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Super liquid-repellent layers need to have a high impalement pressure and high contact 

angles, in particular a high apparent receding contact angle. Here, we demonstrate that to 

achieve both, the features constituting the layer should be as small as possible. Therefore, 

two models for super liquid-repellent layers are theoretically analyzed: A superhydrophobic 

layer consisting of an array of cylindrical micropillars and a superamphiphobic layer of an 

array of pillars of spheres. For the cylindrical micropillars a simple expression for the 

apparent receding contact angle is derived. It is based on a force balance rather than a 

thermodynamic approach. The model is supported by confocal microscope images of a 

water drop on an array of hydrophobic cylindrical pillars. The ratio of the width of a pillar w 

to the center-to-center spacing a is a primary factor in controlling the receding angle. 

Keeping the ratio w/a constant, the absolute size of surface features should be as small as 

possible, to maximize the impalement pressure.  

 

Keywords: Cassie state, Superhydrophobicity, Superamphiphobicity, Superoleophobicity, 
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Highlights:  

 Superhydrophobic and superoleophobic structures should be as small as possible 

 Scaling down superamphiphobic surfaces leads to a high impalement pressure and a 

high contact angle 
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 The apparent receding contact angle is related to the capillary force of individual 

pillars 

 

1. Introduction 

Super liquid-repellent surfaces show a high apparent contact angle with a liquid, app  150°, 

and a low roll-off angle for drops. In the last years the interest in super liquid-repellency has 

grown enormously since it may open new opportunities both for research and technology. 

These include self-cleaning, drag reduction [1-4], fog harvesting [5], enhanced heat transfer 

[6], and gas exchange [2, 7]. In microfluidics tiny amounts of liquids can be manipulated with 

little adhesion and thus little energy dissipation.  

To achieve high apparent contact angles the surfaces have to be structured on the nano- and 

micrometer length scale. This structure needs to be such that protrusions keep the drop 

from direct contact with the substrate by capillary forces. A layer of air needs to be 

maintained underneath a drop over a large part of the apparent contact area, leading to the 

so-called Cassie or Fakir state. In contrast, when the liquid infuses the surface structure 

without trapping air we talk about the Wenzel state. In the Wenzel state, super liquid-

repellency is not achieved. In addition to the topology also one material property is 

important for the entrapment of air: The material’s contact angle. It is determined by to the 

surface tensions of the liquid, L, the surface tension of the solid, S, and the solid/liquid 

interfacial tension, SL. The material’s contact angle, also called microscopic contact angle , 

is formed on perfectly planar, smooth surfaces. It is given by Young’s equation:  

cosL S SL                 (1) 

A necessary condition for maintaining a layer of air underneath a drop is that the surface 

structures exceed a slope ψ of 180°- (Fig. 1) [8]. Then at zero applied pressure the liquid 

can form a stable structure with air underneath.  

For water as a liquid the entrapment of air is relatively easy to achieve. Many materials such 

as aliphatic hydrocarbons and perfluoroalkanes form a materials contact angle  above 90° 

with water. Therefore, micropillars with vertical walls are sufficient to build a superhydro-

phobic layer. For non-polar liquids overhanging structures are required [8-12] since  is 

below 90°.  
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Figure 1: Schematic of a solid surface with a structure entrapping air underneath a liquid 

drop when the slope with the horizontal  exceeds 180°-. 

On nano- or microstructured surfaces the contact angle depends on the length scale one is 

looking at. Correspondingly, it is necessary to distinguish the material’s contact angles from 

the apparent (macroscopic) contact angles. The material’s contact angle, introduced above is 

the contact angle formed by the liquid when extrapolating the liquid shape on the 10 – 1000 

nm scale to the contact line. We avoid the 10 nm close to the contact line because interfacial 

forces between the solid-liquid and liquid/air interface can lead to a change in the shape of 

the liquid surface [13-15]. The macroscopic scale is the length scale observed by eye or with 

a low-resolution microscope. It is larger than the nano- and microstructures forming the 

super liquid-repellent layer, thus typically larger than 10 µm. We call the macroscopic 

contact angle also apparent contact angle. We also distinguish between the three phase 

contact line (or simply contact line) on the microscopic and the edge on the macroscopic 

length scale [16].  

