
922 Biophysical Journal Volume 109 September 2015 922–935
Article
Molecular Basis of the Membrane Interaction of the b2e Subunit of
Voltage-Gated Ca2D Channels
Dong-Il Kim,1 Mooseok Kang,2,4 Sangyeol Kim,2,4 Juhwan Lee,2,3 Yongsoo Park,5 Iksoo Chang,1,2,*

and Byung-Chang Suh1,*
1Department of Brain and Cognitive Sciences, 2Center for Proteome Biophysics, and 3Department of Emerging Materials Science, Daegu
Gyeongbuk Institute of Science and Technology, Daegu, South Korea; 4Department of Physics, Pusan National University, Busan, South
Korea; and 5Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
ABSTRACT The auxiliary b subunit plays an important role in the regulation of voltage-gated calcium (CaV) channels.
Recently, it was revealed that b2e associates with the plasma membrane through an electrostatic interaction between N-termi-
nal basic residues and anionic phospholipids. However, a molecular-level understanding of b-subunit membrane recruitment in
structural detail has remained elusive. In this study, using a combination of site-directed mutagenesis, liposome-binding assays,
and multiscale molecular-dynamics (MD) simulation, we developed a physical model of how the b2e subunit is recruited elec-
trostatically to the plasma membrane. In a fluorescence resonance energy transfer assay with liposomes, binding of the N-ter-
minal peptide (23 residues) to liposome was significantly increased in the presence of phosphatidylserine (PS) and
phosphatidylinositol 4,5-bisphosphate (PIP2). A mutagenesis analysis suggested that two basic residues proximal to Met-1,
Lys-2 (K2) and Trp-5 (W5), are more important for membrane binding of the b2e subunit than distal residues from the N-termi-
nus. Our MD simulations revealed that a stretched binding mode of the N-terminus to PS is required for stable membrane attach-
ment through polar and nonpolar interactions. This mode obtained from MD simulations is consistent with experimental results
showing that K2A, W5A, and K2A/W5A mutants failed to be targeted to the plasma membrane. We also investigated the effects
of a mutated b2e subunit on inactivation kinetics and regulation of CaV channels by PIP2. In experiments with voltage-sensing
phosphatase (VSP), a double mutation in the N-terminus of b2e (K2A/W5A) increased the PIP2 sensitivity of CaV2.2 and CaV1.3
channels by ~3-fold compared with wild-type b2e subunit. Together, our results suggest that membrane targeting of the b2e sub-
unit is initiated from the nonspecific electrostatic insertion of N-terminal K2 and W5 residues into the membrane. The PS-b2e
interaction observed here provides a molecular insight into general principles for protein binding to the plasma membrane, as
well as the regulatory roles of phospholipids in transporters and ion channels.
INTRODUCTION
The membrane association of peripheral proteins is critical
for diverse cellular processes because such proteins are
mainly responsible for the transduction of extracellular
stimuli into cells. This association is often accomplished
by a specific or nonspecific electrostatic interaction be-
tween membrane phospholipids and a polybasic group
of these proteins (1–3). It is well known that these pro-
teins, including Src, K-Ras, and myristoylated alanine-
rich C kinase substrate (MARCKS), utilize electrostatic
interactions as a means of membrane recruitment (4–6).
For example, MARCKS plays an important role in
regulating cell shape and motility through a reversible
sequestration of membrane phosphatidylinositol 4,5-bi-
sphosphophate (PIP2) (7). It is also well established that
membrane recruitment of MARCKS is mediated by an
electrostatic interaction between a charged effector domain
(composed of 13 basic and five phenylalanine residues) and
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anionic phospholipids in the inner leaflets of the plasma
membrane (8,9).

Ca2þ is a ubiquitous second messenger that controls a
number of cellular functions (10). Voltage-gated calcium
(CaV) channels serve as major machinery for Ca2þ influx
and involve muscle contraction, hormone secretion, neu-
ronal excitability, and gene expression. CaV channels are
composed of a1, b, and a2d subunits (11,12). The a1 sub-
unit, a major component of channel complexes, is a pore-
forming subunit that contains both voltage-sensing domains
and a selective filter. The auxiliary subunits b and a2d play
an important role in regulating the gating properties of the
a1 subunit. Among the auxiliary subunits, molecular clon-
ing has identified four isoforms of the b subunit (b1–b4)
that are expressed in various neurons and other excitable
cells. The b subunit, in particular, plays a pivotal role in
membrane trafficking of the a1 subunit through direct inter-
action with the a-interaction domain in the I-II linker region
of the a1 subunit and promotes membrane expression,
thereby leading to an increase of current density (13–15).
With regard to channel regulation, b subunit is a major
determinant of the gating properties of the CaV channel
http://dx.doi.org/10.1016/j.bpj.2015.07.040
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and modulation of the CaV channel by lipids (16–19). In
particular, the subcellular distribution of the b subunit is
critical for the regulation of channel gating. In the absence
of the a1 subunit, b subunits are expressed in the cytosol,
and CaV channels with cytosolic b subunits exhibit fast inac-
tivation and a high sensitivity to membrane lipids. In
contrast, the b2a and b2e subunits, which are encoded by
splicing variants of a Cacnb2 gene, are localized in the
plasma membrane even in the absence of the a1 subunit
(20). It is well known that membrane targeting of the b2a
subunit is mediated by palmitoylation of its N-terminus,
which is responsible for the slow inactivation and low sensi-
tivity of CaV channels to lipids (20–22). Like the b2a sub-
unit, the b2e subunit is localized in the plasma membrane
and shows slow inactivation of CaV channels (20). However,
the mechanism of its membrane targeting has remained
unclear. Recently, it was reported that the b2e subunit is ex-
pressed in the plasma membrane via nonspecific electro-
static and hydrophobic interactions (23). That study
suggested that the polybasic group of the N-terminal region
is important for membrane association. However, the pre-
cise molecular mechanism of membrane targeting and regu-
lation of CaV channel current by lipids remained to be
further explained.

Here, we investigated the membrane-targeting mecha-
nism of mouse CaV b2e subunits at the molecular level
and elucidated their regulatory effects on CaV channel prop-
erties. For this purpose, we applied a combination of site-
directed mutagenesis, in vitro assays of binding between
peptides and liposomes, and multiscale molecular-dynamics
(MD) simulation. Our results reveal a molecular mechanism
whereby the b2e subunit is anchored on the plasma mem-
brane through a nonspecific electrostatic interaction be-
tween a cluster of basic residues of the N-terminus and
anionic membrane phospholipids. Based on our MD simula-
tion, we suggest two modes of membrane binding of the b2e
subunit: a stretched mode for strong binding, and an
TABLE 1 Primers Used for Mutagenesis

Primer (50/30)

Sense

K2A CAGATCCGCTAGCATGGCGGCCACCTGGATCAGG

K2R GTCAGATCCGCTAGCATGAGGGCCACCTGG

W5A GCTAGCATGAAGGCCACCGCGATCAGGCTTCTGAAA

W5F GCTAGCATGAAGGCCACCTTCATCAGGCTTCTGAAAA

W5Y GCTAGCATGAAGGCCACCTATATCAGGCTTCTGAAAA

R7A GAAGGCCACCTGGATCGCGCTTCTGAAAAGAGCC

K10A CCTGGATCAGGCTTCTGGCAAGAGCCAAGGGAGGA

R11A CCACCTGGATCAGGCTTCTGAAAGCAGCCAAGGGAG

K13A GGCTTCTGAAAAGAGCCGCGGGAGGAAGGCTGAAG

R16A AAAAGAGCCAAGGGAGGAGCGCTGAAGAGTTCGGA

K18A CCAAGGGAGGAAGGCTGGCGAGTTCGGACATCTGT

K2A/W5A GCATGGCGGCCACCGCGATCAGGCTTCTGA

R7A/K10A TCCTCCCTTGGCTCTTGCCAGAAGCGCGATCCAG

K13A/R16A CTTCAGCGCTCCTCCCGCGGCTCTTTTCAGAAGC

R17A/R18A CGAACTCGCCAGCGCTCCTCCCTTGGCTCT
agglomerate mode for weak and transient binding. In addi-
tion, we found that the membrane-binding disruption of the
b2e subunit increases the inactivation of CaV2.2 channels
and inhibition of CaV currents by PIP2 depletion. These find-
ings could enhance our understanding of the structure-based
molecular mechanism underlying the direct interaction be-
tween phospholipids and peripheral proteins.
MATERIALS AND METHODS

