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Abstract. In this work we present an a posteriori output error bound for model order reduction
of parametrized evolution equations. With the help of the dual system and a simple representation
of the relationship between the field variable error and the residual of the primal system, a sharp
output error bound is derived. Such an error bound successfully avoids the accumulation of the
residual over time, which is a common drawback in the existing error estimations for time-stepping
schemes. An estimation needs to be performed for practical computation of the error bound, and
as a result, the output error bound reduces to an output error estimation. The proposed error
estimation is applied to four kinds of problems. The first one is a linear convection-diffusion equation,
which is used to compare the performance of the new error estimation and an existing primal-dual
error bound. The second one is the unsteady viscous Burgers’ equation, an academic benchmark of
nonlinear evolution equations in fluid dynamics often used as a first test case to validate nonlinear
model order reduction methods. The other two problems arise from chromatographic separation
processes. Numerical experiments demonstrate the performance and efficiency of the proposed error
estimation. Furthermore, optimization based on the resulting reduced-order models is successful in
terms of accuracy and runtime for obtaining the optimal solution.
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1. Introduction. Numerical simulation of large-scale systems is challenging,
especially when this task needs to be repeated many times under parameter variations,
e.g., in the context of optimization, control, and parameter estimation. Model order
reduction (MOR) is a useful technique for constructing a low-cost, simulation efficient
surrogate reduced-order model (ROM), which can reproduce the dominant dynamics
or the input-output response of the original large-scale system, at a compromise with
accuracy to an acceptable extent. To generate a ROM, an efficient a posteriori error
estimation is crucial because it enables the generation to be reliable and automatic.
Rigorous, sharp, and cheaply computable are the desired properties of an efficient
error estimation.

In the past years, many efforts have been devoted to the study of a posteriori error
estimation for either the field variable (the solution to the underlying system) or the
output of interest, which is usually expressed as a functional of the field variable.
For example, research on an a posteriori error estimation for the reduced basis (RB)
method started with [26, 28] and has been followed by many others [13, 14, 15, 16,
17, 18, 25, 27, 29, 32]. More recently, the space-time RB method was introduced
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OUTPUT ERROR BOUND FOR MOR OF EVOLUTION EQUATIONS B911

for linear or quadratically nonlinear parabolic problems [34, 37, 38, 39]. Notably,
these error estimations are all derived in the functional space in the framework of the
finite element (FE) discretization except for [17]. In the FE discretization framework,
the weak form of the partial differential equation (PDE) is used to derive the error
bound, while the error bound in [17] is derived in the framework of the finite volume
discretization for error estimation of the field variables.

In this paper, we propose an efficient output error estimation for projection-based
MOR methods applied to parametrized nonlinear evolution problems. For (nonlinear)
evolution problems, time-stepping schemes are often used to solve them [24], and error
estimations for projection-based MOR methods have been studied in recent years;
see, e.g., [13, 17, 40]. The error estimator, however, may lose sharpness when a large
number of time steps are needed, because the error estimator is actually a summation
of the error over the previous time steps. To circumvent this problem, we introduce
a suitable dual system at each time instance in the evolution process associated with
the primal system, i.e., the original system. The output error for the primal system
can thus be estimated sharply and efficiently with the help of the dual system and
a simple representation of the relationship between the residual and the error of the
field variable.

Actually, an a posteriori output error bound for the RB method using the primal-
dual approach can be found in [16]. However, the derived output error bound is
suitable only for linear evolution equations. From the numerical comparison in sec-
tion 6, the proposed error estimation outperforms the error bound in [16] for a linear
evolution system.

The aforementioned error bounds introduced in [34, 37, 38, 39] are based on
space-time variational formulation. Notably, the space-time error bounds are derived
for the space-time model rather than the standard model addressed in many other
MOR papers. The space-time model is obtained from the parabolic equations by
first discretizing in space and then integrating in time. As a result, the state vector
(unknown vector) of the space-time model is different from the state vector for the
standard model derived by only discretization in space, and time-stepping in time.
Roughly speaking, the solution vector of the space-time model can be considered as a
long vector ust ∈ R

N·K including the spatial discretized vector at all the time steps,
where N is the number of spatial grids and K is the number of time steps. The
corresponding error bound measures the error of this long vector computed by the
corresponding ROM. Our error bound is defined for the solution vector u ∈ R

N of the
spatially discretized model at each time step tk, k = 1, . . . ,K. The errors measured
by the error bounds are different. Finally, the error bounds in those papers are valid
only for linear and at most quadratically nonlinear systems. The error bounds are
limited to Petrov–Galerkin discretization (in space), and an inf-sup constant (or its
lower bound) for the corresponding variational (weak) form must be available. Our
proposed error bound is valid for general linear and nonlinear systems (given Lipschitz
continuity of the nonlinear term) and is applicable to any discretization approach.

The idea for the proposed error bound originates from the recent study in [10, 11],
where some error bounds are derived for linear time-invariant systems. The main
difference of the proposed error estimation from that in [10, 11] is that the new error
estimation is derived directly in the time domain and is exactly designed for the output
in the time domain. It is particularly useful for snapshot-based MOR methods, e.g.,
the RB method [17, 27, 40] and the proper orthogonal decomposition (POD) method
[6, 8, 35, 36]. It is valid for nonlinear parametric systems, whereas the error bound
in [10, 11] is an error estimation for the transfer function of the ROM, so that it is
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B912 L. FENG, Y. ZHANG, S. LI, AND P. BENNER

used for linear parametric systems. In other words, it is an error estimation for the
output in the frequency domain, which is well suited for the frequency domain MOR
methods, e.g., the Krylov subspace method [2, 4, 12].

The proposed error estimation is applied to four different evolution problems. The
first one is a linear convection-diffusion equation from [13], describing the movement
of fluids and other transport phenomena. The second one is the unsteady viscous
Burgers’ equation, which is used as the first test case to illustrate the applicability of
the proposed error estimation to nonlinear evolution problems. The last two real-life
models are described by parametrized coupled systems of convection-diffusion equa-
tions. They arise from chromatographic separation processes in chemical engineering.
One is batch chromatography with bi-Langmuir isotherm equations, which is a non-
linear parametric evolution problem. The other is continuous simulated moving bed
(SMB) chromatography with linear isotherm equations. It is a linear parametrized
periodic switching system. Moreover, these systems require a long-time integration
process. The resulting ROMs are further employed to solve the underlying optimiza-
tion problems.

The paper is organized as follows. Section 2 reviews projection-based MOR for
parametrized nonlinear evolution problems. Existing related error estimations are
reviewed in section 3, and an output error estimation is derived in section 4. Section 5
discusses the POD-Greedy algorithm [17] used in RB methods, which is employed for
constructing the ROMs in section 6. Numerical examples are given in section 6.
Section 7 concludes the paper.

2. MOR of parametrized evolution equations. In this paper, we consider a
parametrized evolution problem defined over the spatial domain Ω ⊂ R

d (d = 1, 2, 3)
and the parameter domain P ⊂ R

p,

(2.1) ∂tu(t, x;μ) + L(μ)[u(t, x;μ)] = 0, t ∈ (0, T ], x ∈ Ω, μ ∈ P ,
where L(μ)[·] is a spatial differential operator. For discretization, let 0 = t0 < t1 <
· · · < tK = T be K + 1 time instants in the time interval [0, T ], and WN ⊂ L2(Ω) be
an N -dimensional discrete space in which an approximate numerical solution to (2.1)
is sought. Given μ ∈ P with suitable initial and boundary conditions, the numerical
solution un(μ) at time t = tn can be obtained by using suitable numerical methods,
e.g., the finite volume method. Assume that un(μ) ∈ WN satisfies the form

(2.2) A(n)
μ un+1(μ) = B(n)

μ un(μ) + g(un(μ);μ),

where A
(n)
μ , B

(n)
μ ∈ R

N×N are the coefficient matrices at the time instance tn, and
g(·;μ) is a nonlinear operator w.r.t. un(μ) and/or nonaffine w.r.t. the parameter μ.

The superscript (n) and the subscript μ in A
(n)
μ and B

(n)
μ indicate the dependency on

time and the parameter, respectively. For MOR, the dimension N is usually large,
which implies that the numerical solution un(μ) is a faithful approximation and is
often called the “true” solution. The resulting large-scale system in (2.2) is called the
full order model (FOM).

