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Abstract

Old-growth forests are subject to substantial changes in structure and species compo-
sition due to the intensification of human activities, gradual climate change and extreme
weather events. Trees store ca. 90 % of the total AGB above-ground biomass in tropical
forests and AGB estimation models are crucial for forest management and conserva-5

tion. In the Central Amazon, predicting AGB at large spatial-scales is a challenging task
due to the heterogeneity of successional stages, high tree species diversity and inher-
ent variations in allometry and architecture. We parameterized generic AGB estimation
models applicable across species and a wide range of structural and compositional
variation related to species sorting into height layers as well as frequent natural distur-10

bances. We used 727 trees from 101 genera and at least 135 species harvested in a
contiguous forest near Manaus, Brazil. Sampling from this dataset we assembled six
scenarios designed to span existing gradients in floristic composition and size distri-
bution in order to select models that best predict AGB at the landscape-level across
successional gradients. We found that good individual tree model fits do not neces-15

sarily translate into good predictions of AGB at the landscape level. When predicting
AGB (dry mass) over scenarios using our different models and an available pantropi-
cal model, we observed systematic biases ranging from −31 % (pantropical) to +39 %,
with RMSE root-mean-square error values of up to 130 Mg ha−1 (pantropical). Our first
and second best models had both low mean biases (0.8 and 3.9 %, respectively) and20

RMSE (9.4 and 18.6 Mg ha−1) when applied over scenarios. Predicting biomass cor-
rectly at the landscape-level in complex tropical forests, especially allowing good per-
formance at the margins of data availability for model parametrization, requires the
inclusion of predictors related to species architecture. The model of interest should
comprise the floristic composition and size-distribution variability of the target forest,25

implying that even generic global or pantropical biomass estimation models can lead
to strong biases. Reliable biomass assessments for the Amazon basin still depend on
the collection of destructive allometry data at the local/regional scale and forest inven-
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tories including species-specific attributes, which are often unavailable or estimated
imprecisely in most regions.

1 Introduction

Allometries describe how relationships between different dimensions (e.g. length, sur-
face area and weight) of organisms change non-proportionally as they grow (Huxley5

and Teissier, 1936). The lack of proportionality arises from the fact that organisms
change their shape while they grow (i.e. the dimensions differ in their relative growth
rates). As one important application, allometric relationships can be used to relate sim-
ple dimensions of trees (e.g. DBH diameter at breast height or H tree height) to dimen-
sions more relevant for forest managers and basic ecological research, such as wood10

volume or whole tree biomass (Brown et al., 1989; Higuchi et al., 1998; Saldarriaga
et al., 1998).

Allometric relationships and biomass estimation models can differ substantially be-
tween different tree species, especially in species-rich regions with a high variation
in tree sizes and architectures such as in the tropical rainforests (Banin et al., 2012;15

Nelson et al., 1999; Poorter et al., 2003). This variation reflects differences in growth
strategy and life history, such as tree species occupying different strata when mature
(e.g. understory, canopy, or emergent species), successional niches (e.g. pioneer or
light demanding species, e.g. Cecropia spp. and Pourouma spp., in contrast to late-
successional or shade tolerant, e.g. Cariniana spp. and Dipteryx spp.) or environmen-20

tal microsites , e.g. gap and non-gap (Clark and Clark, 1992; King, 1996; Swaine and
Whitmore, 1988).

Important and highly variable architectural attributes of tropical tree species include
stem shape (e.g. slender to stout form), branch form and branching intensity (e.g. pla-
giotropic, orthotropic and unbranched), crown contour (e.g. round, elongated and ir-25

regular), crown position (e.g. understory, canopy and emergent), maximum DBH and
Height (Hallé, 1974; Hallé et al., 1978). In addition, there is large variation in growth
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rate (the speed at which a certain space is filled) (Silva et al., 2002) and consequently
in wood anatomy among species. WD wood density, which is particularly important for
biomass estimation, varies significantly across regions (Muller-Landau, 2004) and can
differ between species by more than one order of magnitude (Chave et al., 2006). Given
these sources of variation, it is not surprising that different allometries were reported5

when comparing species (Nelson et al., 1999), successional stages (Ribeiro et al.,
2014), ontogenies (Sterck and Bongers, 1998), and regions (Lima et al., 2012). Unfor-
tunately, transferring such species-, size-, ontogeny- and site-specific biomass estima-
tion models to other contexts – other species, other size ranges, other life-stages, other
sites or successional stages – typically leads to strongly biased predictions, especially10

when predictor ranges are limited or neglected (Clark and Kellner, 2012; Sileshi, 2014).
In temperate and boreal forests, the size-, ontogeny-, site-variation has been cap-

tured by the development of generic species-specific biomass estimation models (Wirth
et al., 2004; Wutzler et al., 2008) based on data from hundreds of individuals from a sin-
gle species. However, this approach is prohibitive in the tropics where thousands of tree15

species coexist (Slik et al., 2015; ter Steege et al., 2013). Instead, the challenge is to
develop generic local or regional multivariate formulations that generalize also across
species (Higuchi et al., 1998; Lima et al., 2012; Nelson et al., 1999; Saldarriaga et al.,
1998). Ideally, they contain predictor variables that (1) jointly capture a large fraction
of the variation induced by the underlying morphological and anatomical gradients and20

are (2) still easy enough to obtain or measure.
The development and application of such multivariate generic models valid across

species, tree sizes and sites poses a number of challenges. Finding the appropriate
model structure and estimating the model coefficients requires a design matrix with
a large number of individual measurements containing the variable of interest (here25

AGB above-ground biomass) and the predictor variables (i.e. DBH, H , SG species’
successional group (ranging from pioneer to late-successional species) and WD). Im-
portantly, the design matrix should ideally cover all possible real-world combinations
of predictor values in order to avoid error-prone extrapolations and biased predictions.
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However, in multivariate models with several predictors, this precondition is rarely met,
not even by large design matrices. The ultimate prediction is typically at the landscape-
level, which requires summing up individual predictions for several thousands of trees
varying in size, architecture and species assignment. The larger the multivariate vari-
ation of predictor values within a stand, the higher is the likelihood that extrapolation5

errors occur. This calls for a validation at the landscape-level which, however, requires
a plot-based harvest method. For obvious reasons, this has rarely been attempted
(Carvalho Jr et al., 1995; Chambers et al., 2001; Higuchi et al., 1998; Lima et al.,
2012).

Notable effort has already been made to parameterize global/pantropical AGB esti-10

mation models (Brown et al., 1989; Chave et al., 2005, 2014). Commonly, these models
are derived using several different datasets, each of which is comprised of relatively few
trees and species. Although few opportunities exist to evaluate theses models at the
landscape-level, they are used worldwide in different contexts, sites and across succes-
sional stages. For instance, the pantropical model from Chave et al. (2005) (DBH and15

WD as predictors) overestimated biomass when tested against trees in Gabon (Ngo-
manda et al., 2014), Peru (Goodman et al., 2014), Colombia (Alvarez et al., 2012) and
Brazil (Lima et al., 2012), but also underestimated the AGB in mixed-species Atlantic
Forest stands, Brazil (Nogueira Junior et al., 2014).