A fundamental task is to link the material’s and apparent contact angles. The contact angle 

for superhydrophobic surfaces is often calculated with the Cassie-Baxter-equation [17]:  

 cos cos 1 1app                  (2)
 

Here,  is the area fraction of solid/liquid interface to the total projected surface area. For 

example, for a sessile water drop on top of a square array of cylindrical, hydrophobic pillars 

with radius R and spacing a the area fraction is 2 2R a   (Fig. 2). app is an average 

between the materials contact angle on the solid surface and the angle with air (180°) 

weighted by their respective proportions. Eq. (2) shows that one should expect the same 

contact angle for equal ratios of R/a. Inserting 2 2R a   and rearranging for R leads to  

cos 1

cos 1

appa
R



 



            (3)  

For a given material’s contact angle  and a desired apparent contact angle app the pillar 

radius increases linearly with the pillar spacing.  
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The Cassie-Baxter equation is derived assuming thermodynamic equilibrium. However, liquid 

drops are often not in global thermodynamic equilibrium and their shape is determined by 

pinning of the edge [8, 18-26]. They are in a metastable state and not in a global energy 

minimum. Therefore, on real surfaces the contact angle for an advancing liquid front is larger 

than the one for a receding liquid. We distinguish between advancing a and receding 

material’s contact angles r. On the macroscopic length scale we discriminate between 

apparent advancing and apparent receding contact angles, denoted by a
app and r

app, 

respectively. r
app is also called depinning contact angle. 

Since liquid drops are usually not in thermodynamic equilibrium, in particular not on micro-

structured surfaces, Eq. (2) is not applicable to calculate r
app or a

app for super liquid-

repellent layers. Choi et al. introduced a differential parameter to extend the applicability of 

the Cassie-Baxter equation [22]. Mognetti and Yeomans [24] simulated receding apparent 

contact angles for regular arrays of micropillars with a Ginzburg-Landau free energy model. 

They confirm that the local pillar concentration is the primary factor determining r
app. Using 

a force balance between the weight of a liquid drop and surface tensional forces Extrand 

derived an apparent receding contact angle for a drop in the Cassie state as [8] 

 1 180app

r p r p                (4) 

Here, p is the linear fraction of the edge on the asperities. As the linear fraction is 

proportional to R/a, the same apparent contact angle is again expected for the same R/a 

ratio.[27] Extrand also concluded that to achieve a high impalement pressure and low 

contact angle hysteresis for water on micropillar surfaces asperity size and spacing should be 

small [27]. 

2. Objective and model 

Here we demonstrate that to create a robust Cassie state, super liquid-repellent layers 

should be made of small structures. Only then a high impalement pressure and a high 

apparent receding contact angle can be achieved at the same time. We focus on the 

receding apparent contact angle ϴr
app because it is more important than the advancing 

apparent contact angle ϴa
app. For example, a high ϴr

app guarantees a low roll-off angle [28, 

29]. Therefore we systematically analyze the wetting of two representative models (Fig. 2):  

 Water on a superhydrophobic array of cylindrical micropillars of radius R with flat top 

faces arranged in a square lattice of lattice constant a. For simplicity we assume that the 

pillars are relatively high so that sagging does not lead to contact between the liquid and 

http://www.sciencedirect.com/science/article/pii/S0001868614001973
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the bottom substrate. The materials advancing contact angle of water with the surface is 

a > 90°; typically it is 100-120°. 

