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Refractive error is the most common eye disorder worldwide 
and is a prominent cause of blindness. Myopia affects over 
30% of Western populations and up to 80% of Asians. 	
The CREAM consortium conducted genome-wide meta-analyses, 	
including 37,382 individuals from 27 studies of European 
ancestry and 8,376 from 5 Asian cohorts. We identified 16 new 
loci for refractive error in individuals of European ancestry, 
of which 8 were shared with Asians. Combined analysis 
identified 8 additional associated loci. The new loci include 
candidate genes with functions in neurotransmission (GRIA4), 
ion transport (KCNQ5), retinoic acid metabolism (RDH5), 
extracellular matrix remodeling (LAMA2 and BMP2) and eye 
development (SIX6 and PRSS56). We also confirmed previously 
reported associations with GJD2 and RASGRF1. Risk score 
analysis using associated SNPs showed a tenfold increased risk 
of myopia for individuals carrying the highest genetic load. 
Our results, based on a large meta-analysis across independent 
multiancestry studies, considerably advance understanding of 
the mechanisms involved in refractive error and myopia.

Refractive error is the leading cause of visual impairment in the world1. 
Myopia, or nearsightedness, in particular is associated with structural 
changes of the eye, increasing the risk of severe complications, such as 
macular degeneration, retinal detachment and glaucoma. The preva-
lence of myopia has been rising considerably 
over the past few decades2, and it is estimated 
that 2.5 billion people will be affected by myo-
pia within a decade3. Although several genetic 
loci influencing refractive error have been 
identified4–10, their contribution to pheno-
typic variance is small, and many more loci are 
expected to explain its genetic architecture.

Here, the Consortium for Refractive Error 
and Myopia (CREAM) presents results from 
the largest international genome-wide meta-
analysis on refractive error, with data from 
32 studies from Europe, the United States, 
Australia and Asia. The meta-analysis was 
performed in 3 stages. In the first stage, we 
investigated the genome-wide association 
study (GWAS) results of 37,382 individuals 

from 27 populations of European ancestry (Supplementary Table 1 
and Supplementary Note) using spherical equivalent as a continuous 
outcome. In the second stage, we aimed to test the cross-ancestry trans-
ferability of the statistically significant associations from the first stage 
in 8,376 individuals from 5 Asian cohorts (Supplementary Table 1 and 
Supplementary Note). In the third stage, we performed a GWAS meta-
analysis on the combined populations (total n = 45,758). Subsequently, 
we examined the influence of associated alleles on the risk of myopia in 
a genetic risk score analysis, and, lastly, we evaluated gene expression 
in ocular tissues and explored potential mechanisms by which newly 
found loci might exert their effects on refractive development.

In stage 1, we analyzed ~2.5 million autosomal SNPs for which 
data were obtained through whole-genome imputation of genotypes 
to HapMap 2. The inflation factors (λGC) of the test statistics in indi-
vidual studies contributing to the meta-analysis ranged between 0.992 
and 1.050, indicating excellent within-study control of population 
substructure (Supplementary Table 2). Overall λ was 1.09, consistent 
with a polygenic inheritance model for refractive error (quantile-
quantile plot; Supplementary Fig. 1). We did not perform a correc-
tion for λ, as it has been shown that, under polygenic inheritance, 
substantial genomic inflation can be expected, even in the absence of 
population structure and technical artifacts11. We identified 309 SNPs 
that exceeded the conventional genome-wide significance threshold 
of P = 5.0 × 10−8 in the European ancestry sample. These SNPs were 
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Figure 1  Manhattan plot of the GWAS meta-analysis for refractive error in the combined analysis 
(n = 45,758). The plot shows −log10-transformed P values for all SNPs. The upper horizontal line 
represents the genome-wide significance threshold of P < 5.0 × 10−8; the lower line indicates P value 
of 1 × 10−5. Previously reported genes are shown in gray. The RBFOX1 gene is also known as A2BP1.
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clustered in 18 distinct genomic regions across 14 chromosomes  
(Fig. 1 and Table 1). In stage 2, we investigated the 18 best-associated 
SNPs in the Asian population: 10 showed evidence of association 
(Table 1). The most significant association in both ancestry groups 
was at a previously identified locus on chromosome 15q14 in the 
proximity of the GJD2 gene (encoding the connexin 36 gap-junction 
protein; rs524952; Pcombined = 1.44 × 10−15)4,12. The locus near the 
RASGRF1 gene (encoding Ras protein–specific guanine nucleotide– 
releasing factor 1) was also replicated in the meta-analysis (rs4778879; 
Pcombined = 4.25 × 10−11)9. The remaining 16 loci associated at genome-
wide significance had not previously been reported in association 
with refractive error. Those loci that did not show significant asso-
ciation in the smaller sized Asian population mostly had a similar 
effect size and direction of effect as in the European ancestry sample.  
In stage 3, we identified eight additional loci with associations 
that exceeded genome-wide significance in the combined analysis  
(Table 2). Regional and forest plots of the associated loci are provided 
in Supplementary Figures 2 and 3, respectively.

