributes significantly or
dominantly to the SNR. This is most well described by
Mobs with much weaker dependence on η. Thus, we
expect there to be a change in the degeneracies present
in the mass estimation. The inspiral dependency on
Mobs can be seen in the PN inspiral waveforms (see
Ref. [71]); PN approximants are accurate for early
inspiral when the BHs are sufficiently far from merger.
The dependency on Mobs of the ringdown is similarly
given by the quasinormal mode decomposition derived in
Ref. [72] and implemented in the EOB waveform models
used in our study [5].
This change in the optimally measured parameters as

Mobs increases can be observed in Fig. 6. In the right
column, we show the posterior distribution of the
masses, parametrized as Mobs and Mobs, over a range
of total masses for an asymmetric system (q ¼ 4,

η ¼ 0.16) viewed at an angle (θJN ¼ π=3). In the top
row, Mobs ¼ 50M⊙ and we can see that the principal
measurement is of the chirp mass Mobs—posterior
samples and contours lie along a line of near-constant
Mobs. As Mobs increases, at Mobs ¼ 150M⊙ a second
principal direction of degeneracy becomes evident.
This is due to a different combination of the mass
parameters becoming increasingly constrained relative to
the others and realizing a new degeneracy in the
measurement.
These observations confirm what we see in the one-

dimensional posteriors in Fig. 7. The chirp mass Mobs is
initially measured to lower fractional error than the total
mass Mobs; as Mobs increases the uncertainty grows much
faster in Mobs than it does in Mobs. The small decrease in
uncertainty at the higher masses is also visible as the
contours shrink slightly. We are now able to see in Fig. 6
that this increase in uncertainty is accompanied by a
changing of the dominant degeneracy in the parameters
of the waveform model.

C. Importance of including subleading modes

As discussed previously, in addition to the leading
(2,2) mode, the EOBNRv2HM waveform model also
includes subleading modes (2,1), (3,3), (4,4), and (5,5),
which introduce additional structure to the waveform and

FIG. 8 (color online). One-dimensional posterior distributions for all parameters for an injected signal with Mobs ¼ 500M⊙, q ¼ 4,
θJN ¼ π=3, and SNR ¼ 12. Posteriors are compared for (solid) the EOBNRv2HM waveform model which includes subleading modes of
radiation, (dashed) the EOBNRv2 waveform model which includes only the (2,2) mode, and (dotted) the EOBNRv2HM waveform model
along with a different prior distribution that is flat in ðlogðMobsÞ; ηÞ instead of flat in ðm1; m2Þ. The vertical dashed red lines indicate the
true (injected) value of each parameter.
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improve faithfulness to NR waveforms. This increased
structure is important as the relative amplitudes and
phasing of the additional modes introduce information
about the source masses. In the ringdown phase, the
additional modes further constrain the mass and spin of
the final BH. This structure creates variation in wave-
forms as initial component masses are varied, thereby
allowing Bayesian inference to measure the masses
more accurately and precisely as seen in Figs. 7, 8,
and 9.
The modes’ structure also contains angular depend-

ence on the inclination of the system to the detector,
θJN, the orientation of the orbit in the plane of the
sky (polarization), ψ , and the orbital phase of the
binary, ϕ. This structure is present for the primary
(2,2) mode, but the introduction of additional modes
breaks degeneracies in the observed waveform as these
angles vary.

Improvements in measurement of the masses and
orientation angles can all be observed in the example
presented in Fig. 8. This figure compares one-dimen-
sional posterior distributions for the case of an injected
signal with Mobs ¼ 500M⊙, q ¼ 4, and θJN ¼ π=3. The
solid black line shows the posterior distribution for the
waveform template model including subleading modes
(EOBNRv2HM) and the dashed line is for the waveform
template model including only the leading (2,2) mode
(EOBNRv2). In both cases, the signal injected into the
data contained the subleading modes—in nature, all
modes of radiation are present.
For parameter estimation, the presence of subleading

modes means that as the angles θJN, ψ , and ϕ vary, there
is increased variation of the waveform. This variation
is more prominent for unequal mass binaries and
binaries not observed face-on or face-off (θJN¼f0;πg),
as the subleading modes will have more significant