Solving such a FOM repeatedly under parameter variations is time-consuming
or even prohibitive in a multiquery context, e.g., optimization or real-time control.
Besides the available computing resources, MOR has been developed as a useful tool
to handle this kind of problem and plays an important role in an efficient solution
process for parametric systems. In the following subsections, we address the idea of
MOR based on projection and the issue of simulating the ROM.
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2.1. Projection-based MOR. In this paper, we focus on projection-based
MOR methods. The fundamental assumption is that the solution to the parametrized
systems, u(μ), resides in a lower dimensional subspace VN ⊂ WN , i.e., u(μ) can be
well approximated by a properly chosen basis of the subspace. For all the projection-
based MOR methods, a right projection matrix V ∈ R

N×N , whose columns span a
basis of the subspace where u(μ) can be well represented, is computed. A left pro-
jection matrix W ∈ R

N×N is constructed based on proper approximation principles.
The ROM is obtained by using the approximation un(μ) ≈ ûn(μ) := V an(μ) and
employing Petrov–Galerkin projection with W ,

(2.3) Â(n)
μ an+1(μ) = B̂(n)

μ an(μ) +WT g(V an(μ);μ),

where Â
(n)
μ = WTA

(n)
μ V , B̂

(n)
μ = WTB

(n)
μ V , and an(μ) ∈ R

N is the vector of un-
knowns of the ROM.

Notably, the number of degrees of freedom of the ROM in (2.3) is usually much
less than that of the FOM in (2.2), i.e., N � N . The goal of MOR is that the ROM
is much cheaper to solve compared to the FOM. This is not necessarily achieved by

(2.3); it is required that the evaluation of Â
(n)
μ , B̂

(n)
μ , and WT g(V an(μ);μ) is done

without resorting to the full order dimension N . For this, additional techniques may
be necessary, as described in the following.

2.2. Simulation of the ROM. The goal of MOR is to provide a fast simulation
stage, where for any given parameter μ the output response can be obtained rapidly
based on the ROM. Particularly, in the RB method, an offline-online decomposition
strategy is often employed to attain this goal. Similar to related studies, assume that

the matrices A
(n)
μ and B

(n)
μ in (2.2) can be written in a separable way, the so-called

affine form, i.e.,

A(n)
μ =

na∑
j=1

ξnμ,jAj , B(n)
μ =

nb∑
k=1

ζnμ,kBk,

where Aj , Bk are constant matrices, and ξnμ,j , ζ
n
μ,k are the corresponding time and

parameter dependent scalar coefficients. Note that the numbers na and nb are desired
to be small. Then

Â(n)
μ =WTA(n)

μ V =

na∑
j=1

ξnμ,jÂj , B̂(n)
μ =WTB(n)

μ V =

nb∑
k=1

ζnμ,kB̂k,

where Âj = WTAjV and B̂k = WTBkV , j = 1, . . . , na, k = 1, . . . , nb. Notice that

once the projection matrices V and W are obtained, Âj and B̂k can be precomputed,

and in turn the evaluation of Â
(n)
μ and B̂

(n)
μ at μ is independent of the full dimension

N . However, the computation of the last term of (2.3), WT g(V an(μ);μ), cannot
be done analogously because of the nonlinearity or nonaffinity of g. To achieve an
efficient offline-online computation, empirical (operator) interpolation [3, 9] or the
discrete empirical interpolation (EI) method [8] can be employed. Similar treatments
can be found in [14, 15]. More precisely, a parameter-independent basis S ∈ R

N×M

(M � N ) is precomputed based on snapshots of the nonlinear function evaluations
at a set of properly selected parameter samples. Then an affine approximation is
defined by an interpolation operator IM : RN → R

N , i.e., g(ûn(μ);μ) ≈ ĝn(μ) :=
IM [g(ûn(μ);μ)] = Sβn(μ), where βn(μ) := β(an(μ);μ) ∈ R

M is the corresponding
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B914 L. FENG, Y. ZHANG, S. LI, AND P. BENNER

vector of coefficients. The coefficient vector βn(μ) can be determined by an enforced
interpolation condition that ĝn(μ) interpolates g(ûn(μ);μ) at a set of properly selected
components. For more details, please refer to, e.g., [40]. As a result, a low dimensional
ROM is obtained as below,

(2.4) Â(n)
μ an+1(μ) = B̂(n)

μ an(μ) + Ĝβn(μ),

where Ĝ = WTS is precomputed. With this ROM (2.4), the approximation of the
field variable and/or the output can be obtained rapidly.

In what follows, the norm ‖ · ‖ : RN → R for a vector v is defined as

‖v‖ :=
√
vTHv,

where H is a properly chosen symmetric positive definite matrix. When H is the
identity matrix, it is the standard 2-norm. The matrix norm is defined as the corre-
sponding induced norm. In the next section, we review an a posteriori output error
bound and point out its limitations.

3. An output error bound based on the residual. A common technique
to derive an error estimation for the projection-based MOR method is based on the
residual [9, 13, 17, 27, 40]. Motivated by the error estimation for the field variable in
[9], an error estimation for the field variable in the vector space and a corresponding
output error bound were proposed in [40], where the nonlinear term g(·; ·) was tackled
by using EI [3]. By defining the residual

(3.1) rn+1(μ) := B(n)
μ ûn(μ) + IM [g(ûn(μ);μ)]−A(n)

μ ûn+1(μ)

for the ROM in (2.4), the error estimations in [40] are summarized as below.
Proposition 3.1. Assume that for all μ ∈ P the operator g(·;μ) : WN → R

N

is Lipschitz continuous w.r.t. the first argument, i.e., there exists a positive constant
Lg, such that

‖g(u1;μ)− g(u2;μ)‖ ≤ Lg‖u1 − u2‖, u1, u2 ∈ WN ,

and that the interpolation of g is “exact” with a certain dimension of S = [s1, . . . ,
sM+M ′ ], i.e.,

IM+M ′ [g(ûn(μ);μ)] =
M+M ′∑
m=1

smβ
n
m(μ) = g(ûn(μ);μ).

Assume further that for all μ ∈ P, the initial projection error is vanishing: e0(μ) = 0,
and the output of interest y(un(μ)) is given as

(3.2) y(un(μ)) = Pun(μ),

where P ∈ R
No×N is a constant matrix. Then the errors for the field variable en(μ) :=

un(μ)− ûn(μ) and the output error enO(μ) := y(un(μ))− y(ûn(μ)) respectively satisfy

‖en(μ)‖ ≤ ηnN,M (μ) := Rn−1
μ +

n−2∑
k=0

⎛
⎝ n−1∏

j=k+1

G
(j)
F,μ

⎞
⎠Rk

μ, n = 1, . . . ,K,(3.3)

∥∥en+1
O (μ)

∥∥ ≤ η̃n+1
N,M (μ)

:= G
(n)
O,μη

n
N,M (μ) + ‖P (A(n)

μ )−1‖εnEI(μ) + ‖P‖‖(A(n)
μ )−1rn+1(μ)‖,(3.4)
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where

Rk
μ = ‖(A(k)

μ )−1‖εkEI(μ) + ‖(A(k)
μ )−1rk+1(μ)‖, k = 0, . . . , n− 1,

G
(j)
F,μ = ‖(A(j)

μ )−1B(j)
μ ‖+ Lg‖(A(j)

μ )−1‖, j = k + 1, . . . , n− 1,

G
(n)
O,μ = ‖P (A(n)

μ )−1B(n)
μ ‖+ Lg‖P (A(n)

μ )−1‖,
and

εnEI(μ) =

M+M ′∑
m=M+1

‖smβn
m(μ)‖(3.5)

is the error due to the EI, n = 0, . . . ,K − 1.
Notice that the error bound for the field variable ηnN,M (μ) is involved in the output

error bound η̃n+1
N,M (μ). Moreover, the former is a summation of the residual and the

error εnEI(μ) over all the previous time steps. This implies that both error bounds are
accumulated over time. As a result, they may lose sharpness when a large number
of time steps are needed, e.g., in the simulation of batch chromatography [40]. The
same phenomenon also exists in the error estimation in [9]. Similar observations are
reported in [25]. To circumvent the problem, we propose a new output error bound
for the ROM in the next section.

4. An a posteriori output error bound using dual systems. In this sec-
tion, we derive a new bound for the output error in the time domain by defining
and using the dual systems. Assume that the FOM from the spatial and temporal
discretization of the PDEs can be written as

(4.1) A(n)
μ un+1(μ) = b(un(μ);μ),

where A
(n)
μ is assumed to be nonsingular for all μ ∈ P , un(μ) ∈ WN is the numerical

solution at time t = tn, and b(·;μ) : WN → R
N can be nonlinear (or linear) w.r.t.

the first argument and/or nonaffine w.r.t. the parameter μ ∈ P , e.g., the right-hand
side of the equation in (2.2). The output of interest is expressed as in (3.2). Here, we
temporally assume No = 1 for simplicity. The extension to the multiple output case
is possible; see Remark 4.8.

To derive an efficient output error estimation, at each time step, we denote the
original system as the primal system

(4.2)

{
A(n)

μ un+1(μ) = b(un(μ);μ),

yn+1(μ) = Pun+1(μ)

and introduce a corresponding dual system as follows:

(4.3) (A(n)
μ )Tun+1

du (μ) = −PT .