 A non-polar liquid on a superamphiphobic square array of micropillars. Each pillar 

consists of a stack of spheres of radius R rigidly sintered together. The angle describing 

the neck  is supposed be small ( 30   ) to keep sufficient overhangs. The material’s 

advancing contact angle is lower than 90°; typically it is a = 50-70°.  

In both cases we assume a low surface energy material. The question is: How should one 

choose the available design parameters a and R to achieve a high impalement pressure and 

a high apparent receding contact angle?  

 

Figure 2. Schematic of square array of micropillars from side and top view. Top: Cylindrical 

pillars; bottom: pillars of sintered spheres. The liquid is suspended on top in the Cassie state. 

3. Drop of water on a superhydrophobic layer 

Impalement pressure 

We consider the impalement pressure, that is the maximal pressure support before the 

liquid infuses the layer and the Wenzel state is reached. For cylindrical pillars the capillary 

force per pillar is equal to the periphery 2 R  times the vertical component of the surface 

tension cosL a   [30-33]. Dividing this force by the area per pillar A = a
2 leads to an 

impalement pressure of 

 max 2
1 cosL

a

R
P

A

 
              (5) 

with the area fraction 2R A  . For an hexagonal array 2 sin60A a  . The factor (1-) 

takes into account that the capillary force only needs to support the liquid above the free 
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surface [34]. Above solid/liquid interface the pressure is directly supported by the solid pillar 

surface. Since in most applications 0.2  , the additional factor can usually be neglected. In 

Eq. (5) it was assumed that the microscopic contact angle around the contact line is the 

same in all directions. In reality, the microscopic contact angle in the direction towards the 

next pillar is slightly different from the microscopic contact angle in a direction along the 

diagonal of the square lattice [34, 35].  

Although Eq. (5) is only a good approximation for a R , we still use it to illustrate the 

scaling of lines of constant impalement pressure (Fig. 3); for a justification see [16]. Solving 

Eq. (5) with respect to R leads to   

2 2

max max
cos cosL L

a a

a
R

P P

 



 
     

 
         (6) 

For one example, namely an advancing materials contact angle a = 120°, R is plotted versus 

a for a fixed Pmax = 3 kPa (Fig. 3). In a double logarithmic plot Eq. (6) leads to straight line 

with a slope of two. At high spacing it levels off. In order to prevent impalement up to at 

least 3 kPa, the parameters R and a need to be chosen above this line. A second line with a 

slope 1 limits the radius of the cylinders for pure geometrical reasons to 2a R . The grey 

area between those two lines indicates the allowed parameter range. When requiring a 

higher impalement pressure the graph R-vs-a for constant P
max shifts upwards and the 

“allowed” grey triangle decreases in size.  

 

Figure 3. Radius of cylindrical pillars versus center-to-center spacing for an array of hydro-

phobic pillars, water (L = 0.072 N/m), and a material’s advancing contact angle of a = 120°. 

The line “R=a/2” indicates the geometrically possible limit. The steeper line “P
max =3 kPa” 
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indicates a minimum radius required for 3 kPa impalement pressure calculated with Eq. (6). 

In addition, lines for constant r
app = 150° were calculated with the Cassie-Baxter Eq. (3),  = 

100°, dotted, and from the force balance Eq. (12), dashed, with r = 100°. The dark grey area 

indicates the parameter space for which 150app

r    and max 3P   kPa.   

Microscopic structure of the liquid 

To find an appropriate model linking r
app to r it is necessary to consider the microscopic 

structure of the liquid on an array of micropillars. Therefore, we imaged a slowly evaporating 

water drop on an array of cylindrical micropillars by laser scanning confocal microscopy (Fig. 

4a,b). The procedure was similar to the one followed for the study of the Cassie-Wenzel 

transition [35]. The air cushion underneath the drop is clearly visible in the confocal images. 

