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1. Introduction

The problem of propagation of electron cyclotron waves in plasmas is usually solved within
the framework of geometric optics or ray tracing. This technique describes correctly the
wave refraction, but does not take into account the diffraction phenomena, which can become
significant if one is concerned with highly collimated or focused microwave beams. These are
of great importance for fusion devices, since they are employed for heating and current drive as
well as for diagnostic purposes, where a strong wave collimation is desirable in order to improve
the localization of the absorbed power and to increase the spatial resolution (e.g. in scattering
experiments).

In order to include diffraction effects, the beam tracing technique [1] is employed in
this paper. This approach includes the same physics as other methods, such as the parabolic
equation [2] and the complex eikonal [3], but it greatly simplifies the general problem, reducing
the full wave equation to a set of coupled ordinary differential equations. The beam features
are determined by a central ray, which obeys the geometric optics equations, and by a set of
parameters, calculated along it, which account for the electric field amplitude profile and the
curvature of the phase front.

Three-dimensional Gaussian wave beam propagation in an anisotropic inhomogeneous
tokamak plasma is studied. Numerical calculations are made for ASDEX-Upgrade-like param-
eters. It is shown that the effect of diffraction is of importance for the typical parameters of the
tokamak and that the power deposition profile can be considerably broader than that given by
the ray tracing approach.

2. The Beam Tracing equations

In the beam tracing approach, the geometric optics ansatz for the wave electric field E(r) is
replaced by

E(r) = a(r)eiκ[s(r)+iφ(r)], (1)

where κ = Lω/c � 1 ( L is the inhomogeneity scale, ω is the frequency and c the speed
of light). The function s(r) is the eikonal function of geometric optics, while the attenuation
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function φ(r) ≥ 0 is responsible for the description of the transverse structure of the beam.
The beam tracing equations are obtained by substituting Eq.(1) into Maxwell’s equation

∇×∇×E− ω2

c2
ε̂E = 0, (2)

where ε̂ is the (cold) plasma dielectric tensor. It can be shown that Eq.(2) can be consistently
reduced, by taking the smallness of the parameter κ−1 into account, to a set of ordinary
differential equations for the quantities qα , Nα , Nαβ and Φαβ , which allow to express the
unknown functions s(r) and φ(r) as

s(r) = Nα(τ) [xα − qα(τ)] +
1

2
Nαβ(τ)[xα − qα(τ)][xβ − qβ(τ)], (3)

φ(r) =
1

2
Φαβ(τ)[xα − qα(τ)][xβ − qβ(τ)]; (4)

xα are the components of the position vector r , Nα those of the refractive index N = ck/ω

and Einstein’s summation convention is adopted. The beam tracing equations are [4]

dqα

dτ
=
∂H

∂sα
,

dNα

dτ
= − ∂H

∂xα
, (5)

dNαβ

dτ
+

∂2H

∂xα∂xβ
+

∂2H

∂xβ∂sγ
Nαγ +

∂2H

∂xα∂sγ
Nβγ +

∂2H

∂sγ∂sδ
NαγNβδ =

∂2H

∂sγ∂sδ
ΦαγΦβδ, (6)

dΦαβ

dτ
+

(
∂2H

∂xα∂sγ
+

∂2H

∂sγ∂sδ
Nαδ

)
Φβγ +

(
∂2H

∂xβ∂sγ
+

∂2H

∂sγ∂sδ
Nβδ

)
Φαγ = 0, (7)

where H(N, r) is an eigenvalue of the problem

L̂e ≡ N× (N× e) + ε̂e = He. (8)

In the previous equations, all the derivatives of H have to be calculated at xα = qα(τ) and
sα = Nα(τ) . The first two Eqs. (5) describe a geometric optics ray, on wich φ = 0 [see
Eq.(4)]. This ray constitutes then the “backbone” of the beam and will be called reference ray
and denoted by < . The remaining functions Nαβ and Φαβ are connected with the curvature
of the wave front and the width of the wave packet, respectively. The set of Eqs.(5-7) involves
six equations for the central ray < and twelve for the symmetric quantities Nαβ,Φαβ , which
must also satisfy the six constraints

Nαβ
dqβ

dτ
+
∂H

∂xα
= 0, (9)

Φαβ
dqβ

dτ
= 0. (10)

Eqs.(9-10) are employed to check the accuracy of the solution.