Assume that (Vpr,Wpr) and (Vdu,Wdu) are the projection matrix pairs for MOR of
the primal and dual systems, respectively. Using Petrov–Galerkin projection, we have
the ROMs for the primal and the dual systems, respectively,

(4.4)

{
WT

prA
(n)
μ ûn+1(μ) =WT

prb(û
n(μ);μ),

ŷn+1(μ) = P ûn+1(μ),

(4.5) WT
du(A

(n)
μ )T ûn+1

du (μ) = −WT
duP

T ,D
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where ûn(μ) = Vpra
n
pr(μ), û

n
du(μ) = Vdua

n
du(μ) are the approximations to un(μ) and

undu(μ), respectively. The vectors anpr(μ) and a
n
du(μ) are the unknowns of the reduced

primal and the reduced dual systems in (4.4) and (4.5), respectively. The residuals
for both systems read

rn+1
pr := rn+1

pr (μ) = b(ûn(μ);μ)−A(n)
μ ûn+1(μ),(4.6)

rn+1
du := rn+1

du (μ) = −PT − (A(n)
μ )T ûn+1

du (μ),(4.7)

respectively. Define an auxiliary vector

(4.8) r̃n+1
pr := b(un(μ);μ)−A(n)

μ ûn+1(μ) = A(n)
μ un+1(μ)−A(n)

μ ûn+1(μ).

Notice that the only difference of r̃n+1
pr from rn+1

pr is that b(ûn(μ);μ) in (4.6) is replaced
by b(un(μ);μ) in (4.8), so that we have a direct relation between r̃n+1

pr and un+1(μ)−
ûn+1(μ), the error of the approximate solution. This relation will aid the derivation
of the error bound in Theorem 4.1. For simplicity, we define

(4.9) Φn+1
μ := ‖(A(n)

μ )−T ‖‖rn+1
du ‖+ ‖ûn+1

du (μ)‖.

Theorem 4.1. For the systems (4.2) and (4.4), assume that A
(n)
μ is invertible for

any μ ∈ P. Then the output error en+1
O (μ) = yn+1(μ)− ŷn+1(μ) at the time instance

tn+1 satisfies

(4.10) ‖en+1
O (μ)‖ ≤ Φn+1

μ ‖r̃n+1
pr ‖, n = 0, . . . ,K − 1.

Proof. Left-multiplying both sides of (4.3) by
(
un+1(μ)− ûn+1(μ)

)T
, we have

(
un+1(μ)− ûn+1(μ)

)T
(A(n)

μ )Tun+1
du (μ) = − (

un+1(μ)− ûn+1(μ)
)T
PT .

Transposing this equation, we obtain

(4.11)
(
un+1
du (μ)

)T
A(n)

μ

(
un+1(μ)− ûn+1(μ)

)
= −P (

un+1(μ)− ûn+1(μ)
)
.

By the definition of r̃n+1
pr , we have

(4.12) r̃n+1
pr = A(n)

μ

(
un+1(μ)− ûn+1(μ)

)
.

Left-multiplying both sides of (4.12) by
(
un+1
du (μ)

)T
yields

(4.13)
(
un+1
du (μ)

)T
r̃n+1
pr =

(
un+1
du (μ)

)T
A(n)

μ

(
un+1(μ)− ûn+1(μ)

)
.

Combining (4.11) and (4.13), we obtain

−P (
un+1(μ)− ûn+1(μ)

)
=

(
un+1
du (μ)

)T
r̃n+1
pr .

Introducing a vector ỹn+1(μ) = P ûn+1(μ)− (
ûn+1
du (μ)

)T
r̃n+1
pr , we have

(4.14)

|yn+1(μ)− ỹn+1(μ)| = |Pun+1(μ)− P ûn+1(μ) +
(
ûn+1
du (μ)

)T
r̃n+1
pr |

= | − (
un+1
du (μ)

)T
r̃n+1
pr +

(
ûn+1
du (μ)

)T
r̃n+1
pr |

= | − (
un+1
du (μ) − ûn+1

du (μ)
)T
r̃n+1
pr |

≤ ‖un+1
du (μ)− ûn+1

du (μ)‖‖r̃n+1
pr ‖.
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OUTPUT ERROR BOUND FOR MOR OF EVOLUTION EQUATIONS B917

By the definition of the residual in (4.7) and the dual system in (4.3), we have

rn+1
du = −PT − (A(n)

μ )T ûn+1
du (μ)

= (A(n)
μ )Tun+1

du (μ)− (A(n)
μ )T ûn+1

du (μ)

= (A(n)
μ )T

(
un+1
du (μ)− ûn+1

du (μ)
)
.

Since A
(n)
μ is invertible, we have

(4.15) un+1
du (μ)− ûn+1

du (μ) = (A(n)
μ )−T rn+1

du .

Combining (4.14) and (4.15), we obtain

|yn+1(μ)− ỹn+1(μ)| ≤ ‖(A(n)
μ )−T rn+1

du ‖‖r̃n+1
pr ‖ ≤ ‖(A(n)

μ )−T ‖‖rn+1
du ‖‖r̃n+1

pr ‖.
Thus

(4.16)

|yn+1(μ)− ŷn+1(μ)| = |yn+1(μ)− ỹn+1(μ)− (
ûn+1
du (μ)

)T
r̃n+1
pr |

≤ |yn+1(μ)− ỹn+1(μ)|+ | (ûn+1
du (μ)

)T
r̃n+1
pr |

≤ ‖(A(n)
μ )−T ‖‖rn+1

du ‖‖r̃n+1
pr ‖+ ‖ (ûn+1

du (μ)
)T ‖‖r̃n+1

pr ‖
= Φn+1

μ ‖r̃n+1
pr ‖.

Notice that the error bound in (4.10) is not feasible to compute in practice,
because the detailed solution un+1(μ) is involved in the evaluation of ‖r̃n+1

pr ‖. For
this, defining

(4.17) ρn+1(μ) :=
‖r̃n+1

pr ‖
‖rn+1

pr ‖ ,

we have the following two corollaries, showing the existence of ρn+1(μ) by an upper
bound and a lower bound, under certain assumptions. As a result, the output error
bound in Theorem 4.1 becomes

(4.18) ‖en+1
O (μ)‖ ≤ Δn+1

N (μ) := Φn+1
μ ρn+1(μ)‖rn+1

pr ‖.

Corollary 4.2. Under the assumptions in Theorem 4.1, for the vectors {r̃npr}Kn=1,
assume that there exists a positive constant α such that

(4.19) α ≤ ‖r̃n+1
pr ‖

‖r̃npr‖
, n = 1, . . . ,K − 1, μ ∈ P .

Assume that for all μ ∈ P the operator b(·;μ) in (4.2) is Lipschitz continuous w.r.t.
the first argument, i.e., there exists a positive constant Lb such that

(4.20) ‖b(u1;μ)− b(u2;μ)‖ ≤ Lb‖u1 − u2‖, u1, u2 ∈ WN , μ ∈ P .
Assume further

(4.21) Lb < α/‖(A(n)
μ )−1‖, n = 0, . . . ,K − 1, μ ∈ P .

Then

(4.22) ρn+1(μ) ≤ ρn+1(μ) ≤ ρ̄n+1(μ),
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B918 L. FENG, Y. ZHANG, S. LI, AND P. BENNER

where ρn+1(μ) = α

α+Lb‖(A(n−1)
µ )−1‖ , ρ̄

n+1(μ) = α

α−Lb‖(A(n−1)
µ )−1‖ , n = 1, . . . ,K − 1,

and μ ∈ P.
Proof. By the definition of the vectors rn+1

pr and r̃n+1
pr (in (4.6) and (4.8), respec-

tively), and using the Lipschitz condition in (4.20), we have

(4.23)

‖rn+1
pr − r̃n+1

pr ‖ = ‖b(ûn(μ);μ)− b(un(μ);μ)‖
≤ Lb‖ûn(μ)− un(μ)‖ = Lb‖(A(n−1)

μ )−1r̃npr‖
≤ Lb‖(A(n−1)

μ )−1‖‖r̃npr‖.
By the inequality in (4.19), we have

(4.24) ‖r̃npr‖ ≤ ‖r̃n+1
pr ‖/α.

Substituting (4.24) into (4.23), and using the triangle inequality, we have

(4.25) ‖r̃n+1
pr ‖ − ‖rn+1

pr ‖ ≤ ‖rn+1
pr − r̃n+1

pr ‖ ≤ Lb‖(A(n−1)
μ )−1‖‖r̃n+1

pr ‖/α.
With simple calculations, we have

(4.26)
‖r̃n+1

pr ‖
‖rn+1

pr ‖ ≤ α

α− Lb‖(A(n−1)
μ )−1‖

,

i.e., the second inequality in (4.22) is thus proven. Analogously, replacing the left-
hand side in (4.25) with ‖rn+1

pr ‖ − ‖r̃n+1
pr ‖ yields the first inequality in (4.22).