FIG. 9 (color online). Posterior distributions of the mass estimation. All values are presented as fractional errors, i.e., ðx − xtrueÞ=xtrue.
The left column displays m2 vs. m1 and the right column displaysMobs vs.Mobs. The rows are of increasingMobs fromMobs ¼ 100M⊙
at the top to Mobs ¼ 300M⊙ at the bottom. For all systems, q ¼ 4 (η ¼ 0.16) and θJN ¼ π=3. The asterisks indicate the point with
highest logL and the contours are at 50%, 90%, and 95% credible levels (inside to outside). Blue contours use EOBNRv2HM as a
waveform template while red contours use EOBNRv2, which only includes the leading (2,2) mode.
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contributions to the SNR. The increased variation allows
for more accurate measurement of θJN and breaks
degeneracies in ψ and ϕ to allow these two angles to
be measured. As Mobs and θJN are strongly correlated
with the luminosity distance dL via the amplitude of the
waveform, measuring the former two more accurately
means that the latter will be measured more accurately
as well.
The measurement of the coalescence time tc is offset

when using only the leading mode; this is likely due to
slight errors in measuring the sky position of the source and
adjustments in order to align the peak amplitude of the
waveform at merger.
With the additional information provided by the sub-

leading modes in the EOBNRv2HM model, posterior
distributions for all mass parameters are narrower and
better centered on the true values. Most notably, the
subleading modes and their relative amplitudes differ-
entiate better between waveforms with the same total
mass, but different mass ratios. The system injected in the
analysis shown in Fig. 8 has very high Mobs so the
merger and ringdown provide the majority of the SNR.
The observed improvement is thus due to a waveform
degeneracy in the mass of the final BH that can be
broken when we are able to measure the final mass and
spin of the BH more precisely. These depend strongly
on the mass ratio of the initial components and are
further realized in the relative amplitudes of the sub-
leading modes. The improved measurement of initial
mass values from using subleading modes can also be
seen in Fig. 9, where we compare two-dimensional
posteriors in the masses between EOBNRv2HM and
EOBNRv2 waveform models over a range of Mobs
(q¼4 and θJN¼π=3). Note that when Mobs ¼ 100M⊙,
the posteriors are nearly identical. However, with
increasing Mobs, the late inspiral, merger, and ringdown
become increasingly important. The parameter estimation
bias and loss of SNR is evident when using only the
leading mode as the posteriors do not necessarily peak at
or strongly support the true values and the confidence
intervals are considerably larger.
As the observed total mass increases, it is very

difficult to measure the mass ratio q (or η) if the source
is face-on. Indeed, in this case the subdominant modes
are not significant; we find that the posteriors are
identical and do not change much with respect to the
true q. However, when θJN ¼ π=3 or π=2, because of the
presence of the subleading modes, it is possible to
measure q, although the influence of the prior is still
evident in tending toward smaller values. In Ref. [10],
the authors determine that IMBHBs formed from
stellar-origin massive BHs will likely have mass ratios
q ≤ 1.25. We find that for values of q ≥ 2, in more
massive (Mobs ≥ 300M⊙) and inclined systems, we
will be able to say that q > 1.25 with certainty > 90%.

In summary, we find that the inclusion of subleading
modes of gravitational radiation improves the accuracy and
precision of the estimation of the source mass parameters as
well as some extrinsic parameters, such as distance and
orientation angles. They are significant for asymmetric and
inclined binaries where they contribute more to the sig-
nal’s SNR.

D. Effect of priors

So far, in all of the analysis runs, we have used a very
large prior on the component masses, which was flat in
ðm1; m2Þ space. However, one could argue for other
reasonable prior distributions on the masses. One such
alternative is to use a prior that is flat in logðMobsÞ. The
quantity logðMobsÞ is used becauseMobs is a scaling factor
for the waveform amplitude and logðMobsÞ is the so-called
Jeffreys prior. Additionally, we employ a prior that is flat in
η for the second mass parameter.
We ran multiple analyses with this second prior option,

which is flat in ðlogðMobsÞ; ηÞ and find that even at a
SNR of 12 the strength of the signal is sufficient to render
the different prior distribution a minimal factor. This can
be seen in Fig. 8, where we show the one-dimensional
posteriors from a single analysis. More specifically, we
display in dotted lines the 1D posteriors of a run with
EOBNRv2HM waveform model that uses the alternative
prior, to be compared with the solid lines from the run
with the original prior. The lines are nearly identical, with
differences much smaller than those from using the
EOBNRv2 waveform; these differences from the alter-
native prior will continue to decrease as the SNR is
increased.

