arXiv:1508.02535v1 [cs.DC] 11 Aug 2015

Efficient counting with optimal resilience

Christoph Lenzen
Department of Algorithms and Complexity,
Max Planck Institute for Informatics

clenzen@mpi-inf.mpg.de

Joel Rybicki

Department of Algorithms and Complexity,
Max Planck Institute for Informatics

Helsinki Institute for Information Technology HIIT,
Department of Computer Science, Aalto University

joel.rybicki@aalto.fi

Abstract. In the synchronous c-counting problem, we are given a synchronous system of n nodes,
where up to f of the nodes may be Byzantine, that is, have arbitrary faulty behaviour. The task is
to have all of the correct nodes count modulo ¢ in unison in a self-stabilising manner: regardless of
the initial state of the system and the faulty nodes’ behavior, eventually rounds are consistently
labelled by a counter modulo c at all correct nodes.

We provide a deterministic solution with resilience f < n/3 that stabilises in O(f) rounds
and every correct node broadcasts O(log? f) bits per round. We build and improve on a recent
result offering stabilisation time O(f) and communication complexity O(log? f/loglog f) but with
sub-optimal resilience f = n!=°() (PODC 2015). Our new algorithm has optimal resilience,
asymptotically optimal stabilisation time, and low communication complexity.

Finally, we modify the algorithm to guarantee that after stabilisation very little communication
occurs. In particular, for optimal resilience and polynomial counter size ¢ = nPW | the algorithm
broadcasts only O(1) bits per node every ©(n) rounds without affecting the other properties of the
algorithm; communication-wise this is asymptotically optimal.

1 Introduction

In this work, we seek to minimize the amount of communication required for fast self-stabilising,
Byzantine fault-tolerant solutions to the synchronous counting problem. We are given a complete
communication network on n nodes with arbitrary initial states. There are up to f faulty nodes that
may behave in an arbitrary manner. The task is to synchronise the correct nodes so that they will
count rounds modulo ¢ in agreement. For example, the following is a possible execution for n = 4
nodes, f = 1 faulty node, and counting modulo ¢ = 4; the execution stabilises after 7' = 4 rounds:

Stabilisation Counting
Node 1 O 3 | | 3 2 3 0 |
Node 2 x * * * * % * * *

(faulty)
Node 3 QO 0 2 0 0 2 3 0 I

Noded Q 2 0 2 2 2 3 0 |

In the severe fault-model considered in this work, synchronous counting is an important service
for establishing the classic synchronous abstraction: even if a common clock signal is available, local
counters may become inconsistent due to transient faults; these in turn induce arbitrary states,
which is addressed by the self-stabilisation paradigm. Many, if not most, synchronous algorithms
require synchronous round counters to operate correctly.

Synchronous counting is a coordination primitive that can be used e.g. in large integrated circuits
to synchronise subsystems to easily implement mutual exclusion and time division multiple access
in a fault-tolerant manner. Note that in this context, it is natural to assume that a synchronous
clock signal is available, but the clocking system usually does not provide explicit round numbers.
Solving synchronous counting thus yields highly dependable round counters for subcircuits.

If we neglect communication, counting and consensus are essentially equivalent [3, 5, 6]. In
particular, many lower bounds on (binary) consensus directly apply to the counting problem [4, 9, 12].
However, the known generic reduction of counting to consensus incurs a factor-f overhead in space
and message size. In recent work [11], we presented an approach that reduces the number of bits
nodes broadcast in each round to O(log2 f/loglog f +logc) at the expense of reduced resilience
of f = nt=°M . In this paper, we improve on the technique to achieve optimal resilience with
O(log? f + log ¢) bits broadcast by each node per round.

1.1 Contributions

In this work, we take the following approach. In order to devise communication-efficient algorithms,
we first design space-efficient algorithms, that is, algorithms in which each node stores only a few
bits between consecutive rounds. This comes with additional advantages:

e Local computations will (typically) be simple.
e Communication becomes simple, as one can afford to broadcast the entire state.
e This reduces the complexity of implementations.

e In turn, it becomes easier to use reliable components for an implementation, increasing the
overall reliability of the system.

The key challenge that needs to be overcome in constructing space-efficient (and fast) solutions
to counting appears to be a chicken-and-egg problem: given that the correct nodes agree on a
counter, they can jointly run a (single) instance of synchronous consensus; given that they can run
consensus, they can agree on a counter. In [11], this obstacle is navigated by making the statement
more precise: given that the correct nodes agree on a counter for a while, they can run consensus.
This is used to facilitate agreement on the output counter, in a way which maintains agreement
even if the unreliable counters used for stabilisation fail later on.

The task of constructing counters that “work” only once in a while is easier; in particular, it
does not require to solve consensus in the process. The drawback of the recursive solution in [11] is
that, in order to be time-efficient, it sacrifices resilience. Our main contribution is to provide an
improved construction that preserves optimal resilience.

Theorem 1. For any integers c,n > 1 and f < n/3, there exists an f-resilient synchronous
c-counter that runs on n nodes, stabilises in O(f) rounds, and requires O(log® f + logc) bits to
encode the state of a node.

The key challenge that needs to overcome to arrive at this result when building on the techniques
of [11] is the following. In both approaches, the nodes are partitioned into blocks, each of which
runs a counter of smaller resilience; the construction proceeds inductively on increasing values of
f, so such a counter exists by the induction hypothesis. In [11], it is assumed that a majority of
these blocks contains sufficiently few faulty nodes for the counter to be operational, causing the
relative resilience to deteriorate with each level of recursion in the construction. To achieve optimal
resilience, we must drop this assumption, in turn necessitating novel ideas on how to establish a
joint counter that is once in a while counting correctly at all non-faulty nodes. We show how to
obtain such a counter based on simple local consistency checks, timeouts, and threshold voting.

Last but not least, we show how to reduce the number of bits broadcast after stabilisation to
log ¢/ log k +O(1) per node and x rounds for an essentially unconstrained choice of &, at the expense
of additively increasing the stabilisation time by O(k). In particular, for the special case of optimal
resilience and polynomial counter size, we obtain the following result.

Corollary 2. For anyn > 1 and ¢ = n®W that is an integer multiple of n, there exists a synchronous

c-counter that runs on n nodes, has optimal resilience f = |(n —1)/3], stabilises in O(n) rounds,
requires O(log2 n) bits to encode the state of a node, and for which after stabilisation correct nodes
broadcast (asymptotically optimal) O(1) bits every ©(n) rounds.

1.2 Prior work

In terms of lower bounds, several impossibility results for consensus directly yield bounds for the
counting problem as well [6]: counting cannot be solved in the presence of at least n/3 Byzantine
failures [12] and any deterministic algorithm needs to run for at least f rounds [9] and communicate
Q(nf) bits to stabilise [4].