The availability of such generic AGB estimation models applicable to many species20

and contexts is particularly important for management, ecological and biogeochemi-
cal research in tropical forest landscapes that encompass a particularly wide spectrum
of floristic and structural variation. For example, in the Central Amazon terra firme
forests, one hectare of old-growth forest can hold more than 280 tree species (DBH
≥ 10 cm) (de Oliveira and Mori, 1999) with a wide range of architectures and anatomies25

(Braga, 1979; Muller-Landau, 2004; Ribeiro et al., 1999). At the landscape scale, this
region encompasses a mosaic of successional stages promoted by windthrows (As-
ner, 2013; Chambers et al., 2009b, 2013; Negrón-Juárez et al., 2010, 2011). Disturbed
areas include a diverse set of species representing the range from new regrowth to
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adult survivors, and thereby including different successional groups (pioneers, mid- and
late-successional species), tree sizes and with a broader range of architectures than
old-growth forests (Chambers et al., 2009a; Marra et al., 2014). Once floristic composi-
tion changes and structural gradients increase to this extent, allometry becomes more
complex and reliable landscape-level biomass estimates rely on well designed and well5

tested generic biomass models.
We report here a new allometric dataset of 727 trees harvested in a contiguous terra

firme forest near Manaus, Brazil. This dataset includes biomass measurements from
101 genera and at least 135 tree species that vary in architecture and are from differ-
ent successional groups. These trees span a wide range of DBH (from 5 to 85 cm),10

H (from 3.9 to 34.5 m) and WD (from 0.348 to 1.000 gcm−3). This data matrix was
used to develop generic AGB estimation models for Central Amazon forests applica-
ble across species and a wide range of structural and compositional variation, using
various subsets of the available predictors; i.e. size (DBH and H), SG and WD.

We next evaluated our models, as well as the current pantropical model from Chave15

et al. (2014) at the landscape-level using a virtual approach. We created scenarios of
simulated 100 ha forest plots by assembling subsets of the 727 known-biomass trees
in our data matrix. These scenarios were designed to span gradients in (1) floristic
composition by assembling stands with specific proportions of pioneer, mid- and late-
successional species, and (2) size distributions. We compared the known biomass20

of these forest assemblage scenarios to predictions based on the generic models,
with the goal of answering the following questions: (1) Which variance modeling ap-
proach and combinations of predictors produced the best individual tree AGB esti-
mation model? (2) Which model most reliably predicted AGB at landscape-level, i.e.
across successional gradients? We expected that the best model, the one reducing25

both bias and error of single and landscape-level biomass prediction, would require
species-specific variables as well as an additional parameter allowing the modeling of
heteroscedastic variance. Our approach and the independence of our dataset allowed
us to evaluate whether is still important to build local/regional models or whether avail-
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able pantropical/global models suitable for landscape biomass assessments – under
the assumption that they predict biomass satisfactory over all sorts of tropical forest
types and successional stages.

2 Material and methods

2.1 Study site5

Our study site is located at the Estação Experimental de Silvicultura Tropical (EEST),
a 21.000 ha research reserve (Fig. 1) managed by the Laboratório de Manejo Florestal
(LMF) of the Instituto Nacional de Pesquisas da Amazõnia (INPA), Manaus, Amazonas,
Brazil (2◦56′ S, 60◦26′W). Mean annual temperature in this region is about 26 ◦C and
rainfall averages to 2600 mm year −1 (Sombroek, 2001) with annual peaks of up to10

3450 mm (Silva et al., 2002). From July to September there is a distinct dry season
with usually less than 100 mm of rain per month. Topography is undulating with relative
altitude between valleys and plateaus varying from 50 to 100 m (Braga, 1979). Soils
on upland plateaus and the upper portions of slopes have high clay content (Oxisols),
while soils on slope bottoms and valleys have high sand content (Spodosols) and are15

subject to seasonal flooding (Telles et al., 2003).
The EEST is mainly covered by a contiguous closed canopy old-growth terra firme

forest with high tree species diversity and dense understory (Braga, 1979; Ribeiro et al.,
1999). The terra firme forests are the predominant forest type in the Brazilian Amazon
(Braga, 1979; Higuchi et al., 2004) and ca. 93 % of the total plant biomass is stored in20

trees with DBH ≥ 5 cm (Lima et al., 2012; Silva, 2007). The tree density (DBH ≥ 10 cm)
in the EEST is 593±28 trees ha−1 (mean ±99 % confidence interval) (Marra et al.,
2014). Trees larger than 100 cm in DBH are rare (< 1 individual ha−1) and those with
DBH > 60 cm accounted for only 16.7 % of the AGB (Vieira et al., 2004).
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2.2 Allometric data

We used data from 727 trees harvested in this region, each with measured biomass
and predictor variables. This dataset comprised 101 genera and at least 135 species
with DBH ≥ 5.0 cm (Table 1; all data are given in Table S1 in the Supplement). The trees
were harvested through the plot-based harvest method in an old-growth forest and in5

two secondary forests (14 year-old regrowth following slash and burn and 23 year-old
regrowth following a clear cut) (Fig. 1). Rather than an individual selection, our plot-
based method relies on the harvesting of all trees found in selected plots. This method
allows for a valid/faithful representation of the DBH-distribution of our target forests
(Higuchi et al., 1998). In the old-growth forest the trees were harvested in eight plateau10

and three valley plots (10m×10m) randomly selected within an area of 3.6 ha (Silva,
2007). In each of the secondary forests the trees were harvest in five plots (20m×20m)
randomly selected within a 1 ha plateau area (Santos, 1996; Silva, 2007). By including
data from the two secondary forests, we were able to increase the variation in floristic
composition and consequently the range of species-related variation in architecture15

and allometry (Tables 1 and S1).
Trees were harvested at ground level. For each tree, the DBH (cm), H (m) and fresh

mass (kg) were recorded in the field by using a diameter tape, a meter tape and a me-
chanical metal scale (300 kg×200 g), respectively. The DBH was measured before,
while H was measured after harvesting. For trees with buttresses or irregular trunk20

shape, the diameter was measured above these parts. Each tree component (stem,
branches and leaves) was weighted separately. For large trees, stems were cut into
smaller sections. The mass of sawdust was collected and weighted together with its
respective stem section. Leaves and reproductive material, when available, were col-
lected to allow species identification accordingly to the Angiosperm Phylogeny Group25

(APG III) classification (Stevens, 2012). Botanical samples were incorporated in the
EEST collection. The water content for each tree was determined from three discs (2–
5 cm in thickness) collected from the top, middle and bottle of the bole, and samples
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(∼ 2 kg) of small branches and leaves. The samples were oven-dried at 65 ◦C to con-
stant dry mass. The dry mass data was calculated by using the corresponding water
content of each component (Lima et al., 2012; Silva, 2007). Dry mass for each tree
was used for subsequent model fits and comparisons.