The assumption for Lb in (4.21) in Corollary 4.2 is reasonable only when ‖(A(n)
μ )−1‖

is relatively small or moderate at most. When ‖(A(n)
μ )−1‖ is large, we have the fol-

lowing corollary, where other upper and lower bounds for ρn(μ) are provided.
Corollary 4.3. Under the assumptions in Theorem 4.1, for the vectors {r̃npr}Kn=1,

assume that there exist two positive constants α, ᾱ such that

(4.27) α ≤ ‖r̃npr‖
‖r̃n+1

pr ‖ ≤ ᾱ, n = 1, . . . ,K − 1, μ ∈ P .

Assume that for all μ ∈ P the operator b(·;μ) in (4.2) is bi-Lipschitz continuous w.r.t.
the first argument, i.e., there exist two positive constants Lb, L̄b such that

(4.28) Lb‖u1 − u2‖ ≤ ‖b(u1;μ)− b(u2;μ)‖ ≤ L̄b‖u1 − u2‖, u1, u2 ∈ WN , μ ∈ P .
Assume further

(4.29) Lb > α−1/‖(A(n)
μ )−1‖, n = 0, . . . ,K − 1, μ ∈ P .

Then

(4.30) ρn+1(μ) ≤ ρn+1(μ) ≤ ρ̄n+1(μ),

where ρn+1(μ) = 1

ᾱL̄b‖(A(n−1)
µ )−1‖+1

, ρ̄n+1(μ) = 1

αLb‖(A(n−1)
µ )−1‖−1

, n = 1, . . . ,K − 1,

μ ∈ P.
Proof. By the definition of the vectors rn+1

pr and r̃n+1
pr (in (4.6) and (4.8), respec-

tively), and using the Lipschitz condition in (4.28), we have

(4.31)

‖rn+1
pr − r̃n+1

pr ‖ = ‖b(ûn(μ);μ)− b(un(μ);μ)‖
≥ Lb‖ûn(μ)− un(μ)‖ = Lb‖(A(n−1)

μ )−1r̃npr‖
≥ Lb‖(A(n−1)

μ )−1‖‖r̃npr‖.
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By the first inequality in (4.27), we have

(4.32) ‖r̃npr‖ ≥ α‖r̃n+1
pr ‖.

Substituting (4.32) into (4.31), and using the triangle inequality, we have

‖r̃n+1
pr ‖+ ‖rn+1

pr ‖ ≥ ‖rn+1
pr − r̃n+1

pr ‖ ≥ αLb‖(A(n−1)
μ )−1‖‖r̃n+1

pr ‖,

so that

(αLb‖(A(n−1)
μ )−1‖ − 1)‖r̃n+1

pr ‖ ≤ ‖rn+1
pr ‖,

which implies that the second inequality in (4.30) holds. For the first inequality in
(4.30), analogous to (4.25), we have

‖rn+1
pr ‖ − ‖r̃n+1

pr ‖ ≤ ‖rn+1
pr − r̃n+1

pr ‖ ≤ ᾱL̄b‖(A(n−1)
μ )−1‖‖r̃n+1

pr ‖,

due to the new assumptions in (4.27) and (4.28). The first inequality in (4.30) is thus
proven.

Although the bi-Lipschitz continuity is required in Corollary 4.3, no restriction
is imposed on the upper Lipschitz constant L̄b. Moreover, the restriction on Lb in

(4.28) is actually not strong if ‖(A(n)
μ )−1‖ is large. For example, for systems which

are nearly noncoercive, ‖(A(n)
μ )−1‖ can be of O(103), or even larger.

Notice that (4.22) and (4.30) hold for n = 1, . . . ,K−1. When n = 0, ‖r̃1pr‖/‖r1pr‖ =
1 for zero initial conditions, i.e., u(0;μ) ≡ 0. For problems with nonzero initial condi-
tions, i.e., u(0;μ) �= 0, one can use the variable transformation ũ(μ) = u(μ)− u(0;μ)
to derive a transformed system with zero initial conditions; then the same conclusion
can be similarly obtained.

Remark 4.4. From Corollaries 4.2 and 4.3, we know that the quantity ρn+1(μ) in
(4.18) is bounded. One may use an upper bound ρ̄n+1(μ) in (4.22) or (4.30) to derive
an output error bound, namely,

(4.33) ‖en+1
O (μ)‖ ≤ Φn+1

μ ρ̄n+1(μ)‖rn+1
pr ‖.

However, computing ρ̄n+1(μ) involves computing the Lipschitz constant Lb (or Lb)
and α (or α), which are nevertheless not practically computable.

Alternatively, for an efficient computation, one can directly estimate ρn+1(μ) by
observing the maximal ratio among all the time steps maxk∈{1,...,K}{ρk(μ�)}, or the
average ratio 1

K

∑K
k=1 ρ

k(μ�) when the average of the output errors is estimated.
Here, μ� is the parameter selected by the greedy algorithm, to be addressed in the
following section. To compute the quantity r̃kpr(μ�) for ρ

k(μ�), the detailed solutions

uk(μ�), k = 1, . . . ,K, at μ� are required, which cause no additional cost for snapshot-
based MOR methods because the detailed solutions at this parameter μ� are already
available after the RB extension. Although the parameter μ�, which causes the largest
error (measured by the error estimation) in the parameter domain, may not be the one
that causes the largest ratio ρn+1(μ), it makes sense to use the data at μ� to estimate
ρn+1(μ). It should be pointed out that such an estimation on ρn+1(μ) can result in
a sharp estimate but may sacrifice the rigorousness. Thus, we may say that the error
“bound” obtained by estimating ρn+1(μ) is only an output error estimation.

Remark 4.5. When the operator b(·;μ) is nonlinear w.r.t. the first argument
and/or nonaffine w.r.t. the parameter μ, EI [3] can be employed. The ROM can be
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B920 L. FENG, Y. ZHANG, S. LI, AND P. BENNER

formulated following (2.4). In such a case, the term ‖rn+1
pr ‖ in (4.18) can be further

bounded using the EI error bound,

‖rn+1
pr ‖ = ‖B(n)

μ ûn(μ) + g(ûn(μ);μ)−A(n)
μ ûn+1(μ)‖

= ‖B(n)
μ ûn(μ) + IM [g(ûn(μ);μ)]−A(n)

μ ûn+1(μ)

+ g(ûn(μ);μ) − IM [g(ûn(μ);μ)]‖
≤ ‖rn+1(μ)‖ + ‖g(ûn(μ);μ)− IM [g(ûn(μ);μ)]‖
≤ ‖rn+1(μ)‖ + εnEI(μ),

where rn+1(μ) is defined in (3.1), and εnEI(μ) is the error due to the EI, as defined in
(3.5).

To compute the error bound in (4.18), one needs to efficiently compute the norm

of the matrix inverse (A
(n)
μ )−T . The following remark addresses how to evaluate

‖(A(n)
μ )−T ‖. Note that no assumption is imposed to the matrix A

(n)
μ .

Remark 4.6. If the vector norm is taken as the standard 2-norm, e.g., when the
discrete system is obtained by the finite volume or finite difference discretization, the

matrix norm ‖(A(n)
μ )−T ‖ is the spectral norm of (A

(n)
μ )−T . Therefore,

(4.34) ‖(A(n)
μ )−T ‖2 = ‖(A(n)

μ )−1‖2 = σmax

(
(A(n)

μ )−1
)
=

1

σmin(A
(n)
μ )

,

the reciprocal of the smallest singular value of A
(n)
μ . For some special cases in which

the matrix A
(n)
μ is a constant matrix, the smallest singular value of A is computed

once and can be used repeatedly.
For the general vector norm ‖·‖H , induced by the inner product 〈v1, v2〉 := vT1 Hv2,

v1, v2 ∈ WN , where H is a symmetric positive definite matrix, e.g., the mass matrix
in the FE discretization, the induced matrix norm can be defined as

‖Z‖H := max
‖x‖=1

‖Zx‖H = max
‖x‖=1

√
xTZTHZx = ‖ZTHZ‖2, Z ∈ R

N×N .

This implies that

‖ZTHZ‖2 =
√
λmax

(
(ZTHZ)

T
ZTHZ

)
= λmax(Z

THZ)

= λmax

(
ZTLTLZ

)
= σ2

max(LZ).

Here L is a lower triangular matrix of the Cholesky factorization of H , i.e., LTL =

H ; λmax(·) refers to the largest eigenvalue of a matrix. Thus, ‖(A(n)
μ )−T ‖H can be

obtained as

‖(A(n)
μ )−T ‖H = σ2

max

(
L(A(n)

μ )−T
)
=

1

σ2
min((A

(n)
μ )TL−1)

.