Genotype distributions of the risk alleles were evaluated in 
Rotterdam Studies 1–3 (n = 9,307). The clinical usefulness for the 
prediction of risk of myopia was evaluated by a weighted genetic risk 
score analysis based on the aggregate of effects (β regression coeffi-
cients) of individual SNPs derived from the meta-analysis, using the 
middle risk category as a reference. Risk scores ranged from a mean 
risk score of 1.88 (95% confidence interval (CI) = 1.86–1.89) in the 
lowest risk score category to 3.63 (95% CI = 3.61–3.65) in the highest 
risk score category. Having the lowest or the highest genetic risk score 
was associated with an odds ratio (OR) of 0.38 (95% CI = 0.18–0.77) 
and an OR of 10.97 (95% CI = 3.73–31.25) of myopia, respectively 
(Fig. 2). The predictive value (area under the receiver operating  
characteristic curve, AUC) of myopia versus hyperopia was 0.67  
(95% CI = 0.65–0.69), a relatively high value for genetic factors in a 
complex trait13,14. The genetic variants explained 3.4% of the pheno-
typic variation in refractive error in the Rotterdam Study.

We examined the expression of genes harboring a genetic asso-
ciation signal by measuring the levels of RNA in various eye tissues 
and found most of these genes expressed in the eye (Supplementary 
Table 3). Expression data for the PRSS56, LOC100506035 and SHISA6 
genes were not available; all other genes were expressed in the  
retina. Subsequently, we assessed the areas with associated SNPs 
for acetylation at histone H3 lysine 27 (H3K27ac) modifications15 
and HaploReg16 annotations for marks of active regulatory elements 
(Supplementary Fig. 4 and Supplementary Table 4). We found that 
many associated loci contained these elements, and alteration of regu-
latory function is therefore a potential mechanism.

The widely accepted model for myopia development is that eye 
growth is triggered by a visually evoked signaling cascade, which 
originates from the sensory retina, traverses the retinal pigment 
epithelium (RPE) and choroid and terminates in the sclera, where 
active extracellular matrix (ECM) remodeling results in a relative 
elongation of the eye17. Many of the genes in or near the identified 
loci can be linked to biological processes that drive this cascade. 
Neurotransmission in the retina is a necessary mechanism for eye 
growth regulation; the most significantly associated gene GJD2 has 
a role in this process. This gene forms a gap junction between neu-
ronal cells in the retina, enabling the intercellular exchange of small 
molecules and ions. The other previously reported gene RASGRF1 is a 
nuclear exchange factor that promotes the exchange of GTP for GDP 
on Ras family GTPases and is involved in the synaptic transmission 
of photoreceptor responses18,19. Both GJD2 and RASGRF1 knock-
out mice show retinal photoreception defects18,20. One of the newly Ta
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identified genes, GRIA4 (encoding glutamate receptor, ionotropic, 
AMPA 4; rs11601239; Pcombined = 5.92 × 10−9), also has a potential 
function in this pathway. This gene encodes a glutamate-gated ion 
channel that mediates fast synaptic excitatory neurotransmission21, is 
present in various retinal cells22 and has been shown to be critical for 
light signaling in the retina23 and emmetropization24. Another gene 
involved in synaptic transmission is RBFOX1 (encoding RNA-binding 
protein, fox-1 homolog; also known as A2BP1; rs17648524; Pcombined =  
5.64 × 10−10), encoding an RNA-binding splicing regulator that  
modulates membrane excitability25.

