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Abstract

Heritability of bone mineral density (BMD) varies across skeletal sites, reflecting different relative contributions of genetic
and environmental influences. To quantify the degree to which common genetic variants tag and environmental factors
influence BMD, at different sites, we estimated the genetic (rg) and residual (re) correlations between BMD measured at the
upper limbs (UL-BMD), lower limbs (LL-BMD) and skull (SK-BMD), using total-body DXA scans of ,4,890 participants
recruited by the Avon Longitudinal Study of Parents and their Children (ALSPAC). Point estimates of rg indicated that
appendicular sites have a greater proportion of shared genetic architecture (LL-/UL-BMD rg = 0.78) between them, than with
the skull (UL-/SK-BMD rg = 0.58 and LL-/SK-BMD rg = 0.43). Likewise, the residual correlation between BMD at appendicular
sites (re = 0.55) was higher than the residual correlation between SK-BMD and BMD at appendicular sites (re = 0.20–0.24). To
explore the basis for the observed differences in rg and re, genome-wide association meta-analyses were performed
(n,9,395), combining data from ALSPAC and the Generation R Study identifying 15 independent signals from 13 loci
associated at genome-wide significant level across different skeletal regions. Results suggested that previously identified
BMD-associated variants may exert site-specific effects (i.e. differ in the strength of their association and magnitude of effect
across different skeletal sites). In particular, variants at CPED1 exerted a larger influence on SK-BMD and UL-BMD when
compared to LL-BMD (P = 2.01610237), whilst variants at WNT16 influenced UL-BMD to a greater degree when compared to
SK- and LL-BMD (P = 2.31610214). In addition, we report a novel association between RIN3 (previously associated with
Paget’s disease) and LL-BMD (rs754388: b = 0.13, SE = 0.02, P = 1.4610210). Our results suggest that BMD at different skeletal
sites is under a mixture of shared and specific genetic and environmental influences. Allowing for these differences by
performing genome-wide association at different skeletal sites may help uncover new genetic influences on BMD.
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Introduction

Bone mineral density (BMD) at the femoral neck and lumbar

spine [as measured by dual-energy X-ray absorptiometry, (DXA)],

represents the primary diagnostic marker for osteoporosis as it

serves as a good predictor of bone strength and fracture risk in

adults [1]. Bone strength and fracture risk are influenced by: i)

bone acquisition in childhood, adolescence and young adulthood

ii) the subsequent maintenance of bone mass over the life course

and iii) the progressive loss of bone in later life [2,3]. Large-scale

genome-wide association studies (GWAS) using adult-BMD

measured at the femoral neck (FN) and lumbar spine (LS) have

successfully identified variants in 56 loci explaining 4–5% of the

phenotypic variance in adult-BMD [4–6]. However, it is possible

that the genetic variants influencing bone acquisition are different

from the ones involved in bone maintenance and bone loss across

the life course. Consequently, GWAS using paediatric-BMD

measurements have recently been performed with the goal of

identifying novel genetic variants primarily associated with bone

acquisition, whilst limiting the noise introduced by bone mainte-

nance and bone loss [7]. This approach has resulted in the

successful identification of novel BMD associated variants in the

WNT16 [7] and Osterix (SP7) loci [8] and it is highly likely that

more variants will be discovered as the sample size of these

paediatric studies increases.

In growing children, changes in bone area create artefacts

influencing the reproducibility, comparability and interpretation of

DXA measurements. For this reason, regions of interest (ROI)

containing larger bone areas [i.e. total-body, (TB)], which are less

prone to these artefacts, are preferred for paediatric evaluations of

bone health [9]. The skull region is generally excluded from TB-

DXA scans as its relative contribution to bone mass is

proportionally larger with respect to the rest of the body in

children, and its inclusion has been shown to make diagnostic

interpretation difficult [10]. However, from a locus discovery

perspective, it may be advantageous to partition TB-DXA further

into different regions, such as the upper and lower limbs and the

skull. This is important if genetic heterogeneity exists in terms of

loci differentially affecting BMD at different skeletal sites, or whose

effect is greater at some locations than in others. Considering that

environmental factors (i.e. mechanical loading) influence skeletal

sites differently, analysis of skull-BMD may be particularly

informative and even provide greater power to identify genetic

variants. This is the case given that the skull is less influenced by

mechanical loading than appendicular and other axial sites.

Further, the skull is frequently affected in monogenic conditions

involving the skeleton. For example, craniofacial abnormalities

such as thickening of the cranium and skull base are cardinal

features of van Buchems disease, Sclerosteosis and other sclerosing

bone dysplasias [11,12].

In the current study we examined whether genetic factors

influence bone mass accrual in a site-specific manner, by

performing regional analysis of TB-DXA scans, focussing on the

total-body less head (TBLH), lower limb (LL), upper limb (UL),

and skull (SK) regions. Using genome-wide complex trait analysis

(GCTA) on participants from the Avon Longitudinal Study of

Parents and their Children (ALSPAC), we assessed the proportion

of BMD variance explained by common genetic variants, across

each sub-region and additionally determined the shared genetic

and residual correlation between each sub-region. Subsequently,

we performed a genome-wide association (GWA) meta-analysis of

BMD at each skeletal site in the ALSPAC and Generation R

studies and went on to identify factors, which preferentially

influence one or more skeletal regions.

Results

Phenotypic correlation and genome-wide complex trait
analysis of BMD at different regions

Univariate GCTA analysis revealed that common genotyped

variants explained a greater proportion of the variance in SK-

BMD (vg = 0.51, SE = 0.07, P = 2.0610213) than LL- (vg = 0.40,

SE = 0.07, P = 8.061029) or UL- (vg = 0.39, SE = 0.07,

P = 2.061028) BMD. Higher phenotypic correlations were observed

when comparing LL- and UL-BMD than with SK-BMD (Table 1).

Similarly, bivariate GCTA analysis indicated that the strongest

genetic correlation was between BMD at the two appendicular

sites, whereas the genetic correlations involving SK-BMD were

more moderate. The residual correlation between the different sites

was in general smaller than the genetic correlation, and was higher

for BMD between the appendicular sites than for comparisons

involving the skull (Table 1). Highly similar magnitudes and

patterns of residual correlations were obtained for a sensitivity

Genome-Wide Association Study of Whole-Body BMD
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analysis in which BMD at all skeletal sites was corrected for age,

gender, weight and height (Table S1).

Genome wide meta-analysis of BMD across different
skeletal regions in ALSPAC and Generation R

Genome-wide association meta-analyses were performed on

TBLH-, LL-, UL- and SK-BMD, using regional BMD data

derived from ,9,395 TB-DXA scans. Detailed population

characteristics of the ALSPAC and Generation R cohorts are

summarised in Tables S2 and S3. Summary statistics from each

GWAS (after meta-analysis) indicated that negligible systematic

inflation of test statistics was observed (META lGC = 1.01–1.03).

In contrast, a marked deviation from the null was observed in the

tail of the distribution amongst the lowest observed P-values of the

meta-association analyses (Figure S1). SNPs in thirteen published

BMD-associated loci exceeded the genome-wide significance

(GWS) threshold for association (P#561028, Table 2). They

included variants which mapped close to, or within: WNT4

(1p36.12), WNT16/FAM3C/CPED1 (7q31.31) for all skeletal sites

measured, EYA4 (6q23.2), COLEC10/TNFRS11B (8q24.12),

LIN7C/LGR4 (11p14.1), PPP6R3/LRP5 (11q13.2) and

TNFRSF11A (18q21.33) for SK-BMD, CENPW/RSPO3

(6q22.32) for UL- and SK-BMD, TNFSF11 (13q14.11) and

GALNT3 (2q24.3) for UL- and TBLH-BMD. In addition, variants

proximal to or within FUBP3 (9q34.11) and KLHDC5/PTHLH

(12p11.22) were associated with TBLH- and LL-BMD. Further-

more, a novel signal (top SNP rs754388, 14q32.12), located within

Ras and Rab interactor 3 (RIN3) achieved genome-wide signifi-

cance after meta-analysis of LL-BMD (b = 0.13, SE = 0.02,

P = 1.4610210, Figure 1-I, Table 2) and TBLH-BMD (b = 0.12,

SE = 0.02, P = 3.061029, Table 2 and Figure S2). The full list of

all genome-wide significant SNPs and regional association plots for

each locus and skeletal site are presented in Supplementary Tables

S4, S5, S6, S7 and Figures S2, S3, S4, S5.

A followup of 66 independent SNPs at 58 loci, previously

associated with BMD [4,13], indicated that 31 loci showed

nominal evidence of association (P,0.05) with TBLH-BMD, 28

Author Summary

The heritability of bone mineral density (BMD) varies
across skeletal sites, reflecting different relative contribu-
tions of genetic and environmental influences. To inves-
tigate whether the genes underlying bone acquisition act
in a site-specific manner, we quantified the shared genetic
influences across axial and appendicular skeletal sites by
estimating the genetic and residual correlation of BMD at
the upper limb, lower limb and the skull. Our results
suggest that different skeletal sites as measured by total-
body Dual-Energy X-Ray Absorptiometry are to a certain
extent under distinct genetic and environmental influenc-
es. To further explore the basis for these differences,
genome-wide association meta-analyses were performed
to identify genetic loci that are preferentially associated
with one or more skeletal regions. Variants at 13 loci
(including RIN3, a novel BMD associated locus) reached
genome-wide significance and several displayed evidence
of differential association with BMD across the different
skeletal sites in particular CPED1 and WNT16. Our results
suggest that it may be advantageous to decompose the
total-body BMD measures and perform GWAS at separate
skeletal regions. By allowing for site-specific differences,
new genetic variants affecting BMD and future risk of
osteoporosis may be uncovered.

T
a

b
le

1
.

B
iv

ar
ia

te
G

C
T

A
e

st
im

at
e

s
o

f
th

e
g

e
n

e
ti

c
an

d
re

si
d

u
al

co
rr

e
la

ti
o

n
s

fo
r

b
o

n
e

m
in

e
ra

ld
e

n
si

ty
m

e
as

u
re

m
e

n
ts

at
th

e
to

ta
l-

b
o

d
y

le
ss

h
e

ad
,l

o
w

e
r

lim
b

,u
p

p
e

r
lim

b
an

d
sk

u
ll

fo
r

th
e

A
LS

P
A

C
co

h
o

rt
.

T
R

A
IT

1
T

R
A

IT
2

S
A

M
P

L
E

S
IZ

E
r g

S
E

r e
S

E
P

S
K

-B
M

D
T

B
L

H
-B

M
D

9
7

3
2

0
.5

2
0

.0
8

8
0

.2
9

0
.0

8
6

4
.1
6

1
0

2
6

L
L

-B
M

D
9

7
3

2
0

.4
4

0
.0

9
9

0
.2

0
0

.0
8

8
1

.2
6

1
0

2
3

U
L

-B
M

D
9

7
3

2
0

.5
8

0
.0

9
0

0
.2

4
0

.0
8

5
9

.1
6

1
0

2
7

L
L

-B
M

D
U

L
-B

M
D

9
7

8
2

0
.7

8
0

.0
6

7
0

.5
5

0
.0

5
5

1
.4
6

1
0

2
7

T
B

LH
-B

M
D

=
to

ta
l

b
o

d
y

le
ss

h
e

ad
B

M
D

,
(L

L-
B

M
D

)=
lo

w
e

r
lim

b
B

M
D

,
(U

L-
B

M
D

)=
u

p
p

e
r

lim
b

B
M

D
,

(S
K

-B
M

D
)=

sk
u

ll
B

M
D

,
r g

=
g

e
n

e
ti

c
co

rr
e

la
ti

o
n

b
e

tw
e

e
n

tr
ai

t
1

an
d

tr
ai

t
2

.
r e

=
re

si
d

u
al

co
rr

e
la

ti
o

n
b

e
tw

e
e

n
tr

ai
t

1
an

d
tr

ai
t

2
.

A
ll

tr
ai

ts
,e

xc
lu

d
in

g
SK

-B
M

D
w

e
re

ad
ju

st
e

d
fo

r
ag

e
,g

e
n

d
e

r
an

d
w

e
ig

h
t.

SK
-B

M
D

w
as

ad
ju

st
e

d
fo

r
ag

e
,g

e
n

d
e

r
an

d
h

e
ig

h
t.