2.3 Species’ architecture attributes5

Each of our tree species or genera were assigned to one of three successional groups
known to vary in their architecture, namely pioneer, mid- and late-successional. To
make this assignment, we considered several attributes related to species’ architecture
(i.e. shape and life history), growth position (i.e. stratum), morphology, wood density
and ecology (Tables S1 and S2). We validated this approach by checking our assign-10

ments against those of classic studies (Clark and Clark, 1992; Denslow, 1980; Saldar-
riaga et al., 1998; Shugart and West, 1980; Swaine and Whitmore, 1988), local/regional
studies conducted in the Amazon (Amaral et al., 2009; Chambers et al., 2009a;
Kammesheidt, 2000; Marra et al., 2014) and species description available in the Mis-
souri Botanical Garden (http://www.tropicos.org), speciesLink (http://www.splink.cria.15

org.br) and Lista de Espécies da Flora do Brasil (http://www.floradobrasil.jbrj.gov.br/).
More importantly, we considered empirical field observations, architectural information
from our allometric dataset, and data for species presence/absence from a network of
permanent plots representing a wide range of successional stages in Central Amazon.
This network includes plots in old-growth (LMF unpublished data – census from 199620

to 2012; Silva et al., 2002), secondary forests (Carvalho Jr et al., 1995; Santos, 1996),
small and large canopy gaps (≥ c. 2000 m2) created by windthrows with 4, 7, 14, 17,
24 and 27 year-old (LMF unpublished data; Marra et al., 2014).

Since WD values vary strongly among studies (Chave et al., 2006) and sites (Muller-
Landau, 2004), we compiled WD values mainly from studies carried out in the Brazilian25

Amazon (Chave et al., 2009; Fearnside, 1997; Laurance et al., 2006; Nogueira et al.,
2005, 2007). For species where WD data were not available for the Brazilian Amazon,
we considered studies from other Amazonian regions (Chave et al., 2009). For species
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where no published WD was available, or where the identification was carried out to
the genus level (64 in total), we used the mean value for all species from the same
genus occurring in Central Amazon. For trees identified only to the family level (7 in
total), we used the mean value of genera from that family excluding those not reported
in the Central Amazon (Table S1).5

2.4 Statistical analyses

2.4.1 Individual tree biomass estimation model fits

The AGB estimation models we applied varied in the number and combination of
our predictor variables (eight combinations/series) as well as the strategy of mod-
eling the variance (three model types – see below), yielding a set of 24 candidate10

models (Table 2). We used four predictors: DBH diameter at breast height (cm), SG
species’ successional group (categorical predictor: 1 = pioneer, 2 = mid- and 3 =
late-successional species), WD wood density (gcm−3) and H tree height. We tested
variables for collinearity by calculating the VIF variance inflation factor. A conservative
VIF > 2.0 indicates significant collinearity among variables (Graham, 2003; Petraitis15

et al., 1996). Model series 1–4 had VIF < 1.5 (Table 2), which indicated no signifi-
cant collinearity among predictors. For model series 5–8, we found VIF > 2.0 for DBH
and H , which indicates significant collinearity between these two variable. This pattern
was previously reported for other allometric datasets from Amazon and other tropical
regions (Lima et al., 2012; Ribeiro et al., 2014; Sileshi, 2014).20

We fit models representing the eight different predictor combinations to our en-
tire dataset of 727 trees using three variance modeling approaches: non-linear least
square (NLS), ordinary least square with log-linear regression (OLS) and a non-linear
approach in which we modeled the heteroscedastic variance of the dataset (MOV).
The MOV approach models variance as a function of DBH with a normally distributed25
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residual error:

εi = N (ŷi ,σi ) , (1)

where i is the subscript for individuals (i = 1, . . ., n) and σi is modeled with a het-
eroscedastic variance according to:

σi = ci ·DBH
c2

i . (2)5

Model series 1 (M11, M12 and M13) used DBH as the sole predictor (Table 2). For
model series 2 (M21, M22 and M23), we allowed the b regression coefficients and
c heteroscedastic variance to vary according to the SG assignment (1, 2 or 3). This
approach allowed us to account for differences among the groups without splitting the
dataset into three different groups. This method has increased analytical power and10

allowed us to assess the relationships between tree allometry and architecture.
For model series 3 (M31, M32 and M33), we ignored the SG assignment but intro-

duced WD (which did not correlate strongly with SG). For model series 4 (M41, M42
and M43) we allowed each SG to have its own wood density effect. For model series
5 and 6, we replaced the WD by H . In model series 5 (M51, M52 and M53), we re-15

stricted the SG-variation of b and c, while in series 6 (M61, M62 and M63) we allowed
these coefficients to vary according to SG. For model series 7 (M71, M72 and M73),
we combined DBH, WD and H but restricted the SG-variation of b and c. Finally, for
model series 8 (M81, M82 and M83), we combined DBH, WD and H , and allowed b
and c to vary with SG (Table 2).20

In contrast to prior approaches, we did not test equations based on compound
(e.g. log[AGB]∼ log[b1] + b2[logDBH2HWD]) or quadratic/cubic derivatives (e.g.
log[AGB]∼ log[b1] + b2[logDBH] + b3[logDBH2] + b4[logDBH3]) (Brown et al., 1989;
Chave et al., 2005, 2014; Ngomanda et al., 2014) as these would have limited our abil-
ity to include biological variation by defining SG-specific coefficients for DBH, H and25

WD, separately.
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We fit the AGB estimation models with non-informative uniform priors using Win-
BUGS 1.4.1 (Lunn et al., 2000; Spiegelhalter et al., 2002). For each model, three chains
were run in parallel, and convergence of the posterior distribution for each parameter
was assessed by convergence to one of the ratio of pooled to mean within-chain central
80 % intervals or by the stability of both intervals (Brooks and Gelman, 1998; Brooks5

and Roberts, 1998).
To select the best model we calculated the DIC Deviance Information Criterion. The

DIC is a generalization of AIC Akaike’s Information Criterion and consists of a cross-
validatory term that expresses both the goodness of the fit and the models’ complexity.
The lower the value the better the predictive ability and parsimony (Spiegelhalter et al.,10

2002). We also checked whether the 95 % credible intervals of the coefficient’s pos-
terior distributions excluded zero. However, we did not attempt to test the null hypoth-
esis that a particular parameter is zero (Bolker et al., 2013; Bolker, 2008). Contrasts
were evaluated by monitoring differences between parameters or predictions based on
their posterior distribution. For communicating the results we consider two parameters15

significantly different if the 95 % credible interval of the posterior distribution of their
difference does not include zero.