We identified for the first time a number of candidate genes 
involved in ion transport, channel activity and the maintenance of 
membrane potential. KCNQ5 (encoding a member of the potassium 
voltage-gated channel KQT-like subfamily; rs7744813; Pcombined = 
4.18 × 10−9), participates in the transport of potassium ions from 
the retina to the choroid and may contribute to voltage-gated potas-
sium ion channels in the photoreceptors and retinal neurons associ-
ated with myopia26,27. CD55 (encoding a decay-accelerating factor 
for complement; rs1652333; Pcombined = 3.05 × 10−12) is known to 
elevate cytosolic calcium ion concentration. Other ion channel genes 
that were associated include CACNA1D (encoding a voltage-sensitive 
calcium channel regulator; rs14165; Pcombined = 2.14 × 10–8), KCNJ2  
(encoding a regulator of potassium ion transport; rs4793501; Pcombined =  

2.79 × 10–8), CHRNG (encoding a nicotinic cholinergic receptor; 
rs1881492; Pcombined = 2.15 × 10–11) and MYO1D (encoding a putative 
binder of calmodulin; rs17183295; Pcombined = 9.66 × 10–11), which 
mediates calcium ion sensitivity to KCNQ5 ion channels.

Retinoic acid is synthesized in the retina, is highly expressed in 
the choroid and has been implicated in eye growth in experimental 
myopia models28–30. RDH5 (encoding retinol dehydrogenase 5; 
rs3138144; Pcombined = 4.44 × 10–12), a new refractive error suscep-
tibility gene is involved in the recycling of 11-cis-retinal in the 
visual cycle31. Mutations in RDH5 cause congenital stationary 
night blindness (MIM 136880), a disease associated with myopia. 
Other genes involved in retinoic acid metabolism are RORB 
(encoding RAR-related orphan receptor; rs7042950; Pcombined = 
4.15 × 10–8) and CYP26A1 (encoding a member of the cytochrome 
P450 superfamily; rs10882165; Pcombined = 1.03 × 10–11), genes that 
showed significant associations in the European ancestry studies. 
Notably, retinoic acid contributes to ECM remodeling by regulating  
cell differentiation.

ECM remodeling of the sclera is the pathological hallmark of 
myopia development. LAMA2 (encoding laminin α2; rs12205363; 
Pcombined = 1.79 × 10−12) is the most prominent gene in this respect. 
The LAMA2 protein forms a subunit of the heterotrimer laminins, 
which are essential components of basement membranes, stabiliz-
ing cellular structures and facilitating cell migration32. Two genes 
encoding bone morphogenetic proteins (BMP2: rs235770; Pcombined =  
1.57 × 10−8 and BMP3: rs1960445; Pstage 1 = 1.19 × 10–8; Pcombined =  
1.25 × 10–6) also have a role in the ECM architecture. They are  
members of the transforming growth factor (TGF)-β superfamily, 
regulate the growth and differentiation of mesenchymal cells and may 
orchestrate the organization of other connective tissues than bone, 
such as sclera. Notably, BMP2 shows expression in RPE in animal 
models of myopia33.

