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Abstract

Influenza is a highly contagious disease of the respiratory tract, which not only occurs
regularly in seasonal waves, but can also assume pandemic proportions in irregular inter-
vals. By affecting several million people each year influenza causes serious healthcare and
economic problems worldwide. The related pathogenic agent is influenza virus, which is
classified into types A, B, and C. Among these three types influenza A virus is the most
notable human influenza virus due to its remarkable antigenic variability and wide range
of possible hosts resulting in the ever new challenge of controlling not only the seasonal
influenza waves but also potential epidemics or even pandemics.

Vaccination is recognized as the most effective method to prevent influenza infection.
Hence, the efficient adaptation of the vaccine production is of vital importance in order
to successfully take on this challenge. In consequence, cell culture-based methods become
increasingly relevant for influenza vaccine production as they are less time consuming and
far more flexible than the traditionally performed production process in embryonated
chicken eggs. In combination with extensive experimental work mathematical modeling
helps to promote this development by contributing significantly to the understanding
and optimization of the process.

The work at hand is concerned with the development of a deterministic population bal-
ance model of the influenza A virus infection of adherent Madin-Darby canine kidney
(MDCK) cells during vaccine production. One of the prominent features of such a mul-
ticellular system is the remarkable heterogeneity of the involved cell population, which
can be measured systematically with the help of flow cytometry and has a decisive in-
fluence on the dynamics of the process. Therefore, a distributed modeling approach is
chosen that pays special attention to the rigorous consideration of flow cytometric data
in order to account for the present cell-to-cell variability. It is the first time, that this is
done for the influenza vaccine production.

The presentation of the model is subdivided into several evolutionary steps that are
associated with certain key concepts that eventually lead to the finally presented model
formulation. These are the degree of fluorescence as an internal coordinate, the explicit
consideration of cells in the latent phase, and the assumption of a second phase of
replication. These key concepts and the underlying assumptions are motivated by the
available experimental data. The resulting implications and limitations are discussed.

Simulation results are directly compared with distributed flow cytometric data of the
temporal change of the intracellular amount of viral nucleoprotein, which reveals char-
acteristic dynamic phenomena, like transient multimodality and reversal of propagation
direction. The presented model allows for a consistent explanation of the dynamic behav-
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ior of heterogeneous cell populations during the production of different influenza A virus
strains and, thereby, helps to give an insight into the underlying biological processes.
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Zusammenfassung

Bei der Influenza oder Virusgrippe handelt es sich um eine hochansteckende Erkrankung
der oberen und unteren Atemwege, die regelmäßig in saisonalen Infektionswellen auftritt,
welche sich in unregelmäßigen Abständen auch zu Pandemien ausweiten können. Jedes
Jahr infizieren sich auf diese Weise mehrere Millionen Menschen mit Influenza, was
weltweit starke Belastungen des Gesundheitssystems hervorruft und schwerwiegende
ökonomische Einbußen zur Folge hat. Der Erreger ist das Influenzavirus, von welchem
die Typen A, B und C unterschieden werden. Von diesen drei Typen kann das Influenza-
A-Virus aufgrund seiner herausragenden Variabilität in Bezug auf seine antigenen Eigen-
schaften und der breiten Palette an möglichen Wirten als die wohl bemerkenswerteste
Spezies angesehen werden. Genau diese Eigenschaften sind es nämlich, welche die
Bekämpfung sowohl der saisonalen Grippewellen als auch möglicher Epidemien oder
sogar Pandemien zur immer wieder neuen Herausforderung machen.

Da die Impfung als effektivste Methode zur Verhinderung einer Infektion mit In-
fluenza angesehen wird, nimmt die effiziente Anpassung der Impfstoffproduktion als
Mittel zur erfolgreichen Bewältigung dieser Aufgabe einen hohen Stellenwert ein. Dabei
gewinnen zellbasierte Impfstoffproduktionsverfahren immer mehr an Bedeutung, weil
sie gegenüber der herkömmlichen Herstellungsmethode in bebrüteten Hühnereiern mit
weniger zeitlichem Aufwand und dazu auch weitaus flexibler durchführbar sind. In
Verbindung mit ausgiebiger experimenteller Arbeit helfen mathematische Modelle dabei,
diese Entwicklung voranzutreiben, indem sie wesentlich zum Verständnis sowie zur Op-
timierung des Prozesses beitragen.

Im Mittelpunkt der vorliegenden Arbeit steht die Entwicklung eines deterministischen,
populationsdynamischen Modells für die Influenza-A-Virusinfektion von adhärenten
MDCK-Zellen während der Impfstoffproduktion. Eine der herausstechendsten Eigen-
schaften des betrachteten multizellulären Systems ist die ausgeprägte Heterogenität in-
nerhalb der beteiligten Zellpopulation. Diese lässt sich mittels Durchflusszytometrie sys-
tematisch ermitteln und hat entscheidenden Einfluss auf die Dynamik des gesamten
Prozesses. Um die vorhandene Zellvariabilität entsprechend berücksichtigen zu können,
wurde daher ein Modellansatz mit eigenschaftsverteilten Zustandsgrößen verfolgt. Dieser
Ansatz stellt ein Novum auf dem Gebiet der Impfstoffproduktion dar.

Das Modell wird anhand der wesentlichen Entwicklungsschritte vorgestellt, welche je-
weils mit einem bestimmten Schlüsselkonzept in Verbindung stehen und somit einen
Teil zur letztendlich präsentierten Modellformulierung beitragen. Bei diesen Schlüs-
selkonzepten handelt es sich um den Fluoreszenzgrad als Eigenschaftskoordinate, die
direkte Berücksichtigung von Zellen in der Latenzphase und die Annahme einer zweiten
Replikationsphase. Die Auswahl dieser Konzepte und die zugrundeliegenden Modellan-
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nahmen fußen direkt auf den zur Verfügung stehenden experimentellen Daten. Die sich
daraus ergebenden Schlussfolgerungen und Einschränkungen werden entsprechend disku-
tiert.

Simulationsergebnisse werden direkt mit verteilten Daten aus der Durchflusszytome-
trie verglichen. Diese Daten umfassen den zeitlichen Verlauf der intrazellulären Menge
viralen Nukleoproteins, anhand dessen sich charakteristische, dynamische Phänomene
wie transiente Multimodalität oder die Umkehr der Ausbreitungsrichtung feststellen
lassen. Das vorgestellte Modell erlaubt eine konsistente Erklärung dieses dynamischen
Verhaltens heterogener Zellpopulationen bei der Produktion verschiedener Influenza-A-
Virusstämme und trägt daher dazu bei, das Verständnis der zugrundeliegenden, biolo-
gischen Prozesse zu vergrößern.
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1 Introduction

1.1 Motivation

Influenza is a highly contagious disease of the respiratory tract, which affects several
million people each year worldwide. It regularly occurs in seasonal waves, which peak
in the winter months. Additionally, worldwide pandemics occur in infrequent intervals.
Although it is not restricted to a certain group of people, seasonal influenza particularly
affects infants, elderly people, and people with a weakened immune system or with
chronic diseases. As a result, influenza not only causes serious healthcare and economic
problems, but it is also responsible for the death of 250 000 to 500 000 people each year
[World Health Organization, 2009].

The related pathogenic agent is the influenza virus – an RNA virus which belongs to
the family of Orthomyxoviridae. The virus spreads by airborne infection, hand contact
with contaminated surfaces and subsequent hand to mouth or hand to nose contact. It
is classified into types A, B, and C of which the latter usually causes only light illness
and is much less prevalent than the other two types [Katagiri et al., 1983; Taubenberger
and Morens, 2008]. Therefore, type C is not included in the seasonal influenza vaccine.
Influenza B virus infections occur periodically and can cause severe illness [Belshe, 2010;
Domachowske et al., 2013]. Consequently, it is part of the seasonal vaccine, though, due
to its limited host range [Osterhaus et al., 2000] and comparably small antigenic variation
[Lindstrom et al., 1999; Nobusawa and Sato, 2006], type B is not able to cause pandemics.
The most notable human influenza pathogen is influenza A virus. It is characterized by
a very high genetic and antigenic variability making it capable of regularly outflanking
the human immune defense resulting in severe annual epidemics. Furthermore, influenza
A is able to cause worldwide pandemics at irregular intervals when an antigenically new
virus makes contact with an immunologically unprepared human population [Hay et al.,
2001]. Influenza A virus is subdivided into several subtypes according to the structure of
the two glycoproteins hemagglutinin (HA) and neuraminidase (NA), which are part of
the virus envelope and play an important role in the attachment to (HA) and the release
from (NA) the host cells. Type A is able to infect a variety of mammals and birds with
particularly water birds forming the natural reservoir – all known influenza A subtypes
have been validated in water bird populations [Webster et al., 1992]. The most common
subtypes circulating in the human population are A/H1N1 and A/H3N2 [Robert Koch
Institut, 2011].

The high genetic variability of influenza A virus results in ever changing demands in the
handling of not only the seasonal influenza waves but also potential epidemics or even
pandemics. As vaccination is the most effective method to prevent influenza infection,
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the efficient adaptation of the vaccine production is of vital importance. Based on the
evaluation of virological and epidemiological data from all around the world, the World
Health Organization (WHO) recommends the seasonal influenza vaccine composition of
the coming season. This is done every February and September for the northern and
southern hemisphere, respectively. After the development, testing and standardization
of virus candidates, vaccine manufacturers are provided with the respective virus strains
and production starts.

Traditionally, influenza vaccine production takes place in embryonated chicken eggs,
which is a well-established and relatively cheap process, which also has certain disad-
vantages – e.g., the capacity to produce a sufficient amount of chicken eggs is limited, the
process is time consuming and rather inflexible when changing demands have to be met,
with certain virus strains only low yields can be reached, the compliance with biological
safety standards is challenging, in case of an avian influenza pandemic the whole pro-
duction is in danger, and allergic reactions against egg products have to be considered
[Nichols and LeDuc, 2009; Schulze-Horsel, 2011]. These disadvantages can be overcome
by cell culture-based methods, which are already widely-used for other viruses [Nielsen,
2000] and become increasingly relevant for influenza vaccines as well. To promote this
development and to improve the production process not only sophisticated cell culture-
based technologies and downstream processing methods are required. In combination
with extensive experimental work mathematical modeling contributes significantly to
the understanding and optimization of the process.

1.2 State of the art

The modeling of multicellular systems can be a difficult task. This holds particularly
true for the modeling of vaccine production processes, which are characterized by the
complex interplay of a heterogeneous cell population with the respective virus. Conven-
tional mathematical models describing cell and virus dynamics during vaccine production
consider the respective populations of infected and uninfected cells to behave homoge-
neously, leading to a system of ordinary differential equations [Möhler et al., 2005; Enden
et al., 2005; Schulze-Horsel et al., 2009]. By this approach all cells of a certain population
are lumped together and considered to behave exactly the same. Thus, the heterogeneity
of the cell population and the variability of the cell physiology, which can have a decisive
influence on the overall process, are neglected.

With the help of flow cytometry it is possible to systematically collect data of various
properties that characterize heterogeneous cell populations [Nichols et al., 1993; Srienc,
1999; Schulze-Horsel et al., 2008]. In Fig. 1 an example of flow cytometric measurements
is given for the infection of an adherent cell culture with influenza A virus. In traditional
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Figure 1: Example of flow cytometric data that reveal characteristic dynamic phenomena of the cell
population during the infection of adherent Madin-Darby canine kidney (MDCK) cells with
human influenza A/Wisconsin/67/2005 (H3N2) virus [Schulze-Horsel, 2011]. The distri-
bution of the host cell population over the fluorescence intensity is depicted for several
times post infection. The fluorescence intensity is proportional to the amount of flourescein-
conjugated antibodies against the viral target protein, in this case nucleoprotein (NP). The
necessary preprocessing of the experimental data is explained in Section 3.1.

lumped model approaches basically only the mean values of these measurements are of
interest. In contrast to this, a distributed approach is applied here, which also accounts
for cell-to-cell variability represented by the data.