Capillary bridges are formed between the top faces of the pillars and the drop. Such bridges 

have been observed before [22, 25, 35-37]. At the edge, these bridges form neck-like 

structures. The total curvature in theses liquid necks is low because the Laplace pressure of 

the liquid is determined by the macroscopic radius of the drop. The contact angle at the 

receding side of the pillar at the edge is about 85°, which is the receding material’s contact 

angle of water. In addition, the length of the capillary bridge is nearly equal to the diameter 

of the pillar. Already 20 µm above the pillars the shape becomes a spherical cap and local 

variations due to the presence of isolated capillary bridges vanish. For a drop to recede or 

roll the bridges at the rear have to be broken. Since the energy of an individual bridge is 

orders of magnitude higher than the thermal energy kBT, such drops are usually not in 

thermodynamic equilibrium but their specific shape depends on the history. The confocal 

images are the basis of the calculations of macroscopic contact angles below. 

http://www.sciencedirect.com/science/article/pii/S0001868614001973
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Figure 4. (a) Three-dimensional confocal microscope image of an initially 6 µL water drop on 

a square array of cylindrical SU-8 pillars (5 µm high, 10 µm diameter, center-to-center 

distance 40 µm). SU-8 was labeled with N-(2,6-diisopropylphenyl)-3,4-perylenedicarboxylic 

acid monoimide (PMI), emission maximum at 540 nm. The array was hydrophobized with 

1H,1H,2H,2H-perfluorooctyl-trichlorosilane by chemical vapor deposition. Water was labeled 

with the water-soluble dye N,N’-(2,6-diisopropylphenyl)-1,6,7,12-tetra(1-methylpyridinium-

3-yloxy)-perylene-3,4,9,10-tetracarboxylic acid diimide tetramethane-sulfonate (WS-PDI), 

emission at 590 nm. Measurements of the surface tension with the Wilhelmy plate method 

(platinum plate, DCAT11 tensiometer, DataPhysics Instruments GmbH) verified that the dye 

had no effect on the surface tension at 0.1 mg/mL concentration. Confocal microscopy was 

performed with a Leica TCS SP5 microscope with a resonant scanner at 8 kHz, allowing for 
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the acquisition of a complete 3D stack (86×86×35 µm3) within 4.8 s. To obtain the correct 

coordinates for the water-air interface a dry objective 40×/0.85 was used. This had the side 

effect that pillars appeared shorter by a factor equal to the refractive index nSU8 = 1.6. 

Therefore, they were replaced by yellow „artificial“ pillars in Fig. 4. (b) Two-dimensional 

vertical (xz) cross-section along the diagonal. (c) Schematic of the rear edge of a drop on an 

array of micropillars. The actual capillary bridge can be approximated by a rotationally 

symmetric bridge rotated by 90 2app

r  . 

Calculation of apparent receding contact angle 

To link the apparent contact angle to the microscopic surface structure and the materials 

contact angle we explicitly consider the force of individual liquid necks and apply a force 

balance. The fact that a drop is not in a global free energy minimum is considered on two 

length scales. First on the nanometer scale by discriminating between advancing and 

receding materials contact angle. On the larger scale, capillary bridges form between a 

receding drop and the top faces of micropillars. These bridges are stable but they do not 

represent a global energy minimum. We proceed in two steps. First we calculate the 

maximal force  a rotationally symmetric capillary bridge can hold. Second, we consider the 

effect when tilting the bridge. We equate the horizontal force component of such a bridge to 

the macroscopic horizontal force component.  

The maximal capillary force a rotationally symmetric liquid meniscus can hold in normal 

direction is the integral of the normal component of the surface tension around the contact 

line. The liquid bridge collapses when the actual microscopic contact angle decreases below 

the receding contact angle; this condition is referred to as the Gibbs criterion [24]. 