In contrast, there exist several algorithms to the synchronous counting problem, albeit these
solutions exhibit different trade-offs in terms of resilience, stabilisation time, space and/or com-
munication complexity, or whether a source of random bits is required. For a brief summary, see
Table 1.

Designing space-efficient randomised algorithms for synchronous counting is fairly straightfor-
ward [6-8]: for example, the nodes can simply choose random states until a clear majority of nodes
has the same state, after which they start to follow the majority. Likewise, given a shared coin, one
can quickly reach agreement by defaulting to the coin whenever no clear majority is observed [1];

resilience stabilisation time state bits deterministic references

f<n/3(*) 0O(1) nOW (*) no 1]
f<n/3 O(f) O(flog f) yes 3]
f<n/3 22(n=f) 2 no [7, 8]
f<n/3 min{22/*2 4 1,20(/*/m} 1 no [6]
f=1L,n>4 7 2 yes 6]
f=nt= O(f) O(log® f/loglog f) yes [11]
f<n/3 o(f) O(log? f) yes this work

Table 1: Summary of counting algorithms for the case ¢ = 2. For randomised algorithms, we list
the expected stabilisation time. The solution from [10] relies on a shared coin. “(*)” indicates that
details vary, but all known shared coins with large resilience require large states and messages.

alas, existing shared coins are highly inefficient in terms of communication. Designing quickly
stabilising algorithms that are both communication- and space-efficient has turned out to be a
challenging task [3, 5, 6], and it remains open to what extent randomisation can help in designing
such algorithms.

In the case of deterministic algorithms, algorithm synthesis has been used for computer-aided
design of optimal algorithms with resilience f = 1, but the approach does not scale due to the
extremely fast-growing space of possible algorithms [6]. In general, many fast-stabilising algorithms
build on a connection between Byzantine consensus and synchronous counting, but require a large
number of states per node [3] due to, e.g., running a large number of consensus instances in parallel.
In [11], the approach outlined earlier was leveraged to ensure that each node participates in only
O(log f/loglog f) instances of consensus, resulting in small state and communication complexity,
but reducing resilience to f = nt—°@),

As a side note, the recursive construction presented in this work bears similarity to the recursive
variant of the phase king algorithm [2], for which the goal of the recursion was also to control the
communication complexity (reducing it from ©(n?) to ©(n?) for optimal resilience). In retrospect,
the structural similarity is striking; one may think of our algorithm as a generalization of the
approach to the case where there is no initial agreement on round numbers. The initial lack of
consistent round labels is what causes a roughly factor n larger communication complexity in our
case, which then can be removed after stabilisation leveraging consistent counters.

1.3 Structure of the article

In the next section, we provide formal descriptions of the model and the problem, and introduce
some notation. In Section 3, we prove the main technical result on optimal resilience boosting and
infer Theorem 1. In Section 4, we describe how to reduce the amount of bits communicated after
stabilisation. Finally, in Section 5, we discuss how randomisation can help in further reducing the
communication complexity and conclude the paper.

2 Preliminaries

In this section, we define the model of computation and the counting problem.

2.1 Model of computation

We consider a fully-connected synchronous message-passing network. That is, our distributed system
consists of a network of n nodes, where each node is a state machine and has communication links to
all other nodes in the network. All nodes have a unique identifier from the set [n] = {0,1,...,n—1}.
The computation proceeds in synchronous communication rounds. In each round, all processors
perform the following in a lock-step fashion: (1) broadcast their current state to all nodes, (2) receive
messages from all nodes, and (3) update their local state. We assume that the initial state of each
node is arbitrary and there are up to f Byzantine nodes. A Byzantine node may have arbitrary
behaviour, that is, it can deviate from the protocol in any manner. In particular, the Byzantine
nodes can collude together in an adversarial manner and a single Byzantine node can send different
messages to different correct nodes.

2.2 Algorithms and executions

Formally, we define an algorithm as a tuple A = (X, g,p), where X is the set of all states any
node can have, g: [n] x X™ — X is the state transition function, and p: [n] x X — [c] is the output
function. That is, at each round when node v receives a vector x = (xg, ..., x,—1) of messages, node
v updates it state to g(v,x) and outputs p(v,xz,). As we consider c-counting algorithms, the set
of output values is the set set [¢] of counter values. Note that the tuples passed to g are ordered
according to the node identifiers, i.e., nodes can identify the sender of a message (this is frequently
referred to as source authentication).

For any set of F C [n] of faulty nodes, we define a projection 7x that maps any state vector
x € X" to a configuration wp(x) = e, where e, = x if v € F and e, = x, otherwise. That is,
the values given by Byzantine nodes are ignored and a configuration consists of only the states of
correct nodes. A configuration d is reachable from configuration e if for every correct node v ¢ F
there exists some x € X" satisfying 7z(x) = e and ¢g(v,x) = d,. Essentially, this means that when
the system is in configuration e, the Byzantine nodes can send node v messages so that it decides
to switch to state d,. An execution of an algorithm A is an infinite sequence of configurations
¢ = (ep,e1...,) where configuration e,; is reachable from configuration e,.

2.3 Synchronous counters

We say that an execution £ = (eg, e ...,) of algorithm A stabilises in time 7" if there is some x € [c]
such that for every correct node v ¢ F it holds that

(v, €744p) =1 — 2 mod ¢ for all » > 0,

where ey, , is the state of node v on round 7"+ 7.

An algorithm A is said to be a synchronous c-counter with resilience f that stabilises in time
T, if for every F C [n], |F| < f, all executions of algorithm A stabilise within 7" rounds. In this
case, we say that the stabilisation time T(A) of A is the minimal such T that all executions of A
stabilise in 7" rounds. The state complezxity of A is S(A) = [log|X|], that is, the number of bits
required to encode the state of a node between subsequent rounds. For brevity, we will often refer
to A(n, f,c) as the family of synchronous c-counters over n nodes with resilience f. For example,
A € A(4,1,2) denotes a synchronous 2-counter over 4 nodes tolerating one failure.

3 Optimal resilience boosting

In this section, we show how to use existing synchronous counters to construct new counters in
larger networks with higher resilience. The construction is similar in spirit to the one given in [11],
but somewhat simpler and allows for optimal resilience boosting. We first state the boosting
theorem together with a general overview of the approach, then provide our novel construction, and
subsequently discuss how to stabilise the output counters using the unreliable “helper” counters.
Finally, we prove the main result.