Remark 4.7. The assumptions on the Lipschitz constants (i.e., Lb and Lb) in
Corollaries 4.2 and 4.3 require that α and α cannot be too small. This can be achieved
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if the time step of the detailed simulation is well chosen. In fact, a well chosen time
step results in an even distribution of the error of the solution to the FOM over
the time interval, and this property can be inherited by the solution of the ROM,
see, e.g., [20]. In addition, the values of α, α, and ᾱ are O(1), as will be shown in
Figures 2 and 7 in section 6.

Remark 4.8. For the case of multiple outputs, i.e., No > 1, an error bound for
each component of the output vector can be obtained from Theorem 4.1. The final
error bound for the whole vector of outputs can be taken as the maximum of all the
error bounds.

Notice that the error bound is independent of the projection matrix pairs (Vpr,Wpr)
and (Vdu,Wdu). It is applicable to any projection-based MOR method. In addition,
if one takes Wpr = Vpr, then the ROM can be obtained by using Galerkin projection,
as is usually implemented by RB MOR methods.

Remark 4.9. For dynamic systems, even Galerkin projection cannot guarantee
the stability of the ROM [7, 37]. The stability issue of the ROM is, in general, still
an open problem, though many studies have been made and some strategies have
been suggested to prevent producing unstable ROMs for certain problems; see, e.g.,
[1, 19, 31, 33, 37].

5. Construction of the projection matrix. In this section, we focus on the
construction of the projection matrix using the RB method [27]. Usually, Galerkin
projection is employed to construct the ROM for the RB method, i.e., W = V . For
parametrized systems, the projection matrix V is usually generated iteratively through
a greedy algorithm, by which the dimension of the reduced space can be kept as small
as possible while the accuracy of the ROM is guaranteed. More precisely, a training
set Ptrain with a finite number of parameter samples is typically chosen a priori in an
admissible parameter domain. At each extension step, a parameter μ�, which causes
the largest error measured by a proper error estimator ψ(·), is chosen from Ptrain to
enrich the projection matrix. The iteration continues until the error estimator ψ(μ�)
goes below the required accuracy εROM. For time dependent problems, the POD-
Greedy algorithm [17] is often used to construct the RB. Algorithm 1 shows the basic
step of the POD-Greedy algorithm.

Algorithm 1. RB generation using POD-Greedy.
Input: Ptrain, μ0, εROM(< 1).
Output: RB V = [v1, . . . , vN ].
1: Initialization: N = 0, μ� = μ0, ηN (μ�) = 1, V = [ ].
2: while ψN (μ�) > εROM do
3: Compute the trajectory Smax := {un(μ�)}Kn=0.
4: Enrich the RB, e.g., V := [V, vN+1], where vN+1 is the first POD mode of the

matrix Ū := [ū0, . . . , ūK ] with ūn := un(μ�) − ΠWN [un(μ�)], n = 0, . . . ,K.
ΠWN [u] is the projection of u onto the current space WN := span{v1, . . . , vN}.

5: N = N + 1.
6: Find μ� := arg max

μ∈Ptrain

ψN (μ).

7: end while

Remark 5.1. For many problems, like the batch chromatographic model and
the SMB model under consideration in this paper, the total number of time steps
in the FOM simulation is very large. This implies that the number of snapshots K
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in step 3 in Algorithm 1 is large if no appropriate pretreatment for the snapshots
is applied. The large number of snapshots will result in expensive computations in
step 4. To tackle this problem, the technique of adaptive snapshot selection [5, 40]
can be employed to discard the redundant (linearly dependent) information from the
trajectory, so that the runtime for the RB construction can be largely reduced.

6. Numerical experiments. In this section, four models will be presented to
show the performance of the proposed error estimation. The first one is a linear
convection-diffusion equation in [13], which is used to compare the performance of
the new error estimation and the error bound using the existing primal-dual ap-
proach [13, 16]. The second model is the viscous Burgers’ equation, which is used
to demonstrate that our method is applicable to a large class of nonlinear evolution
equations. The other two models arise from chromatographic separation processes,
which are a batch chromatographic model and a linear continuous SMB model. For
particular applications in chemical engineering, the resulting ROMs are employed to
solve the underlying optimization problems.

The RB method [17, 27, 40] is employed to construct the ROMs for all the fol-
lowing examples. More specifically, Algorithm 1 is used to generate the projection
matrix V , and the ROMs are constructed by using Galerkin projection. For compar-
ison, we use the newly proposed output error estimation and some existing output
error bounds or estimations as error indicators to construct the ROMs, respectively.
The error indicator is defined as ψN (μ) := 1

K

∑K
n=1 Ψ

n
N(μ), where Ψn

N(μ) is the cor-
responding output error bound/estimation for the parameter μ at the time instance
tn. For example, when the newly proposed output error estimation is employed,
Ψn

N (μ) = Δn
N (μ), where Δn

N (μ) is defined in (4.18). The error indicator ψN (μ) is

used to measure the average output error (i.e., 1
K

∑K
n=1 ‖y(un(μ)) − y(ûn(μ))‖) over

the whole evolution process.

In what follows, EB refers to the existing output error bound or estimation, and
ES refers to the newly proposed error estimation. To compute the new output error
estimation, the quantity ρn+1(μ) in (4.18) needs to be estimated, as discussed in

Remark 4.4. In this work, we use the average ratio ρ̃�N := 1
K

∑K
k=1 ρ

k(μ�) to estimate
ρn+1(μ), since we measure the average of the output errors over time. More precisely,
after each iteration of the greedy algorithm, we compute the average ratio ρ̃�N at the
selected parameter μ� and use it as an estimate of ρn+1(μ) for the next iteration. All
the computations were done with C++ code on a PC with an Intel Core 2 Quad CPU
Q9550 2.83 GHz 4.00 GB RAM unless stated otherwise.

6.1. Linear convection-diffusion equation. In this section, we consider a
linear convection-diffusion equation which models the movement of fluids and other
transport phenomena. This model is used as a test case for the primal-dual error
bound in [13]. Here we use it to compare the performance of the proposed error
estimation and the existing primal-dual error bound in [13, 16].

6.1.1. Model description and reduced-order modeling. The governing
equation for this model is given by

ut = q1uxx + q2ux − q2, x ∈ Ω := (0, 1), t ∈ (0, T ].

The initial and boundary conditions are

u(0, x) = −2x2 + 2x; u(t, 0) = u(t, 1) = 0, t > 0.
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Fig. 1. Decay of the error estimates and the corresponding true error during the RB construc-
tion process for the linear convection-diffusion equation. EB: the error bound in [16]; ES: the newly
proposed error estimation.

The output of interest is the average value of u over a small interval Ω0 as a function
of time, i.e., y(u(t)) := 1

|Ω0|
∫
Ω0
u(t, x) dx, Ω0 := [0.495, 0.505].

In this model, we chose the diffusivity q1 and the velocity q2 as the parameters,
i.e., μ := (q1, q2). The interesting parameter domain is chosen as P := [0.1, 1]×[0.5, 5].
To construct the FOM, we use the finite volume method for the spatial discretization
and the backward Euler scheme for the temporal discretization. We chose the number
of degrees of freedom for the FOM N = 800, and an equal time step Δt = T/K,
T = 1,K = 100. The FOM is of the general form in (2.2), except that no nonlinear
term is involved. Algorithm 1 is employed to construct the ROM with two different
output error estimations.

6.1.2. Results. The training set Ptrain consists of 200 sample points randomly
distributed in the parameter domain P . Figure 1 shows the decay of both error es-
timates and the corresponding true error for the output during the RB construction
process. ROM-1 and ROM-2 are the ROMs constructed by using EB and ES, re-
spectively. It is seen that the new ES outperforms the existing primal-dual EB in
[16].

As mentioned above, the estimation of ρn(μ) (by ρ̃�N ) is based on the fact that
it is bounded, as shown in the two corollaries, i.e., Corollaries 4.2 and 4.3. We have
carefully checked the assumptions made in the two corollaries, and the results are

detailed as follows. First, we found that all values of ‖(A(n)
μ )−1‖ are in the range

of O(1); more precisely, they are in the interval [0.9, 1.0]. Second, we plot the ratio
‖r̃n+1

pr ‖/‖r̃npr‖ at the chosen parameter μ� as a function of the time index tn for different
RB dimensions in Figure 2. It can be seen that all the values of the ratio are in the
range of [0.4, 3]. In fact, the ratio at other dimensions is pretty similar, i.e., it is always
in the range in O(1). This means that the constant α in (4.19) exists, and it is also in

O(1). As a result, α/‖(A(n)
μ )−1‖ ≈ O(1), and the condition on the Lipschitz constant

in (4.21) becomes Lb � 1, which is reasonable for a linear continuous operator, as
here for this example Lb = 1. Thus, all the assumptions in Corollary 4.2 are satisfied,
so the quantity ρn(μ) is bounded, and in turn, using ρ̃�N as an estimate of ρn(μ) is
practical and meaningful. Figure 3 shows the average ratio ρ̃�N as a function of the
RB size N . We see that it converges to 1 as the RB is extended.
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Fig. 2. Behavior of the ratio
‖r̃n+1‖
‖r̃n‖ in the time trajectory corresponding to different RB

dimensions for the linear convection-diffusion equation.