DNAs

The following calcium channel subunits were used: rat a1B [37b]

(AF055477), rat a1D (AF370009), and rat a2d-1 (AF286488) (from Diane

Lipscombe, Brown University, RI); danio rerio voltage-sensing phosphatase

(Dr-VSP; Jill B. Jensen, University of Washington, Seattle, WA); and GFP-

Lact-C2 (from Deok-Jin Jang, Kyungbook National University, Korea).
Molecular cloning

The cDNA encoding the mouse brain b2e subunit was TA cloned into

T-Easy Vector (Promega, Madison, WI) and was cloned in pCDNA3.1

and in pEGFP-N1 or mCherry-N1 (Clonetech, Mountain View, CA) using

Nhe1 and BamH1. For the mouse b2e subunit, the forward primer was

50-CGCTAGCAATGAAGGCCACCTGGATCAGGCTT-30, and the reverse
primer was 50-CGGATCCCCTTGGCGGATG-30. The N-terminal deleted

construct of b2e was amplified by PCR using the forward primer

50-CGCTAGCATGAAGGCCACCTGGA-TCAGGCTT-30 and the reverse

primer 50-CGGATCCCCTTGGCGGATGTATACATCCC-30. Point mutants

were obtained by PCR using the QuikChange Site-Directed Mutagenesis

Kit (Agilent Technologies, Santa Clara, CA). The primers used for muta-

genesis are listed in Table 1. Mutant constructs were verified by sequencing.
Cell culture and transfection

TsA201 cells were maintained in Dulbecco’s modified Eagle’s medium

(Hyclone; Thermo Scientific, Pittsburgh, PA) containing 10% fetal bovine

serum and 0.2% penicillin/streptomycin at 37�Cwith 5%CO2. For transfec-

tion, cells were plated in 3.5 cm culture dishes at 50–80% confluency.

For CaV channel expression, cells were transiently transfected using Lipo-

fectamine 2000 (Invitrogen, Carlsbad, CA). The transfected DNA mixture
Antisense

CCTGATCCAGGTGGCCGCCATGCTAGCGGATCTG

CCAGGTGGCCCTCATGCTAGCGGATCTGAC

AG CTTTTCAGAAGCCTGATCGCGGTGGCCTTCATGCAGC

GA CTCTTTTCAGAAGCCTGATGAAGGTGGCCTTCATGCTAG

GA CTCTTTTCAGAAGCCTGATATAGGTGGCCTTCATGCTAG

GGCTCTTTTCAGAAGCGCGATCCAGGTGGCCTTC

A TTCCTCCCTTGGCTCTTGCCAGAAGCCTGATCCAGG

G CCTCCCTTGGCTGCTTTCAGAAGCCTGATCCAGGTGG

A TCTTCAGCCTTCCTCCCGCGGCTCTTTTCAGAAGCC

C GTCCGAACTCTTCAGCGCTCCTCCCTTGGCTCTTTT

G CACAGATGTCCGAACTCGCCAGCCTTCCTCCCTTGG

TCAGAAGCCTGATCGCGGTGGCCGCCATGCC

CTGGATCGCGCTTCTGGCAAGAGCCAAGGGAGGA

GCTTCTGAAAAGAGCCGCGGGAGGAGCGCTGAAG

AGAGCCAAGGGAGGAGCGCTGGCGAGTTCG
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consisted of plasmids encoding a1, b, and a2d-1 at a 1:1:1 molar ratio.

When needed, enhanced GFP (eGFP) was also included in the DNA mix-

tures. Cells were plated on poly-L-lysine-coated chips the day after trans-

fection. Currents were recorded within 2 days after transfection.
Preparation of liposomes

All lipidswerepurchased fromAvanti PolarLipids except forN-[5-(dimethy-

lamino) naphthalene-1-sulfonyl]-1,2-dihexadecanoyl-sn-glycero-3-phos-

phoethanolamine (dansyl-PE), which was purchased from Invitrogen. The

liposomes consisted of PC (L-a-phosphatidylcholine), PE (L-a-phosphati-

dylethanolamine), PS (L-a-phosphatidylserine), cholesterol, PIP2, and

dansyl-PE (44:10:15:25:1:5mol%). In the case of no PS or PIP2, the PC con-

tentwas adjusted according to the absence or presence of PS.Briefly, the lipid

mixture was dissolved in a chloroform/methanol mixture (2:1 ratio) and

dried under a gentle stream of nitrogen in the hood, thereby generating a lipid

film. The film was then dissolved with 100 mL of buffer containing 150 mM

KCl, 20 mM HEPES/KOH pH 7.4, and 5% sodium cholate (24). A size-

exclusion column was applied to remove detergent (Sephadex G50 in

150 mM KCl and 20 mM HEPES, pH 7.4). Liposomes were collected as

eluted (~400 mL). Note that the liposomes were easily detected by UV

because of the dansyl-PE.
Assay for peptide-liposome binding

Binding of peptide to liposomes was monitored by means of fluorescence

resonance energy transfer (FRET) measurements (dansyl-PE incorporated

into liposomes quenches the fluorescence of tryptophan in the peptide)

(25). All measurements were carried out in a FluoroMax spectrofluorometer

(Horiba JobinYvon,Germany) and performed at 37�C in 1mLof buffer con-

taining 150 mM KCl and 20 mM HEPES-KOH (pH 7.4). The peptide

(750 nM) contained one tryptophan residue. Tryptophan was excited at

280 nm (slit width of 5 nm) and emission spectra were recorded from

320 nm to 420 nm (slit width of 5 nm), with the peak at 355 nm. FRET

was normalized as F0/F, where F0 and F represent the fluorescence intensity

at 355 nm before and after liposome addition, respectively. A peptide-lipo-

some interaction increases FRET (F0/F) as a result of tryptophan quenching.
Patch-clamp recording

Whole-cell Ba2þ currents or Ca2þ currents were recorded at room temper-

ature (20–24�C) using a HEKA EPC-10 amplifier with pulse software

(HEKA Elektronik; Lambrecht, Germany). Electrodes were pulled from a

glass micropipette capillary (Sutter Instrument, Novato, CA) to yield pi-

pettes with a resistance of 2–2.5 MU. Series-resistance errors were compen-

sated to >60%, and fast and slow capacitances were compensated before

the applied test-pulse sequences. Voltage-clamp records were acquired

at 10 kHz and filtered at 3 kHz. For all recordings, cells were held

at �80 mV. All data presented here were leak and capacitance subtracted

before analysis. The external Ringer’s solution contained 150 mM NaCl,

10 mM BaCl2, or CaCl2, 1 mM MgCl2, 10 mM HEPES, and 8 mM glu-

cose, and the pH was adjusted to 7.4 with NaOH. The internal solution

of the pipette consisted of 175 mM CsCl, 5 mM MgCl2, 5 mM

HEPES, 0.1 mM 1,2-bis(2-aminophenoxy)ethane N,N,N0,N0-tetraacetic
acid (BAPTA), 3 mM Na2ATP, and 0.1 mM Na3GTP, and the pH was

adjusted to 7.5 with CsOH. CsOH, BAPTA, Na2ATP, and Na3GTP reagents

were obtained from Sigma (St. Louis, MO), and other chemicals were ob-

tained from MERCK (Darmstadt, Germany).
Confocal imaging

TsA201 cells were imaged 24–48 h after transfection on poly-L-lysine-

coated coverslips using a Carl Zeiss LSM 700 confocal microscope (Carl
Biophysical Journal 109(5) 922–935
Zeiss MicroImaging, Jena, Germany). Cell images were scanned by using

a 40�(water) apochromatic objective lens at 1024� 1024 pixels with a dig-

ital zoom, and were processed in ZEN 2012 lite imaging software.
All-atom MD simulation