3.1 The road map

The high-level idea of the resilience boosting method is as follows. We first start with counters
that have a low resilience and use these to construct a new “weaker” counter that has a higher
resilience but only needs to behave correctly once in a while for sufficiently long. Once such a weak
counter exists, it can be used to provide consistent round numbers for long enough to execute a
single instance of a high-resilience consensus protocol. This can be used to reach agreement on the
output counter. Once we can boost resilience in the above manner, we can recursively apply this
approach to get the desired resilience.

We now focus on a single recursion step of the resilience boosting. As in [11], the basic idea is
to use multiple counters that run in parallel to perform a leader election process that is guaranteed
to consider each of the counters as leader eventually. Eventually, a stabilised and correctly behaving
counter is elected as a leader for some time and can be used to clock the consensus protocol.

The approach in [11] is inefficient in the sense that using many parallel counters scales poorly in
terms of how fast the process operates, which in turn results in large stabilisation times. On the
other hand, using only a small number of parallel counters yields poor resilience. Here, we introduce
an approach that can—and in fact, must—operate with two counters only, resulting in optimal
resilience and fast stabilisation. The key idea is that by running only two counters in parallel, we
can utilise all the nodes for filtering out “bad counter values” for both counters and have the nodes
carefully choose which counter to follow (and for how long).

In each application of the resilience boosting, each of the two counters is run by roughly half of
the nodes. For f = 0, these counters are trivial: all nodes simply reproduce a local counter of a
designated leader node. For f > 0, we assume that reliable counters for all f’ < f already exist,
and combine an fy-resilient and an fi-resilient counter with fy, fi < f so that fo+ f1 +1 = f. This
implies that, no matter which nodes are faulty, one of the two counters will eventually stabilise.

Our first goal is to construct a 7-counter that counts correctly only once in a while; 7 will
roughly be the running time of the consensus protocol we will execute later on. In order to do this,
we take two counting algorithms A;, ¢ € {0,1} with different counter ranges. We will have these
two counters alternatively point to a “leader counter” for 7 = ©(f) rounds, simply by dividing the
counters by 7, rounding down, and taking the result modulo 2. However, to ensure that each A; is
eventually considered the leader for 7 rounds by both counters, we let the pointer generated by A;
switch between leaders by factor 2 slower than the one of Ag.

Obviously, employing this approach naively is not good enough: since f > max{ f1, f2}, it may
happen that either Ay or A never stabilises. However, we are satisfied if nodes behave as if following
an operational counter for 7 rounds. To this end, we apply for each node v executing A; the trivial
consistency check whether the local output variable of A; increases by 1 in each round. If not, it
will switch to using A;_; as reference for a sufficient number, in this case ©(7), of rounds to ensure
that both v and the nodes executing A1_; will consider A;_; as the leader for sufficiently long.

This almost cuts it—except that two nodes w # v executing A; may have a different opinion on

the output variable for A;, as there are more than f; faulty nodes executing A;. This final hurdle
is passed by enlisting the help of all nodes for a majority vote on what the current output of A;
actually is. Essentially, here we use threshold voting, which in each round r at each node yields
either a globally unique counter value ¢;(r) for A; or L, indicating that A; is not operating correctly.
This entails that, eventually,

e There are unique values ¢;(r) that increase by 1 in each round and are considered to be the
current counter value of A; by all nodes executing A; that are not currently relying on the
counter of Aj_;.

e If a node executing A; defaults to the counter of A;_;, there are fewer than f1_; faulty nodes
executing Aj_;.

e Hence, all correct nodes consider A; with fewer than f; faults for 7 rounds as the leader.

We leverage this last property to execute the phase king algorithm [2] in the same way as in [11] to
stabilise the output counters.

We remark that the stabilisation time on each level is the maximum of that for the used counters
plus O(f); by choosing fi1 ~ fa = f/2, we can thus ensure an overall stabilisation time of O(f),
irrespectively of the number of recursion levels. Formally, we prove the following theorem:

Theorem 3. Let ¢,n > 1 and f < n/3. Define ng = |n/2|, n1 = [n/2], fo = [(f —1)/2],
fi=1(f=1)/2], and T = 3(f+2). If fori € {0,1} there exist synchronous counters A; € A(n;, fi,ci)
such that ¢; = 3 - 27, then there exists a synchronous c-counter B € (n, f,c) such that

e T'(B) =max{T(Ay),T(A1)} + O(f), and
e S(B) =max{S(Ay),S(A1)} + O(log f +logc).

We fix the notation of this theorem for the remainder of this section, as it is dedicated to
its proof. Moreover, for notational convenience we abbreviate T = max{7T(Ay),T' (A1)} and
S = max{S(Ay),S(A1)}.

3.2 Agreeing on a common counter (once in a while)

In this part, we construct a counter that will eventually count consistently at all nodes for 7 rounds.
The 7-counter then will be used as a common clock for executing the phase king algorithm.

First, we partition V' = Vi U V; such that Vo N'Vy = 0, |V| = ng and |V1| = ny. We often refer
to the set V; as block i. For both i € {0, 1}, the nodes in set V; execute the algorithm A;. In case
block 7 has more than f; faults, we call the block ¢ faulty. Otherwise, we say that block ¢ is correct.
By construction, at least one of the blocks is correct. Hence, there is a correct block i for which A;
stabilises within 7" rounds, i.e., nodes in block 7 output a consistent ¢;-counter in rounds r > T.

Lemma 4. For some i € {0,1}, block i is correct.

Proof. By choice of f;, we have f = fo + f1 + 1. Hence, at least one of the sets V; will contain at
most f; faults. O

Next, we apply the typical threshold voting mechanism employed by most Byzantine tolerant
algorithms in order to filter out differing views of counter values that are believed to be consistent.
This is achieved by broadcasting candidate counter values and applying a threshold of n — f as a
consistency check, which guarantees that only one candidate value (besides the fallback value L

Block 0 Block 1

(0 - w0 #] (% 0
— Vo

* *

\%
v
my(v,r +1) A A A A
(3) Choose a consistent m |

coumer ?MWH) ? t t ? ?

Figure 1: Forming an opinion. The red block depicts nodes in the set Vj running the cg-counter, and
the blue block the set V; running the cj-counter. The red and blue arrows indicate the messages
output by the red or blue block, respectively. The crosses denote Byzantine nodes with arbitrary
output. In the above scenario, the red block is faulty and node v observes that the cg-counter
behaves inconsistently, hence it chooses to use the majority output of block 1; node w in the same
block still relies on the cy-counter, as it appears consistent from the perspective of node w.

)

both counters

(2) Threshold votes and

(1) Majority votes on ’ co(v, 1)
consistency checks)

mo(v,r +1

indicating an inconsistency) can remain. This is applied for each block concurrently, and all nodes
participate in the process, so we can be certain that fewer than one third of the voters are faulty.