To benefit from the available information from flow cytometry, which allows the consid-
eration of the cell-to-cell variance, a suitable modeling framework has to be adopted. In
principle, one can choose between stochastic and deterministic approaches. In a stochas-
tic setting it is possible to consider a larger number of internal state variables. Thus,
a stochastic framework is of advantage when a structured model approach is pursued
in which many intracellular components have to be considered explicitly for individual
cells. On the other hand, by using a deterministic approach one benefits from advanced
methods of model analysis, parameter identification as well as process design and con-
trol.

In order to account for the heterogeneity in multicellular systems, population balance
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approaches offer a suitable deterministic framework [Ramkrishna, 2000]. Population bal-
ance equations, which originate from the Boltzmann equation, are used to describe the
dynamic change of the distribution of particles or, in a more general sense, entities
within a predefined state space [Ramkrishna and Mahoney, 2002]. The wider applica-
tion of population balance approaches to a diverse array of problems started in the early
1960s. Fredrickson et al. published a major article on the statistics and dynamics of mi-
crobial growth in which they employed population balance equations [Fredrickson et al.,
1967]. From there on, the description of biological cell cultures by means of population
balance equations was further promoted by this scientific work group, e.g. Ramkrishna
[1979], Fredrickson [1991], Fredrickson and Mantzaris [2002], Fredrickson [2003].

In the early 1990s several groups were concerned with the mathematical modeling of
the baculovirus replication in insect cell cultures, e.g. de Gooijer et al. [1992], Licari and
Bailey [1992], or Power et al. [1992]. In particular, Nielsen and Power utilized so called
age-structured models in which the performance of the host cells depends on the time
since their infection [Power et al., 1994; Power and Nielsen, 1996; Nielsen, 2000]. More
recently, Haseltine and Rawlings also relied on an age-structured approach to study the
virus replication in cell cultures in several generic settings [Haseltine et al., 2005, 2008].
Therein, events on the intracellular as well as the extracellular level are considered, as-
suming that cells of the same age since infection show equal performance. Although these
approaches were a significant contribution to the field of virus dynamics, no particular
application was considered and a comparison to experimental data is lacking.

After previous approaches by Sidorenko et al. [2008a,b], which utilized a stochastic
approach, focus in the current work is on deterministic population balance modeling. A
direct comparison with distributed experimental data obtained by flow cytometry (see
Fig. 1) is provided. Note, that most important results of this thesis have been published
in advance in Müller et al. [2008, 2011, 2013] and Dürr et al. [2012].

1.3 Objectives

This work is concerned with the development of a deterministic population balance model
of the influenza A virus infection of adherent Madin-Darby canine kidney (MDCK) cells
during vaccine production. Special attention is paid to the rigorous consideration of
flow cytometric data in order to simulate the dynamic behavior of heterogeneous cell
populations. It is the first time, that this is done for the influenza vaccine production.

The experimental setting is described in detail by Schulze-Horsel et al. [2009]. The con-
sidered process takes place in a small-scale bioreactor (1.2 l working volume). Therein
adherent MDCK cells are grown on microcarriers until, eventually, a confluent mono-
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Figure 2: Illustration of a bioreactor with a magnified detail depicting confluently overgrown micro-
carriers.

layers is reached [Genzel et al., 2004] (see Fig. 2). After the removal of spent medium
and a subsequent washing step, fresh medium is added and the cell culture is inoculated
with the virus seed containing infectious/active and uninfectious/inactive virus parti-
cles. Active virions attach to uninfected cells and infect them subsequently. Although
inactive virus particles can also bind to the cell membrane and incorporation is possible,
successful infection and replication do not take place. For simplicity, other biologically
active virus particles, like defective interfering particles (DIPs), are neglected and inac-
tive virus particles are assumed to simply accumulate in the supernatant without further
interaction with the host cell population.

Newly infected cells undergo the eclipse phase [Flint et al., 2009], during which neither
virus replication nor release can be detected. With regard to the presented model formu-
lations the eclipse phase lumps together events happening before viral protein synthesis,
e.g. entry of the virus into the host cell, uncoating of nucleic acid, various transport
processes and RNA transcription. After completion of the eclipse phase infected cells
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start to synthesize viral protein. The change of the intracellular amount of viral protein,
in the present case nucleoprotein (NP), is measured via flow cytometry and can be used
to characterize the progress of infection [Schulze-Horsel et al., 2009; Müller et al., 2013].
This allows the differentiation of the host cell population and gives rise to distributed
modeling approaches. Experimental results reveal characteristic dynamic phenomena on
the distribution level like transient multimodality and reversal of propagation direction.
In Fig. 1 (see page 3) a typical course of events is presented on the basis of actual
experimental data of four selected time points. In a first phase (between the infection
and texp = 18 h) the unimodal initial distribution transforms into a transient bimodal
distribution. Afterwards, the two distinct peaks unite again at high fluorescence inten-
sities (texp = 26 h). By comparison of the distributions at texp = 26 h and texp = 78 h the
back-propagation to lower fluorescence intensities becomes apparent. The main objective
of this work is the consistent explanation of these characteristic phenomena in order to
provide insight into the underlying biological processes.

1.4 Outline

The thesis is organized as follows. After the introduction (Section 1) the basic model of
Möhler et al. [2005] is presented in Section 2 as this lumped approach lay the foundation
for the following distributed models. In addition, this section constitutes a steppingstone
to the understanding of the following model formulations.

Taking off from there, in Section 3 a distributed modeling approach is introduced that
directly utilizes flow cytometric results of equine influenza A infections of MDCK cells.
Therefore, a degree of fluorescence is established as an internal coordinate, which is
related to the intracellular amount of viral nucleoprotein (NP). It is shown how raw flow
cytometric data have to be processed in order to be comparable to simulation results
and how the resulting model allows to draw conclusions about the course of events in
the experiments. Strengths and weaknesses of the proposed model are discussed.

As the lacking ability to reproduce the reversal of the propagation direction of the
cell distribution, the so called backshift, is regarded the main drawback of the model,
in Section 4 a possible mechanistic model formulation is presented that resolves this
deficit by proposing a two-phase replication process. Though, due to sparse experimental
data at the time the model was developed no physiological reason could be determined
for the transition from the first to the second phase.

The situation changed when more dense experimental data were available for human in-
fluenza A replication in adherent MDCK cells. Experimental investigation of the occur-
rence and the course of apoptosis during influenza vaccine production by Schulze-Horsel
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et al. [2009] and Schulze-Horsel [2011] provided a possible explanation for the backshift.
In Section 5 the respectively derived model is presented, discussed and compared with
experimental data.

Finally, in Section 6 the main results of this contribution are summed up and eval-
uated, and additional aspects, which promise to improve the model performance, are
presented.

7
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2 Lumped modeling according to Möhler et al. [2005]

From a historical point of view, the model of Möhler et al. [2005] forms the starting
point of the models that are presented within this work. For this reason it is introduced
here.

In 2005 Möhler et al. presented a deterministic population balance model of equine in-
fluenza A virus replication in MDCK microcarrier culture. The model is unstructured
and represents a very basic description of the vaccine production process by considering
the interactions of three lumped species – uninfected cells, infected cells, and free virus
particles. The model was fitted to experimental virus titers measured via hemaggluti-
nation assay. In addition, two model formulations were set against each other. These
formulations differed in how the time delay between the infection of a cell and the re-
lease of the first virus particles was considered. In the first case the lag was considered
indirectly by simply shifting the simulation results by a certain amount (tshift = 12 h).
In the second case the model consisted of time-delay differential equations that explicitly
accounted for the lag period – this second version is described in Section 2.2.

Despite its simple setup the model was able to reproduce the experimental results.
Particularly with respect to the maximum virus yield both model formulations performed
comparably well.

In the following a short description of the process and the model assumptions are given.
For a more detailed presentation the reader is referred to the original publication of
Möhler et al. [2005].

2.1 Process description and model assumptions

Prior to inoculation, cell growth is completed, i.e. all microcarriers are completely covered
by uninfected cells, so that the whole population is contact inhibited. At the time of
infection (TOI) virus seed is added with a multiplicity of infection (MOI) of 0.025, i.e.
the ratio of infectious virus particles to uninfected cells. Accordingly, free virions are
adsorbed by uninfected cells. As not all virus particles are infective only a fraction of
these cells actually gets infected. Together with the MOI the infection kinetics determine
how many cells are infected by the inoculum. It is assumed that already infected cells
are no longer able to adsorb virus particles. Instead, after a certain delay τ they start to
release free virus particles into the medium. This delay is called latent period [Flint et al.,
2009] and denotes the time from the successful infection to the release of the first virus
particles. During the latent period or latent phase processes like the entry of the virus
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into the host cell, the uncoating of the nucleic acid, viral protein and RNA synthesis as
well as virus formation and budding take place. Freshly released virions attach to still
uninfected cells and finally infect them. Infected cells keep releasing virus particles until
they disintegrate due to virus-induced cell damage or apoptosis. Furthermore, uninfected
cells die due to cultivation conditions. While dying, cells are supposed to detach from
the microcarrier surface and make room for still uninfected cells, which then are able to
grow again. As free virus particles are exposed to unspecific proteases in the medium,
they are subject to degradation.

Further important model assumptions: Virus particles are assumed to exclusively
attach to uninfected cells. There are no multiple infections. Furthermore, there is no
differentiation between cells of the same species. This means, for instance, that all un-
infected cells behave the same and all infected cells behave the same, too. Hence, the
latent period is considered to have the same length for every cell as well. Uninfectious
virions are considered indirectly by using different coefficients for virus attachment and
infection. In general, the number of virus particles that attach to uninfected cells should
be higher than or at least equal to the number of successfully infected cells. Defective
interfering particles (DIPs) are not considered.

2.2 Model equations

In order to be in line with further model formulations that are to be presented in this
contribution, the nomenclature is slightly changed in comparison to the one used by
Möhler et al. [2005]. For the description of the process three state variables are consid-
ered: the concentrations of uninfected and infected cells (Uc and Ic, respectively), as well
as the concentration of free virus particles V . In the beginning all cells are uninfected
and the temporal change in concentration is described by

dUc(t)
dt = µc(t)Uc(t)− kcdf Uc(t)− kvi Uc(t)V (t) (2.1)

with µc(t) = µc,max
Cmax − (Uc(t) + Ic(t))

Cmax
. (2.2)

The concentration of uninfected cells Uc is increased by cell growth with the cell growth
coefficient µc. Culture conditions are maintained in a way, so that factors like insufficient
substrate availability or limiting metabolites are excluded [Genzel et al., 2004]. Only the
finite microcarrier surface restricts cell growth. Hence, µc is defined by the maximum
concentration of cells supported by all microcarriers (Cmax) and the maximum growth
coefficient µc,max. Thus, µc approaches µc,max when the overall number of cells (Uc + Ic)

10
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Figure 3: Scheme of the model of Möhler et al. [2005]. Solid arrows indicate the consumption of
the species the arrow originates from. If the arrow points at another species, the latter is
produced simultaneously. Dashed arrows also symbolize production which depends on the
availability of the species the arrow originates from. But in this case the required species is
not consumed during the process.

tends to zero. On the other hand, cell growth stops when the overall concentration of
cells reaches its maximum Cmax. Uninfected cells die with the cell death coefficient due
to cultivation conditions kcdf. Infection is proportional to the infection coefficient kvi.