P
-r

e
fe

rs
to

th
e

P
-v

al
u

e
fo

r
th

e
lik

e
lih

o
o

d
ra

ti
o

te
st

o
f

w
h

e
th

e
r

r g
=

0
.P

h
e

n
o

ty
p

ic
co

rr
e

la
ti

o
n

s
(r

p
)

w
e

re
as

fo
llo

w
s:

SK
-B

M
D

/T
B

LH
-B

M
D

(r
p

=
0

.4
0

,
SE

=
0

.0
1

3
,

P
,

0
.0

0
1

),
SK

-B
M

D
/L

L-
B

M
D

(r
p

=
0

.3
1

,
SE

=
0

.0
1

3
,

P
,

0
.0

0
1

),
SK

-B
M

D
/U

L-
B

M
D

(r
p

=
0

.4
0

,
SE

=
0

.0
1

3
,

P
,

0
.0

0
1

)
an

d
LL

-B
M

D
/U

L-
B

M
D

(r
p

=
0

.6
4

,
SE

=
0

.0
1

0
,

P
,

0
.0

0
1

).
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
g

e
n

.1
0

0
4

4
2

3
.t

0
0

1

Genome-Wide Association Study of Whole-Body BMD

PLOS Genetics | www.plosgenetics.org 3 June 2014 | Volume 10 | Issue 6 | e1004423



T
a

b
le

2
.

T
o

p
g

e
n

o
m

e
-w

id
e

si
g

n
if

ic
an

t
SN

P
s

as
so

ci
at

e
d

w
it

h
b

o
n

e
m

in
e

ra
l

d
e

n
si

ty
o

f
th

e
to

ta
l-

b
o

d
y

le
ss

h
e

ad
,

lo
w

e
r

lim
b

,
u

p
p

e
r

lim
b

an
d

sk
u

ll.

A
L

S
P

A
C

(n
=

5
,3

3
0

/5
,2

9
9

*)
G

e
n

e
ra

ti
o

n
R

(n
=

4
,0

8
6

)
M

E
T

A
-A

N
A

L
Y

S
IS

(n
=

9
,4

1
6

/9
,3

8
5

*)