In addition to passing this voting step, we require that the counters also have behaved consistently
over a sufficient number of rounds; this is verified by the obvious mechanism of testing whether the
counter increases by 1 each round and counting the number of rounds since the last inconsistency
was detected.

In the following, nodes frequently examine a set of values, one broadcast by each node, and
determine majority values. Note that Byzantine nodes may send different values to different nodes,
that is it may happen that correct nodes output different values from such a vote. We refer to a
strong majority as at least n — f nodes supporting the same value, which is then called the majority
value. If a node does not see a strong majority, it outputs the symbol L instead. Clearly, this
procedure is well-defined for f < n/2.

We will refer to this procedure as a majority vote, and slightly abuse notation by saying “majority
vote” when, precisely, we should talk of “the output of the majority vote at node v”. Since we
require that f < n/3, the following standard argument shows that for each vote, there is a unique
value such that each node either outputs this value or L.

Lemma 5. Ifv,w € V' \ F both observe a strong magority, they output the same majority value.

Proof. Fix any set A of n— f correct nodes. As correct nodes broadcast the same value to each node,
v and w observing strong majorities for different values would require that for each value A contains
n—2f supporting it. However, this is impossible since 2(n—2f) =n—f+(n—3f) >n—f =[4|. O

We now put this principle to use. We introduce the following local variables for each node v € V/,
block i € {0,1}, and round 7:

e m;(v,r) stores the most frequent counter value in block 7 in round r, which is determined
from the broadcasted output variables of A; with ties broken arbitrarily,

e M;(v,r) stores the majority vote on m;(v,r — 1),

e w;(v,r) is a cooldown counter which is reset to 2¢; whenever the node perceives “the” counter
of block i behaving inconsistently, that is, M;(v,r) # M;(v,r — 1) + 1 mod ¢;. Note that this

test will automatically fail if either value is L. Otherwise, if the counter behaves consistently,
wj(v,) = max{w;(v,r — 1) — 1,0}.

Figure 1 illustrates how the values of the m; and M; are determined. Clearly, these variables can

be updated based on the local values from the previous round and the states broadcasted at the

beginning of the current round. This requires nodes to store O(log¢;) = O(log f) bits.
Furthermore, we define the following derived variables for each v € V', i € {0,1}, and round r:

o di(v,r) = M;(v,r) if w;(v,r) = 0, otherwise d;(v,r) = L,

o Ui(v,r) = |di(v,7)/(3%1)] if d;(v,r) # L, otherwise ¢;(v,r) = L,

o forve Vi, l(v,r) ={;(v,r) if ;(v,r) # L, otherwise (v, r) = ¢1_;(v,7), and
o d(v,7) = dy(y(v,7) mod 7 if £(v,7) # L, otherwise d(v,r) = 0.

These can be computed locally, without storing or communicating additional values. The variable
¢(v,r) indicates the block that node v currently considers leader.

We now verify that ¢;(v,r) has the desired properties. To this end, we analyse d;(v,r). We start
with a lemma showing that eventually a correct block’s counter will be consistently observed by all
correct nodes.

Lemma 6. Suppose block i € {0,1} is correct. Then for all v,w € V' \ F, and rounds r > R =
T + O(f) it holds that d;(v,r) = d;(w,r) and d;(v,r) = d;(v,r — 1) + 1 mod ¢;.

Proof. Within T'(A;) rounds, A; stabilises. Moreover, any Byzantine tolerant counter must satisfy
that f; < n;/3, implying that m;(v,r + 1) = m;(v,r) + 1 mod ¢; for all » > T'(A;). Consequently,
M;(v,r + 1) = M;(v,r) + 1 mod ¢; for all » > T(A;) + 1. Therefore, w;(v,r) cannot be reset in
rounds r > T'(A;) + 2, yielding that w;(v,r) = 0 for all » > T'(A;) + 2+ 2¢1 =T+ O(f). The claim
follows from the definition of variable d;(v, 7). O

The following lemma states that if a correct node v does not detect an error in a block’s counter,
then this means that any other correct node considering the block’s counter correct in any of the
last 2¢1 rounds computed a counter value for that block consistent with the one of v.

Lemma 7. Suppose for i € {0,1}, v € V\ F, and r > 2¢; = O(f) it holds that d;(v,r) # L. Then
for each w € V\ F and each v’ € {r —2c1 +1,...,r} either di(w,r") = d;(v,r) — (r — ') mod ¢; or
di(w,r") = L.

Proof. Suppose d;(w,r') # L. Thus, d;(w,r") = M;(w,r") # L. By Lemma 5, either M;(v,7’) = L
or M;(v,r") = M;(w,r"). However, M;(v,r") = L would imply that w;(v,r’) = 2¢; and thus

wi(v,r) > wi(v,7") +r—1"=2c; +r—1" >0,
contradicting the assumption that d;(v,r) # L. Thus, M;(v,r") = M;(w,r’") = d;(w,r"). More
generally, we get from r — 7’ < 2¢; and w;(v,r) = 0 that w;(v,r") # 2¢; for all " € {r/,... r}.
Therefore, we have that M;(v,r” +1) = M;(v,7") + 1 mod ¢ for all ¥ € {r',...,r — 1}, implying
di(v,r) = M;(v,r) = M;(v,7") +r — 7" = d;(w,r") +r — 1,

proving the claim of the lemma. O

The above properties allow us to prove a key lemma: within 7"+ O(f) rounds, there will be 7
consecutive rounds during which the variable ¢;(v,r) points to the same correct block for all correct
nodes.

Lemma 8. Let R be as in Lemma 6. There is a round r < R+ O(f) =T + O(f) and a correct
block i so that for allv € V\F and v' € {r,...,r+7 — 1} it holds that {(v,r") = .

Proof. By Lemma 4, there exists a correct block i. Thus by Lemma 6, variable d;(v,r) counts
correctly during rounds r > R. If there is no round r € {R, ..., R+¢; — 1} such that some v € V' \ F
has ¢1_;(v,r) # L, then ¢(v,r) = £;(v,r) for all such v and r and the claim of the lemma holds true
by the definition of ¢;(v,r) and the fact that d;(v,r) counts correctly and consistently.

Hence, assume that ro € {R,..., R+ ¢; — 1} is minimal with the property that there is some
v € V\ F so that ¢;_;(v,r9) # L. Therefore, di_;(v,79) # L and, by Lemma 7, this implies
for all w € V'\ F and all r € {ro,...,70 + 2¢; — 1} that either d;_;(w,r) = L or di_;(w,r) =
dy—i(v,r9) + 1 — r9. In other words, there is a “virtual counter” that equals dy_;(v,) in round 7
so that during {ro,...,70 + 2¢1 — 1} correct nodes’ d;_; variable either equals this counter or L.