Eqs. (5) give immediately the coordinates q1(τ), q2(τ), q3(τ) of the reference ray < ,
together with the wave vector ωN(τ)/c at each point along it. In order to clarify the physical
meaning of the functions Nαβ ,Φαβ , solutions of Eqs. (6-7), a beam propagating in vacuo
along the x1 -axis can be considered. In this case, from the constraints (9-10) it follows
N1α = Φ1α = 0 . The terms Nαβ(τ)[xα−qα(τ)][xβ−qβ(τ)] , Φαβ(τ)[xα−qα(τ)][xβ−qβ(τ)]



in Eqs. (3-4) can then be regarded as (positive definite) quadratic forms in the x2, x3 -plane,
whose contour-levels are ellipses. If the off-diagonal terms N23,Φ23 vanish, the axes of these
ellipses coincide with those of the laboratory. In this case, the radii of curvature and beam
widths along the xα -direction (α = 2, 3) can be introduced simply as

Nαα =
1

LRα

, Φαα =
2

κw2
α

(no sum on α ). (11)

In the general case, it is then clear that the quantites Nαβ,Φαβ contain the informations about
curvature and width of the beam.

In order to calculate deposition profiles, a further equation for the power P (τ) has
obviously to be added:

dP

dτ
= −2γP, (12)

where γ is the absorption coefficient, evaluated using the weakly relativistic approximation
[5].

3. The numerical solution

The solution of Eqs. (5-7) in a general tokamak geometry for arbitrary launching conditions
requires a numerical treatment. This can in principle be performed in a straightforward way,
since we have to do with a set of ordinary differential equations, as already stressed. It can be
shown that the Hamiltonian function H can be chosen such that H = det L̂ as in the usual
geometric optics. On the reference ray it is then H = 0 , and this condition can be used to
control the accuracy of the solution along with Eqs.(9-10).

The beam tracing equations are solved for plasma and beam parameters in the range
of interest of ASDEX-Upgrade tokamak. An elongated geometry with a Shafranov shift is
assumed. This means that Cartesian coordinates in the poloidal plane can be introduced as{

x = R0 + a cosχ−∆(a)
z = aλ(a) sinχ,

(13)

where R0 is the major radius, ∆ is the Shafranov shift and λ is the elongation. The density
is supposed to be constant on flux surfaces labeled by the radial coordinate a ( 0 ≤ a ≤ aM ).
Typical values are R0 = 165 cm, aM = 60 cm, 1 ≤ λ(a) ≤ 1.5 , −10 ≤ ∆(a) ≤ 5 cm.
The frequency is ω/2π = 140 GHz, corresponding to the second-harmonic electron cyclotron
resonance. The initial wave front has a circular symmetry, and width and curvature [in the sense
of Eqs.(11)] are w0 = 3.8 cm and R0 = 142 cm.

As an example, in Fig. 1 the X -mode beam propagation in the poloidal plane is plotted,
along with the corresponding deposition profile. The launching angle is 20◦ with respect to
the equatorial plane and central heating is considered. Dashed lines are the geometric-optics
calculations. The central density is ne0 = 11 · 1013 cm −3 .
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Figure 1 (a). X-mode wave beam propagation. Figure 1 (b). Beam tracing and ray tracing

deposition profiles.

Since geometric optics predicts a focus in the absorbtion region (replaced by a finite waist
in the beam tracing description), it is clear that power deposition is confined in this approach in
a much smaller zone.
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