Infected cells arise from uninfected cells by successful infection. They eventually die with
the cell death coefficient due to viral infection kcdv:

dIc(t)
dt = kvi Uc(t)V (t)− kcdv Ic(t). (2.3)

After passing through the latent period of length τ infected cell start to produce and
release virus particles with the release rate krel. Free virions degrade with the degradation
coefficient kvd and attach to uninfected cells with the attachment coefficient kva:

dV (t)
dt = krel Ic(t− τ)− kvd V (t)− kva Uc(t)V (t). (2.4)

A scheme of the described processes is presented in Figure 3.
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Figure 4: Scheme of the model of Möhler et al. [2005] with the latent period being approximated by
a discretized transport system. The transported cells originate from infected cells, travel
through the transport system along the transport coordinate λ, and start to release virus
particles when they eventually reach the end of the transport system.

2.3 Numerical solution

For the numerical solution the latent period is represented by a transport system of
constant length. Therefore, a new state variable Tc is introduced, which represents the
number density along the nondimensional transport coordinate λ ∈ R, [0, 1]:

∂Tc(t, λ)
∂t

= −1
τ

∂Tc(t, λ)
∂λ

. (2.5)

Cells in the transport system travel with a constant transport velocity 1/τ . The entry
of infected cells into the transport system is specified by the boundary condition:

Tc(t, λ = 0) = Ic(t). (2.6)

When the transported cells reach the end of the transport system at time t their con-
centration is equal to the concentration of infected cells at time t− τ :

Tc(t, λ = 1) = Ic(t− τ). (2.7)
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a) Simultaneous change of kva and kvi – dashed
(dotted) lines represent simulation results
when both coefficients are multiplicated by
10−3 (10−6).

b) Exclusive change of kvi – dashed (dotted) lines
represent simulation results when kvi is multi-
plicated by 0.75 (0.5).

Figure 5: Influence of the attachment coefficient (kva) and the infection coefficient (kvi) on the dynam-
ics of the model of Möhler et al. [2005] – solid lines represent the concentrations of uninfected
cells (blue), infected cells (red), and virus particles (black) when the parameter set of Tab.
I is applied.

Equation (2.5) is discretized with the help of the finite-volume method (FVM) using an
equidistant discretization scheme with M = 64 control volumes, which turned out to be
a sound compromise between accuracy and effort (see Appendix C.1, page 101):

dTc,i(t)
dt = − 1

∆λ τ
(
Tc,i(t)− Tc,i−1(t)

)
(2.8)

with Tc,0(t) = Ic(t).

Thus, the virus balance equation (2.4) can be substituted by

dV (t)
dt = krel Tc,M(t)− kvd V (t)− kva Uc(t)V (t). (2.9)

A scheme of the resulting model structure is presented in Figure 4.

In order to numerically solve this and all further models the dynamic simulator Diva
[Mangold et al., 2000] was used. Of all the available solvers implemented in Diva
DDASAC [Caracotsios and Stewart, 1985] turned out to be the most suitable. Data
processing and visualization as well as additional computations were performed with
Matlab [2012].

Although the model structure is simple, the proposed kinetics can generate numerical
problems. The infection and attachment terms can yield extreme values causing the
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concentrations of uninfected cells or virus particles to overshoot below zero. This can be
reduced by decreasing the solver step size and the allowed numerical error. In order to
prevent the occurrence of negative values appropriate constraints to the state variables
have been applied to the balance equations.

Note, that a reasonable reduction of the parameters kva and kvi can reduce the problem
without affecting the overall system dynamics as long as the ratio between both param-
eters is preserved and the change is kept within certain limits. If, for instance, both (kva
and kvi) are multiplied by 10−3 no significant change of the system dynamics can be
observed, whereas an exclusive reduction of kvi by one quarter results in a significant
change that is comparable to a simultaneous multiplication by 10−6 (see Fig. 5).

2.4 Parameters

In order to demonstrate the validity of the model, the parameters published by Möhler
et al. [2005, Tab. I, p. 50] are adopted. In Table I the parameter set and initial conditions
are summarized. The cell death coefficient of uninfected cells (kcdf), the virus degrada-
tion coefficient (kvd), and the maximum growth coefficient (µc,max) were determined in
independent experiments. All other parameters were fitted to experimental data taken
from the production of equine influenza A/Newmarket/1/93 (H3N8) in MDCK micro-
carrier culture in a bioreactor with 4 l working volume at MOI = 0.025 [Möhler et al.,
2005].

Parameter Value Unit
Cmax 1.2 · 106 ml−1

kcdf 0.001 h−1

kcdv 25.7 · 10−3 h−1

krel 482 h−1

kva 0.8 ml/h
kvd 0.009 h−1

kvi 1.4 · 10−3 ml/h
µc,max 0.03 h−1

τ 4.5 h
Ic,0 0 ml−1

Uc,0 1.2 · 106 ml−1

V0 26 · 106 ml−1

Table I: Parameter set and initial conditions for the model of Möhler et al. [2005]
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As an initial condition all cells are uninfected with an initial concentration of Uc,0 =
1.2 · 106 ml−1. The virus seed is added at TOI resulting in an initial virus concentration
of V0 = 26 · 106 ml−1.

2.5 Simulation results

In Figure 6 the resulting dynamics for the adopted parameter set (Tab. I) are shown. The
virus particles of the inoculum all attach to uninfected cells and the virus concentration
instantly drops to zero (see Fig. 6b). Due to a relatively low MOI of 0.025 only a small
fraction of the uninfected cells is infected and constitutes the first generation of virus
producing cells. Though, before the release of new virus particles can begin the freshly
infected cells have to pass through their latent phase. Hence, apart from a slight decrease
caused by cell death, the concentrations of uninfected and infected cells stay relatively
constant for about 4 h.

Eventually, the first generation of infected cells starts to release the first virus parti-
cles at about 3.5 hours post infection (h p.i.). The virus concentration increases until a
plateau is reached at 6 h p.i. As the number of producing cells is rather low, the virus
release is balanced out by virus attachment to uninfected cells, which results in a nearly
linear decrease of the number of uninfected cells between about 5 to 9 h p.i. The number
of infected cells increases accordingly. At about 8 h p.i. the first infected cells out of this
second generation start to release virus. From this point on virus release accelerates as
more and more infected cells drop out of the latent phase. The number of infected cells
equally increases with accelerated tempo until finally all cells are infected at 16 h p.i.
With no uninfected cells left, the number of infected cells declines due to cell death.
The increase of the virus yield slows down accordingly, but is maintained, as for the
duration of the simulation there are enough productive cells left to counter virus degra-
dation. Interestingly, the virus concentration does not rise above the detection limit of
the hemagglutination assay (4.06 · 107 virusparticles/ml [Möhler et al., 2005]) until the
number of infected cells is already declining.
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a) Temporal progression of the concentrations of uninfected cells (blue),
infected cells (red) and virus particles (black). The virus yield is
given in lg HA

100 µl .

b) Early progression of the virus concentration given in particles/ml.

Figure 6: Simulation results of the model of Möhler et al. [2005]. For the applied parameters and
initial conditions see Tab. I (page 14). Due to a relatively low MOI of 0.025 several waves of
infection occur. This is signified by two distinct bends in the curves of the uninfected and
infected cells at about 4 and 9 h p.i.. Likewise, the early progression of the virus concentration
illustrates the influence of the latent period and reveals the discrete waves of infection.
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3 Distributed modeling of equine influenza A virus replication

In 2008 Schulze-Horsel et al. published an article about the application of flow cytome-
try for the monitoring of influenza vaccine production in adherent MDCK cell cultures.
Therein, it is shown how flow cytometry can be used to quantify the progress of infection
of thousands of individual cells by measuring the intracellular amount of viral protein.
Therefore, sampled cells were stained with fluorescein (fluorescein isothiocyanate, FITC)-
conjugated monoclonal antibodies against influenza A virus matrix protein 1 (M1) and
nucleoprotein (NP). When these antibodies bind to their specific antigen the fluorescence
intensity (F ) of the considered cell increases. There is no discrimination between the con-
tributions of M1 and NP as all antibodies are labeled with the same fluorochrome. In
addition, there is unspecific antibody binding which causes cells with no intracellular vi-
ral protein, like uninfected cells, to show fluorescence. As a result, for every sample time
point a specific distribution over the fluorescence intensity is recorded, which character-
izes the sampled cell population. Examples of experimental cell distributions obtained
from flow cytometry are shown in Fig. 7.

The possibility of incorporating these flow cytometric results motivated the application
of a distributed modeling approach in order to extend the lumped model of Möhler
et al. [2005]. In the new model the intracellular amount of viral proteins M1 and NP
should constitute the distinguishing feature and internal coordinate of the infected cells.
Therefore, a degree of infection (δ ∈ R, [0,∞]) was introduced in a model published
by Müller et al. [2008]. The degree of infection is a measure for the combined amount
of intracellular M1 and NP given in virus equivalents (VE). A virus equivalent is the
average number of copies of the considered protein(s) (in this case M1 and NP) which
constitute a virus particle – according to Lamb and Krug [2001] an average influenza A
virus particle contains 3000 copies of M1 and 1000 copies of NP. Thus, when an infected
cell with δ = i synthesizes a combined number of 4000 copies of M1 and NP its state
changes to δ = i+ 1.

As mentioned above, all cells – even cells without intracellular viral protein, like un-
infected cells – show fluorescence due to unspecific antibody binding. This leads to an
initial distribution of the cell population over the fluorescence intensity. Hence, the spe-
cific fluorescence intensity of any given cell is determined by its intracellular amount
of viral protein and its initial fluorescence intensity. This implies the introduction of a
more general degree of fluorescence ϕ as an internal coordinate of not only infected, but
all cells.

How is the degree of fluorescence related to the measured fluorescence intensity of a
specific cell? In Schulze-Horsel et al. [2008] it is shown that the change of the intracel-
lular amount of viral protein is linearly linked to the change of fluorescence intensity.
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Figure 7: Experimental results obtained from flow cytometric measurements conducted by Schulze-
Horsel et al. [2008] for the infection of adherent MDCK cells with equine influenza
A/Newmarket/1/93 (H3N8). The diagrams comprise cell distributions of one experiment
for selected times post infection.

Calibration measurements reveal that 3457.1 FITC molecules are needed to increase
the fluorescence intensity by 1 FU – the difference in the molar quantum yield between
FITC conjugated to calibration particles and FITC conjugated to antibody molecules is
neglected [ibid.]. Together with the labeling efficiency of 2.3 FITC molecules per viral
protein [Schulze-Horsel, 2011] this yields the change in fluorescence intensity per virus
equivalent

FVE = 4000 proteins · 2.3 FITC
protein

· 1
3457.1

FU
FITC

= 2.661FU. (3.1)

With the help of FVE the degree of fluorescence can be defined as the fluorescence inten-
sity of a specific cell divided by the change in fluorescence intensity per virus equivalent

ϕ = F/FVE. (3.2)
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Thus, when an infected cell with ϕ = i synthesizes a combined number of 4000 copies of
M1 and NP its state changes to ϕ = i+ 1. Though, because of the initial distribution of
the cells due to unspecific antibody binding, ϕ – in contrast to δ – is not directly linked
to the actual intracellular amount of viral protein of the considered cell.

3.1 Preprocessing of flow cytometric data

In order to provide initial conditions for the model and to allow the comparison with
simulation results in general the flow cytometric data have to be preprocessed.

