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Abstract

Theoretical analysis and experimental quantification on the ellipsoidal relaxation of vesicles

are presented. The current work reveals the simplicity and universal aspects of this process.

The Helfrich formula is shown to apply to the dynamic relaxation of moderate-to-high tension

membranes, and a closed-form solution is derived which predicts the vesicle aspect ratio as a

function of time. Scattered data are unified by a timescale, which leads to a similarity behavior,

governed by a distinctive solution for each vesicle type. Two separate regimes in the relaxation are

identified, namely, the “entropic” and the “constant-tension” regime. The bending rigidity and the

initial membrane tension can be simultaneously extracted from the data/model analysis, posing

the current approach as an effective means for the mechanical analysis of biomembranes.

PACS numbers: 82.70.Uv, 47.63.mf, 87.16.D-, 87.85.G-

1



S1. BASIC THEORY

Our basic theory for the ellipsoidal relaxation of vesicles derives from that of Seifert [1]

(denoted as S99 below), and a brief account is given here. In the theory, the vesicle has

a quasi-spherical shape which conserves both volume and surface area. By considering the

Stokes flow both interior and exterior to the vesicle, and interfacial continuity conditions

for both velocity and stress, a Langevin equation is derived for each mode of the spherical

harmonics (Eq. (50) in S99):

∂tul,m = S − κ

µr30
ElFlul,m + ζl,m. (S1)

Here ul,m is the amplitude of a spherical harmonics of mode (l, m), S includes the effects

of an external driving force (e.g., a shear flow), κ is the membrane bending rigidity, µ is

the viscosity (temporarily assumed to be the same for both the interior and exterior in the

above equation), r0 is the vesicle radius in the spherical state, and ζl,m is thermal noise. The

coefficients El and Fl are given by

El = (l + 2)(l − 1)

[
l(l + 1) +

r20
κ

Γ

]
,

Fl =
l(l + 1)

4l3 + 6l2 − 1
,

where Γ is the isotropic membrane tension. In relaxation in the absence of an external

driving flow, we can set S = 0. For each mode, we decompose the total amplitude ul,m into

a “mean” component that is apparently observable, ūl,m, and a component due to thermal

fluctuation, u
′

l,m,

ul,m(t) = ūl,m(t) + u
′

l,m(t).

Their governing equations are respectively,

∂tūl,m = − κ

µr30
ElFlūl,m, (S2)

and

∂tu
′

l,m = − κ

µr30
ElFlu

′

l,m + ζl,m. (S3)

We assume that u2,0 is the only mode controlling the apparent (macroscopically observable)

vesicle shape - this assumption is supported by many direct experimental observations [2, 3],
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and further justification is given in Section S4. By setting (l,m) = (2, 0) in Eq. (S2) we

arrive at a governing equation for ū2,0,

∂tū2,0 = − 24κ

55µr30

(
r20
κ

Γ + 6

)
ū2,0. (S4)

Next, the membrane tension needs to be determined via the total area constraint,

∆ + ∆f = ∆tot. (S5)

Here ∆ is the dimensionless “systematic” deformation which corresponds to the contributions

of ūl,m, defined as

∆ =
A

4πr20
− 1,

where A is the “apparent” surface area of the membrane. If only ū2,0 is present, then we

have

∆ =
1

2π
|ū2,0|2.

∆f and ∆tot are also similarly defined: ∆f is the dimensionless area stored in the (microscale)

thermal fluctuations, and ∆tot is the total “excess” area which is a constant for a given vesicle

(membrane). Note that our definition differs by a factor of 4π when compared with that in

S99 (c.f. Eq. (71) therein). We temporarily assume that all fluctuation has evolved to the

so-called “stationary” state, namely,

lim
t→∞
〈|u′

l,m|2〉 =
kBT

κEl
. (S6)

This assumption will be carefully justified below. The area stored in each mode is

∆l,m =
kBT

8πκ

1

l(l + 1) + Γr20/κ
. (S7)

Summing over the modes leads to an expression for ∆f ,

∆f =
kBT

8πκ

∑
l≥2

2l + 1

l(l + 1) + Γr20/κ
. (S8)

Using an integration to approximate the summation in (S8), we obtain

∆f =
kBT

8πκ
ln
l2max + lmax + Γr20/κ

6 + Γr20/κ
, (S9)

where lmax = r0/d and d is the membrane thickness.
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We focus on the so-called “entropic” regime as noted by S99 (Eq. (74) therein),

6� Γr20
κ
� l2max. (S10)

For the current study, the isotropic tension Γ is self-consistently determined to be ∼ 10−6

N/m (see Tables S2-S5 in Section S4). Using κ ∼ 10−19 J, and r0 ∼ 20 µm, we obtain

Γr20
κ
∼ 4× 103.