Genes involved in eye development appeared as a separate 
entity among the gene functions. SIX6 (encoding SIX homeobox 6; 
rs1254319; Pcombined = 1.00 × 10−8) has been linked to anophthalmia 
and glaucoma34,35, PRSS56 (encoding protease serine 56, rs1656404; 
Pcombined = 7.86 × 10−11) has been linked to microphthalmia36–38, 
CHD7 (encoding chromodomain helicase DNA-binding protein 7; 
rs4237036; Pcombined = 1.82 × 10–8) has been linked to CHARGE 
syndrome, a congenital condition with severe eye structural defects, 
and ZIC2 (encoding a member of the ZIC family of C2H2-type zinc-
finger proteins; rs8000973; Pcombined = 5.10 × 10–8) has been linked 
to brain development, including visual perception. For the remaining 
new associated loci, a mechanism in the pathogenesis of myopia is 
not immediately clear. Results from Ingenuity and the Protein Link 
Evaluator39 (Supplementary Fig. 5) map the subcellular location of 
all associated gene products and show their inter-relationships. Direct 
connections between genes were infrequent, suggesting molecular 

Table 2  Additional genome-wide significant associations from the combined meta-analysis (n = 45,758)

Locus 
number SNP Chromosome Position Nearest gene A1/A2

β SE P value MAF β SE P value MAF β SE P value P value

Combined (n = 45,758) Stage 1 (n = 37,382) Stage 2 (n = 8,376) Heterogeneity

1 rs9307551 4 80530670 LOC100506035 A/C –0.099 0.017 1.09 × 10–8 0.25 –0.097 0.020 1.37 × 10–6 0.50 –0.105 0.035 3.06 × 10–3 0.70

2 rs7744813 6 73643288 KCNQ5 C/A 0.112 0.019 4.18 × 10–9 0.41 0.114 0.021 6.80 × 10–8 0.33 0.094 0.046 4.30 × 10–2 0.14

3 rs11145465 9 71766592 TJP2 A/C –0.124 0.021 7.26 × 10–9 0.25 –0.125 0.023 6.92 × 10–8 0.07 –0.136 0.091 1.35 × 10–1 0.14

4 rs12229663 12 71249995 PTPRR G/A 0.099 0.017 5.47 × 10–9 0.27 0.104 0.019 5.46 × 10–8 0.36 0.080 0.052 1.23 × 10–1 0.74

5 rs1254319 14 60903756 SIX6 A/G –0.088 0.015 1.00 × 10–8 0.32 –0.088 0.017 2.03 × 10–7 0.34 –0.087 0.036 1.57 × 10–2 0.59

6 rs17648524 16 7459682 RBFOX1 C/G –0.118 0.019 5.64 × 10–10 0.36 –0.116 0.022 7.48 × 10–8 0.14 –0.140 0.058 1.60 × 10–2 0.24

7 rs2969180 17 11407900 SHISA6 A/G –0.101 0.015 7.29 × 10–11 0.36 –0.101 0.019 7.51 × 10–8 0.45 –0.097 0.034 4.00 × 10–3 0.41

8 rs235770 20 6761764 BMP2 T/C –0.089 0.016 1.57 × 10–8 0.39 –0.088 0.017 1.34 × 10–7 0.33 –0.087 0.050 8.20 × 10–2 0.78

Summary of SNPs that showed genome-wide significant (P < 5 × 10−8) association with spherical equivalent in the combined analysis (stage 3), with results in subjects of European ancestry (stage 1) and Asians 
(stage 2). We tested for heterogeneous effects between the two ancestry groups, for which P values are shown. Nearest gene, reference NCBI build 37. The RBFOX1 gene is also known as A2BP1.
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Figure 2  Genetic risk score for myopia. Distribution of subjects from 
Rotterdam Study 1–3 (n = 9,307) with myopia (SE ≤ −3 diopters (D)), 
emmetropia (SE ≥ −1.5 D and ≤ 1.5 D) and hyperopia (SE ≥ 3 D) as a function 
of the genetic risk score. This score is based on the regression coefficients 
and allele dosages of the associated SNPs for all 26 loci identified in the 
meta-analysis. Mean OR of myopia was calculated per risk category, using the 
middle risk score category (risk score of 2.50–2.75) as a reference.
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disease heterogeneity or functional redundancy in the pathobiological 
events involved in the development of refractive error and myopia.