Experimental cell distribution

The flow cytometer possesses Nsensor = 1024 sensor channels which cover a combined
fluorescence intensity range from 1 to 104 fluorescence units (FU). The lower and upper
bound of each channel can be calculated from the channel number i ∈ N, [1, 1024], which
determines the width of the respective channel

∆Fsensor,i = Fsensor,i+1 − Fsensor,i

= 10
4

Nsensor ·i − 10
4

Nsensor ·(i−1) [FU].
(3.3)

This leads to a logarithmically increasing channel width, so that in a logarithmic scale
the width stays constant for all channels

∆Fsensor,lg = lg
(
10

4
Nsensor ·i

)
− lg

(
10

4
Nsensor ·(i−1)

)
= 4
Nsensor

i− 4
Nsensor

(i− 1) = 4
Nsensor

[“lgFU”].
(3.4)

During the measurement the cells of a sample are assigned to the appropriate channel
matching their specific fluorescence intensity. This results in a histogram, in which the
number of cells Zi is recorded for each channel (Fig. 8, left). To become comparable to
simulation results the histogram data have to be normalized with respect to the total
number of cells per sample and divided by the logarithmic width of the sensor channels.
This leads to the experimental cell distribution (Fig. 8, right)

qexp,i(t) = Zi(t)∑
j
Zj(t)

· Nsensor

4

[
1

“lgFU”

]
for i, j ∈ N, [1, 1024]. (3.5)
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Figure 8: Flow cytometric data – raw cell counts for each sensor channel (left), experimental cell
distribution qexp,i over mean fluorescence intensity of respective sensor channel (right)

Initial cell distribution

The initial cell distribution is approximated by a log-normal distribution using the mean
fluorescence intensity of the sensor channels Fsensor,m,i:

qapprox,i,0 = 1
σ0
√

2π
· exp

−1
2

 lg
(
Fsensor,m,i/µ0

)
σ0

2 [
1

“lgFU”

]
(3.6)

with Fsensor,m,i = 1
2
(
10

4
Nsensor ·i + 10

4
Nsensor ·(i−1)

)
[FU].

The expectation µ0 and the standard deviation σ0 are fitted to experimental data. In
Fig. 9 initial cell distributions are shown together with the respective experimental data
recorded by Schulze-Horsel et al. [2008] for the infection of adherent MDCK cells with
equine influenza A/Newmarket/1/93 (H3N8).

In order to determine the initial cell distribution for the model a generic discretization
of the model equations into NCV finite control volumes is assumed and a conversion into
the correct units is performed:

qsim,i,0 = 1
σ0
√

2π
· exp

−1
2

 lg
(
ϕm,i FVE/µ0

)
σ0

2 · lg
(
ϕi+1/ϕi

)
ϕi+1 − ϕi

[ — ] (3.7)

for i ∈ N, [1, NCV].

Here, ϕm,i is the mean degree of fluorescence and ϕi and ϕi+1 are the left and right
boundaries of control volume (CV) i.
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Figure 9: Initial cell distributions for two different experiments with equine influenza
A/Newmarket/1/93 (H3N8) [Schulze-Horsel et al., 2008] – experimental cell distribu-
tions qexp,i,0 (dots) and the respective approximated distributions qapprox,i,0 (lines)

Continuous formulation

In order to obtain a continuous formulation of the initial cell distribution the scaling
factor in Eq. (3.7) has to be adapted:

lg
(
ϕi+1/ϕi

)
ϕi+1 − ϕi

=
lg
(
(ϕi + ∆ϕi)/ϕi

)
(ϕi + ∆ϕi)− ϕi

=
lg
(
1 + ∆ϕi/ϕi

)
∆ϕi

.

Now, the limit of the scaling factor for ∆ϕi → 0 is determined with the help of
L’Hospital’s rule (see Appendix A, page 97):

lim
∆ϕi→0

lg
(
1 + ∆ϕi/ϕi

)
∆ϕi

!= lim
∆ϕi→0

1
ln(10) (ϕi + ∆ϕi)

= 1
ln(10)ϕi

.

Hence, the continuous formulation of the initial distribution is defined as

qsim,0(ϕ) = 1
σ0
√

2π
· exp

−1
2

 lg
(
ϕFVE/µ0

)
σ0

2 · 1
ln(10)ϕ [ — ] . (3.8)

3.2 Process description and model assumptions

The general conditions of the considered process correspond to the ones described in
Section 2.1. In addition, the intracellular production of M1 and NP has to be considered.
It is assumed that the delay between the infection and the production of the first viral
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proteins, the so called eclipse period or eclipse phase [Flint et al., 2009], coincides with the
latent phase of infected cells. All cells are considered to be distributed with respect to the
fluorescence intensity. However, uninfected cells and infected cells which are currently
in the latent phase are considered to keep their initial fluorescence intensity. In the
measurements performed by Schulze-Horsel et al. [2008] the specific contributions of
the two proteins M1 and NP to the overall fluorescence intensity are not discriminated.
Hence, in the model both proteins are not discriminated either and their production is
merged to a general production of viral protein. It is assumed that, besides unspecific
antibody binding, the fluorescein-labeled antibodies only bind to newly synthesized viral
proteins and not to proteins which were brought into the cell by the infecting virus
particle. This assumption is supported by infection experiments with very high MOI,
which were performed by the Bioprocess Engineering Group at the Max Planck Institute
for Dynamics of Complex Technical Systems (MPI Magdeburg) (data not shown). The
dynamics of virus protein accumulation are assumed to be exclusively controlled by the
interplay of protein production and virus release. While the intracellular amount of viral
protein is increased by protein production, the release of virus particles is considered to
be eventually responsible for its decrease.

3.3 Model equations

The presented model is based on the approach previously published by Müller et al.
[2008]. However, the latter is extended by explicit incorporation of the latent phase
and the growth and death of uninfected cells. Therefore, the presented model shall be
identified as the extended model of Müller et al. [2008]. As this distributed approach
is conceived to be in accordance with the lumped model of Möhler et al. [2005] most
equations have corresponding features when compared with the ones presented in Section
2.2. Note, that all state variables which are number densities are marked with a tilde
(e.g. Ũc(t, ϕ), Ĩc(t, ϕ)) in order to make them distinguishable from cell concentrations
(e.g. Uc(t), Ic(t)).

In the beginning all cells are uninfected and distributed with respect to the degree of
fluorescence:

∂Ũc(t, ϕ)
∂t

= µc(t) Ũc(t, ϕ)− kcdf Ũc(t, ϕ)− kvi Ũc(t, ϕ)V (t) (3.9)

with µc(t) = µc,max

Cmax −
∫
ϕ

(
Ũc(t, ϕ) + L̃c(t, ϕ) + Ĩc(t, ϕ)

)
dϕ

Cmax
. (3.10)

The initial condition is determined by the initial cell concentration Uc,0 and the normal-
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ized initial distribution qsim,0 with the parameters µ0 and σ0 (see Eq. (3.8)):

Ũc(t = 0, ϕ) = Uc,0 · qsim,0(ϕ). (3.11)

Note, uninfected cells are supposed to keep their degree of fluorescence.

The incorporation of the latent period is done in a different way than before. Infected
cells which undergo the latent phase of duration τ are considered a separate species L̃c.
Infected cells enter the latent phase upon infection and leave after the duration τ . In
addition, cells in the latent phase are supposed to be subject to cell death with the cell
death coefficient due to viral infection kcdv. They are also considered to keep their degree
of fluorescence.

∂L̃c(t, ϕ)
∂t

= kvi Ũc(t, ϕ)V (t)− kvi Ũc(t− τ, ϕ)V (t− τ) · e−kcdv τ − kcdv L̃c(t, ϕ)
(3.12)

The first term on the right side of Eq. (3.12) represents cells entering the latent phase
due to infection at time t. The second term specifies the change of the number density
at time t due to cells leaving the latent phase. As a matter of fact these cells must have
entered the latent phase by virtue of infection at time t− τ . Though, due to cell death
their number decreases during their stay in the latent phase until they leave at time
t. This decrease is reflected by an exponential expression depending on the cell death
coefficient kcdv and the length of the latent phase τ . As a result, the number of cells
leaving the latent phase at time t ends up to be smaller than the number of cells which
originally entered the latent phase at time t− τ . Finally, the third term represents cells
dying at time t. The derivation of Eq. (3.12) is shown in detail in Appendix B (page
99).

After the latent phase is completed, infected cells start to produce viral proteins M1 and
NP with the protein production coefficient kpro, which causes the degree of fluorescence
to increase. On the other hand, virus particles are released with the release coefficient
krel, which causes the degree of fluorescence to decrease. The interplay of these two
coefficients determines the distribution dynamics:

∂Ĩc(t, ϕ)
∂t

= kvi Ũc(t− τ, ϕ)V (t− τ) · e−kcdv τ −
(
kpro − krel

) ∂Ĩc(t, ϕ)
∂ϕ

− kcdv Ĩc(t, ϕ).
(3.13)

By explicitly considering cells in the latent phase as a separate species, all cells that have
left the latent phase are immediately capable of virus replication. Hence, virus particles
are instantly released by infected cells of species Ĩc:

dV (t)
dt = krel

∫
ϕ

Ĩc(t, ϕ) dϕ− kvd V (t)− kva V (t)
∫
ϕ

Ũc(t, ϕ) dϕ. (3.14)
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Figure 10: Scheme of the extended model of Müller et al. [2008]. Uninfected cells and infected cells
(in and after the latent phase) are distributed over the degree of fluorescence ϕ. While
uninfected cells keep their degree of fluorescence, infected cells – once they have passed
the latent phase – can move along the internal coordinate ϕ by means of viral protein
production and virus release.
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The resulting model structure is presented in Fig. 10.

3.4 Numerical solution

For the numerical solution some of the model equations presented above can be simpli-
fied. Note, that by assumption uninfected cells and infected cells during the latent phase
do not change their degree of fluorescence. Therefore, the number densities Ũc(t, ϕ) and
L̃c(t, ϕ) can be determined by multiplying the respective cell concentrations Uc(t) and
Lc(t) with the time invariant normalized initial distribution qsim,0(ϕ) (see Eq. (3.8) on
page 21):

Ũc(t, ϕ) = Uc(t) qsim,0(ϕ) with Uc(t) =
∫
ϕ
Ũc(t, ϕ) dϕ, (3.15)

L̃c(t, ϕ) = Lc(t) qsim,0(ϕ) with Lc(t) =
∫
ϕ
L̃c(t, ϕ) dϕ. (3.16)

Hence, for the uninfected cells application of Eq. (3.15) to Eq. (3.9) yields the temporal
change of the concentration, which corresponds to Eq. (2.1) on page 10:

∂Uc(t)
∂t

= µc(t)Uc(t)− kcdf Uc(t)− kvi Uc(t)V (t). (2.1)

As demonstrated previously in Appendix B, for the numerical solution the latent phase
is represented by a transport system using the new state variable ˆ̃Lc, which depends on
the degree of fluorescence ϕ and the transport coordinate λ (see Eq. (B.1) on page 99).
Then, in correspondence to Eq. (3.16) the following holds

ˆ̃Lc(t, ϕ, λ) = L̂c(t, λ) qsim,0(ϕ) with L̂c(t, λ) =
∫
ϕ

ˆ̃Lc(t, ϕ, λ) dϕ (3.17)

and can be applied to Eq. (B.1) yielding the balance equation of the number density of
the infected cells in the latent phase at position λ:

∂L̂c(t, λ)
∂t

= −1
τ

∂L̂c(t, λ)
∂λ

− kcdv L̂c(t, λ) (3.18)

with the boundary condition

L̂c(t, λ = 0) = τ · kvi Uc(t)V (t). (3.19)

Subsequently, Eq. (3.18) is discretized with the help of the finite-volume method (FVM)
using an equidistant discretization scheme with M = 64 control volumes (see Appendix
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C.2 on page 102):

dL̂c,i(t)
dt = − 1

∆λ τ
(
L̂c,i(t)− L̂c,i−1(t)

)
− kcdv L̂c,i(t) (3.20)

with L̂c,0(t) = τ · kvi Uc(t)V (t).