On the other hand, using d ∼ 5 nm results in lmax ∼ 4×103 and therefore l2max ∼ 107. These

estimates demonstrate that the constraint (S10) is well-satisfied, so that Eq. (S9) becomes

∆f ≈
kBT

8πκ
ln

l2max
Γr20/κ

. (S11)

Eq. (S11) effectively leads to the constitutive relation in the “entropic” regime. Substi-

tuting (S11) into (S5) we obtain

Γ =
κ

d2
exp

(
−8πκ∆tot

kBT

)
exp

(
8πκ∆

kBT

)
. (S12)

If we define the initial tension, Γ0, as the isotropic membrane tension when the systematic

(apparent) deformation ∆ is zero, namely, when the vesicle is in the relaxed spherical state,

from Eq. (S12) we have,

Γ0 =
κ

d2
exp

(
−8πκ∆tot

kBT

)
. (S13)

When applying the model, either Γ0 or ∆tot needs to be specified, and the other can be

calculated according to Eq. (S13). Substituting (S13) into (S12) we arrive at

Γ = Γ0 exp

(
8πκ∆

kBT

)
. (S14)

This equation is none but the Helfrich model, or Eq. (3) in the main text. In fact, per

(S10), the Helfrich model is an excellent approximation to the original equation (S5) except

for extremely high or low isotropic membrane tensions.

We have yet to justify the “stationary” assumption for u
′

l,m, namely, Eq. (S6). We realize

that this assumption predicates that the Helfrich formula (S14) is an “equilibrium” formula,

which is only valid when given sufficient time to establish the stationary state. Indeed,

most of the extensive experimental data supporting the Helfrich formula were also obtained

when the membrane was in an equilibrated condition (e.g., in stationary deformed state via

4



micropipette aspiration or AC field electrodeformation) [4–6]. However, here we demonstrate

that the Helfrich formula is accurate even when the membrane is not in equilibrium such as

during shape relaxation, provided that the tension Γ is sufficiently high.

First, according to Eqs. (S2, S3) we realize that the relaxation timescale for both ūl,m

and u
′

l,m is

τl,m =
µr30
κElFl

. (S15)

Indeed, integrating (S3) yields a formal solution for u
′

l,m(t),

u
′

l,m(t) = exp[−(κ/µr30)ElFlt]

(∫ t

0

dt
′
{

exp[(κ/µr30)ElFlt
′
]ζl,m(t

′
) + u

′

l,m(0)
})

.

If Γr20/κ� l(l + 1), then τl,m ∼ l−1; otherwise τl,m ∼ l−3. Therefore, for the higher modes,

both the mean and the fluctuation quickly evolve to equilibrium (sphericity) and stationary

correlation, respectively.

Note that subtly, these states are “quasi-stationary”, as in relaxation, El also changes with

time due to the time-dependence of Γ. The latter changes along with u2,0, on a much greater

timescale of τ2,0. Therefore as Γ “slowly” evolves, the higher-mode fluctuations always adapt

“instantaneously” to a correspondingly evolving quasi-stationary state characterized by Eq.

(S6). This situation is analogous to a moving piston in a chamber of ideal gas: if the piston

moves sufficiently slowly, then the system is constantly in thermal quasi-equilibrium, due to

the fact that the equilibrium process is comparatively rapid.

For a lower mode such as u2,0 (ellipsoidal), the fluctuation converges to the stationary

correlation on the same timescale of the apparent shape relaxation. This would seemingly

violate the ansatz of our analysis, that all fluctuations are always in a stationary state

quantified by (S6). Consequently, it would appear that (S8) and (S9) are no longer valid

as ∆l,m for the lower modes are not accounted for accurately due to deviation from the

stationary state.

However, the following consideration restores the validity of (S8) and hence the accuracy

of the Helfrich formula. We re-write the fluctuation area as

∆f = ∆L + ∆H ,

where

∆L =
kBT

8πκ

lc∑
l=2

2l + 1

l(l + 1) + Γr20/κ
(S16)
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accounts for all modes with l ≤ lc, and

∆H =
kBT

8πκ

lmax∑
l=lc+1

2l + 1

l(l + 1) + Γr20/κ
≈ kBT

8πκ
ln

(
l2max + lmax + Γr20/κ

(lc + 1)(lc + 2) + Γr20/κ

)
accounts for all higher modes modes with l > lc. Here we choose lc = 20, because using

(S15) and Γr20/κ = 4× 103, we find

τ20,m
τ2,m

≈ 0.077.

Therefore, for l > lc we can assume that the modes relaxes sufficiently fast and are always

in thermal equilibrium (the stationary state).