Consequently, it remains to show that both ¢; and the variable ¢;_; derived from this virtual
counter equal ¢ for 7 consecutive rounds during the interval {rg,...,ro+2c; — 1}, as then ¢(v,r) =i
for v € V'\ F and such a round r. Clearly, the c¢;-counter consecutively counts from 0 to ¢; — 1 at
least once during rounds {rg, ..., + 2¢; — 1}. Recalling that ¢; = 67, we see that ¢1(v,r) =i for
all v € V'\ F with ¢1(v,r) # L for 37 consecutive rounds during {rg,...,ro+ 2c; — 1}. As ¢y = 2T,
we have that {y(v,) =i for all v € V' \ F with ¢y(v,r) # L for 7 consecutive rounds during this
subinterval. As argued earlier, {y(v,7) # L or {y(v,r) # L and hence ¢(v,r) = i for each such node
and round. Because ro +2¢; — 1 < R+ 3c¢; =T + O(f), this completes the proof. O

Using the above lemma, we get a counter where all nodes eventually count correctly and
consistently modulo 7 for at least 7 rounds.

Corollary 9. There is a round r =T + O(f) so that (1) for all v,w € V '\ F it holds that d(v,r) =
d(w,r) and (2) for allv € V\F andr’ € {r+1,...,r+7—1} we have d(v,r") = d(v,7"—1)+1 mod 7.

Proof. By Lemma 8, there is a round » = 7'+ O(f) and a correct block 4 such that for all v € V' \ F
we have £(v,r") =i for all v’ € {r,...,r+7 —1}. Moreover, r is sufficiently large to apply Lemma 6
to d;(v,r") =d(v,r") for v’ € {r +1,...,r + 7 — 1}, yielding the claim. O
3.3 Reaching consensus

For every node v € V, let a(v,r) denote the output variable of the synchronous c-counting algorithm
B we are constructing. Similarly as in a prior work [11], we now apply the phase king consensus
algorithm [2] to get all nodes in the network agree on the output value of the c-counter. The phase
king algorithm has the following properties:

e the algorithm tolerates f < n/3 Byzantine failures,
e the running time of the algorithm is O(f) rounds and it uses O(log c¢) bits of state,

e if node v is correct, then agreement is reached if all correct nodes execute rounds 3v, 3v + 1,
and 3v + 2 consecutively,

e once agreement is reached, then agreement persists even when nodes execute different rounds.

More formally, we have the following lemmas:

Lemma 10 (adapted from [11]). Let v € [f + 2] be a correct node and r > 0.

o If all correct nodes execute the instructions 3v + k of the phase king algorithm during round
r+k for all k € {0,1,2}, then for any v’ > r+2, we have a(u,r’) = a(w,r’) and a(u,r’ +1) =
a(u,r’) + 1 mod ¢ for all u,w € V' \ F.

o Ifa(u,r’) = a(w,r’) for all u,w € V\ F, then a(u,r’ + 1) = a(w,r’ + 1) = a(w,r’) + 1 mod ¢
no matter which (even if different) instructions nodes u and w execute on round r’.

3.4 Proofs of Theorems 1 and 3

We are now ready to prove our main results of this section.

Theorem 3. Let ¢,n > 1 and f < n/3. Define ng = [n/2], n1 = [n/2], fo = [(f —1)/2],
fi=1[(f-1)/2], and T = 3(f+2). If fori € {0,1} there exist synchronous counters A; € A(n;, fi,ci)
such that c; = 3" - 27, then there exists a synchronous c-counter B € (n, f,c) such that

o T'(B) = max{T(Ay),T(A1)} + O(f), and
e S(B) =max{S(Aop),S(A1)} + O(log f + logc).

Proof. First, we apply the construction underlying Corollary 9. Then we have every node v € V' in
each round r execute the instructions for round d(v,r) of the phase king algorithm discussed in the
previous paragraph. It remains to show that this yields a correct algorithm B with stabilisation
time T (B) = T + O(f) and space complexity S(B) =S + O(log f + logc), where T' = max{T'(A;)}
and S = max{S(A;)}.

By Corollary 9, there exists a round r = T 4+ O(f) so that the variables d(v,r) behave as a
consistent 7-counter during rounds {r,...,r +7 — 1} for all v € V'\ F. As there are at most f
faulty nodes, there exist at least two correct nodes v € [f + 2]. Since 7 = 3(f + 2), for at least one
correct node v € [f 4 2] \ F, there is a round r < r, < r + 7 — 3 such that d(w,r, + k) = 3v + k
for all w € V\ F and k € {0,1,2}. By Lemma 10, it follows that the output variables a(w,r’)
count correctly and consistently for all 7/ > r, + 3 and w € V' \ F. Thus, the algorithm stabilises in
rv+3<r+7=r+0(f) =T+ O(f) rounds.

The bound for the space complexity follows from the facts that, at each node, we need (a) at most
S bits to store the state of A;, (b) O(log 7) = O(log f) bits to store the auxilary variables underlying
Corollary 9, (c¢) O(logT) = O(log f) bits for the helper variables underlying Lemma 10 [11], and (d)
[log c| bits to store the output variable a(v,r). O

Theorem 1. For any integers c,n > 1 and f < n/3, there exists an f-resilient synchronous
c-counter that runs on n nodes, stabilises in O(f) rounds, and requires O(log® f + logc) bits to
encode the state of a node.

Proof. We show the claim by induction on f. The induction hypothesis is that for any f >0, ¢ > 1,
and n > 3f, we can construct B € A(f,n,c) with

[log f1
T(B)=1+af > (1/2F and S(B)=pA(log” f +logc),
k=0

where o and 3 are sufficienlty large constants and for f = 0 the sum is empty, that is, 7(B) = 1. As
> (1/2)% = 2, this will prove the theorem. Note that for f > 0 it is sufficient to show the claim
for n(f) =3f + 1, as we can easily generalise to any n > n(f) by running B on the first n(f) nodes
and letting the remaining nodes follow the majority counter value among the n(f) nodes executing
the algorithm; this increases the stabilisation time by one round and induces no memory overhead.

10

For the base case, observe that a 0-tolerant c-counter of n(0) = 1 node is trivially given by the
node having a local counter. It stabilises in 0 rounds and requires [log ¢| state bits. As pointed out
above, this implies a 0-tolerant c-counter for any n with stabilisation time 1 and [log c] bits of state.