When looking at the last control volume of Eq. (3.20) (i = M) the change of the
cell concentration due to cells leaving the latent phase at time t equals L̂c,M(t)/τ . By
multiplication with the normalized initial distribution qsim,0(ϕ) this flux serves as the
source of infected cells of species Ĩc(t, ϕ). The balance equation of infected cells after the
latent phase, Eq. (3.13), is changed accordingly:

∂Ĩc(t, ϕ)
∂t

= L̂c,M(t)
τ

qsim,0(ϕ)−
(
kpro − krel

) ∂Ĩc(t, ϕ)
∂ϕ

− kcdv Ĩc(t, ϕ). (3.21)

Now, Eq. (3.21) is discretized by FVM using a logarithmic discretization scheme with
N = 128 control volumes (see Appendix C.3, page 104):

dĨc,i(t)
dt = L̂c,M(t)

τ
qsim,0,i −

kpro
∆ϕi

(
Ĩc,i(t)− Ĩc,i−1(t)

)

+ krel
∆ϕi

(
Ĩc,i+1(t)− Ĩc,i(t)

)
− kcdv Ĩc,i(t)

(3.22)

with Ĩc,0 = Ĩc,N+1 = 0.

In addition, convection across the boundaries is prevented by defining Ic,N = 0 for the
protein production term and Ic,1 = 0 for the virus release term.

Due to the reformulation of the balance equations of all cell species the virus balance
equation and the equation of the cell growth rate have to be adapted accordingly:

dV (t)
dt = krel

N∑
i=1

∆ϕi Ĩc,i(t)− kvd V (t)− kva Uc(t)V (t), (3.23)

µc(t) = µc,max

Cmax − Uc(t)−∆λ
M∑
i=1

L̂c,i(t)−
N∑
i=1

∆ϕi Ĩc,i(t)

Cmax
. (3.24)

The resulting model structure is presented in Fig. 11.
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Figure 11: Scheme of the discretized, extended model of Müller et al. [2008]. Uninfected cells and
infected cells in the latent phase are assumed to not change their degree of fluorescence
ϕ. Therefore, they can be implemented as lumped species with regard to ϕ. The latent
phase is approximated by a discretized transport system with the transport coordinate λ.
When cells in the latent phase reach the end of the transport system they change over
to the virus producing species of infected cells. By applying the normalized initial cell
distribution, infected cells which have passed the latent phase are distributed along ϕ.
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Parameter MOI Unit
0.025 1.0 3.0

Cmax 1.2 · 106 ml−1

kcdf 0.001 h−1

kcdv 25.7 · 10−3 h−1

kpro 247 299 120 h−1

krel 246 288 110 h−1

kva 0.8 ml/h
kvd 0.009 h−1

kvi 1.9 · 10−3 1.9 · 10−3 0.71 · 10−3 ml/h
µc,max 0.03 h−1

τ 0.7 2.2 5 h
Ic,0 0 ml−1

Uc,0 1.2 · 106 ml−1

V0 12.6 · 106 502.4 · 106 1.507 · 109 ml−1

µ0 66.5 44.6 57.6 FU
σ0 0.202 0.172 0.159 FU

Table II: Parameter sets and initial conditions for the extended model of Müller et al. [2008]. Param-
eters that are not adopted from Tab. I (marked in gray) were fitted to experimental data
from Schulze-Horsel et al. [2008].

3.5 Parameters

The previously described population balance model is compared with experimental
data collected by Schulze-Horsel et al. [2008] for the production of equine influenza
A/Newmarket/1/93 (H3N8) in MDCK microcarrier culture in a small-scale bioreactor
(1 l working volume) at three different MOI (0.025, 1.0, and 3.0). In the following, the
considered virus strain will be referred to as A/Equi/H3N8. The experimental setting is
similar to the one employed by Möhler et al. [2005] – in both publications the same virus
strain and cell line are used; both refer to the same cultivation procedures, which were
established previously by Genzel et al. [2004]. Therefore, most of the model parameters
of Tab. I can be adopted. The applied parameter set and initial conditions for all three
MOI are summarized in Tab. II. Parameters that were fitted to the experimental data
of Schulze-Horsel et al. [2008] are marked in gray. In the following, the process of how
these parameters are derived is explained.

In order to determine the initial conditions it is important to regard the differences
between Schulze-Horsel et al. [2008] and Möhler et al. [2005] when it comes to calculating
the total virus concentration from virus titers measured via hemagglutination (HA)
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assay. While the latter assume that at least two virus particles per red blood cell (RBC)
are needed to cause complete agglutination, the former – referring to Burleson et al.
[1992] – consider one virus particle per RBC enough to produce the same result. Hence,
in accordance with Schulze-Horsel et al. [2008] and Schulze-Horsel [2011] the total virus
concentration can be calculated from virus titers measured in logarithmic HA units per
testvolume ( lgHA

100 µl):

V = cRBC · 10
lg HA
100 µl [virusparticles/ml] (3.25)

with cRBC = 2 · 107 RBC/ml.

Accordingly, the detection limit of the method equals the concentration of red blood cells
in the erythrocyte suspension (cRBC) and amounts to 2 · 107 virusparticles/ml. The used
virus seed is characterized by a total virus titer of 2.4 lgHA

100 µl and an infectious virus titer
of 1.2 · 107 plaque forming units (PFU) per ml [Genzel et al., 2004], which corresponds
to a total virus concentration of Vseed = 5 · 109 virusparticles/ml and an infectious virus
concentration of Vinf,seed = 1.2 · 107 virusparticles/ml. Hence, the plating efficiency (Peff)
of the virus seed can be calculated as

Peff = Vinf,seed
Vseed

= 2.4 · 10−3.

Thus, the initial virus concentration (V0) is determined by the given MOI and the initial
concentration of uninfected cells

V0 = MOI
Peff

Uc,0. (3.26)

The initial cell distributions are approximated as described in Section 3.1 (page 19 ff.).
Expectation and standard deviation (µ0 and σ0) are fitted to the respective experimental
cell distributions by minimizing error squares.

Of the remaining four parameters three have influence on the integral dynamics without
being influenced by the distribution dynamics. These are the infection coefficient kvi, the
duration of the latent phase τ , and the virus release coefficient krel. All are fitted to HA
measurements by minimizing error squares.

First, the infection coefficient kvi is determined by exploiting, that, within certain limits,
the actual value of kvi has only minor influence on the overall system dynamics as long as
the ratio between kvi and the attachment coefficient kva is preserved – this is exemplified
in the last paragraph of Section 2.3 (also see Fig. 5 on page 13). Then, the plating
efficiency can be used as a measure for the ratio between kvi and kva, so that:

kvi = Peff · kva. (3.27)
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Figure 12: Comparison of the integral dynamics of the extended model of Müller et al. [2008] with
experimental data of Schulze-Horsel et al. [2008] for MOI = 3.0 – lines represent simulation
results for the concentration of uninfected cells (light gray), infected cells (sum of cells
in and after the latent phase, gray), and virus particles (red); circles represent experi-
mental virus titers measured via hemagglutination assay including standard error bars of
the method (±0.3 lg HA

100 µl ). With exception of the infection coefficient (kvi = 1.9 · 10−3 ml/h)
the applied parameters are summarized in Tab. II (page 28). As the MOI is rather high
all cells are infected instantly. However, there are far too much virus particles left after all
cells are infected to provide a good fit to the experimental data.

Hence, with kva = 0.8 ml/h kvi is set to 1.9 · 10−3 ml/h. For MOI = 0.025 and 1.0 this
value of kvi provides a good fit to the experimental data (see Fig. 13, page 33).

However, for MOI = 3.0 the simulation results seem to be far off when kvi =
1.9 · 10−3 ml/h is applied (see Fig. 12). One reason for this discrepancy between sim-
ulation and experiment could be, that the model does not consider multiple infections.
If virus particles would attach to already infected cells, as they surely do in reality, the
virus concentration could decrease even when there are no uninfected cells left. How-
ever, whether the inclusion of multiple infections alone would be enough to bridge a
gap this large is debatable. Another possible cause for the encountered difference could
be an incorrect initial virus concentration in the experiment with MOI = 3.0. But that
would mean, that less than half of the intended virus seed had been applied, which
is rather unlikely. Yet, another explanation could be that the concentration of infec-
tious virus particles in the virus seed (Vinf,seed) was actually smaller than the denoted
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1.2 · 107 virusparticles/ml, which directly translates into different values of Peff. This can
happen, for instance, when defective interfering virus particles (DIPs) accumulate during
passing processes of the virus before the actual experiment. Whatever the reasons are for
the observed discrepancy, in the framework of the model the best fit for the experiment
with MOI = 3.0 is achieved by setting the infection coefficient kvi to 0.71 · 10−3 ml/h
(see Fig. 13, page 33). Note, that the independent determination of kvi is possible be-
cause, under the given conditions, kvi is the only remaining parameter that defines the
initial decrease of the virus concentration, when the seed virus interacts with the cell
population.

After kvi has been set, the subsequent course of the virus concentration is determined
by the duration of the latent phase τ and by the virus release coefficient krel. While τ
sets the time when the first freshly produced virus particles are released, krel determines
the increase of the virus concentration – both parameters are fitted together.

In general, the values of krel are smaller than the ones applied by Möhler et al. [2005]. This
can be attributed directly to the differences in the way the total virus concentration is
linked to the virus titer measured in lgHA

100 µl (see Eq. (3.25)). In comparison to the approach
of Möhler et al. [2005] a given virus concentration corresponds to a higher HA value, so
that the release rate can be lower in order to fit the experimental results. Note, in case of
MOI = 3.0 the value of krel is significantly lower than for the other two experiments. The
impeded virus release is in agreement with the hypothesis about the increased occurrence
of DIPs in this experiment.

Note, that the parameter τ subsumes various effects, which otherwise are not explicitly
addressed by the model. Besides the processes which take place during the latent phase,
τ is influenced by, e.g., the flow regime in the bioreactor, the level of trypsin in the
medium, the occurrence of DIPs, and the detection limits of the applied assays. Thus,
τ presumably is subject to significant variation depending on the various boundary
conditions of the respective experiment. However, in the presented results τ appears to
be proportional to the MOI or the initial virus concentration V0, respectively.

Finally, the viral protein production coefficient kpro, which, together with the already set
krel, determines the distribution dynamics, is fitted by minimizing the error between the
mean fluorescence intensities (MFIs) of simulated and experimental cell distributions.
The MFI of the experimental cell distributions is determined by the normalized number
of cells assigned to sensor channel i and the mean fluorescence intensity of sensor channel
i (see Eqs. (3.5) and (3.6)):

MFIexp(t) =

∑
i
Zi(t)Fsensor,m,i∑

i
Zi(t)

[FU ] for i ∈ N, [1, 1024].
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The MFI of the simulated cell population is calculated in an analogous manner:

MFIsim(t) =

∫
ϕ

(
Ũc(t, ϕ) + L̃c(t, ϕ) + Ĩc(t, ϕ)

)
ϕ dϕ∫

ϕ

(
Ũc(t, ϕ) + L̃c(t, ϕ) + Ĩc(t, ϕ)

)
dϕ

FVE [FU ].

For the numerical solution the calculation of the MFI changes due to the discretization
scheme (see Section 3.4 (page 25 f.) and Appendices C.2 & C.3 (page 102 ff.)):

MFIsim(t) ≈

((
Uc(t) + ∆λ

M∑
j=1

L̂c,j(t)
) N∑
i=1

qsim,0,i +
N∑
i=1

Ĩc,i(t)
)
ϕm,i ∆ϕi

Uc(t) + ∆λ
M∑
j=1

L̂c,j(t) +
N∑
i=1

Ĩc,i(t) ∆ϕi
FVE [FU ]

with ∆λ
M∑
j=1

L̂c,j(t) ≈ Lc(t) =
∫
ϕ
L̃c(t, ϕ) dϕ,

N∑
i=1

Ĩc,i(t) ∆ϕi ≈ Ic(t) =
∫
ϕ
Ĩc(t, ϕ) dϕ,

Uc(t)
N∑
i=1

qsim,0,i ϕm,i ∆ϕi ≈
∫
ϕ
Ũc(t, ϕ)ϕ dϕ, and

∆λ
M∑
j=1

L̂c,j(t)
N∑
i=1

qsim,0,i ϕm,i ∆ϕi ≈ Lc(t)
N∑
i=1

qsim,0,i ϕm,i ∆ϕi

≈
∫
ϕ
L̃c(t, ϕ)ϕ dϕ.