In summary, we identified 24 new loci associated with refractive 
error through a large-scale meta-analysis of GWAS from interna-
tional multiancestry studies. The substantial overlap in genetic loci 
for refractive error between individuals of European ancestry and 
Asians provides evidence for shared genetic risk factors between the 
populations. The tenfold increased risk of myopia for those carrying 
the highest number of risk alleles shows the clinical significance of our 
findings. Further elucidation of the mechanisms by which these loci 
affect eye growth carries the potential to improve the visual outcome 
of this common trait.

URLs. R, http://www.r-project.org/; LocusZoom, http://csg.sph.
umich.edu/locuszoom/; Ingenuity, http://www.ingenuity.com/.

Methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. Data on RPE gene expression have been deposited at 
the Gene Expression Omnibus (GEO) under accession GSE20191.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Study design. We performed a meta-analysis on directly genotyped and 
imputed SNPs from individuals of European ancestry in 27 studies, with a 
total of 37,382 individuals. Subsequently, we evaluated significantly associated 
SNPs in 8,376 subjects of Asian origin from 5 different studies and performed 
a meta-analysis on all studies combined.

Subjects and phenotyping. All studies participating in this meta-analysis 
are part of CREAM. All studies had a population-based design and had a  
similar protocol for phenotyping (Supplementary Table 1). Eligible  
participants underwent a complete ophthalmological examination, including 
a non-dilated measurement of refractive error for both eyes. Exclusion criteria 
were all conditions that could alter refraction, such as cataract surgery, laser 
refractive procedures, retinal detachment surgery, keratoconus or ocular or 
systemic syndromes. Inclusion criteria included age of 25 years and over and 
data on refractive error and genotype.

The meta-analysis of stage 1 was based on 27 studies of European ances-
try: 1958 British Birth Cohort, ALSPAC, ANZRAG, AREDS1a1b, AREDS1c, 
CROATIA-Korcula, CROATIA-Split, CROATIA-Vis, EGCUT, FECD, TEST/
BATS, FITSA, Framingham, GHS 1, GHS 2, KORA, ORCADES, TwinsUK, 
WESDR, YFS, ERF, DCCT, BMES, RS1, RS2, RS3 and OGP Talana. Stage 2 
comprised 5 Asian studies: Beijing Eye Study, SCES, SIMES, SINDI and SP2.

Information on general methods, demographics and phenotyping and geno-
typing methods of the study cohorts can be found in Supplementary Table 1 
and the Supplementary Note. All studies were performed with the approval 
of their local medical ethics committee, and written informed consent was 
obtained from all participants in accordance with the Declaration of Helsinki.

Genotyping and imputation. Information on genotyping in each cohort, the 
particular platforms used to perform genotyping and the methods of imputa-
tion can be found in more detail in Supplementary Table 5. To produce con-
sistent data sets and enable meta-analysis of studies across different genotyping 
platforms, the studies performed genomic imputation on available HapMap 
Phase 2 genotypes with MACH40 or IMPUTE41, using the appropriate ancestry 
groups as templates.

Each study applied stringent quality control procedures before imputation, 
including MAF cutoffs, Hardy-Weinberg equilibrium (P > 1 × 10−7), genotypic 
success rate (>95%), mendelian inconsistencies, exclusion of individuals with 
more than 5% shared ancestry (exception made for family-based cohorts in 
which due adjustment for family relationship was made) and removal of all 
individuals whose ancestry as determined through genetic analysis did not 
match the prevailing ancestry group of the corresponding cohort. SNPs with 
low imputation quality were filtered using metrics specific to the imputation 
method and thresholds used in previous GWAS analyses. Hence, imputation 
quality criteria varied slightly between studies, and low-confidence imputed 
SNPs were omitted in the meta-analysis for individual studies.