E. Comparison to previous parameter-estimation
work with inspiral-merger-ringdown

waveforms

In an earlier work, Ajith and Bose [30] used inspiral-
merger-ringdown phenomenological waveform models
(IMRPhenomA) to perform a study similar to ours, but
mainly focusing on understanding how uncertainties are
reduced when merger and ringdown phases are included.
Their study did not include subleading modes. They
examined the statistical error in parameter estimation as
given by the Fisher information matrix4 and MCMC
analyses. Our uncertainties calculated using EOBNRv2
templates [(2,2) mode only] are a factor of a few larger
than those given in Table 1 of Ref. [30] for SNR ¼ 10,
Mobs¼f100;200gM⊙, and η¼f0.25;0.16g (e.g., Ref. [30]
quotes relative uncertainties of 2.39% and 3.57% for Mobs

4The Fisher information matrix measures covariances analyti-
cally. The square root of the diagonal elements of the inverse of
the Fisher matrix gives a lower bound on the standard deviation of
the posterior for the parameters. In the limit of large SNR, this
estimate becomes exact.
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in cases with q¼1 andMobs ¼ 100M⊙ orMobs ¼ 200M⊙;
we measure uncertainties of 4.01% and 9.66% in these
same cases). The discrepancy in uncertainties is partly a
result of the fact that in Ref. [30], the authors maximize
their likelihood function over tc and ϕ and only perform a
single-detector search using an “effective” distance that
folds in sky position and binary inclination effects; both of
these choices have the effect of fixing values for parameters
that we allow to vary in our more general analysis, thus
introducing additional uncertainty. Furthermore, we use
EOBNRv2HM waveforms as injections, as these most
closely model NR waveforms, and our EOBNRv2 tem-
plates differ from IMRPhenomA ones, the former being
more faithful to NR waveforms [54]. Despite those
differences, the quantitative measurements are in general
agreement and we also find agreement in the qualitative
aspects of increasing uncertainty in mass parameters with
increasing Mobs. We report our own estimations of the
uncertainty in the Appendix, using the full EOBNRv2HM
waveform model.
In Ref. [32], Littenberg et al. examined systematic and

statistical errors of EOBNR waveforms to assess whether
those waveforms are indistinguishable from the NR wave-
forms used to calibrate them. The authors employed both
EOBNRv2 and EOBNRv2HM templates to recover wave-
forms generated by NR simulations and, when using
subleading modes, find systematic errors to be comparable
to or less than statistical errors for mass ratios up to q ¼ 6
and SNRs up to 50. We find statistical errors comparable to
the ones of Ref. [32] for analyses run in common. Our
results on the importance of subleading modes for unequal-
mass and inclined (θJN > 0) systems reaffirm their
findings.
Varma et al. [37] built on Refs. [32,47]. They used as

targets “hybrid” waveforms constructed by attaching PN
inspiral/EOB waveforms to NR merger-ringdown wave-
forms, and as templates EOBNRv2 waveforms. Instead
of examining only a few points in parameter space, they
ran many simulations in order to average over relative
orientation angles. Statistical errors were computed with
the Fisher information matrix. Confirming previous
work, they found that subleading modes are more
important for parameter estimation when Mobs ≥
150M⊙ and q ≥ 4 and important for detection when
Mobs ≥ 100M⊙ and q ≥ 6 (see Fig. 1 of Ref. [37]). In
contrast, our paper employs the full EOBNRv2HM wave-
forms and uses Bayesian analysis, and it extends the
study to higher Mobs.
Bose et al. [31] focused on the importance of including

merger and ringdown phases of the waveform. They
analyzed the recovery of inspiral-merger-ringdown wave-
forms with PN inspiral waveforms and found that at masses
as low as Mobs ¼ 50M⊙ there are serious systematic errors
and an increase in statistical errors due to the loss in SNR.
This result is consistent with our analysis showing the

significant amount of signal power present in the merger
and ringdown phases of the waveform at Mobs ¼ 50M⊙
and above.