To support the selection of the best model, and to allow for comparisons with the
available literature, we calculated the R2adj adjusted coefficient of determination and
the Syx% relative standard error as a percentage. The Syx% was calculated as follows:20

Syx% =

(
2s

ŷ
√
N

)
, (3)

where s, ŷ and N are the standard deviation of the regression, the mean of the fo-
cal independent variable and the number of observations, respectively. For the OLS
approach including log-transformed variables, we calculated the Syx% using untrans-
formed data. To correct for the bias introduced by the log-transformed data, a CF cor-25
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rection factor was calculated as follows:

CF = exp

(
SSE2

2

)
, (4)

where SSE is the standard error of the estimate (Sprugel, 1983).

2.4.2 Landscape-level biomass predictions across scenarios

To evaluate the models outlined in Table 2, we predicted AGB at the landscape-level for5

six forest-scenarios assembled by a stratified random selection of individual trees from
our design matrix of 727 trees. Our scenarios were designed to span a successional
gradient created by natural disturbances in which the interaction of tree mortality in-
tensity and species vulnerability and resilience produce complex communities varying
in species composition and size-distribution of trees (Chambers et al., 2009a, 2013;10

Marra et al., 2014). We assembled three scenarios to reflect variations in floristic com-
position and three scenarios to reflect variations in size-distribution. Each scenario was
sampled a 100 times resulting in 100 1 ha plot per scenario with different combination
of trees randomly (with replacement) assembled according to the scenario-specific de-
sign principles.15

To address the effect of variations in floristic composition on estimated AGB, we cre-
ated scenarios where we varied the proportion of pioneer, mid- and late-successional
species. The early-succession scenario comprised 50 % from trees sampled randomly
from the species classified as pioneer, 40 % of mid- and 10 % of late-successional
species (as survivors of disturbances). The mid-succession scenario comprised 10 %20

from trees sampled randomly from the species classified as pioneer, 70 % of mid- and
20 % of late-successional species. The late-succession scenario comprised 10 % from
trees sampled randomly from the species classified as pioneer, 40 % of mid- and 50 %
of late-successional species (Fig. 2a and c). We constrained our floristic composition
scenarios to a stem density of 1255 treesha−1 (DBH ≥ 5 cm) typical for the old-growth25

terra firme forests at the EEST (Lima et al., 2007; Marra et al., 2014; Suwa et al., 2012).
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To address variations in size-distribution, we varied the proportion of small and big
trees fixing a threshold value of 21 cm, which represents the mean DBH (trees with
DBH ≥ 10 cm) of our studied forest (Marra et al., 2014). Our size-distribution scenarios
included: a small-sized stand, 90 % from small (DBH < 21 cm) and 10 % from big trees
(DBH ≥ 21 cm); a mid-sized stand with equal numbers of small and big trees; and5

a large-sized stand, with 10 % small and 90 % big trees (Fig. 2b and d). As for our
floristic composition scenarios, in order to produce reliable size-distribution scenarios,
we constrained our sampling effort to a basal area value of 30.3 m2 ha−1 also typical
for our studied old growth forest (trees with DBH ≥ 5 cm) (Marra et al., 2014; Suwa
et al., 2012). Both our floristic and size-distribution scenarios produced the J-inverse10

distribution pattern, typical of tropical forests (Clark and Clark, 1992; Denslow, 1980).
AGB at the landscape-level was determined by adding up the measured AGB for

“sampled” trees in each scenario. To test how well our biomass estimation models
predicted the AGB at the stand level, we related biases and RMSE root-mean-square
error. Because data on tree height is normally unavailable or estimated imprecisely in15

Amazon forest inventories, we focused on models including only DBH, WD and SG as
predictors. In addition to the “internal evaluation” of our models, we tested the pantrop-
ical model from Chave et al. (2014):

logAGB ∼ −1.803−0.976E +0.976[logWD]+2.673[logDBH]−−0.0299[logDBH]2, (5)

which was parameterized with data from 4004 trees (DBH ≥ 5 cm) harvested in 53 old-20

growth and five secondary forests. This model has DBH, H (estimated from a DBH :H
relationship), WD and a variable E (environmental stress) as predictors, and was sug-
gested for estimating tree AGB in the absence of height measurements.

All tests were performed using the R 3.2.1 software platform (R Core Team, 2014).
All codes used in this study were written by ourselves. Figures were produced using25

the ggplot2 package (Wickham, 2009).
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3 Results

3.1 Individual tree biomass estimation model fits

The models M33 (DBH and WD as predictors) and M43 (DBH, SG and WD) were
the two best fitting models across all tree individuals (high R2adj and both low Syx%
and DIC values). These two models were also better in our landscape predictions (see5

Sect. 3.2). The statistics for the goodness of fit for the 24 models are given in Table 3.
Although the NLS approach produced models with overall higher values of R2adj and
lower values of Syx%, the DIC values indicated that the OLS and the MOV approaches
produced the best models. For the models fit with OLS, which rely on log-transformed
variables, the addition of other predictors together with DBH systematically decreased10

the CF values. This pattern suggests a reduction in the biases resulting from back-
transformation.

As expected, the addition of other predictors to a model containing only DBH sys-
tematically increased the models’ parsimony, as indicated by the lower DIC values (Ta-
ble 3). The inclusion of the SG resulted in models with slightly lower R2adj and higher15

Syx% compared to the same model structure without SG.
We observed differences with respect to the coefficients b and c among pioneer, mid-

and late-successional species in most of the models that included the SG assignment
(Table S3 and Fig. S1). The late-successional species tended to have higher intercepts
and steeper slopes. Pioneer and mid-successional species had lower differences in20

intercepts but still strong differences in the slope coefficients.
An evaluation of AGB predictions for individual trees from our two best models (as

described in the Sect. 3.2), as well from the tested pantropical model (Chave et al.,
2014) are presented in the Supplement of this study (Fig. S1). Our two best models
had lower biases (overestimation of 0.6 and 3.5 %) than the tested pantropical model25

(underestimation of 30 %).
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3.2 Landscape-level biomass predictions across scenarios

To search for the model that best predicts AGB at the landscape-level, we tested our
models (excluding those with H as a predictor, Table 2) across the 100 1 ha plots as-
sembled for each of our six forest-scenarios (Figs. 3–5) as well as jointly for all of them
(Fig. 6).5

The “true” AGB (from the summed mass of trees used to assemble the forest sce-
narios) varied from 198.1 to 314.3 (early- to late-succession scenarios) and 101.4 to
391.8 Mgha−1 (small- to large-sized scenarios). The ability of the various biomass esti-
mation models to predict the “true” virtual biomass values generally reflected the good-
ness of fit of the models for predicting individual tree data (Table 3 and Figs. 3–6).10

The same pattern was observed when evaluating the pantropical model from Chave et
al. (2014), which underestimated both the AGB of individual trees (Fig. S1) and in all
of our scenarios (Table S4 and Fig. S2).