On the other hand, the values for ∆L, ∆H , and ∆f for Γ ranging from 10−8 to 10−3 N/m

are tabulated in Table S1. Evidently, the contribution of ∆L to ∆f is of several percent at

most for Γ & 10−7 N/m, and negligibly small for Γ & 10−6 N/m. Furthermore, although

in the non-stationary state the exact value of ∆l,m may differ from Eq (S7), its magnitude

is determined by ζl,m and cannot deviate significantly. Combining these considerations, we

conclude that ∆f as given by (S8) is still sufficiently accurate in a dynamic, shape-relaxation

process. Hence following Eqs. (S5-S14), the Helfrich formula is also accurate. We therefore

conclude that although the Helfrich formula is derived assuming that all fluctuations are in

thermal equilibrium, it is still a highly accurate constitutive relation for shape relaxation

with sufficiently high isotropic membrane tension, due to the fact that the lower modes

contribute negligibly to the total area stored in the thermal fluctuations. On the other

hand, the Helfrich formula eventually loses accuracy when Γ decreases (or Γr20/κ approaches

6), as for these cases the lower modes become more significant in their contributions to ∆f .

In this case, the Langevin equation for the fluctuations (S3) needs to be numerically solved

to properly calculate the areas.

Finally, Eq. (S4) is converted to Eq. (1) in the main text by considering u2,0 = 4
3

√
π
5
ε,

dε

dτ
= −24

55
ε exp

(
8πκ∆

kBT

)
,

where we have used Γr20/κ� 6. While the above equation is derived assuming µi = µe = µ,

the effects of differing viscosities can be accounted for following, e.g., Schwalbe et al. [7].

The final result is Eqs. (1, 2) in the main text.

Note that the final ODE is autonomous, since ∆ depends only on ε. This means if y(τ)

is a solution for the initial condition ε(τ = 0) = ε0, then the solution for an arbitrary
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Γ (N/m) ∆L × (8πκ/kBT ) ∆H × (8πκ/kBT ) ∆f × (8πκ/kBT ) ∆L/∆f

10−8 2.40 10.4 12.8 0.187

10−7 0.734 9.85 10.6 6.93×10−2

10−6 0.103 8.19 8.29 1.25×10−2

10−5 1.09×10−2 5.98 5.99 1.81×10−3

10−4 1.11×10−3 3.71 3.71 2.94×10−4

10−3 1.09×10−4 1.61 1.61 6.79×10−5

TABLE S1: Calculated values of ∆L, ∆H , and ∆f for various values of membrane tension, Γ. For

these calculations we set r0=20 µm and κ=10−19 J. Evidently the contribution of the lower modes

to the area stored in the fluctuation is small for Γ & 10−7 N/m.

initial condition, ε(τ = 0) = ε1, can be obtained via a simple translation, y(τ + τ1), where

τ1 = y−1(ε1). Thus for such system, translation can be used to collapse solutions with varying

initial condition, such as in the main text.

A comparison between vesicle and droplet relaxation is appropriate here. In the limit of

∆→ 0, we have Γ/Γ0 → 1, and the so-called constant-tension regime is reached as described

in the main text. The simplified governing equation is

µer0
Γ0

dε

dt
= −Cε, C =

24

32 + 23µr
, (S17)

which can be compared with that of ellipsoidal droplet relaxation [8],

µer0
γ

dε

dτ
= −Cdropε, Cdrop =

40(µr + 1)

(2µr + 3)(19µr + 16)
. (S18)

Comparing Eqs. (S17) and (S18), we observe that we only need to replace the initial tension

Γ0 with the surface tension for the droplet, γ; and the coefficient C with Cdrop to arrive

at the droplet equation from the vesicle counterpart. The main difference, namely, C and

Cdrop, results from the fact that area incompressibility is enforced for vesicles; whereas for

droplets, continuity of the tangential fluid stress is prescribed instead. Nevertheless, the two

equations are in close quantitative agreement. For example, for µr = 1, C = 0.436, and

Cdrop = 0.457. The relative difference is less than 5%.

7



=
0 0.5 1 1.5 2

0

0.01

0.02

0.05

0.10

0.15
solution per Eq. (1)
solution per Eq. (4)

decreasing 0
0

(a)

5 = 1.22 # 10-19 J

=
0 0.5 1 1.5 2

0

0.01

0.02

0.05

0.10

0.15
solution per Eq. (1)
solution per Eq. (4)

decreasing 0
0

(b)

5 = 2.18 # 10-19 J

FIG. S1: Comparison between numerical solutions to Eq. (1) (dashed) and Eq. (4) (solid). (a)

κ = 1.22× 10−19 J (POPC); ε0= 0.04, 0.07 and 0.15, respectively. (b) κ = 2.18× 10−19 J (POPC

with 30% cholesterol); ε0= 0.04, 0.07 and 0.15, respectively.