T
R

A
IT

R
S

ID
L

O
C

U
S

P
O

S
G

E
N

E
E

A
E

A
F

b
S

E
P

E
A

F
b

S
E

P
E

A
F

b
S

E
P

I2
P

H
E

T

T
B

L
H

-B
M

D
rs

3
7

6
5

3
5

0
1

p
3

6
.1

2
2

2
3

1
9

9
0

3
W

N
T4

A
0

.7
8

0
.1

0
6

0
.0

2
3

5
.7

56
1

0
2

6
0

.7
8

0
.1

0
9

0
.0

2
6

2
.9

26
1

0
2

5
0

.7
8

0
.1

0
7

0
.0

1
7

7
.0

4
6

1
0

2
1

0
0

9
.3

26
1

0
2

1

rs
6

7
2

6
8

2
1

2
q

2
4

.3
1

6
6

2
8

6
3

6
0

G
A

LN
T3

T
0

.5
1

0
.0

9
4

0
.0

1
9

1
.3

26
1

0
2

6
0

.5
8

0
.0

8
7

0
.0

2
2

8
.7

66
1

0
2

5
0

.5
4

0
.0

9
1

0
.0

1
5

3
.9

5
6

1
0

2
1

0
0

8
.1

16
1

0
2

1

rs
7

7
7

6
7

2
5

7
q

3
1

.3
1

1
2

0
8

2
0

3
5

7
FA

M
3C

**
C

0
.2

7
0

.1
3

6
0

.0
2

3
3

.6
5
6

1
0

2
9

0
.2

6
0

.1
8

8
0

.0
2

6
7

.6
7
6

1
0

2
1

3
0

.2
7

0
.1

5
9

0
.0

1
7

5
.6

7
6

1
0

2
2

0
5

4
.7

1
.3

86
1

0
2

1

rs
7

4
6

6
2

6
9

9
q

3
4

.1
1

1
3

2
4

5
3

9
0

5
FU

B
P

3
A

0
.6

4
0

.0
9

4
0

.0
2

0
3

.7
26

1
0

2
6

0
.6

6
0

.0
7

2
0

.0
2

3
2

.0
16

1
0

2
3

0
.6

5
0

.0
8

4
0

.0
1

5
3

.2
6
6

1
0

2
8

0
4

.7
46

1
0

2
1

rs
4

4
2

0
3

1
1

1
2

p
1

1
.2

2
2

7
8

7
5

4
5

7
K

LH
D

C
5*

*
G

0
.4

7
0

.0
8

0
0

.0
2

0
7

.8
46

1
0

2
5

0
.4

4
0

.0
9

2
0

.0
2

4
1

.0
36

1
0

2
4

0
.4

6
0

.0
8

5
0

.0
1

6
4

.4
4
6

1
0

2
8

0
7

.0
36

1
0

2
1

rs
1

7
5

3
6

3
2

8
1

3
q

1
4

.1
1

4
2

0
4

1
0

2
9

TN
FS

F1
1

T
0

.4
3

0
.0

7
9

0
.0

2
0

6
.1

46
1

0
2

5
0

.4
0

0
.0

9
5

0
.0

2
2

1
.5

36
1

0
2

5
0

.4
2

0
.0

8
6

0
.0

1
5

7
.5

8
6

1
0

2
9

0
5

.9
46

1
0

2
1

rs
7

5
4

3
8

8
1

4
q

3
2

.1
2

9
2

1
8

5
1

6
3

R
IN

3
C

0
.8

1
0

.0
9

8
0

.0
2

6
1

.3
46

1
0

2
4

0
.8

3
0

.1
4

9
0

.0
3

1
1

.4
16

1
0

2
6

0
.8

2
0

.1
2

0
0

.0
2

0
2

.9
6
6

1
0

2
9

3
6

.0
2

.1
16

1
0

2
1

L
L

-B
M

D
rs

3
7

6
5

3
5

0
1

p
3

6
.1

2
2

2
3

1
9

9
0

3
W

N
T4

A
0

.7
8

0
.1

0
3

0
.0

2
3

1
.0

56
1

0
2

5
0

.7
8

0
.0

9
0

0
.0

2
6

5
.7

46
1

0
2

4
0

.7
8

0
.0

9
7

0
.0

1
8

2
.8

9
6

1
0

2
8

0
7

.1
26

1
0

2
1

rs
2

9
0

8
0

0
4

7
q

3
1

.3
1

1
2

0
7

5
7

0
0

5
W

N
T1

6*
*

A
0

.4
4

0
.0

9
3

0
.0

2
0

3
.6

36
1

0
2

6
0

.5
0

0
.1

0
8

0
.0

2
2

1
.2

56
1

0
2

6
0

.4
7

0
.1

0
0

0
.0

1
5

3
.0

1
6

1
0

2
1

1
0

6
.1

96
1

0
2

1

rs
7

4
6

6
2

6
9

9
q

3
4

.1
1

1
3

2
4

5
3

9
0

5
FU

B
P

3
A

0
.6

4
0

.0
9

7
0

.0
2

0
1

.8
56

1
0

2
6

0
.6

6
0

.0
7

4
0

.0
2

3
1

.5
96

1
0

2
3

0
.6

5
0

.0
8

7
0

.0
1

5
1

.5
1
6

1
0

2
8

0
4

.5
76

1
0

2
1

rs
4

4
2

0
3

1
1

1
2

p
1

1
.2

2
2

7
8

7
5

4
5

7
K

LH
D

C
5*

*
G

0
.4

7
0

.0
8

6
0

.0
2

0
2

.0
66

1
0

2
5

0
.4

4
0

.0
8

7
0

.0
2

4
2

.2
86

1
0

2
4

0
.4

6
0

.0
8

6
0

.0
1

6
3

.2
1
6

1
0

2
8

0
9

.7
56

1
0

2
1

rs
7

5
4

3
8

8
1

4
q

3
2

.1
2

9
2

1
8

5
1

6
3

R
IN

3
C

0
.8

1
0

.1
1

9
0

.0
2

6
3

.4
76

1
0

2
6

0
.8

3
0

.1
4

5
0

.0
3

1
2

.5
16

1
0

2
6

0
.8

2
0

.1
3

0
0

.0
2

0
1

.4
0
6

1
0

2
1

0
0

5
.2

66
1

0
2

1

U
L

-B
M

D
rs

2
2

3
5

5
2

9
1

p
3

6
.1

2
2

2
3

2
3

0
7

4
W

N
T4

C
0

.8
4

0
.0

9
9

0
.0

2
7

1
.9

86
1

0
2

4
0

.8
5

0
.1

4
0

.0
3

1
5

.9
96

1
0

2
6

0
.8

5
0

.1
1

7
0

.0
2

1
1

.2
1
6

1
0

2
8

0
3

.2
26

1
0

2
1

rs
6

7
2

6
8

2
1

2
q

2
4

.3
1

6
6

2
8

6
3

6
0

G
A

LN
T3

T
0

.5
1

0
.0

7
8

0
.0

1
9

6
.4

46
1

0
2

5
0

.5
8

0
.0

8
9

0
.0

2
2

5
.6

16
1

0
2

5
0

.5
4

0
.0

8
3

0
.0

1
5

1
.1

3
6

1
0

2
8

0
7

.0
76

1
0

2
1

rs
1

2
6

2
4

7
6

6
q

2
2

.3
2

1
2

7
0

2
8

6
8

9
C

EN
P

W
**

G
0

.7
6

0
.1

3
0

0
.0

2
2

6
.3

7
6

1
0

2
9

0
.7

9
0

.0
6

2
0

.0
2

8
2

.3
76

1
0

2
2

0
.7

7
0

.1
0

4
0

.0
1

8
2

.9
3
6

1
0

2
9

7
2

.3
5

.7
66

1
0

2
2

rs
7

9
8

9
4

3
7

q
3

1
.3

1
1

2
0

5
4

6
1

3
5

C
P

ED
1*

*
G

0
.6

1
0

.1
8

7
0

.0
2

0
8

.8
4
6

1
0

2
2

1
0

.6
2

0
.2

0
5

0
.0

2
3

1
.2

8
6

1
0

2
1

9
0

.6
1

0
.1

9
5

0
.0

1
5

1
.4

7
6

1
0

2
3

7
0

5
.5

76
1

0
2

1

rs
9

5
2

5
6

3
8

1
3

q
1

4
.1

1
4

2
0

2
6

5
7

7
TN

FS
F1

1
C

0
.4

3
0

.0
9

4
0

.0
2

0
1

.6
36

1
0

2
6

0
.4

1
0

.0
8

3
0

.0
2

2
1

.5
26

1
0

2
4

0
.4

2
0

.0
8

9
0

.0
1

5
2

.4
7
6

1
0

2
9

0
7

.1
36

1
0

2
1

S
K

-B
M

D
rs

3
9

2
0

4
9

8
1

p
3

6
.1

2
2

2
3

6
5

4
7

4
W

N
T4

G
0

.7
9

0
.1

4
4

0
.0

2
4

4
.5

6
6

1
0

2
9

0
.8

2
0

.1
1

8
0

.0
3

0
8

.4
06

1
0

2
5

0
.8

0
0

.1
3

4
0

.0
1

9
1

.5
6
6

1
0

2
1

2
0

5
.0

16
1

0
2

1

rs
2

1
3

0
6

0
4

6
q

2
2

.3
2

1
2

6
8

6
2

2
5

4
C

EN
P

W
**

T
0

.2
4

0
.1

1
7

0
.0

2
2

1
.8

96
1

0
2

7
0

.2
3

0
.1

0
6

0
.0

2
6

6
.4

76
1

0
2

5
0

.2
4

0
.1

1
2

0
.0

1
7

3
.3

3
6

1
0

2
1

1
0

7
.4

86
1

0
2

1

rs
3

0
1

2
4

6
5

6
q

2
3

.2
1

3
3

3
9

2
6

2
9

EY
A

4
G

0
.6

5
0

.1
2

5
0

.0
2

0
7

.0
0
6

1
0

2
1

0
0

.6
9

0
.1

2
9

0
.0

2
3

3
.0

6
6

1
0

2
8

0
.6

7
0

.1
2

7
0

.0
1

5
8

.2
9
6

1
0

2
1

7
0

8
.9

66
1

0
2

1

rs
1

3
2

2
3

0
3

6
7

q
3

1
.3

1
1

2
0

5
3

4
5

4
4

C
P

ED
1*

*
T

0
.6

3
0

.1
7

0
0

.0
2

0
3

.0
9
6

1
0

2
1

7
0

.6
5

0
.1

6
7

0
.0

2
3

6
.2

1
6

1
0

2
1

3
0

.6
4

0
.1

6
9

0
.0

1
5

1
.5

3
6

1
0

2
2

8
0

9
.2

26
1

0
2

1

rs
2

4
5

0
0

8
3

8
q

2
4

.1
2

1
2

0
1

3
2

7
2

3
C

O
LE

C
10

**
T

0
.4

8
0

.1
0

5
0

.0
2

0
1

.6
66

1
0

2
7

0
.4

7
0

.0
9

8
0

.0
2

3
2

.1
66

1
0

2
5

0
.4

7
0

.1
0

2
0

.0
1

5
2

.1
3
6

1
0

2
1

1
0

8
.2

06
1

0
2

1

rs
1

0
8

3
5

1
8

7
1

1
p

1
4

.1
2

7
4

6
2

2
5

3
LI

N
7C

**
C

0
.4

5
0

.1
4

5
0

.0
2

0
1

.0
56

1
0

2
1

3
0

.5
0

0
.1

0
6

0
.0

2
2

1
.6

36
1

0
2

6
0

.4
7

0
.1

2
7

0
.0

1
5

1
.6

3
6

1
0

2
1

7
4

1
.1

1
.9

36
1

0
2

1

rs
1

2
2

7
2

9
1

7
1

1
q

1
3

.2
6

8
0

1
9

9
4

6
P

P
P

6R
3*

*
T

0
.7

4
0

.1
3

0
0

.0
2

2
4

.0
1
6

1
0

2
9

0
.7

6
0

.0
8

0
0

.0
2

6
2

.5
26

1
0

2
3

0
.7

5
0

.1
0

9
0

.0
1

7
1

.3
4
6

1
0

2
1

0
5

3
.0

1
.4

56
1

0
2

1

rs
8

8
4

2
0

5
1

8
q

2
1

.3
3

5
8

2
0

5
8

3
7

TN
FR

SF
11

A
C

0
.7

2
0

.0
9

2
0

.0
2

3
5

.3
86

1
0

2
5

0
.8

0
0

.1
2

3
0

.0
3

0
3

.8
86

1
0

2
5

0
.7

5
0

.1
0

4
0

.0
1

8
1

.8
4
6

1
0

2
8

0
4

.1
56

1
0

2
1

(T
B

LH
-B

M
D

)=
to

ta
l-

b
o

d
y

le
ss

h
e

ad
B

M
D

,
(L

L-
B

M
D

)=
lo

w
e

r
lim

b
B

M
D

,
(U

L-
B

M
D

)=
u

p
p

e
r

lim
b

B
M

D
,

(S
K

-B
M

D
)=

sk
u

ll
B

M
D

,
(G

EN
E)

=
cl

o
se

st
g

e
n

e
,

(P
O

S)
=

p
o

si
ti

o
n

in
th

e
g

e
n

o
m

e
b

as
e

d
o

n
h

g
1

8
,

(E
A

F)
=

e
ff

e
ct

al
le

le
fr

e
q

u
e

n
cy

,
(b

)=
e

st
im

at
e

s
o

f
e

ff
e

ct
si

ze
e

xp
re

ss
e

d
as

ad
ju

st
e

d
SD

p
e

r
co

p
y

o
f

th
e

e
ff

e
ct

al
le

le
(E

A
),

(S
E)

=
st

an
d

ar
d

e
rr

o
r

o
f

b
,

(P
)=

p
va

lu
e

,
(I

2
)=

C
o

ch
ra

n
’s

Q
st

at
is

ti
c

e
va

lu
at

in
g

h
e

te
ro

g
e

n
e

it
y,

(P
H

E
T
)=

e
vi

d
e

n
ce

o
f

h
e

te
ro

g
e

n
e

it
y

an
d

*S
am

p
le

si
ze

s
u

se
d

fo
r

SK
-B

M
D

g
e

n
o

m
e

-w
id

e
m

e
ta

-a
n

al
ys

is
.

**
P

le
as

e
n

o
te

th
at

P
TH

LH
is

al
so

lo
ca

te
d

at
th

e
1

2
p

1
1

.2
2

lo
cu

s
co

n
ta

in
in

g
K

LH
D

C
5,

R
SP

O
3

is
al

so
lo

ca
te

d
at

th
e

6
q

.2
2

.3
2

lo
cu

s
co

n
ta

in
in

g
C

EN
P

W
,

FA
M

3C
a

n
d

C
P

ED
1

ar
e

al
so

lo
ca

te
d

at
th

e
7

q
.3

1
.3

1
lo

cu
s

co
n

ta
in

in
g

W
N

T1
6,

TN
FR

SF
11

B
is

al
so

lo
ca

te
d

at
th

e
8

q
.2

4
.1

2
lo

cu
s

co
n

ta
in

in
g

C
O

LE
C

10
,

LG
R

4
is

al
so

lo
ca

te
d

at
th

e
1

1
p

1
4

.1
lo

cu
s

co
n

ta
in

in
g

LI
N

7C
an

d
LR

P
5

is
al

so
lo

ca
te

d
at

th
e

1
1

q
1

3
.2

lo
cu

s
co

n
ta

in
in

g
P

P
P

6R
3.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

g
e

n
.1

0
0

4
4

2
3

.t
0

0
2

Genome-Wide Association Study of Whole-Body BMD

PLOS Genetics | www.plosgenetics.org 4 June 2014 | Volume 10 | Issue 6 | e1004423



with LL-BMD, 26 with UL-BMD and 26 with SK-BMD (versus

an expectation of 3.3. per phenotype) (Table S8). A similar

distribution of associations was also observed when a more

conservative threshold considering multiple hypothesis testing was

adopted that took into account the fact that 66 variants and four

phenotypes had been tested (i.e. a,1.961024). Using this

threshold nine variants showed evidence of association with

TBLH-BMD, seven with LL-BMD, six with UL-BMD and 10

with SK-BMD (versus an expectation of 0.1 per phenotype). We

note that in all cases where nominal significance was reached, the

direction of effect was consistent with previous studies.

To ensure that our results were robust to the possible effects of

population stratification and our choice of covariates, we

performed sensitivity analyses where we either restricted our

analysis to white European individuals only, or adjusted for the

same set of covariates across all analyses (i.e. age, gender, height,

and weight). Similar effect sizes and patterns of association were

observed for the top SNPs when adjusting BMD measures of all

four regions for age, gender, height and weight (Model 1a, Table

S9) and when limiting the GWAS meta-analysis to individuals of

European ancestry (Model 1b, Table S9). In both sensitivity

analyses, no additional loci reached the threshold of genome-wide

association (Figure S6 and S7).

Identification of novel BMD-associated signals
We assessed the presence of novel secondary association signals

at loci that contained genome-wide associated variants. Meta-

analysis of conditional association analyses resulted in the

attenuation of the majority of our top association signals (Table

S10, Figures S2, S3, S4, S5), indicating that these loci were not

independent from signals previously reported by other BMD

GWAS. However, the top signal for SK-BMD (rs2130604,

b = 0.11, SE = 0.02, P = 3.3610211), mapping near RSPO3, but

closest to CENPW (previously known as C6orf173, 6q22.32,

Figure 2A-I, Table 2) was only marginally attenuated after

conditional analysis (rs2130604, b = 0.10, SE = 0.02,

P = 7.161029, Figure 2A-II, Table S10). This suggests that

rs2130604 is largely independent from the previously reported

signal at RSPO3 (rs13204965, 6q22.32), which was identified in a

GWAS of individuals with extremely high or low BMD at the hip

[12] and later replicated in the second GEnetic Factors for

OSteoporosis Consortium (GEFOS-II) BMD meta-analysis [4].

This observation is further supported by low estimates of LD

(r2 = 0.14) between rs2130604 and rs13204965. Furthermore, the

secondary signal (after conditional analysis) reached the estimated

significance threshold of association after multiple testing correc-

tion (i.e. P#7.261025).

Interestingly, after conditioning rs4418209 (another SNP in the

same locus) on the published BMD-associated SNP rs13204965,

we observed a marked increase in its evidence of association

[(b = 0.07, SE = 0.02, P = 1.161026) before and (b = 0.09, SE = 0.01,

P = 7.9610210) after], (Figure 2A-II, Table S10). The rs4418209

variant maps closest to CENPW (6q22.32) and is in moderate LD

with the secondary independent signal (rs2130604, r2 = 0.43) and

in low LD with the published RSPO3 SNP (rs13204965, r2 = 0.12).

Whilst no other SNPs reached the threshold for declaring genome-

wide significance (P,561028), variants from three loci still yielded

suggestive evidence for association (P,161025) after conditional

analyses (Table S10 and Figures S2, S3, S4, S5). They included: i)

KLHDC5/PTHLH (rs4420311, 12p11.22) associated with TBLH-

(b = 0.08, SE = 0.016, P = 7.661027) and LL-BMD (b = 0.08,

SE = 0.016, P = 1.961026), ii) TNFSF11 (rs17536328 and

rs2148072, 13q14.11) associated with TBLH- (b = 0.08,

SE = 0.015, P = 5.661027) and UL-BMD (b = 0.07, SE = 0.015,

P = 2.161026) respectively and iii) LIN7C/LGR4 [rs10160456,

11p14.1, (b = 0.07, SE = 0.015, P = 7.861026)] with SK-BMD.

After conditional analysis, the secondary signal at LIN7C/LGR4

(i.e. rs10160456) mapped closest to CCDC34 and not to LIN7C, the

Figure 1. Regional association plot of the primary signal (rs754388) associate with lower limb-BMD at 14q32.12, in addition to a
comparison of the effect of rs754388 on bone mineral density at three different skeletal sites. For I and II: Circles show GWA meta-
analysis P-values and positions of SNPs found within the 14q32.12 locus. The top SNP, i.e. rs754388, is denoted by a diamond. Different colours
indicate varying degrees of pair-wise linkage disequilibrium (HapMap 2 CEPH) between the top SNP and all other SNPs. For II: The per-allele effect in
standard deviations (SD) (red dot) and the 95% confidence interval (error bar) of rs754388 for lower limb (LL), upper limb (UL) and skull (SK) BMD,
plotted with the strength of evidence against the null hypothesis of no association.
doi:10.1371/journal.pgen.1004423.g001
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gene closest to the primary signal. All these three loci might

represent novel secondary signals as the residual signal reached the

predicted locus specific threshold of association after multiple

testing correction (Table S10). However, we cannot exclude that

both associations (i.e. the primary and secondary signals) could

potentially arise from their association with one or more causal

variants, which could occur, on the same haplotype background.

For example, one such BMD-associated rare variant has recently

been identified in LGR4 in Icelandic populations although this

mutation appears specific to this population and therefore is

unlikely to account for the LIN7C/LGR4 signal we observe [14].

Comparison of the magnitude of the effect sizes of
genome-wide significant SNPs across skeletal-sites

The standardized per allele effect sizes (b) of all the top BMD-

associated SNPs were compared across three (SK-, UL-, and LL)

BMD regions to determine if they preferentially influenced one or

more skeletal sites (Table 3, Figure S8, S9, S10, S11). Effect sizes

of the following variants: rs2130604 (CENPW/RSPO3, 6q22.32),

rs3012465 (EYA4, 6q23.2), rs2450083 (COLEC10/TNFRS11B,

8q24.12), rs10835187 (LIN7C/LGR4, 11p14.1) and rs884205

(TNFRSF11A, 18q21.33) appeared to be largest for SK-BMD

when compared to UL- and LL-BMD (Figure S8). Furthermore,

differences in the magnitude of the effect were evident when

comparing independent genetic variants that occurred in close

proximity within a locus, as shown at the CENPW/RSPO3

(6q22.32) and WNT16/FAM3C/CPED1 (7q31.31) loci. Specifical-

ly, the independent signal (rs2130604, CENPW/RSPO3, 6q22.32)

associated with SK-BMD [b = 0.11 (CI95: 0.08, 0.15)

P = 3.3610211], was not strongly related to LL-BMD [b = 0.02

(CI95: 20.02, 0.05), P = 0.28], or UL-BMD [b = 0.04, (CI95: 0.01,

0.07), P = 0.02] (Table 3, Figure 2A-III). In contrast, a

neighbouring SNP (rs1262476) primarily associated with UL-

BMD appeared to influence BMD across all skeletal sites (Table 3,

Figure 2B-III). Differential patterns of association between SNPs at

neighbouring positions were also observed at the WNT16 locus

(Table 3, Figure 3A–C). Effect sizes were largest for UL-BMD at

rs2908004 (WNT16, 7q31.31, Table 3, Figure 3A-II) when

compared to SK- and LL-BMD. Interestingly, as compared to

LL-BMD, we observed consistently larger effect sizes for

rs13223036 and rs798943 (CPED1, previously known as C7orf58)

for SK- and UL-BMD, (Table 3, Figure 3B-II and 3C-II).