The three-dimensional structure for residues 41–136 of b2a (PDB ID: 1T0J

for rat) is the only known x-ray structure (26); the structure for residues

1–40 is missing because they are intrinsically disordered (27). We noted

from the multiple sequence alignment that rat b2a, rat b2e, and mouse

b2e share the same sequence for residues of 41–136, and are therefore ex-

pected to have similar three-dimensional structures. This allowed us to

reconstruct a structure of mouse b2e for residues 1–143 after using Model-

ler 9.11 (28) to generate a random-loop structure only for residues 1–40 and

subsequently conducting an equilibrium MD simulation based on the

AMBER12/ff99SB force field (29,30). We chose five representative struc-

tures of mouse b2e in which the structure for residues 1–47 is a random

loop. We equilibrated the initial membrane lipid by using the CHARM-

GUI membrane builder (31) with 100 Å x and y dimensions and a

15.0 dyne/cm surface tension. The assumed mole fractions of the lipids

(cholesterol/POPC/POPE/POPS) were 25%:45%:15%:15%. The numbers

of cholesterol, POPC, POPE, and POPS molecules on the upper leaflet

were 45, 81, 27, and 27, respectively. In a rectangular box (100 Å �
100 Å � 200 Å) filled with TIP3 water molecules (32), we placed a b2e

protein initially at 10 Å above the upper leaflet (the distance between

the upper leaflet and the closest residue in a b2e protein to that is 10 Å

along the normal direction of the upper leaflet). The water layer above

and below the lipid-protein system was 20 Å thick and the periodic bound-

ary condition was applied. To neutralize the protein-lipid-water system,

the positions of 25 Naþ ions were assigned via the Monte Carlo replace-

ment method. The numbers of atoms in the whole system were 41,892

for the lipid, 2302 for a b2e protein, 25 for Naþ ions, and 162,000 for

waters.

To conduct an atomistic MD (ATMD) simulation for the protein-lipid-

water system, we used PMEMD.CUDA (33) of the Amber12 simulation

package with ff99SB (for protein and solution) and lipid11 (for lipid) force

fields (34). The particle-mesh Ewald (PME) method was applied to treat

long-range electrostatic interactions, and a 10 Å force-shifted cutoff was

used for short-range, nonbonded interactions. The hydrogen atoms were

constrained to the equilibrium bond length using the SHAKE algorithm

(35). We performed 1,500 steps of steepest-descent minimization followed

by 1500 steps of conjugate gradient minimization. The systems were sub-

sequently subjected to a 100 ps heating process in which the temperature

was gradually raised from 0 K to 300 K under the SHAKE algorithm. After

the heating step, the production runs were carried out for 100 ns with a 2 fs

time step and the NPT ensemble, i.e., a constant number of particles

(N, 206,219 atoms), pressure (P, 1 atm), and temperature (T, 300 K). Tem-

perature and pressure were controlled by a Langevin dynamics thermostat

with a collision frequency of 1 ps�1 and a weak-coupling barostat with a

coupling constant of 1.0 ps (36,37). All trajectories were recorded every

10 ps. The main ATMD simulations for 50 independent trajectories for

up to a 100 ns timescale each were performed for a b2e wild-type protein.

The ptraj toolset that is provided with the AMBER program package and an

in-house-written analysis program were used to analyze the resulting MD

trajectories and calculate the distance, polar energy, and nonpolar energy.

VMD software (38) was used to prepare structural figures.
Coarse-grained MD simulation

We performed a coarse-grained MD (CGMD) simulation using GROMACS

4.6.7 (39) and the Martini V2.2P polarized force field (40,41). The CGMD

simulation started from the last snapshot of b2e (1–143) bound to the lipid

bilayer from the ATMD simulation trajectory. The structure of b2e in

atomic detail was converted to that of CG beads using martinize.py (40)
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and insane.py (42) scripts in Martini tools. The composition (cholesterol/

POPC/POPE/POPS, 25:45:15:15) of the lipid bilayer and the size of the

rectangular box of water molecules with the periodic boundary condition

(100 Å � 100 Å � 200 Å) remained the same as in the ATMD simulation.

The system was solvated by Martini polarized water and Naþ ions were

added to keep the net electrostatic charge neutral. The following prepara-

tion procedures were used: energy minimization for 5000 steps, equilibra-

tion for 5 ns, and production CGMD simulation for 1.5 ms with a 20 fs time

step. Temperature was coupled with a Berendsen thermostat (43) to a refer-

ence temperature of 300 K, with a coupling constant tT of 1.0 ps. Semi-

isotropic pressure was coupled with a Berendsen barostat (43) in x and y

at 1 bar with a coupling constant tP of 2.0 ps. We used the Verlet scheme

(44) and calculated Coulombic interactions using the PME method with

an 11 Å cutoff, van der Waals interactions with an 11 Å cutoff, and a dielec-

tric constant of 2.5.
Calculation of binding free energy based on the
thermodynamic integration method

We calculated the free energy for bringing a b2e protein in solution to the

surface proximity of a membrane lipid using thermodynamic integration

(TI) (45) with the Amber12 simulation package, with the ff99SB (for pro-

tein and solution) and lipid11 (for lipid) force field (34). We employed a

thermodynamic cycle (see Fig. S1 in the Supporting Material) in which

DG2;1ðDG3;4Þ is the difference between the free energy of a wild-type

(mutant) protein that is bound to the membrane lipid and that of a wild-

type (mutant) protein in solution. DG2;3ðDG1;4Þ is the difference between

the free energy of a mutant protein in solution (a mutant bound to the

membrane lipid) and that of a wild-type protein in solution (a wild-type

protein bound to the membrane lipid). The thermodynamic equality

DG1;2 þ DG2;3 þ DG3;4 - DG1;4 ¼ 0 holds for the thermodynamic cycle

in Fig. S1, where DG1;2 ¼ �DG2;1. This gives the binding free energy

of a mutant with respect to that of a wild-type protein, namely,

DDG ¼ DG3;4 - DG2;1 ¼ DG1;4 - DG2;3. To calculate DG1;4 and DG2;3,

we applied the TI method. Consider two systems, A and B, with potential

energies VA and VB, respectively. A new potential energy function is defined

as VðlÞ ¼ VA þ lðVB � VAÞ, where l is a coupling parameter with a

value between 0 and 1. The case for l ¼ 0 (1) corresponds to system

A (B). The canonical partition function of the system is written as

QðlÞ ¼ P
c
exp½�VcðlÞ=kBT�, where VcðlÞ is the potential energy of a

conformation c in the conformational ensemble as defined above, and the

free energy is FðlÞ ¼ �kBTlnQðlÞ. A straightforward calculation, after tak-

ing the derivative of F with respect to l, allows us to evaluate the difference

between the free energy of system A and that of system B by TI as follows:

DFðA/BÞ ¼
Z 1

0

dl
vFðlÞ
vl

¼
Z 1

0

dl

�
vVðlÞ
vl

�
l

:

We carried out the integration after taking the ensemble average on the

right-hand side of the above equation on nine discrete l points with an in-
terval of 0.1, by performing separate ATMD simulations. Now, we regard

DG1;4 ¼ DFð1/4Þ and DG2;3 ¼ DFð2/3Þ, from which DG1;4 - DG2;3

would result in the binding free energy of a mutant with respect to that

of a wild-type b2e protein.

Starting from the last configurations of a wild-type b2e protein from

ATMD for 100 ns, we subsequently equilibrated configurations of b2e pro-

tein by performing CGMD for a longer timescale of 1.5 ms. We employed

CGMD for two reasons: 1) to allow lipid mixing (46–48), and 2) because

our current computing capacity, based on ATMD using AMBER or

GROMACS, is not good enough to simulate a wild-type b2e protein on a

microsecond timescale within a reasonable time period. We ran 10 indepen-

dent trajectories by CGMD and obtained further equilibrated configurations

of a wild-type b2e protein bound to the lipid. The last configurations from

CGMD trajectories were then transformed back to the all-atom structure
using backward.py (49) in Martini tools. We then performed TI ATMD sim-

ulations (45) to calculate the binding free energy using the AMBER12

package with ff99SB, the lipid11 force field, and a modified van der Waals

equation (softcore potentials) (50,51) as discussed above. We conducted

ensemble averaging at nine discrete l points by performing ATMD simula-

tions for 4 ns at each l increment of 0.1, and then performed TI.
RESULTS

Basic and hydrophobic residues of the
N-terminus affect the subcellular distribution of
the b2e subunit

Multialignment of the N-terminus of several mammalian
b2e subunits shows near identity (Fig. 1 A), suggesting
that membrane targeting would be conserved. A group of
basic amino acids in the N-terminus is more prominent
than other b2 variants that might contribute to recruitment
of b2e subunits to the plasma membrane (1). It has also
been reported that aromatic residues (Trp, Tyr, and Phe)
play key roles in membrane incorporation of peripheral pro-
teins (52). It was recently reported that electrostatic and hy-
drophobic interactions are key determinants for membrane
targeting of the b2e subunit (23). We also tested whether
the presence of charged residues and the Trp residue at po-
sition 5 of the b2e subunit might be a key factor in mem-
brane association. We cloned a series of point-mutated
constructs in which basic or aromatic residues were
substituted by Ala, and visualized the distributions of these
constructs by confocal imaging. The single-point mutagen-
esis analysis showed that when expressed alone, Lys at
position 2 of the N-terminus was particularly important
for membrane association, but the other basic residues
were not significantly involved (Fig. 1 B). We also examined
whether these mutants had any effects on current inactiva-
tion of CaV2.2 channels. As expected, the K2A mutant dis-
played faster inactivation compared with other mutants
(Fig. 1 B, bottom, and C).