Therefore, just before the capillary bridge collapses the force of a single liquid meniscus is 

2 sinL rf R    for r  90° and 2 Lf R   for r < 90°. This is not 100% correct since we 

ignore the Laplace pressure. It is, however a good approximation. The force due the Laplace 

pressure acting on an the top face of a pillar can be calculated from 22 L df R r  , where 

rd is the radius of curvature of the drop. Since 1dR r  we neglect it. See [38] for a 

correction calculated with the full Laplace equation. We take deviations with a correction 

factor  into account: 

2 sinL rf R                 (7) 

 is of the order of 1 and depends on the specific geometry of the contact.  
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At edge of the drop the capillary force of the meniscus is not directed normal to the surface 

but in a direction 90°-r
app

/2 with respect to the normal (Fig. 4c). The horizontal component 

is obtained by multiplying f with  sin 2 2app

r    cos 2app

r . Just before the liquid 

recedes macroscopically this horizontal component is balanced by the surface tensional 

force per unit length of the edge  1 cos app

L r    [16] (Fig. 4c). If we equate both for a line 

parallel to the rows of pillars we get a force per unit length of the rim of  

 
2 2 1 cos

sin cos 1 cos sin
2

cos
2

app app
appr r

L r L r r app

r

R R

a a

 
 

  
      


   (8) 

Using the mathematical identity      1 cos cos 2 2cos 2x x x   it follows that  

sin cos
2

app

r
r

R

a

 
             (9) 

Tilting the capillary bridge also has a second effect: The force f becomes weaker. Rather than 

having an adhesion force 2 sinL rf R    one would need to solve the integral of the 

normal force around the circumference: 
2

0
sin ( )Lf R d



    , where  is the angle 

around the contact line on top of a pillar. Just before the drop starts to recede at the outer 

rim the actual contact angle is r. At the inner side the contact angle at that point is still 

larger:  

2 90
2

app

r
r

 
      

 
          (10) 

For simplicity we assume that the actual microscopic contact angle smoothly changes 

around the periphery with the azimuthal angle . Therefore, as an average the contact angle 

is  90 2app

r r   . Inserting this corrected microscopic contact angle into Eq. (9) 

leads to 

cos cos cos sin sin cos
2 2 2 2

app app app app

r r r r
r r r

R R

a a

       
         
   

     (11) 

Further rearranging:  

1
tan

2 sin tan

app

r

r r

a

R


 

 
       (12) 
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or 

1
2arctan

sin tan

app

r

r r

a

R

 
   

  
         (13) 

As in the Cassie-Baxter equation the apparent contact angle depends on the ratio of a/R. If 

we do the same calculation for square pillars we need to replace 2 R  in Eq. (7) by the 

periphery 4b , where b is the length of one side. This leads to  

1
2arctan

2 sin tan

app

r

r r

a

b

 
   

  
         (14) 

Lines of constant r
app calculated with Eq. (12) are plotted in Figure 3 indicated by “force 

balance”. Here, the parameter  was chosen to be 2   so that 4 sinL rf R  ; the 

capillary force is takeover a length twice the width of the pillar. The radius R required to 

achieve r
app = 150° increases linearly with the spacing. For higher apparent contact angle 

this line would move downwards. For comparison also R-vs-a calculated with the Cassie-

Baxter Eq. (3) is plotted for an apparent contact angle of 150°. The radii are typically 1.6 

times higher than the ones calculated with Eq. (12).  

Figure 5 shows apparent receding contact angles reported in the literature for arrays of 

cylindrical [39] and square pillars [18] versus the ratio of width to pitch w/a. The width is 2R 

for cylindrical pillars and b for square pillars. Best fits were obtained with  = 0.65 for 

cylindrical pillars and  = 0.46 for square pillars. Results reported by Bico et al. [40] and 

Moulinet and Bartolo [41] for arrays of cylindrical pillars agreed with calculated values for  

= 0.59 and  = 0.56, respectively. The Cassie-Baxter equation (4) tends to overestimate 

receding apparent contact angles. The force balance leading to Eqs. (13) and (14) led to good 

agreement when choosing  = 0.6 for cylindrical pillars and  = 0.46 for square pillars. 