To formally determine whether the standardized regression

coefficients of each of the above-mentioned variants truly differed

across the skeletal sites, we fitted a multivariate normal likelihood

model to the raw data in ALSPAC and Generation R (see

Methods), and then meta-analysed the results using Fisher’s

method. Using a conservative threshold (i.e. a = 561028), we

observed robust evidence indicating that i.e. rs13223036 and

rs798943, located at CPED1 exerted strong effects on UL and SK-

BMD, when compared to LL-BMD [P = 2.01610237 and

P = 4.44610236 (Table3)], whereas the variant rs2908004

Figure 2. Regional association plots of the top skull- and upper limb-BMD associated SNPs at the 6q22.32 locus before and after
conditioning on published SNP (rs13204965*) in addition to a comparison of the effect sizes of the top skull- (rs2130604) and
upper limb-BMD (rs1262476) associated SNP (before conditional analysis) on BMD at three different skeletal sites. For I and II: Circles
show GWA meta-analysis P-values and positions of SNPs found within each locus. Top SNPs are denoted by diamonds. Different colours indicate
varying degrees of pairwise linkage disequilibrium (HapMap 2 CEPH) between the top SNP and all other SNPs. Blue vertical shaded areas indicate the
position of rs2130604 (top SNP A-I) and rs1262476 (top SNP B-I) for each analysis. The red vertical shaded area represents the position of the
published SNP (rs13204965*). Rsids of relevant SNPs (blue dots) have been provided. For III: The per allele effect in SD (red dot) and 95% confidence
intervals (error bar) of each top SNP (before conditional analysis) for lower limb (LL), upper limb (UL) and skull (SK) BMD are plotted with their specific
strength of evidence against the null hypothesis of no association. Please note: RSPO3 is also found in the 6q.22.32 locus containing CENPW.
doi:10.1371/journal.pgen.1004423.g002
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Figure 3. Regional association plots of the top SNPs associated with total-body less head-, lower limb-, upper limb- and skull-BMD
at the 7q31.31 locus, in addition to a comparison of the effect size of the top site-specific SNP on BMD at the three different
skeletal sites. For I: Circles show GWA meta-analysis P-values and positions of SNPs found within the 7q31.31 locus. Top SNPs are denoted by
diamonds. Different colours indicate varying degrees of pair-wise linkage disequilibrium (HapMap 2 CEPH) between the top SNP and all other SNPs.
Blue vertical shaded areas indicate the position of rs7776725 (top SNP A-I) and rs2908004 (top SNP B-I) and rs798943 (top SNP C-I) for each analysis.
The red vertical shaded area represents the position of rs13223036 (top SNP D-I). For II: The per allele effect in SD (red dot) and the 95% confidence
interval (error bar) of the top SNP for lower limb (LL), upper limb (UL) and skull (SK) are plotted with their specific strength of evidence against the null
hypothesis of no association. Please note: FAM3C and CPED1 are also located at the 7q.31.31 locus containing WNT16.
doi:10.1371/journal.pgen.1004423.g003
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(WNT16) was strongly related to UL-BMD in comparison to BMD

at the other sites (P = 2.31610214). Several variants at other loci

were also suggestive of some degree of skeletal site specificity

including EYA4 and LIN7C, although they did not formally meet

the criteria for statistical significance (Table 3, Figures S8, S9, S10,

S11).

Association of novel variants with hip and spine BMD
To elucidate if any of the novel primary and/or secondary

signals, identified during the course of this study, were nominally

associated with BMD in adults, we performed a lookup of these

variants in the publicly available results of the GEFOS-II meta-

analysis of hip and spine BMD (Table S11) [4]. The novel RIN3

variant (rs754388) was not associated with femoral neck

(PFN = 0.87) and lumbar spine BMD (PLS = 0.42). The G allele of

the EYA4 variant (rs3012465), associated with increased SK-BMD

(b = 0.13, SE = 0.02, P = 8.3610217), but surprisingly showed

nominal association with decreased BMD at both the hip

(P = 7.161023) and spine (P = 0.04). A followup of this variant in

a recent published GWAS of 4061 premenopausal women aged 20

to 45 revealed no evidence of association with FN-BMD (P = 0.73)

[15].

A lookup of the secondary independent SNPs revealed no

evidence of a relationship between the TBLH- and LL-BMD-

associated KLHDC5/PTHLH variant (rs4420311) and associations

with hip or spine BMD (PFN = 0.33 and PLS = 0.45) in GEFOS-II.

Similarly no evidence of association was detected for the SK-

BMD-associated variant at CENPW/RSPO3 (rs2130604:

PFN = 0.98 and PLS = 0.40). Interestingly, the T allele of the

CENPW/RSPO3 variant (rs4418209), which was associated with

increased SK-BMD (b = 0.07, SE = 0.02, P = 1.161026), appeared

to be nominally associated with decreased hip BMD

(P = 5.061023) but not spine BMD (P = 0.34). Further inspection

revealed that the T allele of rs4418209 was nominally associated

with decreased BMD at the TBLH (b = 20.03, SE = 0.02,

P = 1.761022), LL (b = 20.04, SE = 0.02, P = 6.561023) and

UL (b = 20.04, SE = 0.02, P = 8.261023). The T allele of

rs17536328 located within TNFSF11, associated with increased

TBLH-BMD, showed nominal evidence of association with

increased hip (P = 0.04) but not spine BMD (P = 0.87). In contrast,

the G allele of an independent TNFSF11 variant (rs2148072)

associated with increased UL-BMD was associated with decreased

spine BMD (P = 0.05). In addition, the C allele LIN7C/LGR4

variant (rs10160456) associated with increased SK-BMD showed

weak evidence of association with increased hip (P = 0.06) and

spine (P = 0.03) BMD.

Bioinformatic analysis of RIN3
We fine mapped the RIN3 region by imputing common

and rare variants using a reference panel from the 1000

Genomes Project and identified a missense variant

(rs117068593) that was in strong linkage disequilibrium

(r2 = 0.96) with the top LL-and TBLH-BMD associated RIN3

variant (rs754388). The C allele of rs117068593 (EAF = 0.82) was

associated with increased BMD of the lower limbs (b = 0.13,

SE = 0.020, P = 5.97610211) and total-body less head (b = 0.12,

SE = 0.020, P = 1.8761029). A search of the SIFT database [16]

revealed that the missense variant could negatively affect RIN3

functioning. This prediction was further supported by a search of

the Regulome database [17], which suggested that the missense

variant alters the binding of the following transcription factors:

EBF1, EGR1, SP1, NFKB1 and POLR2A, in lymphoblastic cell

lines.

RIN3 expression profiling
Evaluation of cis-expression quantitative trait loci (eQTLs) from

primary human osteoblasts using array-based gene expression

suggested that variants located within 1MB of RIN3 (i.e. including

variants tagging SLC24A4, LGMN, GOLGA5, CHGA and ITPK1)

were nominally associated with ITPK1 expression (P = 0.04). This

observation failed to meet the level of significance after correction

for multiple testing. Examination of the temporal pattern of gene

expression across osteoblastogenesis, using mouse calvarial derived

cells, starting with the pre-osteoblast stage, through to mature

osteoblasts revealed that Rin3, Golga5 and Lgmn, and Iptk1 were

expressed in this cell type (Figure S12). In contrast, Slc24a4 and

Chga were not expressed at all in the pre- or mature osteoblast, as

determined by RNAseq. A further investigation of the expression

profiles of the aforementioned genes in human mesenchymal stem

cells [(hMSCs), differentiated into adipocytes and osteoblasts] and

peripheral blood monocytes [(PBMCs) differentiated into osteo-

clasts] indicated the following: SLC24A4 was not expressed in any

of these cell lines when differentiated, GOLGA5 had an interme-

diate expression level in both differentiating hMSCs and PBMCs

and LGMN was immediately upregulated upon differentiation into

adipocytes (8 fold), osteoblasts (5 fold) and osteoclasts [(5 fold),

Figure S13 and S14]. Moreover, we found that the expression of

RIN3 was 2-fold downregulated during the proliferative phase of

differentiating PBMCs into osteoclasts (Figure S13). Finally a

comparison of expression profiles across the RIN3 region of illiac

bone biopsies derived from 39 osteoporotic and 27 healthy

postmenopausal donors revealed one transcript (i.e. 220439_at,

originating from RIN3), that demonstrated reduced expression in

the osteoporotic group relative to the control group

[P = 2.761023, (Table S13)].

Discussion

This study assessed whether regional analysis of skeletal sites

from TB-DXA could be used to estimate the extent to which

genetic and environmental factors influence bone mass accrual of

differentially loaded skeletal sites (skull, lower limbs, and upper

limbs). Point estimates indicated that common SNPs on a

commercially available genotyping array, explained a larger

proportion of the overall variance of SK-BMD, when compared

to BMD measured at the appendicular sites (i.e. lower and upper

limbs). These differences potentially reflect differential exposure of

each skeletal site to varying environmental stimuli that influence

BMD. Specifically the skull, as opposed to appendicular sites, is

less influenced by environmental factors, particularly those acting

through mechanical loading. To explore this result further, we

estimated the residual correlation (i.e. the proportion of environ-

mental and other sources of variation not tagged by SNPs on the

Illumina platform) across the different skeletal sites and found that

whilst the environmental (and other residual) factors influencing

the appendicular sites were moderately similar to each other, they

appeared to be appreciably different from the factors influencing

SK-BMD. Taken together, lower vg estimates, coupled with a high

residual correlation between the two appendicular sites, may

reflect the greater exposure of these sites to loading and muscular

stimulation, when compared to the skull.

Likewise, estimates of the genetic correlations indicated that the

appendicular limbs shared a more similar genetic architecture

when compared to the skull, possibly reflecting the composition of

bone at each skeletal site and the biological processes that govern

their growth and maintenance. For example, appendicular sites

consist of broadly equivalent proportions of cortical and trabecular

bone. The skull on the other hand is mainly comprised of flat
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bones, which consist primarily of cortical bone [18]. The

developmental processes also differ between long and flat bones,

with dermal bones such as the skull vault arising exclusively

through intramembranous bone formation, in contrast to long

bones, which form through endochondral bone formation

involving intermediary formation of cartilage [19].

To further explore the basis for the above-mentioned differences

in underlying genetic architecture, GWA meta-analyses of sub-

regional TB-DXA data were performed. These analyses helped

identifying genetic signals that were associated with one or more

skeletal region(s). When comparing the evidence of association for

all SNPs (identified in this effort) across each skeletal site, our

GWA meta-analyses echoed the findings of our GCTA results,

supporting the notion that although the underlying genetic

architecture influencing BMD appears to be largely similar, it

does vary according to skeletal site. The majority of the top SNPs

were nominally associated (P#0.05) with BMD across all skeletal

sites (i.e. SNPs at WNT4, WNT16, FAM3C, GALNT3, FUBP3,

KLHDC5/PTHLH, TNSF11, LIN7C/LGR4 and PPP6R3/LRP5).

In contrast, variants near or within CPED1, COLEC10/TNFRS11B

and EYA4 were strongly associated with UL- and SK-BMD, but

not LL-BMD. A further variant was identified within TNFRSF11A

that appeared to be solely related to SK-BMD. Most notably we

observed a novel association between rs754388 (located within

RIN3) and LL-/UL-BMD, but not SK-BMD. To the best of our

knowledge this is the first GWAS to report an association between

RIN3 and BMD. It seems likely that this association reflects a true

relationship with BMD as the same RIN3 signal (as determined by

conditional analysis) has previously been associated with an

increased risk of Paget’s Disease [i.e. rs10498635-C OR: 1.44,

95%-CI (1.29–1.60) P = 3.610211] [20].