Statistical analysis. Spherical equivalent was calculated according to the 
standard formula (SE = sphere + 1/2 cylinder), and the mean value from 
two eyes was used for analysis. When data from only one eye was available,  
the spherical equivalent of this eye was used.

Each cohort performed association analyses in which the spherical equiva-
lent was the dependent variable and genotypes (number of alleles in each of 
the HapMap 2 loci) were the independent variables. Analyses in all cases also 
adjusted for sex and age at the time of phenotype measurement. In family-
based cohorts, a score test–based association test was used to adjust for within-
family relatedness (Supplementary Note)42,43. Study-specific λ estimates are 
shown in Supplementary Table 2.

All study effect estimates were corrected using genomic control and were 
oriented to the positive strand of the NCBI Build 36 reference sequence of 
the human genome, which was the genomic build on which most available 
genotyping platforms were based. Coordinates and further annotations for the 
SNPs were converted into Build 37, the most recent version of the available 
builds at the time of writing.

Meta-analyses used effect size estimations (β regression coefficients) and 
standard errors from individual cohorts’ summary statistics. Random effects 
were assumed for all the meta-analyses that were performed using GWAMA44. 

We tested for heterogeneous effects between the two ancestry groups using 
METAL45 for Linux. For the purpose of these analyses, we defined significance 
as equal to or better than the conventional multiple-testing genome-wide 
thresholds of association (P < 5.0 × 10−8) for stage 1 and nominally significant 
probabilities (P < 0.05) for stage 2. Manhattan, regional and forest plots were 
made using R (see URLs) and LocusZoom (see URLs)46.

For the Rotterdam Study 1–3, a weighted genetic risk score per individual 
was calculated using the regression coefficients from the GWAS meta-analysis 
model for the association of SNPs within the associated 26 loci (Tables 1 and 2; 
for each locus, only one SNP was included in the analysis) and the individual 
allele dosages per genotype to evaluate the relationships between myopia 
(SE ≤ −3 D), emmetropia (–1.5 D ≤ SE ≤ 1.5 D) and hyperopia (SE ≥ 3 D).  
The weighted risk scores were categorized, and mean ORs per risk score  
category were calculated for subjects with myopia versus hyperopia, using the 
middle risk score category as a reference. Subsequently, AUCs were calculated 
for myopia versus emmetropia and myopia versus hyperopia. Lastly, the pro-
portion of variance of spherical equivalent explained by the identified SNPs 
was calculated. For these analyses, we used SPSS version 20.0.0.

Gene expression data in human eye tissue. Independently designed, collected 
and reported human ocular tissue array data from two different sources, as 
well as literature reviews, were used to verify evidence of expression of the 
candidate genes.

RPE, photoreceptors and choroid. Human gene expression data for RPE, 
photoreceptors and choroid were obtained essentially as described47, and the 
data set has been deposited in NCBI’s Gene Expression Omnibus48 (accession 
GSE20191). In short, postmortem eye bulbs (RPE was obtained from six donor 
eyes, choroid was obtained from three donor eyes and photoreceptors were 
obtained from three donor eyes), provided by the Corneabank Amsterdam, 
were rapidly frozen using liquid nitrogen. Donors were between 63 and  
78 years old and had no known history of eye pathology. Cryosections were 
cut from the macula, and histology was used to confirm a normal histological 
appearance. RPE, photoreceptor and choroidal cells were isolated from macular  
sections using the Laser Microdissection System (PALM). Total RNA was 
isolated, and the mRNA component was amplified, labeled and hybridized to 
a 44K microarray (Agilent Technologies)49. At least three to six microarrays 
were performed per tissue. Sample isolation, procedures and expression micro-
array analysis were carried out according to MIAMI guidelines. To bring order 
in the level of expression, we sorted all the genes represented on the 44K 
microarray by increasing expression, and we calculated the corresponding 
percentiles (Supplementary Table 3a).