F. Astrophysical implications

As mentioned in Sec. I, the merger rate of IMBHBs is
currently highly uncertain. Consequently, detection of a
single event will immediately confirm the existence of
these systems and constrain their rate. In the absence of
detection the upper limits reached could be used to rule out
some of the models.
As shown in Fig. 1, ground-based detectors will have the

greatest distance reach for equal-mass IMBHBs of
observed total mass of ∼400M⊙. The distance reach for
such systems will be ∼6.5 Gpc or z≃ 1. We find that the
comoving volume averaged over all source orientations
and weighted by the antenna pattern functions of the
advanced LIGO-Virgo network is ∼150 Gpc3, larger by a
factor ∼1.8 than that in Ref. [10]. This difference can be
explained because, as opposed to Ref. [10], we consider a
detector network (which increases the reach) and use a
different SNR (which decreases the reach). After five years
of nonobservation of IMBHBs a rate upper limit of 4 ×
10−11 Gpc−3 yr1 can be achieved, which is smaller than the
rates for most formation models discussed in Ref. [10–12].
For a binary of same total mass, ∼400M⊙, but mass ratio
q ¼ 4, the reach when including subleading modes is
smaller by a factor of 1.5 (see Fig. 1) and the upper limit
will be larger by a factor 3.375, i.e., 1.35×10−1 Gpc−3 yr1.
Neglecting the subleading modes worsens the upper limit
by a factor 2.4. However, Ref. [47] showed that in a
realistic search the improvement when including sublead-
ing modes is significant only for mass ratios larger
than ∼4.
An important question in cosmology is the mass

function of IMBHs. Routine detection of IMBHs will
help us measure the mass function of component BHs that
form merging binaries and this should be a proxy for the
mass function of IMBHs in the Universe, unless IMBHBs
are formed selectively from a subpopulation of IMBHs.
The component masses of a binary system are strongly
correlated and it is not possible to measure them accurately
while using only the dominant mode; subleading modes
break this degeneracy, especially in the case of asymmetric
binaries for which the mass ratio q is large, helping us
measure the component masses more accurately. In par-
ticular (see Fig. 7), the 95% credible interval in the
measurement of the heavier companion can be 10% to
25%, while the lighter component is measured within 10%
to 125%, depending on the total mass of the binary. These
results are far better than what might be possible by
electromagnetic observations of such binary systems.
Therefore, advanced detectors provide the most robust
way of determining the mass function across the range of
masses from 50M⊙ to 500M⊙. A related question is the

GRAFF, BUONANNO, AND SATHYAPRAKASH PHYSICAL REVIEW D 92, 022002 (2015)

022002-14



mass function of IMBHBs. Referring to Fig. 7, the total
mass is determined to within a few percent in the case of
lighter binaries of 50M⊙ to within 15–25% for the heaviest
systems of 500M⊙ that we consider. Thus, advanced
detectors should help determine the mass function of
IMBHBs.

VI. CONCLUSIONS

In this paper we used state-of-the-art waveform models
for inspiral-merger-ringdown phases of evolution to esti-
mate uncertainties in parameters of IMBHBs with total
mass Mobs ¼ 50M⊙–500M⊙ and mass ratio q ¼ 1–4.
Because for these systems the majority of the SNR is
accumulated during the last stages of inspiral, merger and
ringdown phases, where subleading modes can become
comparable to the leading (2,2) mode, we also included in
the analysis four subleading modes, i.e., (2,1), (3,3), (4,4)
and (5,5). In particular, we employed the EOBNRv2 and
EOBNRv2HM waveform models in LAL.
Using a Bayesian analysis, we found that for unequal-

mass systems and inclined binaries subleading modes
improve the measurement of the mass parameters and
break degeneracies in distance and orientation angles (see
Sec. V C). As the binary’s total mass increases, the merger
and ringdown phases dominate the SNR. Since for such
high-mass binaries the signal resembles a burst, the
measurement will extract the dominant frequency of
oscillation of the signal, which depends primarily on the
total mass, thus the uncertainty in total mass becomes
smaller than the uncertainty in the chirp mass (see Sec. VA,
Fig. 7 and Tables I and II). In contrast, for lower total
masses, the SNR accumulates over many cycles of inspiral
and the chirp mass is better measured. The presence of
subleading modes is less crucial for comparable-mass
systems and face-on binaries (see Sec. VA, Fig. 7 and
Table I). Inclusion of subleading modes allows for
improved measurement of the mass ratio for asymmetric
and inclined systems (see Table II). Finally, as discussed in
Sec. V F, GW observations of IMBHBs will demonstrate
the existence and shed light on the demographics of
IMBHs, even if component masses will be measured only
with a fractional error of (several) tens of percent.
Our analysis was restricted to nonspinning IMBHs and