In an attempt to further understand how the genetic variation

surrounding RIN3 may influence BMD, we fine mapped RIN3 and

identified a missense variant (rs117068593) that was in high LD

with our LL-BMD associated SNP. Data mining of SIFT and

ENCODE databases suggested a functional role of the missense

variant that putatively affects binding of several transcription

factors in lymphoblastic cell lines. We further evaluated expression

quantitative trait locus (eQTL) data from primary human

osteoblasts using SNP data from HapMap (i.e. not including

rs117068593) and found no substantial evidence that our LL-

BMD associated SNPs located at 14q32.12 regulated the

expression of RIN3 or any of the genes located nearby. However,

differential patterns gene expression were detected when compar-

ing RIN3 expression profiles of osteoporotic and healthy individ-

uals. Further, we also observed differential expression during

osteoclast differentiation that was not present in osteoblast and

adipocyte differentiation processes. Collectively, the aforemen-

tioned observations appear to be in line with previous findings that

suggest that RIN3 could influence osteoclast activity, especially

when considering the prior association of RIN3 with Paget’s

Disease, a disease driven by osteoclast dysfunction and molecular

studies that indicate that RIN3 is involved in vesicular trafficking,

a process critical for bone resorption [20,21]. Further study is

however needed to elucidate the precise role of role of RIN3 in

bone metabolism.

To further understand the preferential associations of some

variants with different skeletal sites, we compared the standardized

effect sizes of all the genome-wide significant BMD-associated

variants, across each skeletal site using a formal multivariate

normal likelihood model. Variants at the CPED1 locus were

strongly associated with BMD at the skull and upper limb sites, but

not with LL-BMD. Similarly variants at WNT16 were more

strongly related to UL-BMD, than to BMD at the other sites.

Several other SNPs showed evidence for site specificity including

variants at the EYA4 and LIN7C loci that were very strongly

related to SK-BMD, although these variants did not surpass our

conservative criterion for declaring significant heterogeneity,

corroboration is needed from independent studies.

Conceivably, differences in the pattern of results across SNPs

may have arisen from an artefact of the measurement (i.e. where

sub-regional-specific associations reflect how accurately BMD is

measured at each skeletal site). However, if the latter were the

case, one would expect to observe a consistent pattern of results

across all loci (i.e. the strength of association should be greatest at

those sites measured more accurately). From our results, this is

clearly not the case as evidence of association is sometimes greatest

for the skull, whilst for other SNPs evidence is greatest for lower

and/or upper limbs. In terms of biological explanations, larger

effect sizes of genetic variants that influence SK-BMD possibly

reflect their preferential involvement in cortical as opposed to

trabecular bone metabolism and/or the involvement of intra-

membranous ossification vs. endochondral ossification [13].

Certain genetic factors also appeared to influence UL-BMD more

strongly than LL-BMD, or vice versa. Since the composition and

developmental origin of these two sites is broadly similar,

presumably, other explanations are responsible. It is reasonable

to think that genetic factors, which we identified, could be acting

to alter responses to stimuli that are themselves site-specific. For

example, adipose tissue has previously been reported to influence

cortical bone of the tibia in preference to the radius [22].

Quantitative SK-BMD measurements have traditionally been

ignored by genetic and epidemiological studies as they are thought

to be prone to errors such as dental augmentation. Despite these

concerns, a study conducted in premenopausal woman found a

high correlation between the upper half of the skull (i.e. cranial

vault) and total skull-BMD (r2 = 0.991, n = 91, Age range 19–30

years), with a mean difference of 20.004 g/cm2, suggesting that

these two measurements of bone mass are similar [23]. We found

that paediatric SK-BMD measures are well suited to GWAS, as

indicated by the very low P-values obtained at some of the known

BMD associated loci (10217 to 10228) despite our relatively small

sample size. This observation may reflect the fact that SK-BMD is

considerably less subject to environmental influences, such as those

acting through mechanical loading. In addition, genetic variants

associated with SK-BMD identified in this study may primarily

reflect molecular pathways involved in bone mass accrual and

growth, in contrast to variants identified from previous adult scans

which may be more strongly related to mechanisms involved in

bone maintenance and/or loss.

Almost all the loci we have identified in this study (i.e. with the

exception of SNPs in RIN3 and EYA4) have been associated with

BMD at either the hip or the lumbar spine previously. Variants

mapping to RIN3 have been implicated in Paget’s disease but this

is the first time the locus is associated with BMD, and interestingly,

the alleles associated with increased BMD are associated with

increased risk for the condition. This shows that performing

GWAS of BMD at sites other than at the femoral neck (FN-BMD)

or lumbar spine (LS-BMD) can be used to identify loci that exert

pleiotropic effects on bone. Potential advantages of examining

these additional sites from a locus discovery perspective are that (i)

genetic variants may exert stronger effects at these sites than at

FN-BMD/LS-BMD, and/or (ii) the genetic effects may be more

apparent at these sites because the effect of environmental noise is

minimized. For example, the P-values for skull BMD at several loci

(e.g. variants around CPED1, EYA4 and LIN7C) are many orders

of magnitude stronger than the corresponding P-values for TBLH-

BMD (see Table S8). Likewise variants in LIN7C were first
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discovered using a GWAS meta-analysis of lumbar spine that was

over five times the size of the present study, and even then only just

exceeded the threshold for genome-wide significance [4], whereas

in our study a variant at this locus has P,1610216 with SK-BMD.

Hence, GWAS of BMD at sites such as the skull could be used to

efficiently detect clinically relevant loci that might be more difficult

to discover in GWAS of the femoral neck and/or lumbar spine.

To further illustrate the value of SK-BMD, we draw attention to

rs3012465, a variant proximal to the eyes absent (EYA4) gene and

associated with increased SK-BMD. We show that the signal is

analogous to that previously associated with increased volumetric

cortical BMD of the tibia (i.e. C allele of rs271170: b = 0.11,

P = 2.7610212), based on a GWAS in ALSPAC and other young

adult cohorts [13], suggesting that both findings reflect the

relationship of the EYA4 locus with cortical bone. However, a

look-up in a separate cortical bone site (i.e. the femoral neck of the

hip), from a GWAS in older adults, revealed that the BMD-

increasing allele at the EYA4 locus was in fact associated with

lower BMD for both rs3012465 and rs271170 [4]. Taken together,

these findings may reflect an age dependent effect of EYA4

whereby EYA4 contributes to bone accrual in early life, yet maybe

influences bone loss in older adults. To test this hypothesis, we

followed up these EYA4 variants in a recent GWAS meta-analysis

of FN-BMD in 4061 pre-menopausal women aged 20–45 (as

described in Koller and colleagues [15]) and failed to find any

evidence of association with FN-BMD (P = 0.73). These results

suggest that the discrepancy in results between GEFOS and the

present study is unlikely to be solely due to age, but rather is likely

to represent a real difference between skeletal sites.

In summary, our strategy of analysing regional paediatric DXA

measures of TB-BMD represents a novel approach to dissecting

the genetic architecture influencing bone mass accrual and growth

at different skeletal sites. Specifically, variants at 13 loci reached

genome-wide significance with BMD and several displayed

different degrees of association according to skeletal site. Further-

more, we report a novel association between a variant within RIN3

and LL-BMD and note its previous association with risk of Paget’s

disease. We additionally provide suggestive evidence of allelic

heterogeneity at the CENPW/RSPO3, KLHDC5/PTHLH and

LIN7C/LGR4 loci. In conclusion our results provide evidence that

different skeletal sites as measured by TB-DXA are to a certain

extent under distinct environmental and genetic influences.

Allowing for these differences may help to uncover new genetic

influences on BMD, particularly those examined in children as

involved in bone growth and accrual.

Materials and Methods

Subjects
ALSPAC. ALSPAC is a longitudinal population-based birth

cohort that recruited pregnant women residing in the former

county of Avon, UK, with an expected delivery date between 1st

April 1991 and 31st December 1992. This cohort has been

described in detail on the website (http://www.alspac.bris.ac.uk)

and elsewhere [24]. DXA, height and weight measurements were

performed on children who attended the 9 year old focus group

clinic [mean age of participant 9 (60.32 years)]. Ethical approval

was obtained from the ALSPAC Law and Ethics committee and

relevant local ethics committees, and all parents provided written

informed consent.

Generation R Study. The Generation R Study is a

prospective cohort study enrolling 9,778 pregnant women living

in Rotterdam with a delivery date from April 2002 until January

2006. Details of study design and data collection have been

described elsewhere [25]. DXA, height and weight measurements

were performed on children who visited the research centre whilst

being accompanied by their mothers at a mean age of 6 (60.5

years). All research aims and specific measurements taken during

the course of the Generation R Study have been approved by the

Medical Ethical Committee of the Erasmus Medical Center,

Rotterdam. All parents provided written informed consent.

Phenotypes
ALSPAC. TB-DXA scans were performed on all participants,

using a Lunar Prodigy scanner (Lunar Radiation Corp, Madison,

WI) with paediatric scanning software (GE Healthcare Bio-

Sciences Corp., Piscataway, NJ). DXA measures of BMD were

derived for the following regions of interest: TBLH-, UL-, LL- and

S. All DXA scans were subsequently reviewed by a trained

researcher, and re-analysed as necessary, to ensure that borders

between adjacent ROI’s were placed correctly by the automated

software. The coefficient of variation for TBLH-BMD measures

was 0.8%, based on the analysis of 122 children who had two

scans performed on the same day. Height was measured to the

nearest 0.1 cm using a Harpenden stadiometer (Holtain Ltd.,

Crymych, UK) and weight was measured to the nearest 50 g using

Tanita weighing scales (Tanita UK Ltd, Uxbridge).

Generation R Study. TB-BMD was measured in all partic-

ipants using a GE-Lunar iDXA scanner. Well-trained research

assistants obtained the DXA scans using the same device and

software (enCORE) following standard manufacturer protocols.

The same regions of interest as described for ALSPAC were

derived from TB-DXA scan. To ensure that the lines between

adjacent ROI’s were placed correctly by the automated software,

scans were evaluated twice, directly after the scanning and at a

later time point by a second well-trained research assistant. The

coefficient of variation for total TBLH-BMD measures was 0.23%,

based on duplicate scans of children that were performed on the

same day.

Genotyping and imputation
ALSPAC. A total of 9,912 subjects were genotyped using the

Illumina HumanHap550 quad genome-wide SNP genotyping

platform (Illumina Inc., San Diego, CA, USA) by 23andMe

subcontracting the Wellcome Trust Sanger Institute, Cambridge,

UK and the Laboratory Corporation of America (LabCorp

Holdings., Burlington, NC, USA). PLINK software (v1.07) was

used to carry out quality control measures [26]. Individuals were

excluded from further analysis on the basis of having incorrect

gender assignments, minimal or excessive heterozygosity (,0.320

and .0.345 for the Sanger data and ,0.310 and .0.330 for the

LabCorp data), disproportionate levels of individual missingness

(.3%), evidence of cryptic relatedness (.10% IBD) and being of

non-European ancestry (as detected by a multidimensional scaling

analysis seeded with HapMap 2 individuals). EIGENSTRAT

analysis revealed no additional obvious population stratification

and genome-wide analyses with other phenotypes indicate a low

lambda) [27]. SNPs with a minor allele frequency of ,1% and call

rate of ,95% were removed. Furthermore, only SNPs that passed

an exact test of Hardy–Weinberg equilibrium (P.561027) were

considered for analysis. After quality control, 8,365 unrelated

individuals who were genotyped at 500,527 SNPs were available

for analysis. Known autosomal variants were imputed with

Markov Chain Haplotyping software (MACH 1.0.16) [28,29],

using CEPH individuals from phase II of the HapMap project

(hg18) as a reference set (release 22) [30]. The BMD associated

RIN3 locus was further imputed using the complete reference
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panel from the third phase of the 1000 Genomes Project (i.e.

March 2012) [31].

Generation R Study. Genotyping was performed using the

Illumina HumanHap 610 QUAD microarray using standard

manufacturer protocols. Stringent quality control of the genotype

and imputation process was performed in this study as previously

described [7]. Samples with gender discrepancy, excess of

heterozygosity, low genotype quality and sample replicates were

excluded from the analysis. A reference panel for imputation,

consisting of CEPH, YRI and CHB/JPT haplotypes was

constructed using data from phase 2 of the HapMap project

(hg18, release 22) [30]. A two-step imputation process was

performed using MACH for haplotype phasing and Minimac for

imputation [28,29]. A similar 1000 Genomes imputation strategy

(as described above for ALSPAC) was used to fine map the RIN3

locus.