In the equations above ϕm,i is the mean fluorescence intensity and ∆ϕi the width of
control volume i.

3.6 Simulation results

First, the integral dynamics are presented in comparison to experimental data col-
lected by Schulze-Horsel et al. [2008] for the infection of adherent MDCK cells with
A/Equi/H3N8 at MOI = 0.025, 1.0, and 3.0. Afterwards, the internal distribution dy-
namics are compared with flow cytometric measurements of the same experiments. The
applied parameter set and initial conditions are summarized in Tab. II (page 28).
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a) MOI = 0.025 b) MOI = 1.0

c) MOI = 3.0

Figure 13: Comparison of the integral dynamics of the extended model of Müller et al. [2008] with
experimental data of Schulze-Horsel et al. [2008] for the infection of adherent MDCK cells
with A/Equi/H3N8 at MOI = 0.025, 1.0, and 3.0 – lines represent simulation results for
the concentration of uninfected cells (light gray), infected cells (sum of cells in and after
the latent phase, gray), and virus particles (red); circles represent experimental virus
titers of HA measurements including standard error bars of the method (±0.3 lg HA

100 µl ). The
applied parameter set and initial conditions are summarized in Tab. II (page 28).

Integral dynamics

Figure 13 shows the comparison of the integral dynamics between simulation and exper-
iment. The model is capable of producing the dynamic courses of virus concentrations,
which are in very good agreement with experimental virus titers for different initial
conditions.

While the length of the latent period for the experiment with MOI = 0.025 is rather short
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(τ = 0.7 h), the virus concentration stays below the detection limit of the HA assay until
about 10 h p.i. because of the relatively low MOI. The courses of the concentrations of
uninfected cells and infected cells (sum of cells in and after the latent phase) are smoother
when compared with the ones of Fig. 6 (page 16) because the first generation of infected
cells already starts to release virus particles less than one hour post infection.

Already at MOI = 1.0 all cells are infected instantly by the virus seed and the virus
concentration drops below the detection limit of the HA assay. After the latent phase is
completed, all cells start to produce virus particles together and the virus concentration
rises quickly.

As there are more infectious virus particles than uninfected cells at MOI = 3.0, all
cells are infected at once, with a considerable number of virus particles left unattached.
During the latent phase the virus concentration of the simulation slightly decreases
because of virus degeneration. At about 5 h p.i. the virus titer starts to rise again. As
described in Section 3.5 (page 28 ff.), the experiment with MOI = 3.0 deviates from
the other two experiments. Presumably, this stems from a considerably lower number of
infectious virus particles. The relatively low virus release rate and prolonged duration
of the latent period support this assumption. Although, the rather large standard error
of the HA-assay leaves room for interpretation.

Distribution dynamics

In Fig. 14 the mean fluorescence intensities of the simulation are compared with exper-
imental MFIs. For all MOIs the experimental MFI rises quickly after completion of the
more or less pronounced latent period. For MOI = 0.025 and 1.0 a subsequent decline
is noticable. Though, due to sparse experimental data the exact course is not known.
In the case of MOI = 3.0 measurements were performed with a higher sampling rate.
But, data collection stopped after 22 h p.i. yielding no clear signs for a potential phase
of declining MFI.

In general, the comparison reveals the limitations of the model. While the initial increase
of the MFI at least can be reproduced to some extent, a subsequent decrease seems to be
unfeasible. It is also striking, especially for MOI = 3.0, that the delay, which is produced
by the latent phase and fits the integral dynamics quite nicely, seems to be too long
when the internal dynamics are compared. This could be an indication for the necessity
to discriminate between the eclipse phase and the latent phase.

In Figures 15 to 20 (see page 36 ff.) the cell distributions of the simulation are com-
pared to the respective experimental cell distributions, which are determined by Eq.
(3.5) (see page 19). The simulated cell distributions depicted in Figures 15 to 20 are
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a) MOI = 0.025 b) MOI = 1.0

c) MOI = 3.0

Figure 14: Comparison of the mean fluorescence intensities (MFIs) of the extended model of Müller
et al. [2008] with experimental data of Schulze-Horsel et al. [2008] – simulated MFIs are
represented by lines; experimental MFIs are represented by circles.

calculated from the scaled and normalized sum of the individual cell distributions of all
cell populations:

qc,i(t) =

(
Uc(t) + ∆λ

M∑
j=1

L̂c,j(t)
)
qsim,i,0 + Ĩc,i(t)

Uc(t) + ∆λ
M∑
j=1

L̂c,j(t) +
N∑
j=1

Ĩc,j(t) ∆ϕj
· ∆ϕi

∆Flg

[
1

“lgFU”

]
(3.28)

for i ∈ N, [1, N ] with ∆Flg = 4
N

[“lgFU”] .

For MOI = 0.025 the results are depicted in Fig. 15 and 16. As can already be derived
from the MFI, the simulation lags behind at 7 h p.i., but is ahead from 20 h p.i. on. The
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a) t = 0 h p.i. b) t = 2 h p.i.

c) t = 4 h p.i. d) t = 7 h p.i.

Figure 15: Comparison of the distribution dynamics of the extended model of Müller et al. [2008] with
experimental data of Schulze-Horsel et al. [2008] at MOI = 0.025 (Part I) – simulated cell
distributions are represented by lines; experimental cell distributions are represented by
dots.

experimental cell distributions at 7 and 10 h p.i. exhibit a stepped course at higher fluo-
rescence intensities. These are the first infected cells which have completed the lag phase
and start to produce viral protein. Thus, the fluorescence intensity of the cells increases
and they leave the initial peak behind. In the simulations this process is indicated by
only a slight bend in the slope of the distribution because τ is rather small. For larger
values of τ the effect would be more obvious.

For MOI = 1.0 and 3.0 this phenomenon of part of the cell population rushing ahead of
the rest is even more pronounced (see Figures 17 and 19). At 3 h p.i. (MOI = 1.0) and at
4 h p.i. (MOI = 3.0) the experimental cell distributions clearly show bimodality, which
is not reproduced by the model, because in the simulation all cells are infected virtually
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a) t = 10 h p.i. b) t = 20 h p.i.

c) t = 42 h p.i. d) t = 66 h p.i.

Figure 16: Comparison of the distribution dynamics of the extended model of Müller et al. [2008] with
experimental data of Schulze-Horsel et al. [2008] at MOI = 0.025 (Part II) – simulated cell
distributions are represented by lines; experimental cell distributions are represented by
dots.

at the same time at these MOIs. When looking at the experimental cell distributions
this seems not to be the case. At MOI = 1.0 approximately half of the cell population
is infected and produces viral protein at 3 h p.i. Surprisingly, at MOI = 3.0 not many
more cells are producing viral protein at 4 h p.i. This can be attributed to the less than
expected amount of infectious virus particles in the virus seed for the respective experi-
ment. If one takes the ratio between the coefficients for infection and virus attachment
as a measure for the achieved plating efficiency, the actual MOI turns out to be (see Eq.
(3.26) and Tab. II on page 28 f.)

MOI = V0 Peff

Uc,0
= V0

Uc,0
· kvi
kva

= 1.507 · 109

1.2 · 106 ·
0.71 · 10−3

0.8 = 1.115.
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a) t = 0 h p.i. b) t = 3 h p.i.

c) t = 6 h p.i. d) t = 9 h p.i.

Figure 17: Comparison of the distribution dynamics of the extended model of Müller et al. [2008] with
experimental data of Schulze-Horsel et al. [2008] at MOI = 1.0 (Part I) – simulated cell
distributions are represented by lines; experimental cell distributions are represented by
dots.

Hence, both experiments (MOI = 1.0 and “3.0”) are not too far away from each other
with regard to the distribution dynamics. However, an increased amount of DIPs –
supposed for the experiment with MOI = 3.0 – may presumably be the reason for the
deviation of the integral behavior.

Furthermore, the experimental cell distributions of MOI = 1.0 and 3.0 exhibit tailing
after the bimodality is dissolved, which is at least partly reproduced by the simulation.
The extent of tailing in the experiments suggests that a small fraction of the cell pop-
ulation is either still uninfected, stuck in the latent phase, or very poor in producing
viral protein. The last two options could be a hint to a large variability in the ability to
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produce viral protein or to the existence of an antiviral state.

As mentioned above, the reversal of the propagation direction, as observed for later time
points at MOI = 0.025 and 1.0, can not be accomplished by the presented model. Even if
the virus protein production coefficient kpro was made dependent on ϕ, any combination
of kpro(ϕ) and the virus release coefficient krel would only result in a movement of the cell
distribution either to higher degrees of fluorescence or to lower degrees of fluorescence
depending on whether the difference between both coefficients (kpro(ϕ)−krel) is positive
or negative. Furthermore, whenever this difference equals zero a stagnation point would
be created, which could not be crossed.

a) t = 24 h p.i. b) t = 42 h p.i.

c) t = 66 h p.i.

Figure 18: Comparison of the distribution dynamics of the extended model of Müller et al. [2008] with
experimental data of Schulze-Horsel et al. [2008] at MOI = 1.0 (Part II) – simulated cell
distributions are represented by lines; experimental cell distributions are represented by
dots.
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At the time the model was created, of all the issues which needed to be solved on the
way to model the dynamic features of the process, finding a structure which would allow
the model to reproduce the reversal of the propagation direction was given the highest
priority. Hence, the path for the next steps was layed.
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a) t = 0.25 h p.i. b) t = 2 h p.i.

c) t = 4 h p.i. d) t = 6 h p.i.

e) t = 8 h p.i. f) t = 10 h p.i.

Figure 19: Comparison of the distribution dynamics of the extended model of Müller et al. [2008] with
experimental data of Schulze-Horsel et al. [2008] at MOI = 3.0 (Part I) – simulated cell
distributions are represented by lines; experimental cell distributions are represented by
dots.
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a) t = 12 h p.i. b) t = 14 h p.i.

c) t = 16 h p.i. d) t = 18 h p.i.

e) t = 20 h p.i. f) t = 22 h p.i.

Figure 20: Comparison of the distribution dynamics of the extended model of Müller et al. [2008] with
experimental data of Schulze-Horsel et al. [2008] at MOI = 3.0 (Part II) – simulated cell
distributions are represented by lines; experimental cell distributions are represented by
dots.
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4 Implementation of the backshift

In order to model the reversal of the propagation direction of the cell distribution, the
so called backshift, the viral protein production process is assumed to be divided into
two phases. While the virus protein production exceeds the opposing process of virus
release in the first phase, this relation is reversed in the second phase. Hence, the degree
of fluorescence increases during the first phase and decreases during the second phase.
In the resulting “two-phase model” the species of virus protein producing infected cells
is divided into two species, corresponding to the two phases of viral protein production
(Ĩ Ic and Ĩ IIc ). Except from the viral protein production the two species of infected cells
are assumed to behave exactly the same.

4.1 Model equations

The mathematical descriptions of the uninfected cells and the infected cells in the latent
phase stay untouched (see Eqs. (3.9) and (3.12), page 22 f.). After the latent period,
infected cells start to produce viral protein in production phase I with the corresponding
coefficient kIpro. With regard to the release of virus particles and the death due to viral
infection nothing changes in comparison to Eq. (3.13) (page 23). The transition from
one species or phase to the other is controlled by the phase transition coefficient kpt,
which depends on the degree of fluorescence,

∂Ĩ Ic(t, ϕ)
∂t

= kvi Ũc(t− τ, ϕ)V (t− τ) · e−kcdv τ −
(
kIpro − krel

) ∂Ĩ Ic(t, ϕ)
∂ϕ

− kcdv Ĩ Ic(t, ϕ)− kpt(ϕ) Ĩ Ic(t, ϕ).