While some models produced accurate and satisfactory predictions across all sce-
narios, others systematically under- or overestimated the observed AGB in our 1 ha15

plots (Fig. 3 and Fig. S2). The agreement between models and observations was not
only influenced by the different combinations of predictors, but the different methods
to model the variance. Interestingly, despite producing the best fits to the individual
tree data, models fit with NLS produced the least reliable landscape-level predictions,
with model M11 (only DBH as predictor) being the unique exception for the mid- and20

late-succession scenarios (Fig. 3).
We observed systematic biases ranging from −14 % (underestimation) to 38.8 %

(overestimation) in estimated landscape-level AGB (Fig. 4). The models fit with NLS
tended to overestimate landscape-level AGB, with biases ranging from −3.6 up to
38.8 %, both extreme values from model series 1 (only DBH as predictor). Overall,25

the models fit with NLS tended to deal slightly better with changes in floristic compo-
sition compared to tree size-distribution. The tested pantropical model systematically
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underestimated landscape-level biomass, with a mean bias of −29.7 % (Table S4 and
Fig. S2).

The models fit with the OLS and particularly with the MOV approaches were clearly
better at capturing the variation in floristic composition and size-distribution of trees.
Consequently, these models produced the most reliable landscape-level predictions5

within the scenarios (Fig. 3). As also indicated by the individual tree model fits, the
MOV approach produced more reliable predictions, especially with model series 2 and
4.

In general, the models fit with the OLS and MOV approaches did not show sys-
tematic trends in under- or overestimation. The models fit with the OLS approach had10

biases ranging from −13.8 to 11.1 %, with extreme values from model series 1 and 2,
respectively. The models fit with the MOV approach had biases ranging from −14 to
10.5 %, also with extreme values from model series 1 and 2, respectively (Fig. 4).

The reported systematic biases led to strong differences between the predicted and
the observed AGB (Fig. 5). The models fit with NLS resulted in RMSE values rang-15

ing from 16.8 up to 125.8 Mgha−1. For the models fit with OLS, the RMSE values
ranged from 5.1 to 57.6 Mgha−1. The MOV models had RMSE ranging from 5.5 to
58.7 Mgha−1. The pantropical model’s predictions had a mean RMSE of 102.6 Mgha−1

(Table S4).
By combining the bias and RMSE values, we could observe the overall models’ per-20

formance in predicting AGB across scenarios (Fig. 6). When challenged to predict
biomass across all scenarios, the models fit with the MOV approach produced more
reliable predictions (smaller range of biases and RMSE), except for model series 1
(only DBH as a predictor), for which the OLS approach performed better. Indepen-
dently of applied predictors, the NLS approach had the highest mean and range of25

values for bias and RMSE.
As we expected, the addition of SG and WD improved the quality of the joint pre-

diction. This was evidenced by the systematic reduction of models’ bias and RMSE.
Notably for the NLS approach, the inclusion of SG led to strong reduction of the bias
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and RMSE (Fig. 6). Interestingly, for this approach the addition of WD alone did not
improve the estimations accuracy.

4 Discussion

4.1 Individual tree biomass estimation model fits

The best-performing allometry model structures for predicting the biomass of individ-5

ual trees included species-specific predictors and either the OLS or MOV fitting ap-
proaches (Figs. 3 and 6 and Table S3). As we hypothesized, including both the SG
and WD as predictors greatly increased the models’ performance. When taken alone,
adding either of these two predictors to the basic DBH model yielded a better model
than adding H (Table S3). This pattern was true for all the three variance modeling ap-10

proaches and supports that having the species’ identification (i.e. further assignment
into successional groups) and/or coherent wood density values, is crucial when aiming
for precise tree AGB predictions. Since old-growth forests comprise a mosaic of dif-
ferent successional stages, with trees of various architectures and sorted into different
forest layers/strata, these variables are of great importance when aiming for reliable15

AGB predictions at the landscape-level (see Sect. 4.2).
Although the NLS approach fits our dataset better (higher R2adj and lower Syx%),

the assumption of a constant-variance violates the natural heteroscedasticity of allo-
metric datasets. With the log-transformation of the OLS approach, homoscedasticity
is reached but in a way that does not exactly reflect how variance actually changes.20

As previously reported for terra firme forests in Amazon (Chambers et al., 2001; Lima
et al., 2012), models fit with the OLS approach tend to overestimate the biomass of
large-sized trees.

Indeed, the best models are obtained using the OLS and MOV approaches, in which
we explicitly modeled variance depending on the main predictor (DBH). This explains25

why the models fit with these approaches produced more reliable (i.e. least biased)
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AGB estimates as compared to those fit with the NLS approach. We included the latter
approach mainly for illustration purposes. The NLS approach is still frequently found
in the literature (Sileshi, 2014), despite the fact that assuming constant variance is not
a good choice for allometric datasets.

Despite the highly heterogeneous nature of our dataset (Tables 1 and S1), DBH5

alone still captures a large fraction of the variation in AGB. This could be confirmed
by lower Syx% values within model series 1 in comparison to the other model series
(Table 2). This illustrates that ignoring selection criteria capturing a model’s capacity to
make predictions for new predictor combinations (e.g. different region or successional
stage) such as the DIC or our landscape-level evaluation (see Sect. 4.2), can lead to the10

wrong choice. The basic models containing only DBH had a higher DIC in comparison
to other model series and consequently did poorly in predicting the AGB of our different
landscape scenarios (Fig. 6).

Our dataset contains a large number of species, which allowed for the maximum
expression of architectural attributes. In comparison to species-specific biomass esti-15

mation models (Nelson et al., 1999) or models fit from data collected in undisturbed
and homogenous forests (Higuchi et al., 1998; Lima et al., 2012), we expected the ad-
dition of predictors reflecting architectural and anatomical variation to improve model
parsimony. This pattern was observed when adding SG and WD (Fig. 6 and Table S3).

The differences related to the coefficients b and c we found among our successional20

groups highlighted the importance of using SG as a predictor of the architectural at-
tributes that influence allometry, especially when WD is not available (Table S3). In the
models containing SG, the significant variation of the coefficients b and c between pi-
oneers, mid- and late-successional species, highlights the importance of architectural
attributes on defining allometries (Nelson et al., 1999). Often, these differences were25

neglected in previous studies that dealt with heterogeneous datasets and aimed at
parameterizing global/pantropical models biomass estimation models.

Interestingly, when compared to our two best models, the tested Chave et al. (2014)’s
pantropical model produced the largest bias (overestimation) for individual tree
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biomass prediction (Fig. S1 and Sect. 3.1). As previously mentioned, underestimation
was also reported when applying the Chave et al. (2005)’s pantropical model in Atlantic
Forest stands, Brazil (Nogueira Junior et al., 2014). For our study, we attribute part
of this pattern to strong differences in forest structure and tree allometry/architecture
between our Central Amazon dataset and that used to parameterize the pantropical5

model of Chave et al. (2014). Although the DBH and H range of the trees used in our
study is well represented by the pantropical dataset, the two datasets vary strongly
with respect to the DBH and H distribution of trees (Fig. S3). Our dataset clearly has
a much higher density of small-sized and a much lower density of large-sized trees.
The pantropical dataset comprises ∼ 8 % (n = 329) of trees with DBH ≥ 60 cm and10

mean H of 39.3 m (and even a tree with 212 cm DBH and another one with 70.7 m
H). Interestingly, none of these 329 large-sized trees were found in Central Amazon.
Note that the largest tree in our dataset has 85 cm DBH and 33 m H (Tables 1 and S1),
and as previously reported, trees with DBH ≥ 60 cm account for less than 17 % of the
total AGB in Central Amazon terra firme forests (Vieira et al., 2004). Thus the structure15

and biomass of these Central Amazon forests is not well-predicted from the “improved”
pantropical equation (Chave et al., 2014).