S2. ACCURACY OF EQ. (4) AND MEMBRANE DISCHARGING EFFECTS

In the main text, we have derived a closed-form solution of Eq. (1) by approximating the

apparent area increase, ∆, with the leading-order term in its Taylor expansion, namely, ∆ ∼=
8
45
ε2. Naturally, such expansion loses accuracy when ε increases sufficiently in magnitude.

Here we briefly examine the accuracy of Eq. (4) as an approximate solution to Eq. (1), the

original governing equation.

We examine two cases, namely, κ = 1.22 and 2.18×10−19 J, which correspond to the bend-

ing rigidity of POPC and POPC with 30% cholesterol, respectively. For initial conditions,

we pick ε0 = 0.04, 0.07, and 0.15, respectively. Solutions are obtained from numerically

solving Eq. (1), and are plotted in Fig. S1 as dashed lines. Solutions using Eq. (4) are

also shown as solid lines by directly using the “expint” function (exponential integral) from

MATLAB. We observe that indeed the approximate solution (4) follows closely the original

solution using (1), although the differences are more visible for ε0 = 0.15, for both cases.

Figure S2 further quantifies these differences. Here the maximum error in ε for each case

is plotted as a function of the initial condition, ε0. For κ = 1.22 × 10−19 J (POPC), the

maximum difference increases to 0.005 for ε0 = 0.15. For κ = 2.18 × 10−19 J (POPC with
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FIG. S2: Maximum error of ε between numerical solutions to Eq. (1) and Eq. (4), plotted as a

function of ε0. (a) κ = 1.22×10−19 J (POPC). (b) κ = 2.18×10−19 J (POPC with 30% cholesterol).

30% cholesterol), the maximum difference is observed to be less than 0.008 for ε0 = 0.15.

For both cases, the maximum difference is only a few percent of the value of ε0. Overall,

these results suggest that Eq. (4) serves as a good and convenient approximation solution

to Eq. (1) for parametric ranges of our interest.

Another effect that we need to carefully evaluate, and that is particular to the current

deformation technique, is the membrane discharging effect. In the current work, we assume

that once the electric field ceases, the electrostatic stress (the external driving force) disap-

pears instantaneously and relaxation begins. In actuality, the vesicle membrane has a finite

capacitance, and discharges on a well-known timescale [2, 3]

tmm =
r0Cmm
σin

(
1 +

σr
2

)
, (S19)

where Cmm ∼ 0.08 F/m2 is the membrane capacitance, σin and σout denote the intra- and

extra-vesicular electrical conductivity, respectively, and σr = σin/σout is their ratio. For the

cases in the current manuscript, using r0 = 20 µm, σin = 6 µS/cm, and σout =2 µS/cm (see

Section S3), we obtain a discharging timescale of 0.8 ms. This timescale is much smaller

than the relaxation timescale, namely, tD (Eq. (1) in the main text). The latter is on the

order of tens of ms (see Fig. S5 below). Furthermore, the effects caused by the residual
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electrostatic stress due to discharging is in general negligible as we demonstrate below. We

restore the effect of the electric field during membrane discharging via the S-term in Eq.

(S1) [3],

tD
∂ε

∂t
=

3

32 + 23µr

σ2
r − 16

(σr + 2)2

(
εwE

2
0r0

Γ0

)
V̄mm −

24

32 + 23µr

Γ

Γ0

ε, (S20)

V̄mm =
3

2
(1− e−tp/tmm)e−t/tmm . (S21)

Here εw is the permittivity of the buffer solution (taken to be that of water), E0 is the

applied field strength, tp is pulse duration, and V̄mm is a dimensionless transmembrane

potential which demonstrates a rapid, exponential decay on the timescale of tmm due to

discharging. Equation (S20) is solved numerically and compared with the solution with Eq.

(1) in the main text. The results for a few typical parametric settings are shown in Fig. S3.

Evidently, the effects caused by discharging is negligible, simply due to the fact that for the

parametric range we consider, the electrostatic forcing term in (S20) has a small amplitude

when compared with the term controlling relaxation (the second term on the RHS of that

equation). In addition, this term also decays exponentially on a short timescale of tmm, as

with typical capacitive discharging.