0 5 10 15 20
0.5

1

1.5

2

2.5

3

Size of RB: N

R
at

io

Fig. 3. Behavior of the average ratio ρ̃�N during the RB construction process for the linear
convection-diffusion equation.

6.2. Burgers’ equation. The Burgers’ equation describes the fundamental non-
linear phenomena in fluid dynamics and is often considered as the starting point to
test a new algorithm for nonlinear problems. We now use the unsteady viscous Burg-
ers’ equation to show that the proposed error estimation is applicable to MOR for
general nonlinear evolution equations.

6.2.1. Reduced-order modeling of Burgers’ equation. In this work, we
consider the unsteady viscous Burgers’ equation as follows:

(6.1) ut +

(
u2

2

)
x

= νuxx + s(u, x), x ∈ (0, 1), t ∈ (0, T ],

where ν ∈ P is the viscosity coefficient, and s(u, x) is the source term. The output of
interest is the value of u at x = 1 as a function of t, i.e., y(t; ν) := u(t, 1; ν).

In this model, the viscosity coefficient ν is considered as the parameter, i.e.,
μ := ν. Note that the computation becomes more challenging when ν is smaller, e.g.,
ν ≈ O(10−3), because the instability grows exponentially with the evolution time
[25]. For MOR, it becomes more challenging when a smaller value of ν is involved.
To numerically verify this, we chose two parameter domains: P̃ = [0.05, 1] and P =
[0.001, 1]. We will see that the ROM has a better convergence rate and other good
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properties when P̃ with a larger value of ν is employed. We take T = 2 and s(u, x) ≡ 1
in the following computations. For discretization, we use the finite volume method to
construct the FOM, in the general form of (2.2).

An a posteriori error estimation for the RB method applied to this equation is
proposed in [25], where the successive constraint method was used to estimate the
lower bound of the stability constant. The error estimation is actually a summation
over time of the dual norm of the residual. As pointed out in [25], this error estimation
is no longer useful when the viscosity ν is small and the final time T is large. In addi-
tion, this error estimation is applicable to problems which are at most quadratically
nonlinear. In contrast, the newly proposed error estimation is applicable to MOR for
general nonlinear evolution equations.

6.2.2. Results. The following results are obtained by using the following initial
and boundary conditions:

u(0, x) = 0, x ∈ [0, 1]; u(t, 0) = 0, ux(t, x)|x=1 = 0.

We use a uniform spatial grid with N = 500 cells for the FOM and Δt = T/K,K =
1000 for both the FOM and ROM simulations.

Figure 4 shows the solutions to the FOM as a function of x and tn. Each line
represents the solution u(x, tn) at the time instance t = tn, n = 10j, j = 0, . . . ,K/10.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

x

un (x
)

(a) ν = 0.001

0 0.2 0.4 0.6 0.8 1
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x

un (x
)

(b) ν = 0.01
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un (x
)

(c) ν = 0.1

0 0.2 0.4 0.6 0.8 1
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0.5

x

un (x
)

(d) ν = 1.0

Fig. 4. Solution of the Burgers’ equation as a function of x and tn with different viscosity
coefficients ν. Each line represents the solution u(x, tn) at the time instance t = tn, n = 10j,
j = 0, . . . , K/10.
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Fig. 5. Decay of the error bound/estimation and the corresponding true error during the RB
construction process for the Burgers’ equation. EB: the error bound in Proposition 3.1; ES: the
newly proposed error estimation. (a) ν ∈ P̃ = [0.05, 1]; (b) ν ∈ P = [0.001, 1].

The evolution process tends to be steady at final time. For the ROM construction, we
chose a training set with 70 sample points log-uniformly distributed in the parameter
domain P to build the RB and the basis for the EI, respectively.

The behavior of the error bounds and the corresponding true error are illustrated
in Figure 5. It is seen that in both cases the new error estimation, denoted as ES,
works much better than EB, which is based on Proposition 3.1. Moreover, the new
error estimation is fairly sharp in comparison with the true error. Last but not least,
the convergence rate becomes relatively slow and many more basis vectors are needed
to achieve a certain accuracy, when smaller viscosity coefficient ν is involved. Since
this is just an academic numerical example, there is not much computational time
reduction from the ROM. For runtime comparison, we will report the computational
time for the more challenging problems in the following subsections.

As discussed in Remark 4.4, the constant ρn(μ) can be estimated based on the
observation of the average ratio over all the time steps at the selected parameter μ� at
each iteration step of the greedy algorithm. Notice that the ratio is changing with the
dimension of the RB and with the parameter μ� selected at each iteration step. The
behavior of the ratio during the RB extension process is illustrated in Figure 6. From
Figure 6(a), we see that the ratio decreases (“almost monotonically”) as the RB is
extended, which demonstrates that the difference between ‖r̃n+1

pr ‖ and ‖rn+1
pr ‖ becomes

small as the accuracy of the ROM is increased. However, when smaller viscosity
coefficient ν is involved, the ratio oscillates during the basis extension process, as
shown in Figure 6(b). This is probably because the instability grows too fast when
ν is small. In most cases, the value of the ratio is of the magnitude O(1), when the
accuracy of the ROM achieves a certain degree, which will be further confirmed in
the following examples (see Figures 9 and 12).

As addressed in Remark 4.7, with well-chosen time steps, the approximation errors
(ûn(μ)− un(μ)) can be evenly distributed in the time trajectory, so that the norm of

the vectors r̃n+1
pr = A

(n)
μ un+1(μ) − A

(n)
μ ûn+1(μ) is of the same magnitude over time,

i.e., the assumptions in (4.21) and (4.29) (in Corollaries 4.2 and 4.3, respectively)

are fulfilled. To numerically verify this, we plot the ratio
‖r̃n+1

pr ‖
‖r̃npr‖ as a function of

time instant tn for different RB dimensions in Figure 7. It is seen that the ratio
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Fig. 6. Behavior of the average ratio ρ̃�N during the RB construction process for the Burgers’

equation. (a) ν ∈ P̃ = [0.05, 1]; (b) ν ∈ P = [0.001, 1].
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Fig. 7. Behavior of the ratio ‖r̃n+1‖
‖r̃n‖ in the time trajectory corresponding to different RB

dimensions for the Burgers’ equation. (a) ν ∈ P̃ = [0.05, 1]; (b) ν ∈ P = [0.001, 1].

is in the range of [0.85, 1.5], which implies that the constants α, α, and ᾱ are all
of the magnitude of O(1). In addition, based on our discretization, the norms of

the matrix inverse ‖(A(n)
μ )−1‖ are all in range of [0.95, 1] for all μ ∈ Ptrain. Thus,

α/‖(A(n)
μ )−1‖ ≈ O(1), which means that the assumption on the Lipschitz constant

Lb in (4.20) in Corollary 4.2 is reasonable. To avoid repetition, we will not show the
similar plots for the next two examples.

6.3. Batch chromatographic model. Batch chromatography is an important
chemical process and is widely used for separation and purification in industry. In
this subsection, we show the performance of the new error estimation as compared to
the error bound in Proposition 3.1.

6.3.1. Model description and optimization. The governing equations of
batch chromatography are as follows:

D
ow

nl
oa

de
d 

01
/2

5/
16

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

B928 L. FENG, Y. ZHANG, S. LI, AND P. BENNER

(6.2)

⎧⎪⎪⎨
⎪⎪⎩
∂cz
∂t

+
1− ε

ε

∂qz
∂t

= −∂cz
∂x

+
1

Pe

∂2cz
∂x2

, 0 < x < 1,

∂qz
∂t

=
L

Q/(εAc)
κz(q

Eq
z − qz), 0 ≤ x ≤ 1,

where cz, qz are the concentrations of the component z (z = a, b) in the liquid and solid
phases, respectively, Q the volumetric feed flow rate, Ac the cross-sectional area of the
column with the length L, ε the column porosity, κz the mass-transfer coefficient, and
Pe the Péclet number. The adsorption equilibrium qEq

z is described by the isotherm
equations of bi-Langmuir type,

qEq
z = fz(ca, cb) :=

Hz1cz

1 +Ka1cfaca +Kb1cfbcb
+

Hz2cz

1 +Ka2cfaca +Kb2cfbcb
,

where cfz is the feed concentration of component z. The initial and boundary condi-
tions are given as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cz(0, x) = 0, qz(0, x) = 0, 0 ≤ x ≤ 1,

∂cz
∂x

|x=0 = Pe
(
cz(t, 0)− χ[0,tin](t)

)
,

∂cz
∂x

|x=1 = 0,

where tin is the injection period, and χ[0,tin] is the characteristic function,

χ[0,tin](t) =

{
1 if t ∈ [0, tin],
0 otherwise.