explored only part of the parameter space. These limitations
were a consequence of the fact that EOBNR waveform
models are expensive to generate for Bayesian analyses.
Higher-mass binaries (Mobs ∼ 400M⊙) take tens to hun-
dreds of milliseconds to generate, while lower-mass bina-
ries (Mobs ∼ 50M⊙) will require up to tens of seconds;

computational time will quickly add up as 106–107 wave-
form computations are required for a complete analysis.
This cost is compounded by the requirements both for long
segments to enclose the entire waveform while in-band
(long due to the low minimum frequency) and a high
sampling rate in order to include the subleading modes in
the ringdown signal. Recently, reduced-order models
(ROM) have been developed for EOBNR waveforms,
either for spinning, nonprecessing systems [73] or non-
spinning, but with subleading-mode waveforms [74].
Future investigations could employ these faster template
families.
While completing this work, we became aware of the

study of Ref. [75], which includes the effect of non-
precessing spins using a ROM built on the SEOBNRv2
template family [73,76], while discarding the subdomi-
nant modes.

ACKNOWLEDGMENTS

We thank Cole Miller for very useful discussions and
comments and Collin Capano for a careful reading of the
manuscript and comments. A. B. and P. G. acknowledge
partial support from NASA Grant No. NNX12AN10G. A.
B. also acknowledges partial support from NSF Grant
No. PHY-1208881. P. G. was also supported during this
work by an appointment to the NASA Postdoctoral
Program at the Goddard Space Flight Center, administered
by Oak Ridge Associated Universities through a contract
with NASA. B. S. S. acknowledges the support of the
LIGO Visitor Program through the National Science
Foundation Award No. PHY-0757058, Max-Planck
Institute of Gravitational Physics, Potsdam, Germany,
and STFC Grant No. ST/J000345/1. Results presented
here were produced using the NEMO computing cluster
at the Center for Gravitation and Cosmology at UWM
under NSF Grants No. PHY-0923409 and No. PHY-
0600953.

APPENDIX: SUMMARY OF MEASUREMENTS

In this section we present tables of the 95% credible
intervals for five of the measured parameters: Mobs, η,
Mobs, dL, and tc. Results are presented for two mass ratios
(q ¼ 1.25 and q ¼ 4) and for two inclinations (θJN ¼ π=3
and θJN ¼ 0). For all parameters except tc, these values are
scaled by their true values and converted into percentages.
Uncertainty in tc is presented in ms. Table I presents values
for q ¼ 1.25 and Table II presents results for q ¼ 4. For the
two inclinations, results are side-by-side, with θJN ¼ 0 in
parentheses.
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TABLE I. Measurement uncertainties for EOBNRv2HM signals with EOBNRv2HM templates. The values are the (relative) widths of the
95% credible intervals from the one-dimensional marginalized posterior distributions, scaled by the true value when indicated. For all
runs, q ¼ 1.25 (η ¼ 0.247). θJN ¼ π=3 and θJN ¼ 0 results are shown side-by-side, with the latter in parentheses.

SNR Mobs ¼ 50M⊙ 100M⊙ 150M⊙ 200M⊙ 300M⊙ 400M⊙ 500M⊙
ΔMobs=Mobs

6 16.810 (16.658) 6.895 (6.655) 2.607 (2.815) 0.612 (0.610) 0.479 (0.515) 0.472 (0.497) 0.400 (0.410)
8 16.756 (16.464) 0.159 (0.158) 0.280 (0.285) 0.288 (0.287) 0.262 (0.251) 0.239 (0.255) 0.213 (0.214)
10 0.052 (0.049) 0.086 (0.090) 0.180 (0.178) 0.202 (0.201) 0.201 (0.200) 0.180 (0.181) 0.155 (0.159)
12 0.041 (0.040) 0.065 (0.064) 0.130 (0.130) 0.166 (0.161) 0.164 (0.169) 0.149 (0.150) 0.132 (0.125)
14 0.031 (0.033) 0.050 (0.050) 0.100 (0.102) 0.137 (0.135) 0.143 (0.139) 0.128 (0.124) 0.113 (0.105)
16 0.027 (0.028) 0.042 (0.045) 0.080 (0.082) 0.116 (0.118) 0.132 (0.129) 0.109 (0.105) 0.090 (0.088)
18 0.025 (0.025) 0.038 (0.038) 0.070 (0.074) 0.100 (0.104) 0.113 (0.107) 0.097 (0.087) 0.083 (0.075)