For the inductive step from f to f+1, we apply Theorem 3. For i € {0, 1}, we have that f; < f/2,
n; > 3f;, and ¢; = O(f). This implies by the induction hypothesis that there are A;(n;, fi, ¢;) with

af [log f/2] 1\ F [log f1 [log f1
T(A) =1+ 5 <2> +0O(f)=1+af Z () fil=1+af Z <)
k

=0

where in the last step we use that « is sufficiently large, and

SB)=p <log2 g + log é) + O(log f +1ogc) =p (log2 f+log c) ,

where we exploit that g is sufficiently large. Hence, the induction step succeeds. O

4 Less communication after stabilisation

We now discuss how to reduce the number of bits broadcast by a node after stabilisation. We show
how to construct counters that only send log ¢/ log k + O(1) bits every x rounds while increasing the
stabilisation time only by an additive O(k) term. In particular, we show that for polynomial-sized
counters with optimal resilience, the algorithm only needs to communicate asymptotically optimal
number of bits after stabilisation:

Corollary 2. For anyn > 1 and ¢ = n®W that is an integer multiple of n, there exists a synchronous
c-counter that runs on n nodes, has optimal resilience f = |(n —1)/3], stabilises in O(n) rounds,
requires O(log®n) bits to encode the state of a node, and for which after stabilisation correct nodes
broadcast (asymptotically optimal) O(1) bits every ©(n) rounds.

We first start by outlining the high-level idea of the approach, then give a detailed description
of the construction we use, and finally prove the main results of this section.

4.1 High-level idea

The techniques we use are very similar to the ones we used for deriving Theorem 1. Essentially,
we devise a “silencing wrapper” for algorithms given by Theorem 1. Let A be such a counting
algorithm. The high-level idea and the key ingredients are the following:

e The goal is that nodes eventually become happy: they assume stabilisation has occured and
check for counter consistency only every x rounds (as self-stabilising algorithms always need
to verify their output).

e Happy nodes do not execute the underlying algorithm A to avoid the involved communication.
This necessitates a fall-back stabilisation mechanism covering the case that a subset of the
correct nodes is happy, but does not detect a problem.

e Using a cooldown counter with similar effects as shown in Lemma 7, we enforce that all happy
nodes output consistent counters.

11

e We override the phase king instruction of A if at least n — 2f > f + 1 nodes (claim to be)
happy and propose a counter value x. Instead nodes adjust their counter output accordingly
to match x. If there is no strong majority of happy nodes a supporting counter value, either
all nodes become unhappy or all correct nodes reach agreement and start counting correctly.

e If all correct nodes are unhappy, they execute A “as is” reaching agreement eventually.

e The agreed-upon counters are used to make all nodes concurrently switch their state to being
happy (once the cooldown counters have expired), in a way that does not interfere with the
above stabilisation process.

The final observation is that happy nodes can communicate their counter values very efficiently
in a manner that self-stabilises within s rounds. As their counter increases by 1 modulo ¢ in every
round (or they become unhappy), they can use x rounds to encode a counter value; the recipient
simply counts locally in the meantime.

4.2 The silencing wrapper

Let A € A(n, f,c) be an algorithm given by Theorem 1 and ¢ = bk for any b > 0 and k > T'(A).
We use the short-hand 7' = T'(A). Let a(v,r) be the output of the synchronous counting algorithm
in round r. Recall that by a strong majority we mean that at least n — f nodes support a value. We
now modify A so that it meets the additional requirement of little communication after stabilisation.

We introduce two new variables: a cooldown counter ¢(v,r) € [T'+ 1] and a “happiness” indicator
h(v,r) € {0,1}. These are updated according to the following rules in every round r > 0:

1. Set t(v,r) = T if there was no strong majority of nodes w with a(w,r — 1) = a(v,r — 1) in
round r — 1 or a(v,r) # a(v,r — 1) + 1 mod c. Otherwise, decrement the counter, that is,
t(v,r) = max{0,t(v,r — 1) — 1}.

2. Set h(v,r) = 0 if h(v,r — 1) = 1, but there was no strong majority of nodes w with
hw,r —1) =1 and a(w,r — 1) = a(v,r — 1), or if t(v,r) > 0. Set h(v,r) =1if t(v,r —1) =0
and a(v,r — 1) = 0 mod k. Otherwise, h(v,r) = h(v,r — 1).

3. If received n — 2f times a value a(w,r) = x from nodes with h(w,r) = 1, set a(v,r + 1) =
x + 1 mod ¢; if there are two such values x, it does not matter which is chosen. Otherwise,
execute the phase king instruction of A indicated by d(v,r) as usual (in particular, this
determines a(v,r + 1)).

4. If h(v,r) = 0, execute A; however, a(v,r + 1) is updated according to the previous rule.

In the following, we say that a node v € V' \ F with value h(v,r) =1 is happy in round r and
unhappy if h(v,r) = 0. Moreover, the counters converge in round r if for any v,w € V' \ F, it holds
that a(v,r) = a(w,r). The idea is to show that not only do the counters converge (and then count
correctly), but also all correct nodes become happy. As a happy node that remains happy simply
increases its counter value by 1 modulo ¢, there is no need to explicitly communicate this except for
verification purposes. It is straightforward to exploit this to ensure that the algorithm communicates
very little (explicitly) once all nodes are happy; we will discuss this after showing stabilisation of
the routine.

12

4.3 Proof of stabilisation

Let us first establish that if the counters converge, they will keep counting correctly and correct
nodes will become happy within O(k + T') additional rounds.

Lemma 11. If the counters converge in round r, then a(u,r’) = a(v,r") = a(u,r) + (r — ') mod ¢
for allu,v € V\F and r’ >r.

Proof. The variable a(u, ') is updated according to Rule 3. As all counter values from correct nodes
are identical, it does not matter whether these nodes are happy or not; either way, the counters are
increased by 1 modulo ¢ (cf. Lemma 10). O

Lemma 12. If the counters converge in round r, then for all rounds ' > r + T + k and all nodes

v € V\ F we have h(v,r’") = 1.

Proof. By Lemma 11, agreement will persist. Hence, at all nodes v € V' \ F we have t(v,r’) =0 in
all rounds v’ > r + T. Therefore, there is a round r’ < r+ T + & so that t(v,r’) = 0 and a(v,7’) =0
at all such v. Consequently, all correct nodes jointly set h(v,r’ + 1) = 1. By induction on the round
number, we see that no such node sets h(v,7”) = 0 for > r’ 4+ 1, as there is always a strong
majority of n — f happy and correct nodes supporting the (joint) counter value. O

We now proceed to show that the counters converge within O(k + T') rounds. The first step is
to observe that if no nodes are happy, then algorithm A is run without modification, and hence, the
counters converge in T’ rounds.