Like the N-terminal deletion construct (N-del), the K2A
mutant is expressed in the cytosol; however, the rate of cur-
rent inactivation with K2A was only half that observed for
N-del, raising the possibility that other residues are still
required for membrane association of the b2e subunit. How-
ever, mutation of R7A, K10A, R11A, K13A, R16A, or
K18A in the b2e subunit had no appreciable effect on cur-
rent inactivation (Fig. 1, B and C). In addition to basic res-
idues, we tested the involvement of the hydrophobic residue
of the N-terminus in membrane targeting. A construct with
Trp replaced by Ala (W5A) displayed a cytosolic distribu-
tion and resulted in increased inactivation of CaV2.2 chan-
nels, as anticipated (Fig. 1 D, top, and E). When Trp was
replaced with Phe (W5F), but not Tyr (W5Y), membrane
targeting was preserved, possibly through the side-chain hy-
droxyl group. We also tested a few doubly mutated b2e sub-
units. First, the double mutant K2A/W5A accelerated
current inactivation even more than the K2A or W5A
Biophysical Journal 109(5) 922–935



FIGURE 1 Point mutation of Lys-2 (K2) or/and

Trp-5 (W5) to Ala results in a cytosolic distribution

of the b2e subunit. (A) Amino acid multialignment

of the N-terminal region of b2e subunits among hu-

man, rat, and mouse. Positively charged Lys and

Arg residues and a hydrophobic Trp residue are

highlighted in yellow and blue, respectively, and

conserved domains among b2e subunits are high-

lighted in black. (B) Top: confocal images of cells

expressing point-mutated b2e subunits in which

each basic residue of N-terminus was replaced

with Ala. Scale bar, 10 mm. Bottom: current inacti-

vation of CaV2.2 channels with mutant b2e sub-

units. Currents were measured during a 500 ms

test pulse to þ10 mV. (C) Summary of current

inactivation in cells expressing single basic mutant

b2e subunits (n ¼ 5–6). Current inactivation (I/Io)

was calculated as current amplitude (I) divided

by initial peak amplitude (Io). ***p < 0.001,

compared with wild-type; error bar, 5 SEM.

(D) Top: confocal images of cells expressing

single- or double-mutated b2e subunits in which

hydrophobic (Trp) and double-mutated residues

of the N-terminus were replaced with Ala residues.

Scale bar, 10 mm. Bottom: current inactivation

of CaV2.2 channels in cells expressing mutant

b2e subunits. Currents were measured during a

500 ms test pulse to þ10 mV. (E) Summary of

current inactivation in cells expressing single

hydrophobic (n ¼ 5–6) and double-mutated b2e subunits (n ¼ 5–6). *p < 0.05; ***p < 0.001, compared with wild-type; error bar, 5 SEM. (F) Confocal

images of cells expressing cytosolic mutants in the presence of an a1B subunit. Scale bar, 10 mm. To see this figure in color, go online.
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mutants (Fig. 1 D). R7A/K10A also showed a cytosolic dis-
tribution, whereas K13A/R16A and R16A/K18A were
localized on the plasma membrane even though they showed
slightly faster inactivation than the wild-type (Fig. 1 D,
bottom, and E). These results suggest that basic residues
following Met-1 play more critical roles in membrane tar-
geting of the b2e subunit, and that the basic amino acids
cooperate in achieving a stable interaction with the plasma
membrane. We also tested the distribution of cytosolic mu-
tants in the presence of the a1 subunit (Fig. 1 F). With the
a1 subunit, cytosolic mutants were expressed on the plasma
membrane, consistent with previous reports that b subunits
are tightly associated with the a-interacting domain within
the I-II linker of the a1 subunit (14,53). Overall, our find-
ings suggest that basic and aromatic residues of the prox-
imal N-terminus of the b2e subunit target this subunit to
the plasma membrane; however, the molecular identity of
this residue-specific interaction is not clearly understood.
Phospholipids determine the binding affinity of
peptides to liposomes

As shown in Fig. 1, positively charged residues of the N-ter-
minus are important for membrane binding of the b2e sub-
unit. Therefore, we reconstituted the N-terminal region in
liposomes and analyzed the interaction between the N-ter-
minus of the b2e subunit and liposomes composed of
anionic phospholipids. For this purpose, we employed a
Biophysical Journal 109(5) 922–935
peptide-to-liposome FRET assay and synthesized a 23-
residue peptide of the N-terminus of the b2e subunit
(MKATWIRLLKRAKGGRLKSSDIC) (Fig. 2 A) (25). We
first measured FRET with liposomes lacking anionic phos-
pholipids (no PS). When liposomes were added to the pep-
tide, the intensity of Trp fluorescence showed only a minor
attenuation, possibly indicating a weak hydrophobic pep-
tide-liposome interaction (Fig. 2 B, left). However, when
15% PS was present in the liposome membranes, there
was a marked decrease of Trp fluorescence (Fig. 2 B, right),
indicating strong binding of N-terminal peptides to these
liposomes (Fig. 2 C) (54). We also examined the effect of
PIP2 on the interaction between liposomes and peptides.
Application of PIP2 to PS further enhanced FRET (F0/F)
signals in a dose-dependent manner, even though a physio-
logical concentration of PIP2 (1%) had a minor effect on
peptide binding to liposomes (Fig. 2 D). These results sug-
gest that anionic phospholipids, including PS and PIP2, are
involved in the membrane interaction of b2e in the cell
membrane.

Next, using a specific probe for PS, we examined the lipid
requirement for binding of the b2e subunit to membranes.
In cells overexpressing the PS-scavenging probe Lact-C2-
GFP, the b2e subunit was mostly redirected in the cytosol
(Fig. 2 E). Additionally, CaV2.2 current inactivation in the
presence of the PS scavenger was significantly increased
(Fig. 2, F and G). Thus, negatively charged PS, which com-
prises 20–30% of the plasma membrane, plays an important



FIGURE 2 The N-terminal affinity of liposomes

is augmented in the presence of PS. (A) Cartoon of

the FRETanalysis. Binding was tested using FRET

between a peptide containing Trp (W) (donor) and

liposomes labeled with dansyl-PE (acceptor). The

initial spectrum of Trp was determined in the

absence of liposomes (F0) and the subsequent spec-

trum was recorded after liposome addition (F).

(B) Fluorescence of Trp in the absence (black

trace) or presence (red traces) of liposomes with

15% PS. A.U., absorbance units. FRET is presented

as F0/F at 355 nm. (C) Summary of FRET changes

with different lipid compositions of the liposomes.

FRET is presented as F0/F at 355 nm. n ¼ 3; **p <

0.05, compared with PS-free liposome; error

bar, 5 SEM. (D) FRET (F0/F) signals in the pres-

ence of PS and/or PIP2. FRET (F0/F) is represented

as a function of the concentration of lipids.