In this paper, we consider the flow feed rate Q and the injection period tin as the
operating parameters, i.e., μ := (Q, tin). We chose the interesting parameter domain
as P := [0.0667, 0.1667]×[0.5, 2]. The outputs of interest are the concentrations at the
outlet of the column, i.e., y(t;μ) := (ca,O(t;μ), cb,O(t;μ)), where cz,O(t;μ) = cz(t, 1;μ)
is the concentration of component z at the outlet of the column, z = a, b.

The optimization of batch chromatography considered here aims to maximize the
production rate Pr while respecting the requirement of the recovery yield Rec, i.e.,

min
μ∈P

{−Pr(μ)},
s.t. Recmin −Rec(μ) ≤ 0, μ ∈ P ,

cz(μ), qz(μ) are the solutions to the system (6.2), z = a, b,

where Pr(μ) = Qp(μ)
t4−t1

, Rec(μ) = p(μ)

tin(cfa+cfb)
, p(μ) =

∫ t4
t3
ca,O(t;μ) dt +

∫ t2
t1
cb,O(t;μ) dt,

and Recmin is the minimal requirement of the recover yield. The cutting points t1, t4
are determined by a minimum concentration threshold that the detector can resolve,
and t2, t3 are determined by the requirement of the product purity. More details can
be found in [40].

6.3.2. Reduced-order modeling of the batch chromatographic model.
We use finite volume discretization to construct the FOM in the formulation of (4.1).
The training set Ptrain consists of 60 sample points uniformly distributed in the pa-

rameter domain. The ROM is in the form of (4.4). The coefficient matrix A
(n)
μ in (4.1)

is a constant matrix at all time instances tn, n = 0, . . . ,K − 1, and is independent
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Fig. 8. Decay of the error bound/estimation and the corresponding true error during the RB
construction process for batch chromatography. EB: the error bound in Proposition 3.1; ES: the
newly proposed error estimation.

Table 1

Comparison of runtime for the generation of the RB using two error estimates for batch chro-
matography.

Model Runtime (h)*

ROM using EB 6.8
ROM using ES 7.6
* Due to memory limitations of the PC, these computations were done on a workstation with
4 Intel Xeon E7-8837 CPUs (8 cores per CPU), 2.67 GHz, 1 TB RAM.

of the parameter μ. This implies that the dual system (4.3) is independent of the
parameter and time. Consequently, the related quantities from the dual system for
the error estimation are computed only once for all the sample points in the training
set at the current iteration step of the greedy algorithm. They are updated only at
the next greedy iteration step.

6.3.3. Results. Since we have two outputs (ca,O(t;μ), cb,O(t;μ)) in this model,
we define a dual system for each output to compute an output error estimation and
take the maximum as the error indicator for the parameter μ, as discussed in Re-
mark 4.8. Figure 8 shows the error estimation decay as the RB is enriched. It is seen
that the new output error estimation (ES) works much better than the old one (EB).
The new error estimation goes below the prespecified tolerance as the number of the
RB increases to 45; in contrast, EB almost stagnates and is still above the tolerance.

To show the efficiency of the new error estimation, we compare the runtime for
the generation of the RB. From Table 1, we see that using ES takes slightly more
time than using EB. This is because the residual of an additional dual system needs
to be computed for ES. However, since ES is much more accurate than EB, it deserves
spending a bit more computational time for acquiring a more reliable ROM.

Figure 9 shows the behavior of the average ratio ρ̃�N during the RB extension
process. We have the same conclusion as above, i.e., the difference between ‖r̃n+1

pr ‖
and ‖rn+1

pr ‖ becomes small as the accuracy of the ROM is increased. The ratio stays
in the scale of O(1) when the number of basis vectors is larger than 20.

Before addressing the ROM-based optimization, we assess the validation of the
ROM. To this end, we perform detailed and reduced simulations over a test set with
500 random samples of the parameter in the feasible domain. Table 2 shows the
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Fig. 9. Behavior of the average ratio ρ̃�N during the RB construction process for batch chro-
matography.

Table 2

Comparison of runtime for the detailed and reduced simulations of batch chromatography over
a validation set with 500 random sample points. εROM = 1× 10−4.

Model Maximal error Average runtime (s)/SpF
FOM (N = 1500) – 339.02(-)
ROM (N = 45) 8.16× 10−7 5.95/ 57

Table 3

Comparison of the optimization of batch chromatography based on the FOM (FOM-Opt.) and
the ROM (ROM-Opt.).

Method Objective Optimal solution #Iterations Runtime (h)/SpF
FOM-Opt. 0.020264 (0.07964, 1.05445) 202 33.88 / -
ROM-Opt. 0.020266 (0.07964, 1.05445) 202 0.58 / 58

results. It is seen that the average runtime is sped up by a factor of 58 by using
the ROM, and the maximal true output error is 8.16 × 10−7, which is below the
prespecified tolerance. We use the global optimizer NLOPT GN DIRECT L in the
open library NLopt [21] to solve the optimization problems. The tolerance for the
optimization is taken as εopt = 1.0× 10−4. The optimization results are summarized
in Table 3. The optimal solution of the ROM-based optimization converges to that
of the FOM-based optimization one, and the runtime is significantly reduced. The
speedup factor (SpF) is 58.

6.4. Continuous SMB chromatographic model. SMB chromatography is a
continuous multicolumn process and has been widely used as an efficient separation
technique in chemical engineering. Recent studies on MOR of the SMB model can
be found in [22] and the references therein. In [22] the ROM is generated by a
POD-based MOR method and the ROM needs to be updated during the trust-region
optimization process. Here, we use the RB method to build a ROM, which is qualified
over the whole parameter domain. Notably, for problems like the SMB model under
consideration, the evolution process is extraordinarily complicated due to the periodic
switching procedure. This makes the existing error estimators, e.g., in [9, 40], hard
to compute, because extra errors are introduced due to the switching. In contrast,
the new error estimator only considers the residual at the current time instance, i.e.,
relatively independent of the previous steps.
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Fig. 10. Schematic illustration of a SMB chromatographic process with four zones and eight
columns.

6.4.1. Model description and optimization. A classical SMB process with
four zones is schematically shown in Figure 10. The SMB model consists of sev-
eral single column models which are assembled with balance equations at the inlets
and outlets. It is assumed that the flow behavior of each column is described as
a plug-flow with a limited mass-transfer rate characterized by a linear driving force
approximation. The governing equations for each column model are given by⎧⎪⎪⎨

⎪⎪⎩
∂cz
∂t

+
1− ε

ε

∂qz
∂t

= − Qts
εAcL

(
∂cz
∂x

− 1

Pe

∂2cz
∂x2

)
, 0 < x < 1,

∂qz
∂t

= tsκz(q
Eq
z − qz), 0 ≤ x ≤ 1,

(6.3)

where cz and qz are the concentrations of the solute z (z = a, b) in the liquid and
solid phases, and other quantities like Q, Ac, ε, L, and Pe have the same meanings as
those in the batch chromatographic model above, t and x are the dimensionless time
and spatial coordinates, and ts is the switching period. The adsorption equilibrium
is qEq

z := Hzcz with Hz being the Henry constant, which implies that the system of
equations (6.3) is linear. It is assumed that Ha > Hb. The boundary conditions are⎧⎪⎨

⎪⎩
∂cz
∂x

|x=0 = Pe(cz(t, 0)− cinz ),

∂cz
∂x

|x=1 = 0,

where cinz is the concentration of component z at the column inlet. More details about
the description of the SMB model, e.g., the balanced equations around the inlet and
outlet nodes, can be found in [22, 30]. The model parameters are summarized in
Table 4.

As a case study, we use an SMB model with four zones and eight columns, as
shown in Figure 10. In this model, the flow rate in each zone Qi, i = I, . . . , IV, and the
switching period ts are the operating parameters. Alternatively, four corresponding
dimensionless quantities mi, i = I, . . . , IV, and the feed flow rate Qf can also be
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Table 4

Model parameters and operating conditions for the SMB model.