Δη=η
6 0.874 (0.872) 0.866 (0.863) 0.709 (0.725) 0.488 (0.427) 0.475 (0.484) 0.512 (0.510) 0.520 (0.524)
8 0.870 (0.871) 0.201 (0.191) 0.177 (0.181) 0.182 (0.198) 0.218 (0.227) 0.221 (0.218) 0.203 (0.186)
10 0.109 (0.104) 0.135 (0.144) 0.126 (0.130) 0.132 (0.131) 0.158 (0.146) 0.136 (0.153) 0.131 (0.097)
12 0.085 (0.082) 0.114 (0.112) 0.106 (0.099) 0.113 (0.107) 0.131 (0.129) 0.120 (0.111) 0.094 (0.075)
14 0.063 (0.067) 0.086 (0.093) 0.090 (0.086) 0.089 (0.092) 0.108 (0.100) 0.100 (0.082) 0.065 (0.053)
16 0.055 (0.057) 0.077 (0.086) 0.077 (0.073) 0.080 (0.078) 0.107 (0.096) 0.082 (0.061) 0.054 (0.038)
18 0.049 (0.050) 0.071 (0.072) 0.070 (0.069) 0.072 (0.073) 0.085 (0.074) 0.069 (0.049) 0.045 (0.034)

ΔMobs=Mobs

6 16.913 (16.613) 6.594 (6.315) 0.995 (1.293) 0.605 (0.620) 0.603 (0.602) 0.626 (0.634) 0.627 (0.614)
8 16.662 (16.350) 0.169 (0.182) 0.312 (0.324) 0.333 (0.338) 0.344 (0.344) 0.347 (0.357) 0.304 (0.292)
10 0.029 (0.027) 0.091 (0.099) 0.199 (0.200) 0.237 (0.239) 0.269 (0.263) 0.240 (0.250) 0.213 (0.197)
12 0.021 (0.021) 0.065 (0.068) 0.149 (0.146) 0.203 (0.195) 0.220 (0.223) 0.203 (0.199) 0.170 (0.150)
14 0.015 (0.016) 0.049 (0.052) 0.116 (0.118) 0.163 (0.166) 0.192 (0.190) 0.178 (0.157) 0.138 (0.123)
16 0.013 (0.013) 0.043 (0.043) 0.091 (0.095) 0.140 (0.142) 0.180 (0.173) 0.146 (0.128) 0.110 (0.098)
18 0.011 (0.012) 0.037 (0.036) 0.081 (0.084) 0.125 (0.130) 0.149 (0.137) 0.127 (0.105) 0.096 (0.086)

ΔdL=dL
6 1.819 (2.438) 1.252 (1.649) 0.843 (1.078) 0.629 (0.835) 0.469 (0.655) 0.449 (0.615) 0.510 (0.658)
8 2.423 (3.066) 1.470 (1.982) 1.229 (1.569) 0.873 (1.252) 0.673 (0.932) 0.687 (0.911) 0.803 (1.090)
10 1.215 (1.616) 1.211 (1.559) 1.213 (1.628) 1.179 (1.578) 0.973 (1.319) 0.973 (1.375) 1.183 (1.560)
12 1.140 (1.513) 1.084 (1.463) 1.104 (1.526) 1.133 (1.559) 1.164 (1.576) 1.270 (1.561) 1.390 (1.461)
14 1.045 (1.333) 0.980 (1.399) 1.002 (1.417) 1.030 (1.467) 1.106 (1.404) 1.234 (1.245) 1.235 (1.009)
16 0.970 (1.418) 0.896 (1.365) 0.959 (1.430) 1.004 (1.423) 1.036 (1.307) 1.035 (1.010) 0.979 (0.821)
18 0.978 (1.386) 0.895 (1.373) 0.982 (1.378) 0.991 (1.337) 0.976 (1.118) 0.923 (0.846) 0.808 (0.688)