(E) Confocal images of cells expressing the PS

probe Lact-C2-GFP and the b2e subunit tagged

with mCherry. Scale bar, 5 mm. (F) Effects of a

transfected PS probe on the inactivation of CaV2.2

currents with the b2e subunit. PS masking by

Lact-C2 accelerates the inactivation of CaV2.2 cur-

rents. Currents were measured during a 500 ms test

pulse to þ10 mV. The current trace obtained with

the b2e subunit and Lact-C2 is scaled to the peak

amplitude of currents obtained with the b2e subunit

only (control). (G) Summary of current inactivation

by Lact-C2 expression (n ¼ 4–5). *p < 0.05,

compared with control; error bar, 5 SEM. To see

this figure in color, go online.
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role in recruiting the b2e subunit to cell membranes (55,56).
Together, these results suggest that electrostatic and
hydrophobic interactions between basic amino acids and
anionic phospholipids are of key importance for membrane
targeting of the b2e subunit, consistent with a previous
report (23).
MD simulations reveal two kinds of membrane-
targeting mechanisms

Key factors that could determine the recruitment of the b2e
subunit to the plasma membrane were clarified in the in vitro
experiments discussed above. However, it is possible that
only some of the configurations of the b2e subunit in the
proximity of the plasma membrane are able to bind.

Therefore, by performing intensive multiscale simula-
tions combining ATMD simulations (nanosecond timescale)
with CGMD simulations (microsecond timescale) (47,57),
we sought to obtain atom- and residue-level insights into
membrane targeting of the mouse b2e subunit in the prox-
imity of the plasma membrane. We simulated the binding
of a fragment from the N-terminal 1–23 residues of the
b2e subunit approaching a lipid membrane consisting of
25% cholesterol, 45% POPC, 15% POPE, and 15% POPS.
The N-terminus was randomly disordered and fluctuating
near the lipid. The distance between the upper leaflet and
the closest residue of a b2e protein to the membrane was
initially 10 Å along the normal direction of the upper leaflet.
We performed 3000 steps of energy minimization and
heated the system from 0 K to 300 K for a 100 ps equilib-
rium ATMD simulation. The main ATMD simulations for
20 independent trajectories, with up to a 100 ns timescale
for each, were performed at 300 K under NPT (1 bar) and
SHAKE conditions.

First, we asked whether changes in the composition of the
membrane lipids would affect the propensity of the b2e sub-
unit to bind to the membrane. To assess the binding propen-
sity of a b2e protein, we set up a height coordinate Z(i),
which is the position (height), along the perpendicular direc-
tion to the upper leaflet of lipid bilayer, of the residue i in a
b2e protein with respect to the mid-point (Z¼ 0) of the lipid
bilayer. The distance between the upper leaflet and the mid-
point of the lipid bilayer is 20 Å. We define the reaction
coordinate (i.e., average height) Z ¼ P

i¼1; 23ZðiÞ=23 for a
23-residue peptide of the N-terminus of the b2e subunit
(MKATWIRLLKRAKGGRLKSSDIC), which could be
Biophysical Journal 109(5) 922–935
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one measure for assessing the propensity of a b2e protein to
bind to the membrane. How the binding free energy mani-
fests the thermodynamic propensity for or against the bind-
ing propensity will be discussed later. We can also define
Zmin, the minimum of the height coordinate Z(i) over
i ¼ 1, 2, .. 23. Zmin probes more sensitively than Z whether
any one of the 23 residues touches the upper leaflet, where
Zmin becomes 20 Å. Fig. 3 A shows the values of Zmin

from a typical trajectory in our ATMD simulation as a func-
tion of time. When PS was not included in the lipid mix, a
23-residue peptide of the N-terminus of the b2e subunit
comes down to touch and moves away from the upper leaflet
of the membrane (see the blue line in Fig. 3, A and B). On
the other hand, the inclusion of 15% PS (as an example of
a negatively charged phospholipid in the lipid mix) leads
to a decrease of Zmin toward 20 Å and increases the binding
propensity of the b2e subunit interaction with the mem-
brane, which then manifests as a strong association of the
b2e subunit with the membrane as time goes by (see the
red line in Fig. 3, A and C). Behaviors similar to that shown
in Fig. 3 A could be observed from other trajectories as well
(see Fig. S1).

We performed multiscale MD simulations for a b2e sub-
unit with residues 1–143 after placing it initially at 10 Å
above the upper leaflet, as shown in Fig. 4 A. First, we per-
formed ATMD simulations to generate 50 trajectories, each
of which ran for 100 ns. Second, we further equilibrated
the last configurations from these ATMD simulations by
running CGMD simulations for 1.5 ms on each of 10 trajec-
tories. Since our computing capacity was not sufficient to
run ATMD on a microsecond timescale for a protein system
with 143 residues, 41,892 atoms in the lipid, and 162,000
atoms in waters, we employed CGMD to reach a time win-
dow of 1.5 ms. We probed the equilibrium character of the
binding propensity of a b2e subunit with residues 1–143
by measuring the value of Z for 23 residues in the N-termi-
nus of a b2e subunit. Since Zmin is more sensitive than Z for
probing whether any residues (1–143 amino acids) of the
b2e subunit come down to touch the upper leaflet of the
membrane, we plot the time evolution of Zmin in Fig. 4, B
and C, which show a better convergence of Zmin toward
trajectories as well (see Fig. S1). (B) Typical snapshot of an N-terminal fragment

without PS in the membrane. (C) Typical snapshot of an N-terminal fragment (1–

in the membrane. The headgroup of PS is represented by red spheres. To see th
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20 Å compared with Z as time goes by. ATMD on a
100 ns timescale was not sufficient to reflect the equilibrium
binding behavior (Fig. 4 B), whereas the 1.5-ms-timescale
CGMD (Fig. 4 C) showed the onset of the equilibrium bind-
ing behavior. We also noticed that whereas ATMD provided
atom-level kinetic insight into the binding process en route
to equilibrium, CGMD provided residue-level insight into
the character of the equilibrium binding. Therefore, per-
forming multiscale MD simulations by combining ATMD
with CGMD is a useful approach for observing the short
and long binding processes of a b2e protein. The value of
Z at the surface of the upper leaflet is 20 Å because the
thickness of the lipid bilayer is 40 Å. We note that Zmin in
Fig. 4, B and C, is the averaged value of reaction coordinates
over many different configurations within the window of
time binning, and approaches to ~20 Å as the time advances
to 1.5 ms. Since the averaged Zmin value may or may not be
the same as the most probable value depending on the un-
derlying probability distribution, we turned our attention
to calculate the probability p(Zmin) for b2e configurations
to have a Zmin value within the time range of 100 ns in
ATMD and 1.5 ms in CGMD. We constructed a free-energy
landscape from the entire data from our ATMD and CGMD
simulations by taking Zmin as a reaction coordinate and per-
forming block averaging in the binning of Zmin. Therefore,
we computed the free energy in the thermal energy unit
F/RT ¼ –ln p[Zmin], where p[Zmin] is the probability of
finding a configuration with Zmin. Fig. 4 D shows the free-
energy landscape from ATMD for the short time window
and from CGMD from the long time window. It shows
that the value of Zmin at which the free energy becomes
the minimum approaches 20 Å in the long time window.
Taken together, Fig. 4, B–D, show the convergence of the
equilibrium profile for Zmin. Therefore, the CGMD simula-
tion provides residue-level insight into the equilibrium bind-
ing behavior, in that the most probable value reaction
coordinate Zmin converges to the value near 20 Å as the
time advances to 1.5 ms. This implies a strong association
of the b2e subunit with the upper leaflet of lipid bilayer.

To obtain kinetic insight into the process of a b2e subunit
binding to the membrane, we traced the structures of 5000
FIGURE 3 PS-dependent membrane anchoring

of the b2e subunit is determined via ATMD simu-

lation. (A) The minimum of the height coordinate

Z(i) over i ¼ 1, 2, .. 23 of an N-terminal fragment

from a single trajectory in our ATMD is shown as a

function of time, with (without) PS in the mem-

brane denoted by a red (blue) line. The N-terminal

fragment (1–23 amino acids) of the b2e subunit

comes down to touch the membrane and moves

away from (approaches and binds to) it with 0%

(15%) PS in the membrane (see the blue (red)

line). Similar behavior was observed from other

(1–23 amino acids) of a b2e subunit, which unbinds to the neutral membrane

23 amino acids) of a b2e subunit, which binds to the membrane with 15% PS

is figure in color, go online.



FIGURE 4 Time dependence of the reaction coordinate Zmin of a b2e subunit (1–143) binding to membrane phospholipids, from a multiscale MD simu-

lation of b2e. (A) Reconstructed structure of a b2e N-terminal domain (yellow cartoon) near the plasma membrane (cyan sticks and red and green balls).