(4.1)

The cells in production phase II emerge from cells in production phase I, from which
they differ in terms of viral protein production. This is taken into account by the corre-
sponding production coefficient kIIpro, which is a function of ϕ,

∂Ĩ IIc (t, ϕ)
∂t

= kpt(ϕ) Ĩ Ic(t, ϕ)− ∂

∂ϕ

(
kIIpro(ϕ)− krel

)
Ĩ IIc (t, ϕ)− kcdv Ĩ IIc (t, ϕ). (4.2)

With respect to the changed model formulation the virus balance equation and the cell
growth coefficient have to be reconsidered:

dV (t)
dt = krel

∫
ϕ

(
Ĩ Ic(t, ϕ) + Ĩ IIc (t, ϕ)

)
dϕ− kvd V (t)− kva V (t)

∫
ϕ

Ũc(t, ϕ) dϕ, (4.3)
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µc(t) = µc,max

Cmax −
∫
ϕ

(
Ũc(t, ϕ) + L̃c(t, ϕ) + Ĩ Ic(t, ϕ) + Ĩ IIc (t, ϕ)

)
dϕ

Cmax
. (4.4)

4.2 Parameters

As this “two-phase model” is used only as a conceptual study, no rigorous parameter
fitting was performed. Therefore, nearly all parameters that already existed in the ex-
tended model of Müller et al. [2008] were kept as they are. Only kIpro, which has the
same significance as kpro, was refitted.

By testing various definitions and combinations of the phase transition coefficient (kpt)
and the virus protein production coefficient in phase II (kIIpro) it turned out, that the
functional dependency on ϕ of both parameters is essential for the description of the
backshift.

For kpt(ϕ) a normalized cumulative distribution function is chosen

kpt(ϕ) =

ϕ∫
ϕmin

exp
[
−1

2

(
ϕFVE−µpt

σpt

)2
]
dϕ

ϕmax∫
ϕmin

exp
[
−1

2

(
ϕFVE−µpt

σpt

)2
]
dϕ

(
kpt,max − kpt,min

)
+ kpt,min (4.5)

with ϕmin = 1 FU/FVE and ϕmax = 104 FU/FVE.

Accordingly, kpt(ϕ) runs from kpt,min for low values of ϕ to kpt,max for high values of ϕ
with an expectation of µpt and a standard deviation of σpt. In this way, a smooth phase
transition can be achieved, which is minimal (zero) for low degrees of fluorescence and
maximal for high degrees of fluorescence. Thus, the more intracellular viral protein is
present the higher the chance for a transition to phase II.

For kIIpro(ϕ) a linear dependency on ϕ is assumed

kIIpro(ϕ) =
kIIpro(ϕmax)− kIIpro(ϕmin)

ϕmax − ϕmin

(
ϕ− ϕmin

)
+ kIIpro(ϕmin). (4.6)

Hence, kIIpro(ϕ) runs linearly from kIIpro(ϕmin) to kIIpro(ϕmax). As the degree of fluorescence
is generally decreased during phase II the viral protein production rate has to be lower
than the virus release rate. For high degrees of fluorescence the difference between kIIpro
and krel has to be rather large to allow for a fast backshift of the cell population. On the
other hand, the decrease in ϕ has to slow down at lower degrees of fluorescence to avoid
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Parameter Value Unit
Cmax 1.2 · 106 ml−1

kcdf 0.001 h−1

kcdv 25.7 · 10−3 h−1

kIpro 255 h−1

kIIpro(ϕmin) 246 h−1

kIIpro(ϕmax) 126 h−1

kpt,min 0 h−1

kpt,max 0.8 h−1

krel 246 h−1

kva 0.8 ml/h
kvd 0.009 h−1

kvi 1.9 · 10−3 ml/h
µc,max 0.03 h−1

µpt 800 FU
σpt 800 FU
τ 0.7 h

Ic,0 0 ml−1

Uc,0 1.2 · 106 ml−1

V0 12.6 · 106 ml−1

µ0 66.5 FU
σ0 0.202 FU

Table III: Parameter set and initial conditions for the “two-phase model” at MOI = 0.025. Parameters
that are not adopted from Tab. II are marked in gray.

running into the lower boundary. Therefore, the difference between kIIpro and krel has to
be minimal for low degrees of fluorescence.

Technically this means that after the latent period cells accumulate viral protein as long
as they are in phase I. When the transition to phase II is performed, the amount of
intracellular virus protein decreases due to a reduced production rate. But, while the
cells are in phase II the depletion of viral protein slows down because of a recovery of the
virus protein production rate (kIIpro increases with decreasing ϕ). This recovery of kIIpro
seems to be biologically implausible. As a remedy, one could assume that the production
rate is lowered below the release rate and stays constant in phase II. Consequently, krel
has to change in phase II in order to decelerate the increase of ϕ, which would, of course,
effect the integral dynamics.

Recent publications by Arranz et al. [2012] and Moeller et al. [2012] as well as running
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investigations by the Bioprocess Engineering Group at the MPI Magdeburg lead to
another conclusion. Instead of the virus release, at least for viral NP, the formation of
viral ribonucleoprotein complexes (RNP) seems to be responsible for the decrease in
fluorescence intensity by preventing fluorescein-labeled antibodies from binding to NP.
However, the consequences of these findings are being discussed in more detail in the
next chapter. For the time being, the model structure presented above is taken as valid.
In Tab. III the applied parameter set for MOI = 0.025 is shown.

4.3 Simulation results

The integral dynamics of the “two-phase model” correspond to the ones presented in
Section 3.6 (page 32 ff.). Even with an unoptimized parameter set the improvement of
the distribution dynamics in comparison to the extended model of Müller et al. [2008]
becomes apparent. In Fig. 21 the course of the MFI is exemplified for MOI = 0.025.
The backshift is clearly visible. This is underlined by the comparison of simulated and
experimental cell distributions of the same MOI in Figs. 22 and 23.

In summary, the proposed model structure constitutes a promising candidate capable of
reproducing the reversal of propagation direction of the cell distribution. Although there
certainly is room for improvements, the lack of temporally more dense experimental data
reduced the benefit of more extensive investigations at the time of development. Further
refinement of the model would require an extension of the experimental database to
assure a biologically reasonable proceeding. Eventually, new experimental data became
available through the work of Schulze-Horsel et al. [2009], in which the production of
human influenza virus vaccine in adherent MDCK cells was investigated to a greater
extent. The obtained findings and their implications in terms of population balance
modeling are presented in the next chapter.
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Figure 21: Comparison of the mean fluorescence intensity (MFI) of the “two-phase model” with ex-
perimental data of Schulze-Horsel et al. [2008] at MOI = 0.025 – a solid line represents
the temporal change of the simulated MFI; experimental MFIs are represented by circles.
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a) t = 0 h p.i. b) t = 2 h p.i.

c) t = 4 h p.i. d) t = 7 h p.i.

Figure 22: Comparison of the distribution dynamics of the “two-phase model” with experimental data
of Schulze-Horsel et al. [2008] at MOI = 0.025 (Part I) – simulated cell distributions are
represented by lines; experimental cell distributions are represented by dots.
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a) t = 10 h p.i. b) t = 20 h p.i.

c) t = 42 h p.i. d) t = 66 h p.i.

Figure 23: Comparison of the distribution dynamics of the “two-phase model” with experimental data
of Schulze-Horsel et al. [2008] at MOI = 0.025 (Part II) – simulated cell distributions are
represented by lines; experimental cell distributions are represented by dots.
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5 Distributed modeling of human influenza A virus replication

The previously introduced “two-phase model” represents an important intermediate step
in the development of what would become the model of Müller et al. [2013]. The fact
that the former actually was never officially published does not diminish its significance
as the concept of a multi-phase virus replication turned out to be useful in the end.
Though, the biological reason for this could not be elucidated before more thorough
experimental data were available.

5.1 Expansion of the experimental database

Much sought-after experimental data were obtained from more extensive investigations
of the infection dynamics during the production of human influenza vaccine in adherent
MDCK cells carried out by Schulze-Horsel et al. [2009]. An important additional feature
was the flow cytometric determination of apoptotic cells by measuring the fragmentation
of host cell DNA via TUNEL staining (see below).

The term apoptosis was introduced by Kerr et al. [1972] and denotes the most common
form of programmed cell death [Alberts et al., 2008]. Apoptosis is a highly regulated
process, which is prevalent in (and not confined to) animal cells and tissues [ibid.]. It is
initiated by an abundance of external and internal stimuli and serves the purpose of re-
lieving the organism of cells which are either no longer needed, irreversibly damaged, or
potentially hazardous (e.g. virally infected) [ibid.]. In bioreactors apoptosis often leads
to cell lysis and has major influence on the process productivity. On the intracellular
level apoptosis is characterized by an amplifying proteolytic cascade which is mediated
by special enzymes called caspases [ibid.]. As one of the last and decisive steps of the
proteolytic cascade activated caspase 3 cleaves ICAD (inhibitor of caspase-activated de-
oxyribonuclease) and, thereby, liberates CAD (caspase-activated DNase), which migrates
into the nucleus and starts to degrade chromatin by cutting DNA into nucleosome-sized
pieces [Enari et al., 1998; Sakahira et al., 1998; Nagata, 2000]. Note, ICAD and CAD are
also referred to as the 45 kDa and 40 kDa subunits of DFF (DNA fragmentation factor),
respectively [Liu et al., 1997, 1998].

The fragmentation of DNA is considered one of the most characteristic features of apop-
tosis [Nagata, 2000]. The resulting double and single strand breaks of nuclear DNA can
be measured via TdT-mediated dUTP nick end labeling (TUNEL), a staining method
which was established by Gavrieli et al. [1992]. In this method the polymerization abil-
ity of TdT (terminal deoxyribonucleotidyl transferase) is used to catalyze the addition
of dUTP (deoxyuridine triphosphate) nucleotides to 3′ DNA ends. Hence, every DNA
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strand break is labeled with a nucleotide chain of certain length leading to a specific
chain length distribution which, in general, obeys the Poisson distribution [Bollum, 1978;
Grosse and Manns, 1993]. To quantify the amount of added dUTP the latter is associ-
ated with a marker molecule. In the case of Schulze-Horsel et al. [2009] the fluorochrome
TMR red (tetramethylrhodamine) was applied to allow for simultaneous measurements
of the intracellular amount of viral protein with the help of FITC-labeled antibodies.

In contrast to Schulze-Horsel et al. [2008], this time not a mixture of antibodies was used
to determine the amount of intracellular viral protein. Instead, exclusively monoclonal
antibodies against influenza A virus nucleoprotein (NP) were applied [Schulze-Horsel
et al., 2009]. Hence, the aforementioned virus equivalent (VE) accordingly consists of
the average number of NP molecules which make up a virus particle (1000, Lamb and
Krug [2001]). Another improvement in comparison to the publication of Schulze-Horsel
et al. [2008] is the discrimination between infectious (active) and uninfectious (inactive)
virus particles by adding tissue culture infectious dose (TCID50) titration [Hierholzer
and Killington, 1996] as a quantification method for infectious virions or plaque forming
units (PFU). In addition, experimental data were collected at more frequent intervals
facilitating a more informed interpretation.

Furthermore, the focus was strictly put on human influenza A virus strains. Namely,
Schulze-Horsel et al. investigated the infection of adherent MDCK cell cultures with
human influenza A/Puerto Rico/8/34 (H1N1) from two sources – from the Robert
Koch Institute (RKI) in Berlin and from the National Institute for Biological Stan-
dards and Control (NIBSC) in Hertfortshire – and with a high growth reassortant of
A/Wisconsin/67/2005 (H3N2, A/Puerto Rico/8/34 backbone). In the following these
virus strains are denoted as A/H1N1-RKI, A/H1N1-NIBSC and A/H3N2, respectively.