Observed differences on the relationship between predictor variables (DBH and WD)
and AGB of trees from our dataset and the pantropical dataset highlight part of the
variation in tree allometry and architecture that was not represented by the pantropical20

dataset (Fig. S4). As for the differences in forest structure, these differences in tree
allometry and architecture reflect typical differences in species composition among
successional stages (Clark and Clark, 1992; Denslow, 1980; Marra et al., 2014). By
including our two secondary forests, we added a greater proportion of allometric vari-
ation in our models compared to the Chave et al. (2014) dataset (Fig. S5). Our results25

indicate that neglecting variations in tree allometry and architecture related to floristic
composition can lead to strong bias when predicting individual tree AGB, especially
when complex old-growth and secondary forests (Asner, 2013; Chambers et al., 2013;
Norden et al., 2015) are not accounted for the model parameterization.
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4.2 Landscape-level biomass predictions across scenarios

The different combinations of floristic composition and structure (i.e. tree density and
basal area) used in our virtual approach reflected forest changes along succession
(Chambers et al., 2009a; Marra et al., 2014; Norden et al., 2015), including realistic
variations in AGB reported for Central Amazon stands differing in successional stage5

(from early-succession to old-growth) (Carvalho Jr et al., 1995; Higuchi et al., 2004;
Lima et al., 2007). When taking into account the accuracy of landscape-level predic-
tions across scenarios, the best models were those fit by using the MOV approach.
From this approach, the models M33, M43 and M23 were the first, second and third
best models, respectively (Fig. 6).10

Modeling the variance properly as in the MOV approach is particularly important
when both small and large trees – at the respective endpoints of the size predictors
DBH and H – are to be estimated precisely. Assuming homoscedastic variance in allo-
metric data gives a stronger weight to the information of large trees (which have large
residuals) and reduces the “strength” of the small trees (with small residuals) on the15

estimation of the coefficients. This almost invariably leads to models that overestimate
the biomass of small trees (i.e. large trees pulling the “line” upwards). This effect can be
clearly seen in Fig. 4 where the NLS models dramatically overestimated the biomass
particularly in the small-sized and the early successional scenario. The OLS approach
tends to produce the opposite effect. The log-transformation shrinks the size of the20

residuals of the large-sized trees and inflates it for the small-sized trees. The influence
of positive residuals or large-sized trees that often have a strong lever is reduced, and
the lever of very small trees is increased. This may (although not as extremely as in the
NLS case) lead to an underestimation of the biomass of big trees. A slight tendency
of this effect is also visible in Fig. 4 when the OLS and MOV models are compared25

in the model series 2 and 3. The model evaluation with our virtual forests thus clearly
illustrates that a balanced modeling of the variance, i.e. giving the small and large trees
equal weight, is very important when (1) the design matrices are very heterogeneous
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or unbalanced with respect to size and when (2) predictions are to made at landscape-
level across stands that vary in the mean size/shape of trees.

Models containing only size-predictors (such as DBH) are particularly sensitive to
this problem. Including SG and WD as predictors captured part of the interspecific
variation in architecture and anatomy and partly alleviated the above-mentioned prob-5

lems of the NLS and OLS models. Thus, although a simple allometric model (e.g.
AGB∼b1DBHb2) can accurately describe the DBH : AGB relationship at the individual-
level (Tables 3 and S3), our results demonstrate that obtaining good estimates of
biomass in heterogeneous landscapes (i.e. mixtures of successional stages and tree
sizes) requires correct modeling of the size-related variance (Sileshi, 2014; Todeschini10

et al., 2004) and including suitable predictors of species-specific attributes reflecting
ecological, architectural and anatomical variation.

Our model evaluation using “virtual forests” was used to test what level of model
complexity and appropriateness of variance modeling is needed to avoid “distortions”
and make satisfying predictions at the fringes of our predictor space. However, since15

we constructed the forest scenarios with trees of the design matrix, this is an “internal
evaluation” and not a test of model behavior in the face of new predictor combina-
tions. Furthermore, we used DIC as parsimony-based model selection criterion, which
was designed to exactly approximate this capacity and typically yields similar results
as cross-validation (Wirth et al., 2004). The DIC is therefore particularly important for20

judging the quality of the model, especially for application in other regions or for other
species. Unlike the virtual forest approach, where the M33 (DBH and WD as predic-
tors with modeled variance) appeared as best model (lowest bias and RMSE at the
same time) (Fig. 6), the DIC invariably requires the full model complexity irrespective
of whether H is considered or not (Table 3).25

As reported in other studies (Alvarez et al., 2012; Lima et al., 2012; Ngomanda et al.,
2014; Nogueira Junior et al., 2014), using Chave et al. (2014)’s pantropical biomass
estimation model for landscape-level predictions led to strong biases in the case of
our Central Amazon forest scenarios. Thus, our recommendation is not to assume that
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their model is equally applicable across all tropical forests, especially for secondary or
hyperdiverse tropical forests. In this context, we alert researches and managers about
the importance of applying local or regional generic models when estimating biomass,
and the importance of species composition information in plot studies.

4.3 Suitability of the chosen predictors for practical application5

As we have seen, predicting biomass correctly at the landscape-level and in particular
improving performance at the fringes or outside the predictor space, requires the in-
clusion of predictors related to species architecture (DBH in combination with H [when
available], WD and/or SG). Knowledge of these last two variables depends on the iden-
tification of species, further assignment into successional groups and measurement or10

compilation of species-specific WD values. For the purposes of our study, these vari-
ables were successfully addressed.