(B and C) Reaction coordinates Zmin for a b2e subunit (1–143) as a function of time for (B) the 100 ns ATMD simulation, which shows the initial decrease of

Zmin during the 100 ns period, and (C) the 1.5 ms CGMD simulation, which shows the overall convergence of Zmin to ~20 Å in the long time limit. (D) The

free-energy landscape in a thermal energy unit –ln p[Zmin] is plotted as a function of Zmin for the 100 ns ATMD (red line) and 1.5 ms CGMD (blue line)

simulations. The position of the minimum of –ln p[Zmin], i.e., the most probable value of the reaction coordinate, shows the overall convergence

to ~20 Å. The scale of free energy –ln p[Zmin] is in the thermal energy unit. To see this figure in color, go online.
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conformations near the upper leaflet of a lipid bilayer for a
10 ns time window over 50 trajectories from ATMD simula-
tions. In addition to the reaction coordinate Z, another mea-
sure that can be used to probe the degree of binding is the
interaction energy Eint between atoms of a b2e subunit
and the lipid bilayer. The correlation between the reaction
coordinate Z and the magnitude of interaction energy jEintj
for each 10 ns time window from 10 ns to 100 ns is plotted
at Fig. S3, and Fig. 5 A presents the same plot for the time
interval from 90 ns to 100 ns. The top (right) panel shows
the distribution of the value of Z (jEintj). As the time ad-
vances, the region where these two distribution functions
attain their maximum value moves from the region of high
Z and low jEintj to the region of low Z and high jEintj. On
the short timescale, the binding mode has a type II character,
and changes to type I as the time advances. On the long
timescale, the binding through type I becomes dominant,
giving rise to strong and stable binding. The binding modes
differ depending on which residues first participate in mak-
ing contact with the lipid, and whether residues starting
from the end of the N-terminus bind to the lipid in a sequen-
tial manner. We call these modes the stretched binding mode
(type I) and the agglomerate binding mode (type II), respec-
tively. We monitored the structural character of these two
groups of b2e configurations. The first group (type I, de-
noted by a red circle) includes residues that underwent a
strong and stable binding to the lipid, and the second group
(type II, denoted by a blue circle) includes those that under-
went a weak and transient binding.
In Fig. 5 H, we provide the distribution functions of the
interaction energies for time windows of 10–20, 50–60, and
90–100 ns. In the left panel of Fig. 5H, we show the time evo-
lution of jEintj from a given typical single trajectory, which is
not the one simply averaged over all data from all trajectories.
Themiddle panel of Fig. 5H represents the probability distri-
bution of jEintj constructed from jEintj values of 100 configu-
rations from each of a given 10 ns timewindow B,C,D, E, F,
and G in the left panel of Fig. 5 H so that the energetic char-
acter of jEintj for configurations in each of these timewindows
are clustered into. Although the error bar is embedded in the
distribution curve and can be seen as the half-maximum full
width of the distribution curve forB,C,D,E,F, andG, we pro-
vide in the right panel of Fig. 5H both the mean value and the
error bar of jEintj for a given time window of B, C, D, E, F,
and G. Therefore, the clustered configuration of b2e at each
of the time window B, C, D, E, F, and G is represented by
the predominant configuration that sits on top of the distribu-
tion curve shown in the middle panel of Fig. 5 H. These pre-
dominant configurations are depicted inB,C,D,E,F, andG in
Fig. 5 H. Fig. 5, B–D, depicts the type I stretched binding
event in which residuesM1 andK2make the first strong elec-
trostatic contact with the lipid, and the remaining residues
bind to the lipid sequentially while keeping the structure of
the N-terminus stretched on the surface of lipid bilayer, re-
sulting in strong binding. However, the randomly disordered
N-terminus of the b2e subunit sometimes forms an agglom-
erate structure, and thus residues away from the end of the
N-terminus make the first contact with the lipid. In this
Biophysical Journal 109(5) 922–935



FIGURE 5 Two kinds of binding modes are

involved in the process of a b2e subunit (1–143)

binding to membrane phospholipids, as shown

by an ATMD simulation of b2e. (A) Correlation

between the reaction coordinate Z and the magni-

tude of interaction energy Eint based on 5000

conformations of a b2e subunit (1–143) in the

time window between 90 ns and 100 ns. The

top (right) panel shows the distribution of the

value of reaction coordinate Z (the interaction

energy). As the time advances, the character of

the binding mode changes from type II to type I

(see also Fig. S3). In the long time limit, bind-

ing through type I becomes dominant, giving

rise to strong and stable binding. Two dominant

modes of binding are explained. (B–D) Type I,

the stretched binding mode. The N-terminal resi-

dues M1 and K2 first anchor to the membrane

and the other residues are then bound sequentially

while maintaining their structure, which stretches

progressively. (E–G) Type II, the agglomerate

binding mode. The initial residues in the b2e

N-terminus region do not bind first to the mem-

brane; instead, other residues away from the N-ter-

minus featuring the agglomerate structure make

the initial contact with the membrane. (H) Time

evolution of jEintj from a given typical single

trajectory. The middle panel of (H) represents

the probability distribution of jEintj constructed

from 100 configurations in a given 10 ns time

window corresponding to each of B, C, D, E,

F, and G in the left panel of (H). The energetic

character of jEintj for configurations in each of these time windows were then clustered into. The right panel shows both the mean value and the

error bar of jEintj for a given time window of B, C, D, E, F, and G. To see this figure in color, go online.
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case, the interaction energy with the lipid is weaker and tran-
sient, and thus there is less chance ofM1 andK2making con-
tact with the lipid. Fig. 5, E–G, show such a type II
agglomerate binding event. It shows clearly that the distribu-
tion functions of the interaction energy for the stretched
bindingmodemerge around thewindow of the stronger inter-
action energy as time passes from ~40 ns up to 100 ns. On the
other hand, the distribution functions for the agglomerate
binding stay in the window of interaction energies lower
than ~20 Kcal/mol even though the time approaches 100 ns.
The converging behavior of the distribution functions of the
interaction energies presented in Fig. 5H demonstrates these
two different binding modes. It reflects that the stretched
binding mode is more prone to involve strong binding to
the lipid, in which M1 and K2 play a critical role. However,
the binding of the b2e N-terminus still needs negative phos-
pholipids in the membrane surface.
Binding free energy of mutants K2A, W5A, and
K2A/W5A with respect to a wild-type b2e

The reaction coordinate Z provided geometrical insight into
the degree of binding of b2e to a lipid, but not into the bind-
ing free energy. Therefore, we tried to estimate the binding
free energy (46,47,58–60) for mutants K2A, W5A, and
Biophysical Journal 109(5) 922–935
K2A/W5A with respect to that of a wild-type b2e based
on TI (see Materials and Methods). Based on the thermody-
namic equality DG1;2 þ DG2;3 þ DG3;4 - DG1;4 ¼ 0 around
a thermodynamic cycle in Fig. S1, we evaluated the binding
free energy DDG ¼ DG3;4 - DG2;1 ¼ DG1;4 - DG2;3 of a
mutant with respect to that of a wild-type protein. The last
configurations of a b2e (1–143) from CGMD simulations
for 1.5 ms on each of 10 trajectories were transformed
back to all-atom structures using backward.py (49) in
Martini tools. TI ATMD simulations (45) were performed
for 4 ns to calculate DG1;4 and DG2;3 for mutants K2A,
W5A, and K2A/W5A. Fig. 6, A–C, show the values of
DG1;4 (red line) and DG2;3 (blue line) in the course of the
TI ATMD simulation for the mutants K2A, W5A, and
K2A/W5A, respectively. The table in Fig. 6 D summarizes
the binding free energies. The binding of mutants K2A,
W5A, and K2A/W5A to the lipid is thermodynamically un-
favorable by 4.78, 2.63, and 6.54 Kcal/mol, respectively,
compared with that of the wild-type b2e.
Membrane targeting of the b2e subunit through
both polar and nonpolar interactions

To examine the functional role of residues K2 and W5 in
atomic detail, we repeated ATMD simulations for the



FIGURE 6 Binding free energy and atomistic

view of the interaction of residues M1–W5 with

the membrane. (A–C) TI for the binding free energy

for (A) K2A, (B) W5A, and (C) K2A/W5A.