Statistical methods
Choice of covariates. BMD as measured by DXA is strongly

influenced by weight, in part because weight is related to skeletal

size. BMD as assessed by DXA, does not correct for the thickness

(depth) of bone, therefore true (volumetric) bone mineral density is

often underestimated in smaller individuals and overestimated in

larger subjects. Weight is also thought to affect BMD by other

pathways such as increased skeletal loading, and possibly by other

metabolic influences. We reasoned that SK-BMD is likely to be

relatively unaffected by these other pathways, and so whereas

TBLH-, UL- and LL-BMD measures were adjusted for weight,

SK-BMD was adjusted for height.

Genome-wide complex trait analysis. Univariate restrict-

ed maximum likelihood (REML) genome-wide complex trait

analyses (GCTA) [32] were performed on $4,866 ALSPAC

subjects to estimate the proportion of additive genetic variance in

BMD at each site, explained by directly genotyped variants that

had a minor allele frequency $1%. Bivariate REML GCTA

analysis [33] was further used to estimate the pair-wise genetic and

residual correlations between BMD at each skeletal site. A cryptic

relatedness cut-off of 0.025 was applied in order to ensure that

distantly related individuals (i.e. n,444) were removed prior to the

analysis, thereby reducing the potential for bias (Figure S15).

GCTA analysis was not performed in the Generation R Study

given its multi-ethnic composition. Pearson Product Moment

Correlation was used to estimate the linear relationship between

standardised residuals of BMD after adjusting for age, gender, and

weight or height using the STATA statistical package [34].

Genome-wide association meta-analysis of BMD in

ALSPAC and Generation R. To identify genetic loci influenc-

ing variation in TBLH-, LL-, UL- and SK-BMD, we performed

GWAS meta-analyses combining 5,330 children (5,299 for SK-

BMD) from the ALSPAC cohort and 4,086 children from the

Generation R Study, who had DXA BMD measurements and

imputed GWAS data. Cohort specific GWAS analyses were

conducted in ALSPAC and Generation R using standardised

residuals derived from BMD measures after adjustment for age,

gender and weight for all skeletal sites except the skull, where

weight was substituted for height. The first 20 ancestry informative

principal components were additionally incorporated into the

Generation R model to control for population stratification, due to

the multi-ethnic nature of this cohort as described previously [7].

Genome-wide association analyses were performed using

MACH2QTL [29] as implemented in GRIMP [35], using linear

regression models based on an expected allelic dosage for SNPs,

adjusting for the above mentioned covariates where necessary. We

combined association data for ,2.5 million imputed autosomal

SNPs into an inverse variance fixed-effects meta-analysis, using

METAL and controlled for genomic inflation in each cohort [36].

P-values less than 561028 were considered genome-wide signif-

icant. Heterogeneity was evaluated using Cochran’s Q statistic and

was quantified by the I2 metric. Regional association plots from

our genome-wide association scans were generated using Locus-

zoom (v1.1) [37], using linkage-disequilibrium (LD) information

estimated from the HapMap 2 (hg18) CEPH reference dataset

[38]. All pair-wise LD estimates were obtained using SNAP

software in conjunction with the HapMap2Phase II (hg18) CEPH

reference dataset [39]. All remaining plots were generated in R

[40] using the ggplot2 software package [41].

Sensitivity analysis. In order to test the robustness of our

results to the choice of covariates at each site, we performed a

sensitivity analysis adjusting each region-specific BMD measure

for: age, gender, height and weight (i.e. Model 1a) and performing

GCTA and GWAS meta-analysis using the residuals. In order to

confirm that our results were not being driven by underlying

population substructure, we performed further GWAS meta-

analyses using the same residuals derived for Model 1a, except that

the analyses were restricted to individuals of European ancestry

(i.e. Model 1b).

Conditional meta-analysis. To identify novel secondary

BMD association signals (i.e. independent from those published),

at loci which reached genome-wide significance for each BMD

meta-analysis, we carried out conditional meta-analyses by

conditioning on all previously published BMD-associated variants

that mapped to between 1–2 Mb of the top locus specific SNP

[depending on the extend to LD, (Table S12)]. In the case of

rs7851693 (FUBP3), not present in the Generation R dataset,

conditional analysis was performed using a proxy SNP (i.e.

rs7030440), which was in high LD (r2.0.96) with the missing

BMD associated variant. For RIN3, there were no BMD associated

loci previously published, thus for that locus we conditioned on the

top SNP. After conditional analysis, locus specific significance

correction thresholds (for multiple testing of SNPs which are in

linkage disequilibrium with each other) were calculated using the

Single Nucleotide Polymorphism Spectral Decomposition

(SNPSpD) software package [42]. Locus specific regions used for

SNPSpD were defined as the region proximal (1–2 Mb) to each

locus specific signal. The presence of independent secondary

association signals was confirmed in situations where the residual

signal (after conditional meta-analysis) reached the locus specific

threshold corrected for multiple testing.

Comparison of the magnitude of the effect sizes of

genome-wide significant SNPs across skeletal-sites. As

we were interested in whether the genetic variants exerted greater

influence on BMD at a particular site, it would be misleading to

directly compare standardized regression coefficients from the

meta-analysis by e.g. simple Z test, since the summary statistics

were derived from correlated measures on the same individuals

and are therefore not independent. In addition, because we are

only testing variants that have already met the criterion for

genome-wide significance (and were therefore selected on the basis

of having an extreme regression coefficient at a particular site), it is

not appropriate to compare the regression coefficients from

different sites using an uncorrected type I error level of a = 0.05.

To address both these considerations, we fitted a multivariate

normal model to the standardized BMD scores at each site by

maximum likelihood using the software package Mx [43]. We

fitted a model where the standardized regression coefficients for

each site (SK-BMD, LL-BMD, UL-BMD) were constrained to be

equal, and then another model in which the regression coefficient

most different from the other two was allowed to vary). Twice the
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difference in log-likelihood between these models is distributed as a

chi-square statistic with one degree of freedom. We analysed each

cohort separately using this method and then combined the results

using Fisher’s product of P-values evaluating statistical significance

against a conservative threshold of a = 561028 (i.e. as if we had

performed the comparison genome-wide, not just post-hoc on the

significant sites).

Functional analysis of RIN3
In an attempt to identify a potential functional or regulatory

mechanism underlying the association between RIN3 and BMD, a

range of bio-informatic and functional analyses were performed.

These included: fine mapping the RIN3 locus, data mining

Regulome [17] and SIFT [16] databases and performing eQTL

analysis on primary human osteoblasts. The expression profiles of

RIN3 and neighboring genes: SLC2484, LGMN, GOLGA5, CHGA

and ITPK1 were also investigated in bone biopsies of healthy and

osteoporotic women, in addition to murine and human cell lines

that were differentiated into osteoblasts and/or osteoclasts.

Methods specific to each analysis are described below.

Human primary osteoblasts. Expression profiling of un-

treated primary human osteoblasts, obtained from 113 (51 female

and 62 male) unrelated Swedish donors, was performed using the

Illumina HumRef-8 BeadChips in accordance with the manufac-

turer’s instructions. Up to 3 biological replicates were analysed per

sample. Genotyping for genotype-expression association was

performed using the Illumina HapMap 550 k Duo chip.

Individuals with low genotyping rate and SNPs showing significant

deviation from Hardy-Weinberg equilibrium (P,0.05) were

excluded. Similarly, low frequency (MAF,0.05) SNPs and SNPs

with high rates of missing data were excluded. Genotypes from

samples that passed quality control (n = 103) were imputed for all

SNPs (n = 478,805) oriented to the positive strand from phased

autosomal chromosomes of HapMap Phase 2 CEPH panel

(release 22, build 36) using MACH 1.0. A RSQR cut-off of ,

0.3 was used to remove poorly imputed markers. Association of

imputed genotypes using estimated genotype probabilities with

nearby expression traits (defined as 61 Mb window flanking

RIN3) was performed using a linear regression model implemented

in the MACH2QTL software with sex and age as covariates.

Detailed methods pertaining to the data generation and analysis

are described elsewhere [44,45].

Human illiac bone biopsies. Gene expression profiles were

generated from iliac bone biopsies donated by healthy control

(n = 27), osteopenic (n = 18) and osteoporotic (n = 39) postmeno-

pausal Norwegian women. The affection status of each individual

was determined by BMD measurements of the total hip or lumbar

spine (L1–L4 vertebrae). Individuals with a T-score less than 22.5

and with at least one low trauma fracture were deemed

osteoporotic, whilst individuals with a T-score .21 were deemed

healthy. Expression profiling was performed using an Affymetrix

HG U133 2.0 plus array. The Affymetrix Cel files were imported

into Partek Genomics Suite (Partek Inc., St Louis, MO, USA), and

normalized using the RMA (Robust Multichip Average) algo-

rithm. Gene expression patterns were further adjusted, as reported

by Jemtland and colleagues [46], for batch effects and differing

synthesis times. The gene expression profiles of all transcripts

located 6250 kb of the top LL-BMD associated RIN3 SNP (i.e.

rs754388) were compared between the osteoperotic and control

group. Note: the intermediate osteopenic group was excluded from

this analysis.

Murine pre-osteoblasts. All procedures and use of mice for

the neonatal osteoblast expression studies were approved by the

Jackson Laboratory Animal Care and Use Committee (ACUC), in

accordance with NIH guidelines for the care and use of laboratory

animals. Pre-osteoblast-like cells were isolated from neonatal

calvaria from C57BL/6J mice expressing cyan florescent protein

(CFP) under the control of the Col3.6 promoter (pOBCol3.6CFP),

using standard techniques [47]. Cells were cultured for 4 days in

growth media [DMEM containing 10% fetal bovine serum (FBS)

and 16 penicillin/streptomycin], and thereafter removed from

culture and subjected to fluorescence-activated cell sorting (FACS)

based on the presence/absence of CFP expression. Cells

expressing CFP, and therefore considered pre-osteoblasts, were

plated at a density of 16104 cells per cm2, differentiated into

osteoblasts using standard methods (aMEM containing 50 mg/ml

Ascorbic Acid, 4 mM b-glycerol phosphate, 10% FBS and 16
penicillin/streptomycin). RNA was collected at 9 time points post

differentiation. mRNA profiles for triplicate samples for each time

point were generated by Next Generation High throughput RNA

sequencing (RNAseq), using an Illumina HiSeq 2000. The

alignments for abundance estimation of transcripts was conducted

using Bowtie version 0.12.9 [48] using the NCBIm37 transcrip-

tome as the reference genome. Expression level per gene was

calculated using RSEM version 1.2.0 using the following

parameters: –fragment-length-mean 280 and –fragment-length-

sd 50 [49] and expression level for each sample was normalized

relative to the per sample upper quartile [50]. This data has been

submitted to the gene expression omnibus (Accession Number:

GSE54461).

Human mesenchymal stem cells and peripheral blood

mononuclear cells. Human bone marrow derived mesenchy-

mal stem cells [(hMSC), Lonza Group Ltd., Basel, Switzerland]

were seeded in 12-well plates (56103 cells per cm2) and

differentiated into osteoblasts (using a-Mem pH 7.5, 10% heat

inactivated foetal calf serum (FCS), 100 nM Dexamethasone and

10 mM b-glycerophosphate) or adipocytes (using a-MEM pH 7.5,

10% heat inactivated FCS, 100 nM dexamethasone, 500 mM

IBMX and 60 mM Indomethacin). Total RNA was isolated

(triplicates) using Trizol (Life Technologies, Carlsbad, CA, USA)

twice a week during differentiation until the 25 day of culture.