S3. EXPERIMENTAL MATERIALS AND METHODS

Preparation of giant unilamellar vesicles

Giant unilamellar vesicles (GUVs) of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

(POPC) with 0, 10, 20, and 30% cholesterol (by mole fraction) were prepared following

the classical electroformation method described in Angelova and Dimitrov [9]. POPC and

cholesterol (Avanti Polar Lipids, Alabaster, AL) were diluted in chloroform and mixed at

given molar ratios. For electroformation, 8-10 µL of a 3-mM lipid solution in chloroform

were spread on a pair of conductive ITO glasses. Solvent was evaporated by a stream of

N2 for 5 min (dessication under vacuum for 2 hours yielded the same results). The glasses

were sandwiched using a 1-mm Teflon spacer forming a chamber with ∼ 1.5 mL of volume

and coupled to a function generator. An AC field of 1 V at 10 Hz was applied and a 0.05-

M sucrose solution was added to the chamber. Vesicles were allowed to grow for 1 h at

room temperature. After vesicle formation was observed, the vesicle solution was removed
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FIG. S3: Comparison between numerical solutions to Eq. (S20) (with discharging effect) and Eq.

(1) (without discharging effect), for ε0= 0.04, 0.07 and 0.15, respectively. (a) κ = 1.22 × 10−19

J (POPC). (b) κ = 2.18 × 10−19 J (POPC with 30% cholesterol). In both figures, the strengths

and the lengths of the applied electric pulses are (50V, 50 µs), (50V, 100 µs), and (80V, 100 µs),

corresponding to ε0= 0.04, 0.07, and 0.15, respectively. These protocols are chosen as they typically

resulted in similar values of ε0 in our experiments.

from the chamber and diluted into a 0.05-M glucose solution. To avoid osmotic pressure

effects, the osmolarities of the sucrose and glucose solutions were carefully matched using a

cryoscopic osmometer Osmomat 030 (Gonotec, Berlin, Germany). An inverted microscope

Axiovert 135 (Zeiss, Jena, Germnay) equipped with a 20× phase contrast lens was used

to visualize the GUVs, with image sequences acquired at 20,000 frames per second by a

high-speed digital camera HG-100K (Redlake, San Diego, CA). Further details can be found

in previous works by two of us (KAR and RD) [2, 10].

Pulse protocols for electrodeformation

The vesicle suspension was placed into an observation chamber with built-in electrodes

(Eppendorf, Hamburg, Germany) where DC pulses were applied from a Multiporator (Ep-

pendorf, Hamburg, Germany) to induce electrodeformation. The distance between the elec-
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trodes was 500 µm. The voltages applied across the electrodes were chosen among the values

of 50 V, 80 V, and 100 V. The pulse length varied between 50 µs and 300 µs. Intra- and

extra-vesicular electrical conductivities were 6 and 2 µS/cm, respectively. Details of pulse

information for each experiment are listed in Tables S2-S6.

Intra- and extra-vesicular viscosities

To compare experimental results with our theory, it is necessary to know the values of the

intra- and extra-vesicular viscosities. In this study, viscosity values are obtained from linear

extrapolation of previous measurements of sucrose and glucose solutions [11]. For sucrose

solution, the viscosities for molar concentrations of 0.186 M and 0.120 M were reported

to be 1.179 mPa·s and 1.215 mPa·s, respectively. For glucose solution, the viscosities for

molar concentrations of 0.169 M and 0.225 M were reported to be 1.083 mPa·s, and 1.113

mPa·s, respectively. By linear extrapolation, the intra-vesicular (0.05 M sucrose) and the

extra-vesicular (0.05 M glucose) viscosities of the current experiments are calculated to be

1.253 and 1.019 mPa·s, respectively. These values are used in the theoretical models and

data analysis.

S4. DATA ANALYSIS

Images are analyzed to extract the two-dimensional vesicle contour, as well as to extract

e or ε, following the approach developed by one of us (RD, [6]). Importantly, a Fourier

analysis of the shape contour does reveal that the P2 (ellipsoidal) mode dominates. The

spectral analysis assumes

r = r0

(
1 +

∑
l≥2

[al cos(lθ) + bl sin(lθ)]

)
.

Here the l = 1 mode corresponds to translation and is not included. The amplitude for each

mode is
√
a2l + b2l , and the amplitude for l = 2 is related to the aspect ratio e as

e =
1 +

√
a22 + b22

1−
√
a22 + b22

.

Two typical cases are shown in Fig. S4, in which the amplitudes for the first three modes

are presented. Evidently, P2 is the only mode which has an appreciable contribution to the

apparent vesicle shape.
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FIG. S4: Exemplary amplitude evolution of l = 2, 3 and 4 modes during relaxation. (a) Vesicle

#4, POPC with 30% cholesterol (Table S5). (b) Vesicle #7, POPC (Table S2).

This result is also straightforward to appreciate from a theoretical point of view. First,

for a smooth contour, the amplitude of the spherical harmonics decays exponentially with

the mode number l (known as spectral convergence). Second, the relaxation time decreases

approximately with l−1 or l−3 (see Eq. (S15)). Combining these considerations, the higher

modes not only have smaller amplitudes to begin with, but also decay more rapidly, leaving

P2 to dominate.