DG2;3ðDG1;4Þ is the difference between the free

energy of a mutant protein in solution (a mutant

bound to the membrane lipid) and that of a wild-

type protein in solution (a wild-type protein bound

to the membrane lipid). (D) Summary of the binding

free energies DDG for K2A, W5A, and K2A/W5A.

(E and F) Typical snapshots of the binding of b2e

N-terminal residues M1–W5 to the membrane

with (E) the wild-type and (F) the K2A/W5A

mutant, showing their side chains (licorice) interact-

ing with the membrane surface (yellow). To see this

figure in color, go online.
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K2A/W5A double mutant. Fig. 6, E and F, show a typical
snapshot of the b2e N-terminal residues M1–W5 binding
to the lipid. We first looked at the atomic interactions be-
tween K2, W5, and the lipid. Fig. 6 E shows that the side
chain of K2 is undergoing electrostatic interactions
(hydrogen bonds, represented by black dotted lines) with
the lipid molecules, whereas W5 is buried in the lipid
and making hydrophobic interactions (represented by the
black shadow) with the lipid. For the K2A/W5A mutant
(Fig. 6 F), the Ala residues make neither hydrogen-bond
nor hydrophobic interactions with the lipid. Thus, any re-
maining lipid binding is weak.
The wild-type and mutants of the b2e subunit
show differential effects on inhibition of CaV
currents by PIP2 depletion

In addition to the molecular mechanism underlying the
subcellular distribution of the b2e subunit, we examined
the effects of PIP2 depletion on the regulation of CaV chan-
nels with wild-type and mutated b2e subunits. Several
studies have shown that b subunits regulate the PIP2
sensitivity of CaV channels (18,61). To investigate modula-
tion by lipids, we depleted PIP2 using the voltage-sensing
lipid phosphatase Dr-VSP, which can convert PIP2 to
PI(4)P during depolarizing voltage pulses (19,62). First,
we tested the effects of K2A, W5A, and K2A/W5A on
channel modulation by PIP2 depletion. We used both the
wild-type and the membrane-anchored R7A mutant as
controls because they showed similar inactivation patterns.
We also examined the effects of the cytosolic N-del
mutant. When CaV2.2 channels were cotransfected with
the wild-type b2e subunit or point-mutated R7A, inhibition
by PIP2 depletion was modest (Fig. 7 A). It was stronger
with the other point mutants. Thus, with either K2A or
W5A, the inhibition increased to 19% 5 0.6% and
19% 5 0.9%, respectively. With K2A/W5A, it was
30% 5 3% (Fig. 7 B), and with the N-del mutant it was
similar, 34% 5 2%. In addition to CaV2.2 channels, we
tested the effect of PIP2 depletion on current inhibition in
CaV1.3 channels (Fig. 7 C). The patterns of inhibition by
PIP2 depletion in CaV1.3 channels were similar to those
observed for CaV2.2 channels (Fig. 7 D). These results
confirm that the localization of the b subunits is a major
determinant in the gating of CaV channels (17,18). Collec-
tively, these data indicate that the increased PIP2 sensitivity
of the channels is the result of a decreased affinity for
the membrane due to changes in b2e’s electrostatic and
Biophysical Journal 109(5) 922–935



FIGURE 7 The wild-type and mutants of the b2e

subunit show differential effects on CaV2.2 and

CaV1.3 current inhibition by PIP2 depletion.

(A) Current inhibition of CaV2.2 channels with

mutant b2e subunits by Dr-VSP activation. The cur-

rents in test pulses to þ10 mV for 10 ms before (a)

and after (b) the depolarizing pulse (þ120 mV) are

superimposed on nontransfected cells (control) and

Dr-VSP-transfected cells. (B) Summary of CaV2.2

current inhibition (%) by Dr-VSP. For control,

n ¼ 4–5; for Dr-VSP, n ¼ 4–5. *p < 0.05; **p <

0.01; ***p < 0.001, compared with wild-type; error

bar,5 SEM. (C) Inhibition of CaV1.3 currents with

different mutant b2e subunits by Dr-VSP. The

currents in test pulses to �10 mV for 10 ms before

(a) and after (b) the depolarizing pulse (þ120 mV)

are superimposed on nontransfected cells (control)

and Dr-VSP-transfected cells. (D) Summary of cur-

rent inhibition of CaV1.3 channels by Dr-VSP-

induced PIP2 depletion. For control, n ¼ 3–5; for

Dr-VSP, n ¼ 4–5. *p < 0.05; ***p < 0.001,

compared with the wild-type; error bar, 5 SEM.

To see this figure in color, go online.
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hydrophobic interactions with phospholipids after N-termi-
nal mutagenesis.
DISCUSSION

CaV channels serve as key machinery for Ca2þ influx and
initiate diverse physiological events. As one of several
auxiliary subunits, b subunits have a significant effect on
the gating properties and membrane trafficking of CaV chan-
nels. In particular, the subcellular localization of b subunits
contributes unique properties to CaV channels, such as inac-
tivation kinetics and modulation by lipids (63–66). A recent
study reported that in addition to the b2a subunit, which is
localized in the plasma membrane via palmitoylation, the
b2e subunit is expressed in the plasma membrane via elec-
trostatic and hydrophobic interactions (23). Although that
study suggested electrostatic and hydrophobic interactions
with the membrane, it did not provide an atomistic explana-
tion for the membrane interaction. We anticipated that the
electrostatic and hydrophobic interactions between the b2e
subunit and the membrane might not always ensure that
all configurations of the b2e subunit would dock success-
fully to the membrane, and we were able to determine the
molecular trajectories that are responsible for the stable
recruitment of the b2e subunit to the plasma membrane.

Building on previous revealing work (18,67) and a recent
parallel study (23), we have described the molecular mech-
anism underlying binding of the b2e subunit to the plasma
Biophysical Journal 109(5) 922–935
membrane in significant functional and theoretical detail.
Our analysis of confocal images and current measurements
via site-directed mutagenesis of the N-terminus indicates
that two residues of the N-terminus, Lys (K2) and Trp
(W5), are of key importance for stable binding to the mem-
brane. In particular, we showed that the initial interaction of
proximal N-terminal K2 and W5 residues with the mem-
brane phospholipids is required for stable, nonspecific elec-
trostatic interactions between the other basic amino acids of
the N-terminus and acidic phospholipids on the membrane.
The mutated forms, K2A and W5A, displayed a cytosolic
distribution, induced fast inactivation, and enhanced the
PIP2 sensitivity of CaV1.3 and CaV2.2 currents, whereas
mutations in other basic residues of the N-terminus had little
effect. On a theoretical level, our multiscale MD simulations
demonstrate that the basic K2 and hydrophobic W5 residues
confer strong and sustained membrane interactions on the
b2e subunit. The double mutant K2A/W5A binds to the
membranewith relativelyweaker polar and nonpolar interac-
tion energies compared with K2A or W5A alone, suggesting
that membrane binding results from a synergy of charge-
charge and hydrophobic interactions. We also found that
the K2R and W5F mutants still localize to the plasma mem-
brane, indicating that the interaction depends on polarity and
hydrophobicity rather than on detailed structure. This notion
was further supported by an experiment with the W5Y
mutant, in which the hydroxyl group could act as a steric hin-
drance, resulting in failure to incorporate the b2e subunit into
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the plasma membrane. Thus, our results are consistent with
previous studies (68,69) showing that both basic and aro-
matic residues play a key role in the electrostatic interactions
of cytosolic proteins with the plasma membrane. Because
these interactions may apply quite generally to protein-
membrane interactions, we were motivated to extend our
microscopic analysis of the binding dynamics.

Our MD simulations provided atomistic descriptions of
dynamic trajectories for binding of the b2e subunit that de-
pended on its conformation close to the plasma membrane.
The simulations demonstrated two microscopic mecha-
nisms for membrane targeting, which we call the stretched
binding mode and the agglomerate binding mode. Stable
recruitment of b2e is facilitated by the stretched binding
mode. Here, Met M1 of the N-terminus reaches out to
make the first contact with the lipid and facilitates the sub-
sequent binding of K2 with the lipid. For a posttranslational
modification, N-terminal methionine can be cleaved by
methionine aminopeptidase in a second-residue-dependent
manner. If residues with small side chains are located in
the second position of the N-terminus, the aminopeptidase
can excise the methionine. However, residues with a bulky
side chain (such as the lysine of the b2e subunit) prevent
cleavage by the enzyme (70). Preservation of the methionine
is consistent with our model in which Met initiates mem-
brane binding of the b2e subunit. Taken together, these re-
sults suggest that the stretched binding mode could be a
common general mechanism for stable recruitment of
peripheral proteins. The mutated form K2A/W5A shows
difficulty in stretching out the N-terminus, resulting in
weaker and transient binding to the membrane.