Sclera, cornea and optic nerve. We assessed expression of the associated 
genes in sclera, cornea and optic nerve tissue in an additional data set (data 
not shown). Adult eyes were obtained from the North Carolina Eye Bank 
(Winston-Salem, North Carolina). All whole globes were immersed in 
RNALater (Qiagen) within 6.5 h of collection, shipped overnight on ice and 
dissected on the day of arrival. The retina, choroid and sclera tissues were 
isolated at the posterior pole using a circular, double-embedded technique 
using round 7-mm and 5-mm biopsy punches. To reduce contamination of the 
retina to the other ocular tissue samples, the second biopsy punch of 5 mm was 
used in the center of the 7-mm punch after retinal removal. RNA samples (with 
quality control of RNA concentration and 260/280 nm ratios performed using 
Nanodrop; Invitrogen) were hybridized to whole-genome microaray Illumina 
HumanHT-12 v4 Expression BeadChips (with over 25,000 genes and 48,000 
probes) in 2 batches. The first batch was hybridized to adult RPE, choroid and 
sclera RNA samples (n = 6). The second batch of newer chips with additional 
probes was hybridized to adult optic nerve and cornea samples (n = 6). The 
data were exported from Illumina GenomeStudio and were log2 transformed. 
Sample outliers were determined by principal-component analyses using the 
Hoteling’s T2 test50 (at 95% confidence interval) and removed from further 
analyses. Data intensity was normalized by quantile normalization followed by 
multichip averaging51 to reduce chip effects. For each tissue type, the probes 
with signal intensities below background levels and those with the lowest (5%) 
signal intensities (detection P < 0.10) were excluded. Evidence of expression for 
the remaining probes was defined by detection P < 0.05. Probes with detection 
P < 0.10 or > 0.05 required additional tissue expression support from EyeSAGE 
or literature reports (Supplementary Table 3b).

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20191
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Search for regulatory elements. We used the ‘Integrated Regulation from 
ENCODE’ track in the UCSC Genome Browser to look at H3K27ac modi-
fication as a mark of active regulatory elements. Numbers of H3K27ac  
modifications were counted between the associated top SNP from a locus and 
the nearest gene and within the nearest gene itself. We also used HaploReg16 
annotations to look for other signs of regulatory activity at the site of the 
associated SNP itself, such as enhancer histone marks, DNase hypersensitivity 
sites, binding proteins and motifs changed.

Pathway analyses. We used two different programs for pathway analysis: 
Ingenuity (see URLs), version August 2012, application build 172788, content 
version 14197757) and the Disease Association Protein-Protein Link Evaluator 
(DAPPLE)39.

Subcellular localization assignment and functional annotation of myopia-
associated disease genes as well as molecular pathway analysis were carried 
out using the Ingenuity knowledge database (IPA). The candidate myopia-
causing genes discovered in this study were entered into IPA. We used the 
‘IPA toggle subcellular layout’ function to show the subcellular location 
(extracellular, plasma membrane, cytoplasm, nucleus or unknown) of the 
proteins corresponding to these genes, yielding a first glance at which signal-
ing molecules and pathways are involved in myopia. Subsequently, we used 
the IPA ‘connect’ function to discover potential direct or indirect functional 
relationships or molecular pathways in between these entries. This yielded 
unexpectedly few hits, which suggests molecular disease heterogeneity and/
or functional redundancy in the pathobiological events leading to myopia. 
Next, we used the IPA ‘overlay’ function to annotate the myopia candidate 
genes with their involvement in ‘functions and diseases’, ‘canonical pathways’  
and a range of custom-made gene lists from previous studies, including  

photoreceptor-, RPE- and choroid-specific transcripts (ref. 52 and data not 
shown). Lastly, we used DAPPLE39 to look for physical connections between 
proteins encoded by disease-related genes from associated regions.
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