Column dimensions (cm) 2.6 × 11
Column porosity ε (-) 0.4
Péclet number Pe (-) 500
Mass-transfer coefficients κz , z = a, b (1/s) 0.1
Feed concentrations cfz , z = a, b (g/l) 2.9
Henry constants Ha, Hb (-) 3.86, 2.72

chosen as the operating parameters. The four dimensionless quantities introduced by
the triangle theory [23] are defined as

mi =
Qits − εV

V(1 − ε)
, i = I, . . . , IV,

whereV is the volume of the column. Given a set of parameters μ := (mI, . . . ,mIV, Qf),
the SMB process reaches a cyclic steady state (CSS) with a periodic switching along
the circularly arranged columns. The CSS condition is defined by

max
z∈{a,b}

max {‖cz(0, ·)− Ps[cz(1, ·)]‖, ‖qz(0, ·)− Ps[qz(1, ·)]‖} < εCSS,

where εCSS is the specified CSS tolerance. The switching procedure is expressed as

cz,T+1(0, x) = Ps[cz,T (1, x)], qz,T+1(0, x) = Ps[qz,T (1, x)], T = 1, 2, . . . ,

where Ps[·] is a columnwise switching operator, and T refers to the T th period. In this
model, the outputs of interest are the concentrations at the extract and the raffinate
outlets in the CSS period, i.e.,

y(t, μ) := (cEa,CSS(t;μ), c
R
a,CSS(t;μ), c

E
b,CSS(t;μ), c

R
b,CSS(t;μ)),

where cEz,CSS(t;μ), c
R
z,CSS(t;μ) are the CSS concentrations of cz at the extract and the

raffinate outlets, respectively, z = a, b. The interesting parameter domain is taken as
P := [4.2, 4.7]× [2.5, 3.0]× [3.5, 4.0]× [2.2, 2.7]× [0.05, 0.1].

In this work, we consider an optimization problem of the SMB model as follows:

min
μ∈P

f(μ), f(μ) = −Qf,

s.t. Pua,min − Pua(μ) ≤ 0,

Pub,min − Pub(μ) ≤ 0,

QI −Qmax ≤ 0,

where Pua(μ) =
∫

1
0
cEa,CSS(t;μ)dt∫

1
0
cEa,CSS(t;μ)dt+

∫
1
0
cEb,CSS(t;μ)dt

, Pub(μ) =
∫

1
0
cRb,CSS(t;μ)dt∫

1
0
cRa,CSS(t;μ)dt+

∫
1
0
cRb,CSS(t;μ)dt

are the product purities at the extract and the raffinate outlets. Solving such an
optimization problem is time-consuming because it takes many iterations to converge
and each iteration needs to simulate the original FOM till the CSS. We now use MOR
to tackle this problem.

6.4.2. Reduced-order modeling of the SMB model. We use the finite vol-
ume discretization to construct the FOM as follows:{

Aμ,zc
n+1
z = Bμ,zc

n
z + rnz + tsκzq

n
z ,

qn+1
z = (1− tsκzΔt)q

n
z + tsκzHzΔtc

n
z .
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Note that the coefficient matrices Aμ,z and Bμ,z are time independent compared to the
general form in (2.2), rnz comes from the feed conditions, and it does not dependent
on the field variables. Let Vcz ∈ R

N×Ncz , Vqz ∈ R
N×Nqz be the RB matrices for

the field variables cz, qz, respectively, and ĉ
n
z := Vcza

n
cz , q̂

n
z := Vqza

n
qz be the reduced

approximations of cnz and qnz , accordingly. Here N is the number of degrees of freedom
of the FOM for every field variable, and Ncz , Nqz are the column numbers of the
projection matrices for cz, qz , respectively, z = a, b. By using Galerkin projection,
the ROM is formulated as{

Âμ,za
n+1
cz = B̂μ,za

n
cz + r̂z + tsκzD̂za

n
qz ,

an+1
qz = (1− tsκzΔt)a

n
qz + tsκzHzΔtD̂

T
z a

n
cz ,

where Âμ,z = V T
czAμ,zVcz , B̂μ,z = V T

czBμ,zVcz , r̂z = V T
cz r

n
z , and D̂z = V T

czVqz are the
reduced matrices, and ancz , a

n
qz are the unknowns of the ROM.

6.4.3. Results. The training set Ptrain consists of 150 sample points randomly
distributed in the parameter domain. When using the POD-Greedy algorithm to
generate the projection matrices Vcz and Vqz , the snapshots are taken from one CSS
period rather than the transient process, since only the products in the CSS period
are of interest. The number of time steps in one period is still large (O(103)), which
is larger than the dimension of the spatial discretization. To efficiently construct the
RB, the technique of adaptive snapshot selection [40] is employed. There are four
outputs in this model. The similar strategy as we took for the batch chromatographic
model is employed, i.e., compute an error estimation for each output and take the
maximum as the error indicator for every parameter.

The column numbers of the projection matrices (Vcz , Vqz , z = a, b) are 82, 83, 83,
83, respectively, when the tolerance εROM is taken as 1.0× 10−3. Figure 11 shows the
behavior of the output error estimation and the corresponding true error during the
extension of the RB. The output error estimation goes below the prespecified tolerance
when the maximal number of the RB reaches 83. However, it does not decay smoothly,
unlike the previous examples. This is because the average ratio ρ̃�N oscillates during
the RB extension process, as illustrated in Figure 12. In fact, the oscillation in ρ̃�N
will result in the oscillation in the output error estimation, since we use ρ̃�N as the
estimate of ρn+1(μ) in (4.18). This is probably due to the multiswitching procedure,
which causes extreme difficulty for MOR, because some error might be introduced
after each switch and this error is hard to measure. In addition, the Péclet number in
this model is 500, which is challenging for MOR, as we have observed in section 6.2.

Before the ROM is used to solve the underlying optimization problem, we validate
its accuracy by performing full and reduced simulations over a test set with 200
random samples of parameters in the parameter domain. The maximal error and
average runtime are shown in Table 5. It is seen that the maximal true error is
1.1 × 10−4 and is smaller than the prespecified tolerance. The average runtime is
largely reduced and the speedup factor is 7.

Finally, we study the performance of the ROM-based optimization. Table 6
shows the results using the constraints Pua,min = 99.0%, Pub,min = 99.0%, Qmax =
0.50 ml/s. We use the gradient-free optimizer, the subroutine NLOPT LN COBYLA
[21], to solve the underlying optimization problem. It is a local optimizer. To ver-
ify the robustness of the optimizer to this problem, different initial guesses have been
employed and almost the same optimal solution is obtained. The tolerance for the op-
timization is taken as εopt = 1.0× 10−4. From Table 6, it is seen that the ROM-based
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Fig. 11. Decay of the error estimation and the corresponding true error during the RB con-
struction process for the SMB model.
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Fig. 12. Behavior of the average ratio ρ̃�N during the RB construction process for the SMB
model.

Table 5

Comparison of runtime for the full and reduced simulations of the SMB model over a validation
set Pval with 200 random sample points. εROM = 1.0× 10−3.

Model Maximal error Average runtime (s)/SpF
FOM (N = 800) – 349.5 / -
ROM 1.1× 10−4 46.7 / 7

Table 6

Comparison of the optimization of SMB chromatography based on the FOM and the ROM.

Initial guess FOM-Opt. ROM-Opt.
Objective Qf (ml/s) 0.07 0.0745 0.0745

Optimal solution

mI 4.50 4.3269 4.3271
mII 2.90 2.8599 2.8603
mIII 3.50 3.6036 3.6039
mIV 2.30 2.3468 2.3685
Qf (ml/s) 0.07 0.0745 0.0745

Constraints
Pua 98.9% 99.0% 99.0%
Pub 99.5% 99.0% 99.0%
QI (ml/s) 0.4161 0.4997 0.4998

#Iterations 71 79
Runtime (h) / SpF 5.13 / - 0.82 / 6D
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optimization is very successful. The runtime for solving the optimization problem
is largely reduced while the optimal solutions are almost the same as those of the
FOM-based optimization. The speedup factor is 6.

7. Conclusions. We have presented an efficient a posteriori output error esti-
mation for MOR of parametrized nonlinear evolution equations. The new error esti-
mation is suitable for projection-based MOR methods. Certainly, it can be applied
to the linear evolution problem as well, as shown in sections 6.1 and 6.4.

The proposed output error estimation is sharp and computationally efficient and
can be applied to a broad class of evolution equations. In particular, it is applicable
to problems with a long time evolution process. In contrast, the existing error bound
often fails due to its continuous accumulation over time. Numerical results have
illustrated the behaviors of the error estimations and have shown the efficiency of the
newly proposed error estimation. However, since the quantity ρn(μ) in the error bound
needs to be estimated, the rigorousness of the error estimate cannot be guaranteed,
though loss of the “upper bound” property was not observed for the examples tested
in this manuscript. A convincing and more reliable estimation of ρn(μ) in the error
bound deserves further investigation.
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