In the main text, we present results on the extraction of two important parameters,

namely, κ and Γ0. Below, we present three different approaches for the same purpose and

demonstrate that they lead to consistent values of κ and Γ0 within data uncertainty. All

obtained values are tabulated in Tables S2-S6. For all cases, only data above ε = 0.015 are

used as we have explained in the main text. Other pertinent values, that is, r0, µi, and µe,

are measured or obtained from linear extrapolation as discussed above.

The first approach is termed “Method A”. In this case, for each individual vesicle, κ and

Γ0 are identified by minimizing the root-mean-square (RMS) error between the data and

solution (4). The mean and standard deviations (STD) are also calculated. Shown in the

tables are also the mean RMS error which is defined as the average of the RMS error over

all vesicles in each table, and the values of R2, the coefficient of determination.

The second is termed “Method B”. In this case, we assume that κ remains the same for
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all vesicles of the same type, whereas Γ0 varies among them. For each value of κ, Γ0 is

identified for each vesicle so as to minimize the error; a mean error is obtained by averaging

over all vesicles in the group. This mean error changes as κ changes, and an “optimal” value

is obtained by finding its minimum.

The third is termed “Method C”. In this case, we take advantage of the separation of

the entropic and constant-tension regimes: κ and Γ0 are extracted from these two regimes,

respectively. First, we examine the data, and determine a threshold value for ε below

which the constant-tension regime is reached. The determination of this threshold value is

empirical: on a semi-logy scale, we “cut-off” the section of data that appears to be linear.

The cut-off value is 0.025 for all cases studied here. This value is conservatively low to ensure

constant tension behavior. The data is then fitted with a least-square line on a semi-logy

scale. From the theory, the slope of the line, s, is given by:

s = C/tD = CΓ0/µer0.

Knowing r0, µi, and µe allows us to extract Γ0 from the values of s. Note that in the

constant-tension regime, the data trend is controlled by Γ0, and κ has minimal effects. In

the next step, once Γ0 is determined, κ can be identified by minimizing the error between

the solution (4) and the entire section of data, both entropic and constant-tension regimes

included. In this case, the determination of κ is mostly via data in the entropic regime, as

the constant-tension regime is not sensitive to the changes in κ. We remark that Method C

is the most physical approach, as we harness the separation of regimes, and for each regime,

instead of a two-parameter fitting, only a one-parameter fitting is performed.

Results from the first 4 groups in Fig. 3 in the main text are shown in Tables S2-S5. Each

table lists detailed parameters and analysis of a single vesicle type, including the pulsing

parameters, r0, κ and Γ0 from Methods A-C, and error analysis. Here we will introduce

results on POPC, and other vesicle types follow a similar description.

Table S2 shows that for POPC, the bending rigidity κ extracted from Method A, B, and

C are 1.14 ± 0.23, 1.20, and 1.00×10−19 J, respectively. Both the average value and STD

from Method A are presented, whereas for B and C, κ is assumed to be the same across all

cases. We see that all values are consistent and within 20% of deviation from each other.

More importantly, the mean error (M.E.) for each method is also evaluated. For this

calculation, we first compute the RMS error between the theoretical prediction and the data
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in terms of ε, which is subsequently averaged among the vesicles in each group to obtain the

M.E. The resulting values are 0.0025, 0.0027, and 0.0043, respectively. We see that in terms

of accuracy, Method A is comparable with B, and are both appreciably better than that of

Method C. This result is not surprising, as even though Method C is the most “physical”

approach harnessing regime separation, Method A and B have better performance due to

the fact that the error of fitting is minimized in the two-parameter phase space of κ and

Γ0, rather than in two steps as in Method C. Based on these evaluations, we choose to use

Method B for the results presented in the main text, for the following reasons. First, the

accuracy of this method is comparable with that of Method A, the best numerical fitting

method since both κ and Γ0 are “optimized” for each individual case (see also Tables S3-S5).

Second, as each vesicle type is made with identical membrane composition, it is reasonable

to assume a fixed κ value. Indeed, this assumption is supported by the result of Method

A, which demonstrates a small STD from the analysis of individual cases. Furthermore,

designating a constant κ for each vesicle type allows us to unite all data with a single

solution such as shown in the main text. This approach provides a powerful and simple way

to dissect the physics and behavior of vesicle relaxation. On the other hand, one can follow

Method A if the primary interest is to extract properties of individual vesicles.