Lemma 13. If for allv € V\F and v’ € {r = T,...,r} we have h(v,r") = 0, then the counters
converge in round r + 1.

Proof. Since h(v,r") = 0, each node v applies Rule 4 in any such round /. As there are no happy
nodes in round 7/, a node can never receive the same counter value from more than f nodes that
(claim to be) happy. Hence, Rule 3 boils down to just updating a(v,r’) according to the rules of A.
As T =T(A), algorithm A stabilises and thus a(v,r) = a(w,r) for all v,w € V'\ F. O

To deal with the case that some nodes may be happy (which entails that not all nodes may
execute A correctly, destroying its guarantees), we argue that ongoing happiness also implies that
the counters converge. To this end, we first show that the cooldown counters t(v,r) ensure that
correct nodes whose counters are 0 count correctly and agree on their counter values. This is shown
analogously to Lemma 7.

Lemma 14. Let v,w € V \ F. If t(v,r) = t(w,7’) =0 for 1 <" € {r =T+ 1,...,r}, then
a(v,r) = a(w,r’) +r — 1" mod c.

Proof. By Rule 1, t(v,7’) < r —r" < T. Hence, both v and w saw a strong majority of nodes
u with a(u,7” — 1) = a(v,r’ — 1) and a(u,’ — 1) = a(w,r’ — 1), respectively. By Lemma 5, it
follows that a(v,r’ — 1) = a(w,r’ — 1). Likewise, t(v,7”) # T for rounds " < r” < r, implying that
a(v,r) = a(v,r") +r — 1" mod ¢, and a(w,r’) = a(w,r” — 1) + 1 mod ¢ = a(v,’). O

Except for the initial rounds, this lemma implies that happy nodes always have the same counter
value. A node remaining happy thus entails that every node receives the same counter value from
at least n — 2f > f + 1 happy nodes, and no other counter value with the same property may be
perceived. In other words, a node staying happy implies that the counters converge.

13

Lemma 15. If h(v,r — 1) = h(v,r) =1 for some v € V\ F and r > 3, then the counters converge
in round r + 1.

Proof. By Rule 2, any node w with h(v,r) = 1 satisfies t(w,r) = 0. We apply Lemma 14 to see
that, for any w € V' \ F that is happy in round r — 1, we have that a(v,r — 1) = a(w,r — 1). As
h(v,r) = h(v,r—1) = 1, v observed a strong majority of happy nodes w with a(v,r —1) = a(w,r—1)
in round r — 1, implying that all nodes received this counter value from at least n — 2f > f + 1
happy nodes. Together with Rule 3, these observations imply that a(u,r) = a(v,r — 1) + 1 mod ¢
forallu e V'\ F. O

Using these lemmas and the fact that nodes may become happy only after counting consistently
for sufficiently long and when their counters are 0 modulo x > T, we can show that the counters
converge in all cases.

Lemma 16. Within O(k) rounds, the counters converge.

Proof. Either all v € V' \ F with h(v,3) =1 set h(v,4) = 0 or Lemma 15 shows the claim. If there
are no nodes v with h(v,r) =1 for r € {4,...,T + 3}, then Lemma 13 shows the claim. Hence,
assume that there is some node v with h(v,r) = 1 # h(v,r — 1) for some minimal r € {4,...,T + 3}.
Again, either h(v,r 4+ 1) = 0 for all such nodes or we can apply Lemma 15; thus assume the former
in the following.

Suppose for contradiction that there is a node w with hA(w,r’) = 1 for minimal ' € {r +
1,...,7+T}. As s is minimal and all nodes with h(v,r) =1 have h(v,r + 1) = 0, it must hold that
h(w,r" —1) = 0. Hence, t(w,r —1) = 0 = t(v,r — 1). By Lemma 14, this implies that a(w,r’ —1) =
a(v,r — 1) +r — 7" mod ¢. However, K >T,0<r —1' <T, and a(v,r — 1) = 0 mod k, implying
that a(w,r’ — 1) # 0 mod , which (by Rule 3) is a contradiction to h(w, ') =1 # h(w,r’ — 1).

We conclude that h(v,r’) =0 for all v and ' € {r+1,...,74+T}. The claim follows by applying
Lemma 13. O

Corollary 17. Within O(k) rounds, the algorithm stabilises in the sense that all nodes become
happy and count correctly and consistently.

4.4 Reducing the communication complexity after stabilisation

As noted earlier, the counter variables for happy nodes count modulo ¢. Hence, it is trivial to deduce
the counter value of a happy node from its counter value in an earlier round. Moreover, happy
nodes do not execute algorithm A. Therefore, we can change the encoding of happy nodes’ counter
values to reduce the communication complexity after stabilisation.

Corollary 18. Suppose happy nodes communicate their counter values by any method that stabilises
mn k rounds, then the algorithm presented in this section retains its properties, except that its
stabilisation time increases by an additive k.

This immediately implies that happy nodes v could simply transmit the a(v,r) only in rounds r
when a(v,) mod k = 0 and perform no other communication. The fact that v does not transmit
readily implies that it is happy, permitting to derive its counter value by counting from most recent
value v transmitted.! Clearly, this trivial encoding mechanism stabilises in x rounds. However, we
can do much better. For simplicity, we do not try to give a tight bound here.

! As by Lemma 14 happy nodes counter values agree after O(1) rounds, in fact a single local counter suffices. Thus,
this approach costs only [log c] additional bits of memory per node.

14

Lemma 19. Happy nodes can communicate their counter values by sending only log c/log k + O(1)
bits within k rounds in a way that stabilises in k rounds.

Proof. We mark all messages from unhappy nodes by a unique header of O(1) bits. Happy nodes
v € V' \ F send a unique string of O(1) bits in rounds r when ¢(v,r) mod x = 0. In this and the
subsequent k — 1 rounds, they furthermore send up to b bits in order to encode ¢(v,r) mod k, where
they avoid the two excluded unique bit strings. Since we are only interested in the asymptotic
behavior, we may neglect these possible collisions and determine how large b must be so that in &
rounds we can encode c different values.

With b bits arbitrarily distributed over s rounds, we certainly can encode a string of length b on
alphabet [x], entailing that we can encode at least x” different words. Therefore, b > log ¢/ log & is
sufficient. O

Overall, we obtain the following theorem.

Theorem 20. For any integers k,n > 1, f < n/3, and ¢ = kj for j > 0, there exists an f-
resilient synchronous c-counter that runs on n nodes, stabilises in O(f + k) rounds, and requires
O(long + logc) bits to encode the state of a node. Moreover, once stabilised, nodes send only
loge/logk + O(1) bits every k rounds.