Realizing that 0.6 1.9 2R R R    and 0.46 2b b   we can generalize Eqs. (13) and (14):  

1
2arctan

sin tan

app

r

r r

a

w

 
   

  
         (15) 

Here, w = 2R for cylindrical pillars and w = b for square pillars. 
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Figure 5. Comparison of apparent receding contact angles calculated with measured values 

for arrays of cylindrical and square pillars. r
app is plotted versus the ratio of width to center-

to-center distance. The width is w=2R for cylindrical pillars and w=b for square pillars. 

Experimental results were taken from Callies et al. [39] (black circle, square array of cylindri-

cal silicon pillars with r = 80°), Öner & MacCarthy [18] (hexagonal array of silicon square 

pillars hydrophobized using n-octyldimethylchlorosilane r = 94° blue circle, 

dimethyldichlorosilane r = 102° green circles, and CF3(CF2)14(CH2)2-(CH3)2SiCl r = 110° red 

circles). r
app values calculated with Eq. (13) and =0.65 are plotted as a continuous black 

line. Dashed black lines are predictions with the Cassie-Baxter Eq. (2). For square pillars 

experimental results are compared to values calculated with Eq. (13, continuous in 

corresponding color) for  = 0.46 and to the Eq. (2, dashed).  

Using Eq. (13) we can add lines of constant receding contact angle into Figure 3. The force 

balance Eq. (13) leads to 1.6 times smaller cylinder radius than the one calculated with the 

Cassie-Baxter equation (4). If an apparent receding contact angle above 150° is required, 

only R values below this line are allowed. Thus, for Pmax  3 kPa and r
app  150° only the 

dark grey triangle is allowed as a parameter range for R and a.  

4. Drop of non-polar liquid on a superamphiphobic layer 

In ref. [16] an equation was derived for the impalement pressure for   0. Here, we 

consider the fact that the pressure in the area covered by pillars does not need to be 

balanced by a capillary forces. As in Eq. (2) this consideration led to an additional factor 1 

, which was neglected in Eq. (6) of ref. [16]. The impalement pressure for a square array of 

pillars of spheres is given by  
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 max 2

2

2
1 sin

2

aR
P

a





             (16) 

With 2 2R a   we obtain in analogy to Eq. (6) 

2 2
2 2

max max
sin sin

2 2

a a a
R

P P

 



  
    

 
          (17) 

The corresponding plots of R-vs-a for Pmax = 3 kPa are shown in figure 6. The light grey area 

shows possible parameters R and a for which the impalement pressure exceeds 3 kPa.  

 

Figure 6. Radius of spheres versus center-to-center spacing for an array of hydrophobic 

pillars consisting of spheres for n-hexadecane (L = 0.027 N/m) and a materials receding 

contact angle of r = 65°. The top line represents the geometric limit R=a/2. The steep line is 

an isobar for an impalement pressure of Pmax = 3 kPa (Eq. 17). The dashed line is R-vs-a for a 

constant apparent contact angle r
app = 150° calculated with Eq. (18). The dark grey area 

indicates the parameter space for which 150app

r    and max 3P   kPa. 

In addition to the lines of constant implement pressure we calculated lines for constant 

receding contact angle using [16] 

 
 

2

2
cos 2

2 arccos cos
2 cos 2

app

rapp r
r

r

R a
R

a





  
       

    

    (18) 

The region in which r
app  150° and Pmax  3 kPa is indicated in dark grey in figure 6. Figure 

6 demonstrates that for a high impalement pressure and a high apparent receding contact 

angle the structures should be as small as possible.  
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5. Conclusion 

Super liquid-repellent structures should be as small as possible. Scaling down the geometry 

of a super liquid-repellent structure allows for a high impalement pressure without affecting 

the high apparent contact angle. The simple continuum theory will at some nanoscale not be 

valid anymore. Therefore, in order to design super liquid-repellent surfaces on the nanoscale 

simulations will be necessary.  
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