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1. Introduction

The aim of this paper is to describe impurity seeded radiative plasmas by a single reaction
diffusion equation (RDE) resulting from multi-fluid equations (cp. [1]). The starting point of [1]

are the one-dimensional, time-dependent hydrodynamic equations describing the self-consistent
dynamics of the plasma hydrogen ions (i), the impurity ions (j) with the charge state Zj , and
the electrons (e) along the magnetic field lines. We start here with the currentless plasma model

equations of [1] which result in the RDE when the Lagrangian mass variable and the equation
of state are included. The influence of the impuries carbon and beryllium on the RDE is treated
by solving steady and time-dependent problems.

2. Reaction Diffusion Equation

Applying the average ion approximation with the average charge< Zj >, assuming all velocities
to be equal, ve = vi = vj ≡ v, introducing the mass density ρm = mini + mjnj , the total
density N = ne + ni + nj = 2ni + (1+ < Zj >)nj , the pressure p = N · T (T - temperature)
we obtain [1]:
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ne,i,j - densities, me,i,j - masses, H - external heat source. To close the system of equations (1)
- (3) one needs the impurity density nj in dependence of the other model functions.

Introducing Lagrangian coordinates τ, y (y - mass variable):
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x1(t) = {x|v(x, t) = 0}, and the equation of state, p = NT = p(T ), p(T ) - given function,

leads to the Lagrangian RDE for the temperature:
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ξ−1
p = 1−(2/5)∂ ln p(T )/∂ lnT . nj is expressed either by (i)nj = ξjN, ξj = const (simplified

approximation - SA) or (ii) as a function of T : nj = nj(T ).



The impurity affects (i) the radiation loss term QR = 1
2

[N + (< Zj > −1)nj]njLrad(T )

(Lrad - radiation loss function) and (ii) the electron heat conduction coefficientκe = C3(Zeff )neT/

(meνee) = C3(Zeff ) · κ0T δ, δ = 5/2 (νee - ee collision frequency, κ0 = const); C3(x) =

3.9(1 + 1.7x)/[(1 + 2.65x)(1 + 0, 28x)], Zeff = (ni/ne)(1 + Z0), Z0 = (nj/ni)

< Z2
j >. nj is determined by the differential equation
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derived from the impurity balance equation (cp. [1]); Gj = α− β− < Zj >, α = [C2(Zeff ) +

C2(Z0)] < Z2
j >, β = C2(Zeff )Zeff < Zj >, C2(x) = 2.2(1 + 0.52x)/[(1 + 2.65x)(1 +

0.28x)], < Z2
j >= (1/nj)

∑
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2
j . Solutions of Eq. (7) under the condition of an isobaric

change p = p0 will be included.

3. Equilibrium

The possible equilibrium states both in Lagrangian and Eulerian coordinates are determined

by very similar equations, i.e. the Lagrangian representation has no advantage in investigating
steady states. Therefore we will consider equilibrium solutions in Eulerian coordinates:
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x ∈ X = [xmin, xmax]. ξj is either (i) calculated or (ii) estimated by introducing averaged values

(SA): < ξj >= a, < C3 >= b; a, b = const.

We apply sheath boundary conditions:
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Parameters: X = [0, L], L = 60 m - connection length; neτ = 1016 m−3s; κ0 = 1.5 1022

(eV)−5/2/(ms); H(x) = H0 = const = 6 1025 eV/(m3s) - symmetrical task; p0 = 1021 eV/m3,

nj0 = nj(T = 1 eV) = 1018cm−3;α0 = αn = 2 1026 (eV)1/2/(m2s), β0,n = 0.5 ; ForLrad, < Zj >

the ADPAK data are used.
Impurity data for C: Fig. 1. ⇒ aC=0.1, bC=1.7. Impurity data for Be: Fig. 3. ⇒ aBe=0.15,

bBe=1.85.

We compute possible solutions for the symmetrical task, i.e. we solve initial value

problems at the maximum temperaturesTmax = T (L/2) 80 to 120 eV with vanishing derivatives
and compare these with SA results with the estimated constants aC, bC, aBe, bBe. The exact

solutions are displayed in Figs. 2 (a), 4 (a) as profiles T (x), and as phase space portraits in the
phase plane (T, Tx) where the ”boundary value curves” (9) as dashed lines are also displayed.
Solutions to our boundary value problem are curves whose beginning and ending points are on

the curves (9) in the phase plane. There exists only one solution, i.e. no bifurcation occurs
for the parameters used. SA results: Figs. 2 (b), 4 (b). Comparison: Both the phase space
portraits and the boundary value curves are changed. The resulting solution to our boundary



value problem (dashed line) shows that the SA gives only a qualitative agreement with the exact
solution, but it cannot be used for higher or lower temperatures.

4. Time-Dependent Solution

Considering the SA equilibrium solution for carbon (dashed line in Fig. 2 (b)) in Eulerian

coordinates, transforming it to Lagrangian coordinates (18) with x1 = L/2 ⇒ T (y) (full line
in Fig. 5); y(0) = −y(L)=-0.334 p0 m−2; modulating this state, and solving the Lagrangian

RDE (6) for this initial temperature distribution with Dirichlet’s boundary condition T (y(0)) =

T (y(L)) = 80 eV, proves this state to be the only existing steady state which is stable (Fig. 5).

5. Summary

The impurities affect, with respect to their nj dependence, the reaction diffusion process via

the radiation loss term and the electron heat conductivity. This is demonstrated for carbon and
beryllium: For both impurities the density behaves non-monotonically for temperatures lower
than 10 eV. Mean quantities are estimated that can be used in a simplified model (SA) to solve the

RDE. Equilibrium: We consider the symmetrical task to compute possible solutions to sheath
boundary value problems (phase space portraits and temperature profiles) in the laboratory
frame. Transformation to Lagrangian coordinates: The boundary value problems in Eulerian

coordinates lead to Dirichlet problems in Lagrangian coordinates. The solution (for carbon) of
the RDE shows the time evolution to the above mentioned steady state which thus is proved to
be stable.

References

[1] P. Bachmann and D. Sünder: “1D Multi-Fluid Plasma Models.”
Report IPP 8/13 (January 1998);
P. Bachmann, D. Sünder: Contrib. Plasma Phys. 38 (1998) 290.

a    = 0.1C

b    = 1.7C

Figure 1. nj, nj/N, njneLrad, C3(Zeff ) as
functions of T for C.

a) b)

Figure 2. Profiles T (x) and phase plane
portraits (T, Tx) for C; (a) - exact solution, (b) -

SA with aC=0.1, bC=1.7.
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Figure 3. nj, nj/N, njneLrad, C3(Zeff ) as

functions of T for Be.
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Figure 4. Profiles T (x) and phase plane
portraits (T, Tx) for Be; (a) - exact solution, (b)

- SA with aBe=0.15, bBe=1.85.

Figure 5. Time evolution of the temperature profile in Lagrangian coordinates to the steady state (full
line) which corresponds the equlibrium solution in Fig. 6 (b) in Eulerian coordinates.