In Table S6, we present the analysis and information on the last group shown in Fig. 3 of

the main text. Electroporation obviously resulted from the higher voltage and longer pulse

duration when compared with other cases, which engendered a supercritical transmembrane

potential for membrane permeabilization [2, 12].

Finally, Figs. S5a-S5e alternatively present the data in Tables S2-S6 on a linear scale for

ε. Figure S5f presents the data in Fig. 3 in the main text, also on a linear scale. Fig. S6

presents the electroporated vesicles on a logarithmic scale. The vesicle are the same as those

in Fig. 3 in the main text, but a greater range in ε is shown. The dashed line is a global fit

for all 4 vesicles.

We remark that during the analysis we discard all data below ε = 0.015, and we have

done so consistently across all cases to avoid noise contamination of the analysis. This

threshold is conservative, and in cases when the noise is less prominent, we can indeed relax

the threshold and adopt lower cut-off values for ε. However, doing so will not appreciably

alter the results, primarily because this part of the data is well within the “constant-tension”

regime, in which the data exhibits a linear behavior between ln(ε) and time. Extending the
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data simply extends the linearity. Fig. S7 demonstrates this idea with vesicle #4 of POPC

with 30% cholesterol. In this case, a new cut-off threshold of ε ∼ 0.008 is installed, and is

determine by the 99% confidence level of fluctuation in ε when the vesicle is in the relaxed

spherical state. This change in the threshold results in only a 5% change in the values of

κ and Γ0 for this individual case. A similar approach is applied to all vesicles of POPC

with 30% cholesterol, and the results are tabulated in Table S7. For all vesicles (except for

#3), the change in κ is within 5% and the change in Γ0 is within 7%. The M.E. remains

essentially unchanged at 0.0023. In addition, if the same value of κ is assumed for all vesicles

(Method B), we obtain κ = 2.21× 10−19 J, which is only 1.4% different from that obtained

with Method B in Table S5 (2.18 × 10−19 J). Taking together, we prefer the conservative

threshold of ε = 0.015 to manage noise contamination. Meanwhile, we do keep sufficient

data for our quantitative analysis.
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FIG. S5: (a)-(e) Data corresponding to Tables S2-S6. (f) Figure 3 of the main text, replotted on

a linear scale for ε.
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Vesicle #4, POPC with 30% cholesterol. The difference in the fitted κ-value is 5%.
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Method A Method B Method C Pulse info.

Parameter r0 κ Γ0 R2 κ Γ0 κ Γ0 V0 tp

Unit µm
10−19

J

10−6

N/m

10−19

J

10−6

N/m

10−19

J

10−6

N/m
V µs

Vesicle #1 21.1 1.10 2.07 0.983 1.22 1.99 0.99 2.74 50 150

Vesicle #2 34.8 1.20 2.78 0.993 1.22 2.81 0.99 3.03 50 150

Vesicle #3 27.1 1.01 4.64 0.993 1.22 4.34 0.99 4.94 50 150

Vesicle #4 16.4 0.83 3.06 0.972 1.22 2.70 0.99 3.49 50 150

Vesicle #5 22.2 1.38 3.46 0.984 1.22 3.72 0.99 4.24 80 100

Vesicle #6 33.0 1.25 3.42 0.994 1.22 3.5 0.99 3.94 80 100

Vesicle #7 37.0 1.46 3.55 0.996 1.22 3.91 0.99 3.31 80 100

Vesicle #8 20.1 0.91 8.69 0.989 1.22 7.63 0.99 7.95 80 100

Average 26.5 1.14 3.96 3.83 4.21

STD 7.68 0.22 2.05 1.71 1.67

Mean error 0.0025 0.0027 0.0043

TABLE S2: Parameters and results for the POPC data shown in Fig. 3. V0 is the applied voltage,

and tp is pulse duration.
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Method A Method B Method C Pulse info.

Parameter r0 κ Γ0 R2 κ Γ0 κ Γ0 V0 tp

Unit µm
10−19

J

10−6

N/m

10−19

J

10−6

N/m

10−19

J

10−6

N/m
V µs

Vesicle #1 18.0 2.76 1.34 0.911 1.73 1.76 1.77 1.83 80 150

Vesicle #2 18.0 1.75 1.12 0.951 1.73 1.12 1.77 0.88 80 200

Vesicle #3 15.9 2.86 1.71 0.815 1.73 2.18 1.77 1.79 50 200

Vesicle #4 15.9 1.77 1.94 0.939 1.73 2.02 1.77 2.49 50 250

Vesicle #5 15.9 1.72 1.45 0.868 1.73 1.45 1.77 1.02 80 100

Vesicle #6 15.9 1.66 0.79 0.946 1.73 0.74 1.77 0.71 80 150

Vesicle #7 19.1 1.84 1.75 0.952 1.73 1.86 1.77 1.9 50 200

Vesicle #8 19.1 1.41 1.87 0.972 1.73 1.64 1.77 1.93 80 100

Average 17.2 1.97 1.50 1.60 1.57

STD 1.48 0.53 0.40 0.48 0.62

Mean error 0.0051 0.0053 0.0065

TABLE S3: Parameters and results for the POPC vesicles with 10% cholesterol shown in Fig. 3.
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Method A Method B Method C Pulse info.