However, we understand that reliable biomass estimation models also require vari-
ables that can be easily and confidently acquired or measured. As we discuss below,
this is not the case for H , species identification and, consequently, in many cases for15

WD and SG.
The tree species diversity in the Amazon is high (de Oliveira and Mori, 1999; ter

Steege et al., 2013). Species identification requires extensive field work (i.e. collection
of botanical samples) and joint effort of parabotanists, botanists and taxonomists. In
many cases, this task might pose a major problem.20

For WD, values can vary widely not only between species (Chave et al., 2006) –
which we exploit in our modeling approach – but also between different sites/regions
(Muller-Landau, 2004), within individuals of the same species or even in an individ-
ual tree (density varying along the tree bole) (Higuchi et al., 1998; Nogueira et al.,
2005). Ideally, WD measures should be carried out in situ following a method that al-25

lows for sampling both heart- and sapwood. Still, at temperatures below 100 ◦C, the
wood bound water content can not be removed (Williamson and Wiemann, 2010).
Thus, measuring WD from non-representative samples and applying measures from

15560

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/15537/2015/bgd-12-15537-2015-print.pdf
http://www.biogeosciences-discuss.net/12/15537/2015/bgd-12-15537-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
12, 15537–15581, 2015

Predicting biomass
of complex Central

Amazon forests

D. Magnabosco Marra
et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

studies in which samples were oven-dried at different temperatures can produce com-
plication. This requires improvement of methods and tools (e.g. resistography, X-ray,
near-infrared-spectroscopy, acoustic/ultrasonic wave propagation and High-frequency
densitometry) (Isik and Li, 2003; Lin et al., 2008; Schinker et al., 2003) that allow the
measurement of WD in live trees. These might reduce costs and make possible the ac-5

quisition of WD data (i.e. at the individual-level) in hyperdiverse tropical forests (thou-
sands of species). Currently, the acquisition of WD data is still expensive and is not
easily conducted simultaneously with forest inventories.

In the Amazon, information on WD is not available at the species-level for most re-
gions, and the available WD data have been acquired using a wide range of methods.10

Thus, the compilation of WD data from different sources without filtering criteria may in-
troduce an unpredictable source of error. As a result, researchers and managers need
to establish robust criteria and test whether including WD information compiled from the
available literature can really increase the quality of biomass predictions (as shown in
our study). These limitations become critical when adjusting biomass estimation mod-15

els both from small or even large/combined datasets collected without a plot-based
harvest method that allows for a landscape-level evaluation of models derived using
individual trees (Carvalho Jr et al., 1995; Higuchi et al., 1998; Lima et al., 2012; Silva,
2007). One important result of our study is that correct assignment of species into suc-
cessional groups can satisfactorily replace the use of WD despite the fact WD and SG20

were not trivially correlated (Table 2).
Most of the available biomass estimation models include H as a predictor. Indeed,

we expected the inclusion of H to substantially improve our individual tree fits and
landscape-level predictions. Although H is a powerful predictor of AGB, because to-
gether with DBH it defines the slenderness of trees and also indicates the life-time light25

availability (suppressed trees with typically short crowns have a high H : DBH ratio), ac-
quiring these data is still costly and difficult in tall and complex tropical forest canopies.
As a consequence, H is often measured imprecisely or not at all in most existing forest
inventories across the Amazon. H varies with plant ontogeny and can be affected by
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environmental and neighbor effects (Henry and Aarssen, 1999; Sterck and Bongers,
1998). Consequently, the error of AGB estimates can increase when applying H values
estimated from regional or global models (Feldpausch et al., 2011, 2012; Hunter et al.,
2013; Santos Jr et al., 2006). As observed in our (Table 2) and other allometry datasets
(Sileshi, 2014), the high collinearity between DBH and H can distort coefficient values,5

inflate standard errors and lead to biased estimates. The increased availability of new
tools such as Lidar can improve the quality and resolution of H and thus biomass (Mar-
vin et al., 2014; Sawada et al., 2015), but currently the areas where such data are
available are limited.

Extra care should be taken when using biomass estimation models to assess10

biomass dynamics (e.g. biomass recovery after disturbances). Earlier stages of re-
covery can have a higher proportion of small trees from pioneers species (Norden
et al., 2015), which have lower wood density (Chambers et al., 2009a; Marra et al.,
2014; Saldarriaga et al., 1998) and a particular type of architecture (Hallé et al., 1978;
Swaine and Whitmore, 1988). Once floristic composition changes and structural gradi-15

ents increase, allometry becomes more complex and reliable landscape-level biomass
estimates may require models that include predictors approximating species-specific
architecture and anatomy.

Reliable biomass predictions for the entire Amazon basin are still highly dependent
on the collection of plot-based allometric data and forest inventories including informa-20

tion on species composition, tree height and wood density, which are often unavailable
or estimated imprecisely in most regions. We recommend the use of the best models
fit in this study (M33 and M43) when aiming to reliable landscape biomass estimations
for Central Amazon terra firme forests, especially those under complex disturbance
regimes and for which specific/local models are not available. If data on species com-25

position and wood density are available or could be accurately compiled from the liter-
ature, we encourage the use of the model M33. In case WD data is not available, or
available in insufficient resolution, the model M33 could be replaced by the model M23
still with satisfactory results.
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The Supplement related to this article is available online at
doi:10.5194/bgd-12-15537-2015-supplement.
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Table 1. Summary of the dataset applied in this study. Trees were harvested in the Estação
Experimental de Silvicultura Tropical (EEST), a contiguous terra firme forest reserve near Man-
aus, Central Amazon, Brazil.

Variables Old growth Secondary forest Secondary forest
forest (23 year-old) (14 year-old)

NT 131 346 250
SR 82 63 51
DBH 5.0–85.0 5.0–37.2 5.0–33.1
H 5.9–34.5 3.9–27.0 9.0–15.5
WD 0.348–0.940 0.389–1.000 0.395–1.000
AGB 8.3–7509.1 5.4–1690.2 7.5–1562.8

Variables: NT number of trees; SR species richness; DBH diameter at breast height
(cm); H tree height (m); WD wood density (gcm−3); and AGB above-ground
biomass (dry mass in kg).
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Table 2. Tested equations for estimating AGB above-ground tree biomass in a terra firme forest
near Manaus, Central Amazon, Brazil.

Series Model Equation Variance modeling VIF
approach (range)

1 M11 AGB∼b1DBHb2 NLS 1
M12 log(AGB)∼ log(b1)+b2(logDBH) OLS 1
M13 AGB∼b1DBHb2 MOV

2 M21 AGB∼b1[SG]DBHb2[SG] NLS 1.001
M22 log(AGB)∼ log(b1[SG])+b2(logDBH[SG]) OLS 1.005
M23 AGB∼b1[SG]DBHb2[SG] MOV

3 M31 AGB∼b1DBHb2WDb3 NLS 1.007
M32 log(AGB)∼ log(b1)+b2(logDBH)+b3(logWD) OLS 1.017
M33 AGB∼b1DBHb2WDb3 MOV

4 M41 AGB∼b1[SG]DBHb2[SG]WDb3[SG] NLS 1.016–1.468
M42 log(AGB)∼ log(b1[SG])+b2(logDBH[SG])+b3(logWD[SG]) OLS 1.017–1.395
M43 AGB∼b1[SG]DBHb2[SG]WDb3[SG] MOV