Δtc ðmsÞ
6 187.8 (188.9) 174.7 (173.3) 48.3 (56.5) 28.0 (26.2) 34.8 (34.4) 44.1 (44.4) 46.1 (48.8)
8 191.3 (190.7) 6.9 (6.8) 11.3 (11.6) 14.4 (14.8) 20.9 (19.9) 26.0 (26.2) 30.6 (29.5)
10 3.5 (3.2) 4.8 (4.8) 8.1 (7.6) 10.9 (10.5) 16.3 (15.8) 21.5 (20.2) 24.0 (22.8)
12 3.0 (2.7) 4.0 (3.9) 6.3 (6.2) 9.1 (8.9) 13.8 (13.1) 17.7 (16.3) 19.7 (18.1)
14 2.5 (2.2) 3.4 (3.1) 5.1 (5.0) 7.5 (7.3) 11.5 (11.3) 15.2 (13.6) 16.4 (14.3)
16 2.2 (1.9) 2.9 (2.6) 4.3 (4.3) 6.6 (6.6) 10.8 (9.8) 12.6 (11.1) 14.1 (12.3)
18 2.0 (1.7) 2.6 (2.5) 3.8 (3.8) 5.6 (5.8) 9.1 (8.3) 11.3 (9.6) 12.2 (10.5)
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TABLE II. Measurement uncertainties for EOBNRv2HM signals with EOBNRv2HM templates. The values are the (relative)
widths of the 95% credible intervals from the one-dimensional marginalized posterior distributions, scaled by the true value
when indicated. For all runs, q ¼ 4 (η ¼ 0.16). θJN ¼ π=3 and θJN ¼ 0 results are shown side-by-side, with the latter in
parentheses.

SNR Mobs ¼ 50M⊙ 100M⊙ 150M⊙ 200M⊙ 300M⊙ 400M⊙ 500M⊙
ΔMobs=Mobs

6 16.206 (17.067) 7.659 (7.722) 3.378 (3.896) 1.821 (2.195) 0.966 (1.091) 0.822 (0.930) 0.586 (0.690)
8 16.749 (16.519) 0.336 (0.452) 0.523 (0.626) 0.417 (0.419) 0.362 (0.354) 0.334 (0.320) 0.324 (0.314)
10 15.992 (0.047) 0.138 (0.136) 0.298 (0.229) 0.310 (0.260) 0.292 (0.258) 0.269 (0.262) 0.263 (0.244)
12 0.034 (0.033) 0.111 (0.102) 0.130 (0.110) 0.233 (0.175) 0.253 (0.212) 0.242 (0.214) 0.226 (0.203)
14 0.028 (0.025) 0.091 (0.082) 0.098 (0.084) 0.176 (0.115) 0.220 (0.170) 0.212 (0.174) 0.182 (0.167)
16 0.021 (0.021) 0.078 (0.068) 0.084 (0.068) 0.111 (0.081) 0.196 (0.147) 0.185 (0.153) 0.172 (0.144)
18 0.218 (0.044) 0.072 (0.061) 0.075 (0.058) 0.085 (0.065) 0.173 (0.124) 0.163 (0.128) 0.142 (0.122)

Δη=η
6 1.347 (1.348) 1.343 (1.342) 1.290 (1.314) 1.140 (1.233) 1.035 (1.066) 1.063 (1.043) 1.021 (1.021)
8 1.345 (1.349) 0.817 (0.824) 0.785 (0.826) 0.753 (0.771) 0.717 (0.776) 0.693 (0.744) 0.720 (0.775)
10 1.346 (0.126) 0.478 (0.443) 0.714 (0.623) 0.705 (0.650) 0.648 (0.627) 0.666 (0.645) 0.641 (0.645)
12 0.082 (0.079) 0.344 (0.308) 0.455 (0.389) 0.595 (0.490) 0.597 (0.539) 0.594 (0.551) 0.590 (0.553)
14 0.062 (0.057) 0.272 (0.245) 0.348 (0.295) 0.492 (0.354) 0.547 (0.455) 0.541 (0.459) 0.497 (0.473)
16 0.047 (0.047) 0.227 (0.196) 0.288 (0.237) 0.369 (0.279) 0.503 (0.384) 0.502 (0.412) 0.468 (0.408)
18 0.223 (0.123) 0.203 (0.170) 0.255 (0.202) 0.281 (0.226) 0.450 (0.340) 0.445 (0.354) 0.415 (0.358)