Parameter r0 κ Γ0 R2 κ Γ0 κ Γ0 V0 tp

Unit µm
10−19

J

10−6

N/m

10−19

J

10−6

N/m

10−19

J

10−6

N/m
V µs

Vesicle #1 23.0 1.72 2.10 0.971 1.90 1.99 2.22 2.26 50 150

Vesicle #2 23.0 1.91 1.90 0.977 1.90 1.90 2.22 2.11 50 200

Vesicle #3 18.2 1.89 1.38 0.946 1.90 1.38 2.22 1.28 50 150

Vesicle #4 20.7 2.53 2.16 0.961 1.90 2.60 2.22 1.90 50 150

Vesicle #5 20.7 1.86 3.57 0.971 1.90 3.57 2.22 2.59 50 200

Vesicle #6 20.7 2.62 2.20 0.917 1.90 2.80 2.22 2.12 50 250

Vesicle #7 20.7 1.63 3.22 0.961 1.90 2.81 2.22 2.78 50 300

Average 21.0 2.02 2.36 2.44 2.15

STD 1.64 0.39 0.76 0.73 0.49

Mean error 0.0039 0.0041 0.0056

TABLE S4: Parameters and results for the POPC vesicles with 20% cholesterol shown in Fig. 3.
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Method A Method B Method C Pulse info.

Parameter r0 κ Γ0 R2 κ Γ0 κ Γ0 V0 tp

Unit µm
10−19

J

10−6

N/m

10−19

J

10−6

N/m

10−19

J

10−6

N/m
V µs

Vesicle #1 27.1 2.21 1.18 0.985 2.18 1.18 1.91 1.41 50 100

Vesicle #2 27.1 2.17 0.26 0.981 2.18 0.26 1.91 0.33 80 100

Vesicle #3 37.6 2.07 2.04 0.982 2.18 1.98 1.91 2.15 50 50

Vesicle #4 37.6 2.26 2.21 0.982 2.18 2.27 1.91 2.52 50 100

Vesicle #5 37.6 2.24 0.65 0.988 2.18 0.65 1.91 0.64 80 100

Vesicle #6 21.6 1.94 15.3 0.954 2.18 14.6 1.91 15.0 50 100

Average 31.4 2.15 3.61 3.49 3.68

STD 7.05 0.12 5.78 5.50 5.61

Mean error 0.0023 0.0023 0.0030

TABLE S5: Parameters and results for the POPC vesicles with 30% cholesterol shown in Fig. 3.

Pulse info.

Parameter r0 Γ0 R2 V0 tp

Unit µm 10−6 N/m V µs

Vesicle #1 20.0 22.8 0.993 100 150

Vesicle #2 20.0 20.2 0.997 100 150

Vesicle #3 18.4 22.4 0.988 100 150

Vesicle #4 18.4 24.4 0.997 100 200

Average 19.2 22.5

STD 0.92 1.73

Mean error 0.0020

TABLE S6: Parameters and results for porated POPC vesicles shown in Fig. 3.
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Parameter threshold κ Γ0 threshold κ Γ0

Unit 10−19 J 10−6 N/m 10−19 J 10−6 N/m

Vesicle #1 0.015 2.21 1.18 0.007 2.20 1.19

Vesicle #2 0.015 2.17 0.26 0.016 2.26 0.25

Vesicle #3 0.015 2.07 2.04 0.008 2.39 1.91

Vesicle #4 0.015 2.26 2.21 0.008 2.15 2.32

Vesicle #5 0.015 2.24 0.65 0.005 2.25 0.64

Vesicle #6 0.015 1.94 15.3 0.010 1.83 16.5

Average 2.15 3.61 0.009 2.18 3.80

STD 0.12 5.78 0.0034 0.17 5.72

Mean error 0.0023 0.0023

TABLE S7: Comparison between fitting values of κ and Γ0 with a global cut-off threshold (ε =

0.015) and individual cutoff thresholds determined by 99% confidence level in the noise amplitude

of ε when the vesicle is in a spherical state, for POPC vesicles with 30% cholesterol. Analysis

follows Method A. Meanwhile, analysis with Method B reveals κ = 2.18 and 2.21 × 10−19 J, for

the global and individual threshold, respectively.
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