5 M51 AGB∼b1DBHb2Hb3 NLS 3.382
M52 log(AGB)∼ log(b1)+b2(logDBH)+b3(log H) OLS 3.342
M53 AGB∼b1DBHb2Hb3 MOV

6 M61 AGB∼b1[SG]DBHb2[SG]Hb3[SG] NLS 1.019–3.439
M62 log(AGB)∼ log(b1[SG])+b2(logDBH[SG])+b3(log H [SG]) OLS 1.010–3.360
M63 AGB∼b1[SG]DBHb2[SG]Hb3[SG] MOV

7 M71 AGB∼b1DBHb2Hb3WDb4 NLS 1.014–3.428
M72 log(AGB)∼ log(b1)+b2(logDBH)+b3(log H)+ b4(logWD) OLS 1.038–3.469
M73 AGB∼b1DBHb2Hb3WDb4 MOV

8 M81 AGB∼b1[SG]DBHb2[SG]Hb3[SG]WDb4[SG] NLS 1.523–3.624
M82 log(AGB)∼ log(b1[SG])+b2(logDBH[SG])+b3(log H [SG])+ OLS 1.422–3.547

b4(logWD[SG])
M83 AGB∼b1[SG]DBHb2[SG]Hb3[SG]WDb4[SG] MOV

Predictors: DBH diameter at breast height (cm); SG species’ successional group (pioneers, mid- and late-successional); H tree height (m); and WD
wood density (gcm−3). Variance modeling approach: NLS non-linear least square; OLS ordinary least square with log-linear regression; and MOV
non-linear with modeled variance. Since NLS and MOV rely on the same equation, they have analogue VIF variation inflation factor values.
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Table 3. Statistics of AGB above-ground tree biomass estimation models parameterized from
a dataset of 727 trees harvested in a terra firme forest near Manaus, Central Amazon, Brazil.
See Table 2 for predictors and applied variance modeling approaches, and Table A3 for the
coefficients.

Series Model Dev pD DIC R2adj Syx% CF

1 M11 9694.5 2.919 9697.4 0.894 3.130
M12 6808.0 2.990 6811.3 0.865 3.542 1.066
M13 6821.0 3.856 6825.2 0.864 3.544

2 M21 9336.0 −3.608 9332.1 0.935 2.453
M22 6751.0 6.992 6758.4 0.541 6.449 1.061
M23 6741.0 10.373 6751.3 0.556 6.360

3 M31 9291.0 4.052 9294.7 0.939 2.373
M32 6683.0 4.062 6687.0 0.884 3.280 1.056
M33 6698.0 4.918 6702.5 0.865 3.527

4 M41 9144.4 1.909 9146.3 0.949 2.155
M42 6658.0 10.037 6667.7 0.698 5.214 1.054
M43 6650.0 12.956 6663.3 0.703 5.192

5 M51 9479.0 0.023 9479.3 0.921 2.702
M52 6680.0 4.017 6684.3 0.898 3.060 1.055
M53 6720.0 4.674 6724.7 0.896 3.103

6 M61 9184.0 −50.750 9131.9 0.947 2.214
M62 6613.0 9.902 6622.4 0.754 4.713 1.050
M63 6631.0 11.484 6642.0 0.747 4.800

7 M71 8998.0 0.951 8999.1 0.959 1.942
M72 6570.0 5.023 6574.9 0.933 2.480 1.047
M73 6610.0 5.697 6615.4 0.920 2.707

8 M81 8875.0 −49.607 8825.1 0.965 1.794
M82 6547.0 13.284 6560.7 0.813 4.097 1.046
M83 6566.0 13.645 6580.0 0.804 4.214

Parameters: Dev models’ deviance; pD effective number of parameters; DIC deviance
information criterion; R2adj R-squared adjusted; Syx% standard deviation of the mean (%);
and CF correction factor for models fit from ordinary least square with log-linear regression.
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Figure 1. Study site of terra firme forest near Manaus, Central Amazon, Brazil.
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Figure 2. Sampling schemes applied to assemble six forest-scenarios designed to reflect
changes in floristic composition and size-distribution of trees in a terra firme forest near Man-
aus, Central Amazon, Brazil.
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Figure 3. Predicted vs. observed above-ground tree biomass (dry) of 100 randomly sampled
1 ha plots from the design matrix of 727 trees, harvested near Manaus, Central Amazon, Brazil.
The line of equality (1 : 1 line) is shown as a red/straight line. Floristic composition and size-
distribution scenarios followed the sampling scheme described in Fig. 2 of this study. See Ta-
ble 2 for the variance modeling approach of different equations. Predictors: DBH diameter at
breast height (cm); SG species’ successional group (pioneers, mid- and late-successional);
and WD wood density (gcm−3). Note that models containing H tree height as predictor were
excluded here.
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Figure 4. Profiles relating the bias of 12 above-ground biomass estimation models across six
1 ha forest-scenarios designed to reflect changes in floristic composition and size-distribution in
a terra firme forest near Manaus, Central Amazon, Brazil. Predictors: DBH diameter at breast
height (cm); SG species’ successional group (pioneers, mid- and late-successional); and WD
wood density (gcm3). Variance modeling approaches: NLS non-linear least square; OLS ordi-
nary least square with log-linear regression; and MOV non-linear with modeled variance. Note
that models containing H tree height as predictor were excluded here.
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Figure 5. Profiles relating the RMSE root-mean-square error of 12 AGB above-ground biomass
estimation models along six forest-scenarios designed to reflect changes in floristic composition
and size-distribution in a terra firme forest near Manaus, Central Amazon, Brazil. Predictors:
DBH diameter at breast height (cm); SG species’ successional group (pioneers, mid- and late-
successional); and WD wood density (gcm−3). Variance modeling approaches: NLS non-linear
least square; OLS ordinary least square with log-linear regression; and MOV non-linear with
modeled variance. Note that models containing H tree height as predictor were excluded here.
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Figure 6. Performance of 12 models for joint estimation of AGB across the six forest-scenarios
included in this study. The scenarios reflect the landscape-level variation in floristic composi-
tion and size-distribution in a terra firme forest near Manaus, Central Amazon, Brazil. Models
are rated by the absolute mean bias and RMSE root-mean-square error. Solid points and bars
represent absolute mean and range values, respectively. Predictors: DBH diameter at breast
(cm) height; SG species’ successional group (pioneers, mid- and late-successional); and WD
wood density (gcm3). Variance modeling approaches: NLS non-linear least square; OLS ordi-
nary least square with log-linear regression; and MOV non-linear with modeled variance. Note
that models containing H tree height as predictor were excluded here.

15581

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/15537/2015/bgd-12-15537-2015-print.pdf
http://www.biogeosciences-discuss.net/12/15537/2015/bgd-12-15537-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

	Introduction
	Material and methods
	Study site
	Allometric data
	Species' architecture attributes
	Statistical analyses
	Individual tree biomass estimation model fits
	Landscape-level biomass predictions across scenarios


	Results
	Individual tree biomass estimation model fits
	Landscape-level biomass predictions across scenarios

	Discussion
	Individual tree biomass estimation model fits
	Landscape-level biomass predictions across scenarios
	Suitability of the chosen predictors for practical application