ΔMobs=Mobs

6 20.744 (22.182) 9.828 (10.135) 3.308 (4.837) 1.480 (2.081) 1.268 (1.391) 1.276 (1.368) 1.131 (1.119)
8 21.574 (21.289) 0.613 (0.780) 0.917 (0.934) 0.822 (0.793) 0.780 (0.761) 0.763 (0.745) 0.748 (0.762)
10 20.421 (0.027) 0.164 (0.158) 0.640 (0.521) 0.691 (0.595) 0.682 (0.628) 0.666 (0.639) 0.644 (0.623)
12 0.016 (0.016) 0.109 (0.098) 0.263 (0.208) 0.551 (0.420) 0.609 (0.517) 0.597 (0.534) 0.579 (0.528)
14 0.011 (0.011) 0.080 (0.072) 0.150 (0.130) 0.428 (0.274) 0.547 (0.430) 0.545 (0.443) 0.476 (0.446)
16 0.008 (0.009) 0.064 (0.057) 0.114 (0.101) 0.267 (0.194) 0.485 (0.366) 0.479 (0.392) 0.450 (0.378)
18 0.208 (0.033) 0.056 (0.049) 0.098 (0.084) 0.179 (0.151) 0.432 (0.316) 0.424 (0.330) 0.379 (0.330)

ΔdL=dL
6 2.340 (3.107) 1.792 (2.252) 1.503 (2.007) 1.259 (1.658) 1.061 (1.467) 1.119 (1.433) 1.252 (1.537)
8 3.197 (4.272) 2.847 (3.761) 2.465 (3.254) 2.017 (2.683) 1.631 (2.152) 1.693 (2.014) 1.909 (2.189)
10 3.869 (1.842) 1.226 (1.453) 2.090 (2.034) 1.989 (2.128) 1.717 (1.780) 1.691 (1.534) 1.740 (1.495)
12 1.144 (1.388) 0.926 (1.014) 1.019 (1.048) 1.330 (1.271) 1.338 (1.256) 1.272 (1.127) 1.263 (1.039)
14 0.988 (1.147) 0.785 (0.875) 0.750 (0.821) 0.995 (0.941) 1.083 (0.940) 1.006 (0.889) 0.926 (0.839)
16 0.878 (1.036) 0.688 (0.765) 0.656 (0.693) 0.747 (0.719) 0.924 (0.806) 0.852 (0.743) 0.803 (0.676)
18 2.011 (1.183) 0.609 (0.670) 0.609 (0.615) 0.619 (0.634) 0.795 (0.668) 0.750 (0.644) 0.657 (0.589)

Δtc ðmsÞ
6 189.9 (190.2) 185.6 (185.2) 142.4 (166.4) 58.8 (100.6) 54.6 (57.4) 65.2 (65.3) 71.4 (66.7)
8 191.5 (188.9) 11.0 (11.9) 17.3 (19.6) 19.2 (19.3) 26.8 (25.8) 36.7 (34.2) 44.6 (44.7)
10 188.8 (4.4) 7.0 (6.7) 11.1 (10.0) 14.9 (13.1) 21.3 (19.0) 26.1 (24.2) 32.3 (28.1)
12 3.6 (3.4) 6.0 (5.3) 8.2 (7.0) 11.8 (9.7) 18.0 (15.5) 22.3 (19.3) 24.7 (21.2)
14 3.1 (2.9) 5.1 (4.5) 6.7 (5.7) 9.4 (7.8) 15.0 (12.0) 19.1 (15.6) 19.7 (16.7)
16 2.9 (2.6) 4.5 (3.9) 5.8 (4.8) 7.6 (6.1) 13.1 (10.6) 15.8 (13.1) 17.6 (13.6)
18 9.0 (5.1) 4.0 (3.4) 5.1 (4.3) 6.5 (5.4) 11.9 (8.7) 13.6 (10.6) 14.4 (11.6)
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