Proof. The claim directly follows from Corollaries 17 and 18 and Lemma 19, where we note that
only a constant number of variables of size at most max{7T'(A), ¢} need to be encoded in the state
of a node.]

We remark that since x > T(A) = ©(f), in case of optimal resilience and ¢ = n°M) it holds
that logc/logk = O(1).

Corollary 2. For anyn > 1 and ¢ = n®W that is an integer multiple of n, there exists a synchronous

c-counter that runs on n nodes, has optimal resilience f = |(n —1)/3], stabilises in O(n) rounds,
requires O(log2 n) bits to encode the state of a node, and for which after stabilisation correct nodes
broadcast (asymptotically optimal) O(1) bits every ©(n) rounds.

Proof. All properties except for the optimality of the last point follow from the choice of parameters
by picking x = n in Theorem 20. The claimed optimality follows from the fact that in order to
prove to a node that its counter value is inconsistent with that of others, it must receive messages
from at least f +1 = ©(n) nodes; to guarantee stabilisation in O(n) rounds, this must happen every
Q(n) rounds for each correct node. O

5 Discussion

We presented a deterministic counting algorithm that has low state and communication complexity,
optimal resilience, and asymptotically optimal stabilisation time. In addition, we gave a variant of
the algorithm that communicates extremely little once stabilisation is achieved. In [11], we consider
the so-called pulling model, in which nodes request messages from others instead of broadcasting a
message to everyone, and use randomisation to reduce the amount of bits communicated (in contrast
to broadcasting) by each correct node to logo(l) n per round. We remark that this approach can
also applied to the solution given in this work.

From our point of view, the most thrilling open question is whether similar ideas can be
applied to randomised consensus routines in order to achieve sublinear stabilisation time with high
resilience and small communication overhead. Another point of note is that this general type of

15

recursion, which we essentially extended from its use for synchronous consensus [2] (where the clock
is implicitly given by the synchronous start), might also prove useful for deriving improved pulse
synchronisation [3]| algorithms. Interestingly, no reduction from consensus to pulse synchronisation
is known, so there is hope for efficient deterministic algorithms that stabilise in sublinear time.

Acknowledgements. We thank anonymous reviewers for helpful feedback and Jukka Suomela
for discussions and comments.

References

1]

[10]

[11]

Michael Ben-Or, Danny Dolev, and Ezra N. Hoch. Fast self-stabilizing Byzantine tolerant digital
clock synchronization. In Proc. 27th Annual ACM Symposium on Principles of Distributed
Computing (PODC 2008), pages 385-394. ACM Press, 2008. doi:10.1145/1400751.1400802.

Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Towards optimal distributed consensus.
In Proc. 30th Annual Symposium on Foundations of Computer Science (FOCS 1989), pages
410-415. IEEE, 1989. doi:10.1109/SFCS.1989.63511.

Danny Dolev and Ezra N. Hoch. On self-stabilizing synchronous actions despite Byzantine
attacks. In Proc. 21st International Symposium on Distributed Computing (DISC 2007),
volume 4731 of Lecture Notes in Computer Science, pages 193-207. Springer, 2007. doi:
10.1007/978-3-540-75142-7_17.

Danny Dolev and Riidiger Reischuk. Bounds on information exchange for Byzantine agreement.
Journal of the ACM, 32(1):191-204, 1985. doi:10.1145/2455.214112.

Danny Dolev, Janne H. Korhonen, Christoph Lenzen, Joel Rybicki, and Jukka Suomela.
Synchronous counting and computational algorithm design. In Proc. 15th International
Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS 2013), vol-
ume 8255 of Lecture Notes in Computer Science, pages 237-250. Springer, 2013. doi:
10.1007/978-3-319-03089-0_17. arXiv:1304.5719v1.

Danny Dolev, Keijo Heljanko, Matti Jarvisalo, Janne H. Korhonen, Christoph Lenzen, Joel
Rybicki, Jukka Suomela, and Siert Wieringa. Synchronous counting and computational
algorithm design, 2015. arXiv:1304.5719v2.

Shlomi Dolev. Self-Stabilization. The MIT Press, Cambridge, MA, 2000.

Shlomi Dolev and Jennifer L. Welch. Self-stabilizing clock synchronization in the presence of
Byzantine faults. Journal of the ACM, 51(5):780-799, 2004. doi:10.1145/1017460.1017463.

Michael J. Fischer and Nancy A. Lynch. A lower bound for the time to assure interactive
consistency. Information Processing Letters, 14(4):183-186, 1982. doi:10.1016/0020-0190(82)
90033-3.

Ezra Hoch, Danny Dolev, and Ariel Daliot. Self-stabilizing Byzantine digital clock synchroniza-
tion. In Proc. 8th International Symposium on Stabilization, Safety, and Security of Distributed
Systems (SSS 2006), volume 4280, pages 350-362, 2006.

Christoph Lenzen, Joel Rybicki, and Jukka Suomela. Towards optimal synchronous counting.
In Proc. 34th Annual ACM Symposium on Principles of Distributed Computing (PODC 2015),
pages 441-450. ACM Press, 2015. doi:10.1145/2767386.2767423.

16

http://dx.doi.org/10.1145/1400751.1400802
http://dx.doi.org/10.1109/SFCS.1989.63511
http://dx.doi.org/10.1007/978-3-540-75142-7_17
http://dx.doi.org/10.1007/978-3-540-75142-7_17
http://dx.doi.org/10.1145/2455.214112
http://dx.doi.org/10.1007/978-3-319-03089-0_17
http://dx.doi.org/10.1007/978-3-319-03089-0_17
http://arxiv.org/abs/1304.5719v1
http://arxiv.org/abs/1304.5719v2
http://dx.doi.org/10.1145/1017460.1017463
http://dx.doi.org/10.1016/0020-0190(82)90033-3
http://dx.doi.org/10.1016/0020-0190(82)90033-3
http://dx.doi.org/10.1145/2767386.2767423

[12] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in the presence
of faults. Journal of the ACM, 27(2):228-234, 1980. doi:10.1145/322186.322188.

17

http://dx.doi.org/10.1145/322186.322188

	1 Introduction
	1.1 Contributions
	1.2 Prior work
	1.3 Structure of the article

	2 Preliminaries
	2.1 Model of computation
	2.2 Algorithms and executions
	2.3 Synchronous counters

	3 Optimal resilience boosting
	3.1 The road map
	3.2 Agreeing on a common counter (once in a while)
	3.3 Reaching consensus
	3.4 Proofs of Theorems ?? and ??

	4 Less communication after stabilisation
	4.1 High-level idea
	4.2 The silencing wrapper
	4.3 Proof of stabilisation
	4.4 Reducing the communication complexity after stabilisation

	5 Discussion