In 2002, Wu and colleagues (71) reported that PIP2 is an
important factor in the regulation of CaV2.1 channels, and
since then several studies have attempted to elucidate the
precise regulatory mechanism underlying the effect of
PIP2 on CaV channels (65). It seems that the action of
PIP2 on CaV channels occurs by diverse modes depending
on the nature of the microdomain. With cytosolic b subunits,
PIP2 facilitates CaV channel function and arachidonic acid
inhibits it. Previous studies (22) proposed that the lipids
interact with CaV channels in two ways, which by now are
familiar. One is a hydrophobic interaction between the fatty
acyl chains of the lipid and transmembrane regions of the a1
calcium channel subunit. The other is a hydrophilic interac-
tion between the headgroup of PIP2 and cytosolic gating
domains of the a1 subunit. It has been suggested that
when b2a is expressed with CaV channels, the palmitoyl
fatty acid chains can compete with and replace thefatty
acid chains of PIP2 for binding to the channel hydrophobic
binding sites, thereby replacing PIP2 in channel function
(16,61,72). As a result, the competitive suppressive effects
of arachidonic acid are diminished, since the lipid-binding
sites are already occupied by palmitoyl groups of the b2a
subunit. We show that a simple electrostatic binding of the
b2e subunit to several acidic lipid headgroups of the mem-
brane suffices to reduce the sensitivity of CaV channels to
PIP2. Again, the cytosolic versus membrane distribution of
b subunits is a key determinant in the regulation of CaV
channels by lipids and Gq-protein-coupled receptors (17).
CONCLUSION

In conclusion, our results show thatmembrane localization of
the b2e subunit relies on nonspecific electrostatic interac-
tions between anionic lipids in the inner leaflet of the plasma
membrane and positively chargedN-terminus amino acids of
the b2e subunit. Through mutagenesis of basic and hydro-
phobic residues, we show that cytosolic b2e mutants have a
cytosolic distribution that leads to fast inactivation of CaV
channels and higher sensitivity to PIP2. At the microscopic
level, our MD simulations suggest two different dynamic
mechanisms for binding of the b2e subunit to the plasma
membrane: the stretched binding mode and the agglomerate
binding mode. The stretched binding mode facilitates stable
recruitment of the b2e subunit to the plasma membrane. In
particular, MD simulations in which K2A, W5A, and K2A/
W5A mutants were applied explain the failure of an electro-
static interaction between mutant b2 subunits and the plasma
membrane in cells. Thus, our findings should help elucidate
the molecular characteristics of the electrostatic interaction
between the plasma membrane and charged proteins.
SUPPORTING MATERIAL

Three figures are available at http://www.biophysj.org/biophysj/

supplemental/S0006-3495(15)00775-4.
AUTHOR CONTRIBUTIONS

B.-C.S. and I.C. designed research. D.-I.K. and Y.P. performed biochemical

and electrophysiological research. M.K., S.K., and J.L. performed MD sim-

ulations. D.-I.K., M.K., B.-C.S., and I.C. wrote the manuscript.
ACKNOWLEDGMENTS

We thank Dr. Bertil Hille for valuable discussions, and the various labora-

tories that provided the plasmids.

This work was supported by the Ministry of Education, Science & Technol-

ogy (No. 2012R1A1A2044699), the DGIST R&D Program of the Ministry

of Science, ICT & Future Planning (No. 14-BD-06 to B.C.S.), and the

MIREBraiN program (I.C.). I.C. is also supported by the National Creative

Research Initiatives (Center for Proteome Biophysics) of the National

Research Foundation, Korea (No. 2008-0061984). We also acknowledge

the allocation of supercomputing time from DGIST Supercomputing and

Bigdata Center.
REFERENCES

1. Cho, W., and R. V. Stahelin. 2005. Membrane-protein interactions in
cell signaling and membrane trafficking. Annu. Rev. Biophys. Biomol.
Struct. 34:119–151.
Biophysical Journal 109(5) 922–935

http://www.biophysj.org/biophysj/supplemental/S0006-3495(15)00775-4
http://www.biophysj.org/biophysj/supplemental/S0006-3495(15)00775-4
http://refhub.elsevier.com/S0006-3495(15)00775-4/sref1
http://refhub.elsevier.com/S0006-3495(15)00775-4/sref1
http://refhub.elsevier.com/S0006-3495(15)00775-4/sref1


934 Kim et al.
2. Hurley, J. H., and S. Misra. 2000. Signaling and subcellular targeting
by membrane-binding domains. Annu. Rev. Biophys. Biomol. Struct.
29:49–79.

3. Murray, D., A. Arbouzova, ., S. McLaughlin. 2002. The role of elec-
trostatic and nonpolar interactions in the association of peripheral pro-
teins with membranes. Curr. Top. Membr. 52:277–298.

4. Arbuzova, A., D. Murray, and S. McLaughlin. 1998. MARCKS, mem-
branes, and calmodulin: kinetics of their interaction. Biochim. Biophys.
Acta. 1376:369–379.

5. Buser, C. A., C. T. Sigal,., S. McLaughlin. 1994. Membrane binding
of myristylated peptides corresponding to the NH2 terminus of Src.
Biochemistry. 33:13093–13101.

6. Hancock, J. F., H. Paterson, and C. J. Marshall. 1990. A polybasic
domain or palmitoylation is required in addition to the CAAX motif
to localize p21ras to the plasma membrane. Cell. 63:133–139.

7. Arbuzova, A., A. A. Schmitz, and G. Vergères. 2002. Cross-talk
unfolded: MARCKS proteins. Biochem. J. 362:1–12.

8. Denisov, G., S. Wanaski, ., S. McLaughlin. 1998. Binding of basic
peptides to membranes produces lateral domains enriched in the
acidic lipids phosphatidylserine and phosphatidylinositol 4,5-bisphos-
phate: an electrostatic model and experimental results. Biophys. J.
74:731–744.

9. McLaughlin, S., G. Hangyás-Mihályné, ., U. Golebiewska. 2005.
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Supplementary FIGURE 1 The time evolution of the minimum of the height coordinate 
Zmin  from each of other a trajectories in ATMD (blue line) and CGMD (red line). The N- 
terminal fragment (1-23 amino acids) of b2e subunit comes down to touch and moves away 
from (approaches and binds to) the membrane with 0% (15%) PS in the membrane 



 

 

 
 

Supplementary FIGURE 2 Thermodynamic cycle in the process for a wild and a mutant 
protein binding to the membrane. The binding free energy could be evaluated by using the 
thermodynamic equality and the thermodynamic integration method. ∆ , (∆ , ) is the 

difference between the free energy of a wild (a mutant) protein which was bounded to the 
membrane lipid and that of a wild (a mutant) protein in the solution. ∆ , (∆ , ) is the 

difference between the free energy of a mutant protein in the solution (a bounded mutant to 
the membrane lipid) and that of a wild protein in the solution (a bounded wild protein to the 
membrane lipid). The thermodynamic equality ∆ ,  + ∆ , 	+ ∆ ,  - ∆ , 	= 0 holds 

around a thermodynamic cycle, where ∆ , 	 ∆ , 	. This gives the binding free energy 

of a mutant with respect to that of a wild protein, namely ΔΔG= ∆ ,  -	∆ , = ∆ , 	- 
∆ , . 

  



 

 
 
Supplementary FIGURE 3 The correlation between the reaction coordinate Z and the 
magnitude of interaction energy |Eint| based on 5,000 conformation of a β2e subunit (1-143) 
in 10 ns time window from 10 ns to 100 ns. The top (right) panel shows the distribution of the 
value of reaction coordinate Z (the interaction energy |Eint|). As the time advances, the region 
where these two distribution functions attain the maximum value moves from the region of 
high Z and low |Eint| to the region of low Z and high |Eint|. At the short time scale the character 
of binding mode is the type II agglomerate binding and it changes to the type I stretched bind 
as the time advances. At the long time limit, the bind through the type I becomes dominant to 
give rise to the strong and stable binding. 
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