Holographic Interferometry at $\lambda=3 \mu \mathrm{~m}$ for the Measurement of
High Beta Plasma Density Profiles
by
W. Braun
Max-Planck-Institut für Plasmaphysik, Euratom Association,
Garching bei München, Germany
Abstract: Holograms are produced using a pulsed HF-Laser. Thin metal films serve as detectors. Sensitivity of the detector is approximately 1 Joule $/ \mathrm{cm}^{2}$, resolution is at least 150 lines $/ \mathrm{mm}$. It is planned to use the method described here for density profile measurements in high beta plasmas.

1. Introduction

The electron density profile in a high beta plasma can be determined through the use of interferometric techniques. Since the phase shift is proportional to the wavelength of the laser light and since a toroidal plasma can practically only be optically radiated side-on, the measurements must be carried out in the infra-red regime. The electron density profile of a theta pinch has already been determined by this method using a CO_{2}-laser with $\lambda=10.6 \mu \mathrm{~m} / 1 /$. This method, however, requires special windows (e.g. BaF_{2}) on the plasma tube. Holographic interferometry /2/ at λ ® $3 \mu \mathrm{~m}$ is a method for measuring the density profile of a high-beta-Plasma which does not require any ports in the quartz tube due to the fact that quartz is still transparent at this wavelength.
2. The $3 \mu \mathrm{~m}$-Laser

A hydrogen-flouride laser serves as the light source at $3 \mu \mathrm{~m}$. It is constructed on the same principle as the TEA-CO C_{2}-laser of Beaulieu $/ 3 /$. The flowing gas is one part H_{2} and three parts S_{6} at a total pressure of about 120 torr. A gold plated spherical quartz mirror (radius of curvature $R \sim 10 m$) and a simple plane plate (LiF, CaF_{2}, or NaCl for example) form the 2.60 m long optical resonator. The gas discharge exciting the laser active molecules is driven by a two stage marx generator bank ($2 \times 100 \mathrm{nF}, \mathrm{U}_{\mathrm{O}}=30 \mathrm{kV}$). About one thousand resistors ($1 \mathrm{k} \Omega$) are spaced in an array so that a gas volume of about $2.50 \mathrm{~m} \times 60 \mathrm{~mm} \times 18 \mathrm{~mm}$ is relatively homogeneously excited. The beam cross section is about $15 \times 50 \mathrm{~mm}^{2}$. The laser pulse is approximately 200 nsec long and was detected by an InAs-diode and a helium cooled Ge:In-crystal. The whole energy in one pulse is about 1 Joule distributed over some spectral lines. Among some of the weaker lines there are three especially strong ones falling in a spectral intervall of about $1 / 10 \mu \mathrm{~m}$. It was attempted to distribute the gas discharge even more homogeneously over the whole volume to get a better efficiency per unit vilume, but the principle of the preionized TEA-laser of Dumanchin et al. /4/ led to the same result as Wenzel and Arnold /5/ found. So the efficiency per unit volume could not be significantly increased.
3. Area Detector

High resolution and good sensitivity are needed to make holograms by pulsed exposure at $\lambda \approx 3 \mu \mathrm{~m}$. For holographic methods in the visible region with a pulsed Ruby laser thin bismuth films have already been used $/ 6 /$. In the infrared regime at $\lambda=10.6 \mu \mathrm{~m}$ (CO_{2}-laser) films of bismuth, antimony, cadmium and paraffin were used successfully /7/. In the present work metal films of $100 \AA$ thickness of $\mathrm{Bi}, \mathrm{Sb}, \mathrm{Cd}$ and Au and paraffin films were vacuum deposited on several different substrates such as glass and plexiglass. The experimental set up used to investigate these detectors at $\lambda \approx 3 \mu \mathrm{~m}$ is shown in Fig. 1.
A clear recognizable interference fringe pattern could be achieved on an area of about $2 \times 20 \mathrm{~mm}^{2}$ of a $200 \AA$ Bi-film by means of a single exposure. Here, as previously found by Decker, Herold and R8hr

$/ 7 /$, the strong nonlinear characteristic of the Bi-film could also be observed. This characteristic is responsible for the following effect. In double exposure holograms taken at $10.6 \mu \mathrm{~m}$ those parts of the pattern where the metal was completely evaporated during the first exposure, could not record further information. The hologram of a wedge of salt (NaCl), however, could be nicely reconstructed. A resolution of fringe displacements
of a tenth of one fringe distance was achievable. As already reported for the $\lambda=10.6 \mu \mathrm{~m}$ investigations it is rather difficult to find the right relationship between laser energy density and the metallic film thickness. A large area exposure of the Bi-films gives rise to further difficulties. The steep gradation necessitates a very homogeneous distribution of the laser light power over the beam cross section.
It is planned to use the method described here for density measurements in high beta plasmas.
/1/ Z. Physik 248, 121 (1971)
/2/ Appl. Optics 6, p. 1407 (1967)
/3/ Appl. Phys. Lett. 16, p. 504 (1970)
/4/ R. Dumanchin et al., Int. Quantum Electronics Conf., Kyoto, (1970)
/5/ IEEE, Vol. QE-8, p. 26
/6/ Appl. Phys. Lett. 15, p. 45 (1969)
/7/ G.Decker, H.Herold, H.Röhr; J. Opt. Soc. Am., to be published