Human peripheral blood mononuclear cells (PBMCs) were

retrieved from buffy coats using Ficoll and seeded in 12-well

plates (1.36105 cells per cm2). Monocytes were allowed to attach

for 4 hours and non-adherent cells were removed by careful

washing. In the next three days, cells were grown in a-Mem

pH 7.5, containing 15% heat-inactivated serum and 25 ng/ml

macrophage colony stimulating factor [(M-CSF), R&D Systems

Inc., Minneapolis, MN, USA] to stimulate proliferation of the

monocytes. After 3 days, media was replaced with a-Mem pH 7.5

containing 15% heat inactivated serum, 25 ng/ml M-CSF and

30 ng/ml RANKL (Peprotech Inc., Rocky Hill, NJ, USA) to

initiate osteoclastogenesis. Total-RNA was isolated twice a week

using Trizol until the 21st day of culture. Amplification of total-

RNA, Illumina microarray hybridization, data extraction and

normalization were performed as previously described [51].

Supporting Information

Figure S1 Genome-wide association meta-analysis of age-,

gender-, height- or weight-adjusted BMD measured at four

different skeletal sites. Manhattan and Q-Q plots derived from

the genome-wide association meta-analysis of BMD measures of

the total-body less head (TBLH), lower limb (LL), upper limb (UL)

and skull (SK). The names of the closest genes relative to the each

locus specific top SNP are indicated in blue. Q-Q plots show the

inflation of the test statistics (lMETA) of each genome-wide

association meta-analysis. *Please note that PTHLH is also located
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at the 12p11.22 locus containing KLHDC5, RSPO3 is also located

at the 6q.22.32 locus containing CENPW, FAM3C and CPED1 are

also located at the 7q.31.31 locus containing WNT16, TNFRSF11B

is also located at the 8q.24.12 locus containing COLEC10, LGR4 is

also located at the 11p14.1 locus containing LIN7C and LRP5 is

also located at the 11q13.2 locus containing PPP6R3.

(TIF)

Figure S2 Regional association plots for all loci which reached

genome-wide significance for TBLH-BMD before and after

conditioning on known BMD associated SNPs. Circles show

GWA meta-analysis P-values and positions of SNPs found within

each locus. The top SNP are denoted by diamonds. Different

colours indicate varying degrees of pair wise linkage disequilibrium

estimates between the top SNP and all other SNPs. *Please note

that PTHLH is also located at the 12p11.22 locus containing

KLHDC5, RSPO3 is also located at the 6q.22.32 locus containing

CENPW, FAM3C and CPED1 are also located at the 7q.31.31 locus

containing WNT16, TNFRSF11B is also located at the 8q.24.12

locus containing COLEC10, LGR4 is also located at the 11p14.1

locus containing LIN7C and LRP5 is also located at the 11q13.2

locus containing PPP6R3.

(TIF)

Figure S3 Regional association plots for all loci which reached

genome-wide significance for LL-BMD before and after condi-

tioning on known BMD associated SNPs. Circles show GWA

meta-analysis P-values and positions of SNPs found within each

locus. The top SNP are denoted by diamonds. Different colours

indicate varying degrees of pair wise linkage disequilibrium

estimates between the top SNP and all other SNPs. *Please note

that PTHLH is also located at the 12p11.22 locus containing

KLHDC5, RSPO3 is also located at the 6q.22.32 locus containing

CENPW, FAM3C and CPED1 are also located at the 7q.31.31 locus

containing WNT16, TNFRSF11B is also located at the 8q.24.12

locus containing COLEC10, LGR4 is also located at the 11p14.1

locus containing LIN7C and LRP5 is also located at the 11q13.2

locus containing PPP6R3.

(TIF)

Figure S4 Regional association plots for all loci which reached

genome-wide significance for UL-BMD before and after condi-

tioning on known BMD associated SNPs. Circles show GWA

meta-analysis P-values and positions of SNPs found within each

locus. The top SNP are denoted by diamonds. Different colours

indicate varying degrees of pair wise linkage disequilibrium

estimates between the top SNP and all other SNPs. *Please note

that PTHLH is also located at the 12p11.22 locus containing

KLHDC5, RSPO3 is also located at the 6q.22.32 locus containing

CENPW, FAM3C and CPED1 are also located at the 7q.31.31 locus

containing WNT16, TNFRSF11B is also located at the 8q.24.12

locus containing COLEC10, LGR4 is also located at the 11p14.1

locus containing LIN7C and LRP5 is also located at the 11q13.2

locus containing PPP6R3.

(TIF)

Figure S5 Regional association plots for all loci which reached

genome-wide significance for SK-BMD before and after condi-

tioning on known BMD associated SNPs. Circles show GWA

meta-analysis P-values and positions of SNPs found within each

locus. The top SNP are denoted by diamonds. Different colours

indicate varying degrees of pair wise linkage disequilibrium

estimates between the top SNP and all other SNPs.*Please note

that PTHLH is also located at the 12p11.22 locus containing

KLHDC5, RSPO3 is also located at the 6q.22.32 locus containing

CENPW, FAM3C and CPED1 are also located at the 7q.31.31 locus

containing WNT16, TNFRSF11B is also located at the 8q.24.12

locus containing COLEC10, LGR4 is also located at the 11p14.1

locus containing LIN7C and LRP5 is also located at the 11q13.2

locus containing PPP6R3.

(TIF)

Figure S6 Genome-wide association meta-analysis of age-,

gender-, height- and weight-adjusted BMD measured at four

different skeletal sites. Manhattan and Q-Q plots derived from the

genome-wide association meta-analysis of BMD measures of the

total-body less head (TBLH), lower limb (LL), upper limb (UL)

and skull (SK). The names of the closest genes relative to the each

locus specific top SNP are indicated in blue. Q-Q plots show the

inflation of the test statistics (lMETA) of each genome-wide

association meta-analysis. *Please note that PTHLH is also located

at the 12p11.22 locus containing KLHDC5, RSPO3 is also located

at the 6q.22.32 locus containing CENPW, FAM3C and CPED1 are

also located at the 7q.31.31 locus containing WNT16, TNFRSF11B

is also located at the 8q.24.12 locus containing COLEC10, LGR4 is

also located at the 11p14.1 locus containing LIN7C and LRP5 is

also located at the 11q13.2 locus containing PPP6R3.

(TIF)

Figure S7 Genome-wide association meta-analysis of age-,

gender-, height- and weight-adjusted BMD measured at four

different skeletal sites in individuals of European ancestry.

Manhattan and Q-Q plots derived from the genome-wide

association meta-analysis of BMD measures of the total-body less

head (TBLH), lower limb (LL), upper limb (UL) and skull (SK).

The names of the closest genes relative to the each locus specific

top SNP are indicated in blue. Q-Q plots show the inflation of the

test statistics (lMETA) of each genome-wide association meta-

analysis. *Please note that PTHLH is also located at the 12p11.22

locus containing KLHDC5, RSPO3 is also located at the 6q.22.32

locus containing CENPW, FAM3C and CPED1 are also located at

the 7q.31.31 locus containing WNT16, TNFRSF11B is also located

at the 8q.24.12 locus containing COLEC10, LGR4 is also located at

the 11p14.1 locus containing LIN7C and LRP5 is also located at

the 11q13.2 locus containing PPP6R3.

(TIF)

Figure S8 Comparison of effect sizes of the top SK-BMD

associated variants across each skeletal site. The per allele effect in

SD (red dot) and 95% confidence interval (error bar) of the top

SNP associated with BMD measurements of the lower limb (LL),

upper limb (UL) and skull (SK) are plotted with their specific

strength of association. *Please note that PTHLH is also located at

the 12p11.22 locus containing KLHDC5, RSPO3 is also located at

the 6q.22.32 locus containing CENPW, FAM3C and CPED1 are

also located at the 7q.31.31 locus containing WNT16, TNFRSF11B

is also located at the 8q.24.12 locus containing COLEC10, LGR4 is

also located at the 11p14.1 locus containing LIN7C and LRP5 is

also located at the 11q13.2 locus containing PPP6R3.

(TIF)

Figure S9 Comparison of effect sizes of the top UL-BMD

associated variants across each skeletal site. The per allele effect in

SD (red dot) and 95% confidence interval (error bar) of the top

SNP associated with BMD measurements of the lower limb (LL),

upper limb (UL) and skull (SK) are plotted with their specific

strength of association. *Please note that PTHLH is also located at

the 12p11.22 locus containing KLHDC5, RSPO3 is also located at

the 6q.22.32 locus containing CENPW, FAM3C and CPED1 are

also located at the 7q.31.31 locus containing WNT16, TNFRSF11B

is also located at the 8q.24.12 locus containing COLEC10, LGR4 is

Genome-Wide Association Study of Whole-Body BMD

PLOS Genetics | www.plosgenetics.org 14 June 2014 | Volume 10 | Issue 6 | e1004423



also located at the 11p14.1 locus containing LIN7C and LRP5 is

also located at the 11q13.2 locus containing PPP6R3.

(TIF)

Figure S10 Comparison of effect sizes of the top LL-BMD

associated variants across each skeletal site. The per allele effect in

SD (red dot) and 95% confidence interval (error bar) of the top

SNP associated with BMD measurements of the lower limb (LL),

upper limb (UL) and skull (SK) are plotted with their specific

strength of association. *Please note that PTHLH is also located at

the 12p11.22 locus containing KLHDC5, RSPO3 is also located at

the 6q.22.32 locus containing CENPW, FAM3C and CPED1 are

also located at the 7q.31.31 locus containing WNT16, TNFRSF11B

is also located at the 8q.24.12 locus containing COLEC10, LGR4 is

also located at the 11p14.1 locus containing LIN7C and LRP5 is

also located at the 11q13.2 locus containing PPP6R3.

(TIF)

Figure S11 Comparison of effect sizes of the top TBLH-BMD

associated variants across each skeletal site. The per allele effect in

SD (red dot) and 95% confidence interval (error bar) of the top

SNP associated with BMD measurements of the lower limb (LL),

upper limb (UL) and skull (SK) are plotted with their specific

strength of association. *Please note that PTHLH is also located at

the 12p11.22 locus containing KLHDC5, RSPO3 is also located at

the 6q.22.32 locus containing CENPW, FAM3C and CPED1 are

also located at the 7q.31.31 locus containing WNT16, TNFRSF11B

is also located at the 8q.24.12 locus containing COLEC10, LGR4 is

also located at the 11p14.1 locus containing LIN7C and LRP5 is

also located at the 11q13.2 locus containing PPP6R3.

(TIF)

Figure S12 Gene expression profiles of Rin3, Golga5 Lgmn, and

Itpk1 measured throughout the osteoblast maturation process in

cells extracted from mouse calvariae, as measured by RNAseq.

Samples for expression purposes were collected every other day for

18 days, starting 2 days after the cells were first exposed to an

osteoblast differentiation cocktail. Relative transcript abundance is

expressed as the number of query transcripts per million unique

transcripts (transcripts per million), after normalizing to the upper

quartile. A local weighted scatterplot smoothing curve was plotted

to help with visualizing the expression pattern. Note: Slc24a4 and

Chgm were not expressed in this cell type and have not been

included in the figure.

(TIF)

Figure S13 Gene expression profile of RIN3, LGMN, GOLGA5

and ITPK1 measured in osteoclast differentiating human PBMCs.

Relative transcript abundance is expressed as Log2 normalized

intensities. Each value is an average of 3 independent measure-

ments and a standard deviation.

(TIF)

Figure S14 Gene expression profile of RIN3, LGMN, GOLGA5

and ITPK1 measured in adipogenic and osteogenic differentiating

hMSCs. Relative transcript abundance is expressed as Log2

normalized intensities. RIN3 expression levels in differentiating

hMSC are absent because the intensities were at background level.

Each value is an average of 3 independent measurements and a

standard deviation.

(TIF)

Figure S15 Flow diagram and overview of the analysis strategy

used in this study. For ALSPAC, a total of 9,912 subjects were

genotyped by Wellcome Trust Sanger Institute, Cambridge and

the Laboratory Corporation of America. Individuals were

excluded from further analysis using several quality control (QC)

criteria (See methods). After merging and further QC, 8,365

unrelated subjects [identity by decent (IBD) ,10% and of

European ancestry] were available for GWAS analysis. Total-

body DXA scans were performed on 7725 subjects that attended

the Focus 9 clinic. Of these a total of 6540 passed DXA QC. For

total body (TB), lower limb- (LL) and upper limb (UL) GWAS

analysis 5,330 subjects had high quality bone mineral density

(BMD) and genetic data, whereas 5,229 subjects were available for

skull (S). For GCTA analysis, we employed a strict threshold of

genome-wide identity by state .2.5% and resulting in the

exclusion of additional individuals on the basis of cryptic

relatedness. 4,891 (TB-, LL- and UL-BMD) and 4,866 (S-BMD)

subjects were available for GCTA analysis. For Generation R

study a total of 5,908 subjects were genotyped by the Erasmus

Medical Centre. Following QC 5,756 individuals had high quality

genotyping data. Total-body DXA scans were performed on 6,509

subjects, of these a total of 6,490 passed DXA QC. High quality

BMD and genetic data was available for 4,086 subjects. Of these

2,177 subjects were of Dutch-European decent. Two GWAS

meta-analysis strategies were performed for each site. The first

strategy involved all the subjects in the ALSPAC and the

Generation-R studies. The second approach involved all the

ALSPAC subjects, but was restricted to Generation R subjects

who were of European descent. The number of subjects (n)

involved in each step of the analysis is indicated. = Number of

subjects that had S-BMD measurements that passed QC.
W = Number of Generation R subjects that were of Dutch-

European descent.

(TIF)

Table S1 Bivariate GCTA estimates of the genetic and residual

correlations of age-, gender-, height- and weight-corrected bone

mineral density measurements of the total-body less head, lower

limb, upper limb and skull. (TBLH) = total-body less head, (LL-

BMD) = lower limb BMD, (UL-BMD) = upper limb BMD, (SK-

BMD) = skull BMD, rg = genetic correlation between trait 1 and

trait 2. re = residual correlation between trait 1 and trait 2. All

traits were adjusted for age, gender and height and weight. P-refers

to the P-value for the likelihood ratio test of whether rg = 0.

Phenotypic correlations (rp) were as follows: SK-BMD/TBLH-

BMD (rp = 0.44, SE = 0.012, P,0.001), SK-BMD/LL-BMD

(rp = 0.34, SE = 0.013, P,0.001), SK-BMD/UL-BMD (rp = 0.41,

SE = 0.013, P,0.001) and LL-BMD/UL-BMD (rp = 0.64,

SE = 0.010, P,0.001).

(DOCX)

Table S2 Characteristics of BMD measures and other anthro-

pometrical traits for participants of the ALSPAC and GEN-R

cohorts. (TBLH-BMD) = total-body less head BMD; (LL-

BMD) = lower limb BMD; (UL-BMD) = upper limb BMD; (SK-

BMD) = skull BMD; UNIT = unit of measurement; n = number of

subjects; SD = standard deviation of the mean value; (C-MEAN) = -

mean of trait measured for males and females; (F-MEAN) = mean of

trait measured in females; (M-MEAN) = mean of trait measured in

males. *Only 5299 subjects had skull BMD measurements.

(DOCX)

Table S3 Overall and population specific characteristics of

BMD measures and other anthropometric traits in Generation R.

(TBLH-BMD) = total-body less head BMD; (LL-BMD) = lower

limb BMD; (UL-BMD) = upper limb BMD; (SK-BMD) = skull

BMD; n = number of individuals; MEAN = mean value of each

trait; SD = standard deviation of the mean each trait; UNIT = unit

of measurement. Please note that these classifications are based on

self-reported ethnicity.

(DOCX)
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Table S4 Genome-wide associated TBLH-BMD variants.

(CHR) = chromosome number; (POS) = position in the genome

based on hg18; (EAF) = effect allele frequency; (b) = estimates of

effect size expressed as adjusted SD per copy of the effect allele

(EA); (SE) = standard error of b; (P) = P-value; (I2) = Cochran’s Q

statistic evaluating heterogeneity and (PHET) = evidence of hetero-

geneity. The SNP that showed the strongest evidence of

association at each locus is displayed in bold font.

(DOCX)

Table S5 Genome-wide associated LL-BMD variants.

(CHR) = chromosome number; (POS) = position in the genome

based on hg18; (EAF) = effect allele frequency; (b) = estimates of

effect size expressed as adjusted SD per copy of the effect allele

(EA); (SE) = standard error of b; (P) = P-value; (I2) = Cochran’s Q

statistic evaluating heterogeneity and (PHET) = evidence of hetero-

geneity. The SNP that showed the strongest evidence of

association at each locus is displayed in bold font.

(DOCX)

Table S6 Genome-wide associated UL-BMD variants.

(CHR) = chromosome number; (POS) = position in the genome

based on hg18; (EAF) = effect allele frequency; (b) = estimates of

effect size expressed as adjusted SD per copy of the effect allele

(EA); (SE) = standard error of b; (P) = P-value; (I2) = Cochran’s Q

statistic evaluating heterogeneity and (PHET) = evidence of hetero-

geneity. The SNP that showed the strongest evidence of

association at each locus is displayed in bold font.

(DOCX)

Table S7 Genome-wide associated SK-BMD variants.

(CHR) = chromosome number; (POS) = position in the genome

based on hg18; (EAF) = effect allele frequency; (b) = estimates of

effect size expressed as adjusted SD per copy of the effect allele

(EA); (SE) = standard error of b; (P) = P-value; (I2) = Cochran’s Q

statistic evaluating heterogeneity and (PHET) = evidence of hetero-

geneity. The SNP that showed the strongest evidence of

association at each locus is displayed in bold font.

(DOCX)

Table S8 Comparison of published BMD SNPs with results

from the total-body less head, lower limb, upper limb and skull

BMD GWAS. (LS-BMD) = lumbar spine BMD; (FN-BMD) = fe-

moral neck BMD; (F-BMD) = forearm BMD; (TBLH-BMD) = to-

tal-body less head BMD; (LL-BMD) = lower limb BMD; (UL-

BMD) = upper limb BMD; (SK-BMD) = skull BMD; (POSI-

TION) = location in the genome based on hg18; (GENE) = closest

gene; (PMID) = accession number of the publication in Pubmed

from which the summary statistics were obtained; (EA) = effect

allele; (EAF) = effect allele frequency; (b) = estimates of effect size

expressed as adjusted SD per copy of the effect allele (EA);

(SE) = standard error of b and (P) = pvalue; We failed to obtain

estimates for: rs9287237 (1q43, FMN2); rs7017914 (8q13.3,

XKR9); rs7851693 (9q34.11, FUBP3) and rs5934507 (Xp22.31,

FAM9B) as they were not imputed in the GEN-R dataset. Note for

rs9287237* (FMN2) and rs271170* (LOC285735/EYA4) the

summary statistics were obtained from a study performed by

Patenoster et. al. 2013 and represent the effect sizes and evidence of

association for these SNPs with volumetric trabecular (LS-BMD

column) and cortical BMD (FN-BMD column).

(DOCX)

Table S9 Sensitivity analysis comparing genome-wide signifi-

cant SNPs associated with bone mineral density measured at four

skeletal sites. (TBLH-BMD) = total-body less head BMD,

(LL-BMD) = lower limb BMD, (UL-BMD) = upper limb BMD,

(SK-BMD) = skull BMD. (MODEL 0) = GWAS meta-analysis

performed on age-, gender-, weight- or height-adjusted BMD,

(MODEL 1a) = GWAS meta-analysis performed on age-, gender-,

weight- and height-adjusted BMD, (MODEL 1b) = GWAS meta-

analysis performed on age-, gender-, weight- and height-adjusted

BMD measurements in individuals of European ancestry.

(GENE) = closest gene, (POS) = position in the genome based on

hg18, (EAF) = effect allele frequency, (b) = estimates of effect size

expressed as adjusted SD per copy of the effect allele (EA),

(SE) = standard error of b, (P) = pvalue, (I2) = Cochran’s Q statistic

evaluating heterogeneity, (PHET) = evidence of heterogeneity and
*Sample sizes used for SK-BMD genome-wide meta-analysis.

**Please note that PTHLH is also located at the 12p11.22 locus

containing KLHDC5, RSPO3 is also located at the 6q.22.32 locus

containing CENPW, FAM3C and CPED1 are also located at the

7q.31.31 locus containing WNT16, TNFRSF11B is also located at

the 8q.24.12 locus containing COLEC10, LGR4 is also located at

the 11p14.1 locus containing LIN7C and LRP5 is also located at

the 11q13.2 locus containing PPP6R3.

(DOCX)

Table S10 Top SNPs associated with bone mineral density of

the total-body less head, lower limb, upper limb and skull after

conditional meta-analysis. (TBLH-BMD) = total-body less head

BMD, (LL-BMD) = lower limb BMD, (UL-BMD) = upper limb

BMD, (SK-BMD) = skull BMD, (GENE) = closest gene, (POS) = -

position in the genome based on hg18, (EAF) = effect allele

frequency, (b) = estimates of effect size expressed as adjusted SD

per copy of the effect allele (EA), (SE) = standard error of b,

(P) = P-value, (I2) = Cochran’s Q statistic evaluating heterogeneity

and (PHET) = evidence of heterogeneity. *Sample sizes used for SK-

BMD genome-wide meta-analysis. Locus specific multiple testing

correction thresholds as calculated by SNPSpD for SNPs in LD

are as follows: 1p36.12 (P#7.561025), 2q24.3 (P#4.761025),

6q22.32 (P#7.261025), 6q23.2 (P#8.961025), 7q31.31 (P#

1.261024), 8q24.12 (P#4.761025), 9q34.11 (P#9.461025),

11p14.1 (P#1.161024), 11q13.2 (P#6.361025), 12p11.22 (P#

4.161025), 13q14.11 (P#3.761025), 14q32.12 (P#4.561025)

and 18q21.33 (P#4.161025). **Please note that PTHLH is also

located at the 12p11.22 locus containing KLHDC5 and RSPO3 is

also located at the 6q.22.32 locus containing CENPW. FAM3C and

CPED1 are also located at the 7q.31.31 locus containing WNT16.

(DOCX)

Table S11 Lookup of selected primary and secondary BMD

SNPs in the publically released GEFOS GWAS of hip and spine

BMD, in addition to a comparison of the summary statistics across

each skeletal site before conditional analysis. (TBLH-BMD) = to-

tal-body less head BMD; (LL-BMD) = lower limb BMD; (UL-

BMD) = upper limb BMD; (SK-BMD) = skull BMD; (LS-

BMD) = lumbar spine BMD; (FN-BMD) = femoral neck BMD;

(GENE) = closest gene; (EA) = effect allele; (b) = estimates of effect

size expressed as adjusted SD per copy of the effect allele (EA);

(SE) = standard error of b and (P) = pvalue. Note – all the

summary statistics refer to those obtained prior to conditional

analysis and in the case of femoral neck or lumbar spine, the

results were obtained from the publically available data release

from the GEFOS consortium.

(DOCX)

Table S12 Published SNPs used for conditional meta-analyses.

(LS-BMD) = lumbar spine BMD; (FN-BMD) = femoral neck

BMD; (F-BMD) = forearm BMD; (TBLH-BMD) = total-body less

head BMD; (SK-BMD) = skull BMD; BMD; (TRABEC-

BMD) = volumetric trabecular BMD of the tibia; (CORT-

BMD) = volumetric cortical BMD of the tibia. (POSITION) = lo-

cation in the genome based on hg18; (GENE) = closest gene;
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(PMID) = accession number of the publication in Pubmed from

which the summary statistics were obtained; (b) = estimates of

effect size expressed as adjusted SD per copy of the effect allele;

(SE) = standard error of b and (P) = P-value. *Please note that

PTHLH is also located at the 12p11.22 locus containing KLHDC5,

RSPO3 is also located at the 6q.22.32 locus containing CENPW,

FAM3C and CPED1 are also located at the 7q.31.31 locus

containing WNT16, TNFRSF11B is also located at the 8q.24.12

locus containing COLEC10, LGR4 is also located at the 11p14.1

locus containing LIN7C and LRP5 is also located at the 11q13.2

locus containing PPP6R3. **The Generation R cohort did not

impute the published FUBP3 SNP (rs7851693) and therefore we

chose to condition on rs7030440, a SNP which was in high LD

(HapMap phase 2 release 22, CEU: r2 = 0.96) with the published

FUBP3 associated BMD variant. ***No previous BMD SNPs

found in 14q32.12 have been published.

(DOCX)

Table S13 Comparison of transcript levels between healthy and

osteoporotic women. Transcript log2 signal levels expressed from

genes 6250 Kb of rs754388 were compared between postmen-

opausal osteoporotic women with fracture and healthy controls

using students T-test. Transcripts with maximal log2 signal values

below 4 were excluded. (SD) = Standard deviation and (P) = P-

value.

(DOCX)
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