5.2 Influence of apoptosis

In the light of the new experimental data the hypothesis formed that the influence of
apoptosis is responsible for the occurrence of a second replication phase as proposed
by the “two-phase model”. Namely, it was assumed that the observed reversal of the
propagation direction (the so called backshift) is the result of a general alteration of the
viral replication mechanism caused by the induction of the apoptotic chain reaction at
some point after the infection.

Influenza virus is known to induce apoptosis in infected cells, which is an integral part
of the defensive strategy against viral infections [Takizawa et al., 1993; Hinshaw et al.,
1994]. Hence, Kurokawa et al. [1999] suggested that for successful replication influenza
virus has to rely on circumventing the antiviral influence of apoptosis by means of rapid
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multiplication. Since then, the role of apoptosis during influenza virus infection has been
reconsidered resulting in a more complex picture of the interaction between virus and
host. Hence, influenza A virus neither simply outruns apoptosis nor merely delays the
onset or progress of the apoptotic chain reaction. In fact, the genome of influenza A virus
codes for anti- as well as proapoptotic proteins that manipulate apoptotic and other cell
signaling pathways in order to support efficient replication [Schultz-Cherry et al., 2001;
Zhirnov et al., 2002; Lowy, 2003; Wurzer et al., 2003, 2004; Morris et al., 2005; Brydon
et al., 2005; Ludwig et al., 2006; Ehrhardt et al., 2007; Halder et al., 2011; Tran et al.,
2013]. However, progress within the apoptotic network is not stopped completely, so that
eventually the point of no return is reached and the internucleosomal fragmentation of
host cell DNA takes place leading to the destruction of the cell.

It is important to note that several hours can pass between the induction of apoptosis and
the eventual fragmentation of DNA [Takizawa et al., 1993; Hinshaw et al., 1994; Earn-
shaw, 1995; Kurokawa et al., 1999; Zhirnov and Klenk, 2007]. Moreover, investigations of
single cells exposed to tumor necrosis factor (TNF) or TNF-related apoptosis-inducing
ligand (TRAIL) as apoptotic triggers revealed a pronounced cell-to-cell variability in the
time elapsing between the induction of apoptosis and the final commitment to cell death
[Albeck et al., 2008; Spencer et al., 2009]. In fact, the entire apoptotic process can be
divided into two stages. The first stage starts with the induction of apoptosis and can
last for several hours (in some special cases even days) [Green, 2005]. In contrast, the
completion of the second stage, which is initialized by the so called mitochondrial outer
membrane permeabilization (MOMP), takes only several minutes and is prominently
concluded by DNA fragmentation [Green, 2005; Bialik et al., 2010]. With respect to
the model of Müller et al. [2013] this motivated the assumption that infected cells stay
capable of viral protein production and virus release in the first stage of apoptosis whose
beginning supposedly coincides with the transition to the second phase of replication.

Furthermore, Zhirnov et al. [1999] reported that human influenza A nucleoprotein is
cleaved by host cell caspases. However, the cleavage primarily takes place at the N
terminus of NP molecules which are already part of viral ribonucleoprotein (RNP) com-
plexes. As mentioned earlier, experimental results indicate that the employed antibodies
are no longer able to bind to viral NP as soon it is associated with RNPs [Arranz et al.,
2012; Moeller et al., 2012], so that the flow cytometric measurement of viral NP is not in-
fluenced by the caspase-dependent cleavage of viral nucleoprotein. Instead, an increased
formation of RNPs seems to be responsible for the depletion of intracellular NP that
characterizes the backshift during the second phase of replication.

Consequently, one could propose that the induction of apoptosis is associated with an
increased formation of RNPs leading to the distinct backshift of the cell distribution.
Unfortunately, the experimental setup employed by Schulze-Horsel et al. [2009] turns out
to be not suitable to verify this hypothesis. This is because Schulze-Horsel et al. [2009]
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measured the fragmentation of host cell DNA by means of TUNEL staining. However,
DNA fragmentation is a late event in apoptosis, which starts at a random point in time
several hours after the initial induction of apoptosis by some kind of apoptotic trigger.
Therefore, DNA fragmentation is initialized too late to be associated with the backshift
of the cell distribution. Hence, the approval of the aforementioned hypothesis has to
remain pending for the time being as additional experiments with markers for an early
phase of apoptosis would be required.

5.3 Process description and model assumptions

In principle, the conditions and procedures are comparable to the ones described in
Sections 2.1 and 3.2. Nevertheless, existing differences are presented in the following.
For a detailed description of the applied experimental methods see Schulze-Horsel et al.
[2009], and Schulze-Horsel [2011].

Adherent MDCK cells are grown in a small-scale bioreactor (1.2 l working volume) on
microcarriers where they eventually form confluent monolayers [Genzel et al., 2004].
After removal of spent medium and a washing step, fresh medium is added and cells
are infected with the virus seed containing infectious/active and uninfectious/inactive
virus particles. Active virions attach to uninfected cells and infect them subsequently.
Although inactive virus particles can principally bind to the cell membrane and incor-
poration (albeit without successful replication) is possible, this is not considered in the
model. Thus, inactive virus particles are assumed to simply accumulate in the super-
natant without any interaction with the host cell population or further degradation.
For simplicity, further differentiation between virus particles is omitted, i.e. defective
interfering particles (DIPs) are neglected. As before, newly infected cells undergo an
eclipse and latent phase which are assumed to coincide. After completion of the com-
bined eclipse/latent phase infected cells start to produce virus protein and eventually
release active as well as inactive virus particles into the medium. Any released active
virus particles are assumed to exclusively attach to still uninfected cells or to degenerate
to the inactive state. It is assumed that apoptotic cells predominantly arise from infected
cells that have completed their latent phase. Furthermore, apoptotic cells are considered
to be in an early stage of apoptosis, in which they are still capable of viral protein
production and virus particle release until inevitable disintegration takes place.

The distribution dynamics of the process are determined by the temporal change of the
intracellular amount of NP which is accessible to the fluorescein-conjugated antibodies
against viral nucleoprotein. As previously noted, this seems to be exclusively applicable
to newly produced NP which has not yet been bound in RNP complexes. Hence, with
respect to the model viral protein production and RNP complexation are responsible

54



Dissertation

Virus;seed
with;active
and;inactive
virus;particles
is;added

Active;virus
particles;attach
to;uninfected;cells
and;infect;them

Infected;cells
start;to;produce
viral;protein
(e.g.;NP);after
the;eclipse;phase

Uninfected;cells
on;microcarrier
surface

The;fluorescence
intensity;of;infected
cells;increases;
infected;cells;start;to
become;apoptotic
and;eventually;detach
from;the;surface

Uninfected;cells
and;infected;cells
during;the;eclipse;phase
keep;low;fluorescence
intensities

Active;and;inactive
virus;particles;are;released
by;infected;cells

Active;virions
infect;still
uninfected;cells,
inactive;virions
accumulate;in;the
supernatant

Apoptotic;cells
still;release
virus;particles

The;fluorescence
intensity;of
apoptotic;cells
decreases;
more;cells;detach

More;apoptotic
cells;detach;from
the;microcarrier
and;eventually
undergo;cell;lysis

10
0

10
1

10
2

10
3

10
4

0

0.5

1

1.5

2

2.5

3

fluorescence intensity [FU]

ce
ll 

di
st

rib
ut

io
n 

q 
[1

/lg
F

U
]

10
0

10
1

10
2

10
3

10
4

0

0.5

1

1.5

2

2.5

3

fluorescence intensity [FU]

ce
ll 

di
st

rib
ut

io
n 

q 
[1

/lg
F

U
]

10
0

10
1

10
2

10
3

10
4

0

0.5

1

1.5

2

2.5

3

fluorescence intensity [FU]

ce
ll 

di
st

rib
ut

io
n 

q 
[1

/lg
F

U
]

10
0

10
1

10
2

10
3

10
4

0

0.5

1

1.5

2

2.5

3

fluorescence intensity [FU]

ce
ll 

di
st

rib
ut

io
n 

q 
[1

/lg
F

U
]

10
0

10
1

10
2

10
3

10
4

0

0.5

1

1.5

2

2.5

3

fluorescence intensity [FU]

ce
ll 

di
st

rib
ut

io
n 

q 
[1

/lg
F

U
]

Figure 24: Illustration of the virus replication process. The main phases of the process appear in
chronological order from top to bottom. The left column of illustrations shows stylized
fluorescence microscopic pictures of cells growing on the surface of a microcarrier. The
right column contains cell distributions from an experiment with A/H3N2 [Schulze-Horsel,
2011] which are representative for the described phases.
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for the distribution dynamics as measured by flow cytometry. In order to reproduce the
distributed experimental data it is required to specifically consider two phases of viral
replication. In the first phase viral protein production exceeds the formation of RNP
complexes, so that the intracellular amount of free viral NP increases. In the second
replication phase the conditions are reversed with the formation of RNP complexes
exceeding viral protein production. In consequence, free intracellular NP is depleted
leading to the characteristic backshift of the cell distribution at later times. It is assumed
that the transition from one phase of replication to the other is triggered by the induction
of apoptosis.

Note, that growth, death, and apoptosis of uninfected cells are considered to have only
minor influence on the process and are therefore neglected. Moreover, it is assumed that
cells do not disintegrate before the induction of apoptosis.

In Fig. 24 the main phases of the process are depicted in comparison to flow cytometric
results taken from an experiment with A/Wisconsin/67/2005 (H3N2).

5.4 Model equations

As an initial condition, all cells are considered to be uninfected and log-normally dis-
tributed with respect to the degree of fluorescence. As before, the overall concentration
Uc,0, the expectation µ0 and the standard deviation σ0 are applied (see Eqs. (3.8) and
(3.11) on pages 21 and 23, respectively).

On contact with active virus particles uninfected cells become infected, which is regulated
by the infection coefficient kvi. At time of infection contact-inhibited MDCK cells form
confluent monolayers and cell division is only possible after detachment of infected cells.
Furthermore, the specific cell death rate due to cultivation conditions is much lower
than the specific cell death rate due to infection [Möhler et al., 2005]. Therefore, both
influences are being neglected. Hence the dynamics of uninfected cells can be described
as

∂Ũc(t, ϕ)
∂t

= −kvi Ũc(t, ϕ)Vac(t). (5.1)

Directly after infection the cells undergo the latent phase of length τ , during which no
virus replication and no virus release take place. This lag period lumps together events
happening before the synthesis of NP, e.g. the entry of the virus into the host cell,
uncoating of the nucleic acid, various transport processes and RNA transcription.

∂L̃c(t, ϕ)
∂t

= kvi Ũc(t, ϕ)Vac(t)− kvi Ũc(t− τ, ϕ)Vac(t− τ) (5.2)
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Figure 25: Scheme of the model of Müller et al. [2013]. All cells are distributed over the degree of
fluorescence ϕ. While uninfected cells keep their degree of fluorescence, infected cells –
once they have passed the latent phase – and apoptotic cells can move along the internal
coordinate ϕ by means of viral protein production and RNP complex formation. Both,
infected (after the latent phase) and apoptotic cells release virus particles, of which only
active virions attach to uninfected cells.
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Note, that Eq. (5.2) corresponds to Eq. (3.12) on page 23 for kcdv = 0, i.e. cell death
during the latent phase is not taken into account in the present model.

After completion of the lag period infected cells start to synthesize viral NP with the
protein production coefficient kpro(ϕ), which causes the degree of fluorescence to rise. On
the other hand, ϕ is reduced by binding of NP during the formation of RNP complexes
with the NP binding coefficient kbind(ϕ). Both effects are combined into the net coefficient
knet(ϕ) = kpro(ϕ)− kbind(ϕ). As for infected cells viral protein production is faster than
RNP complexation, knet is always positive so that the degree of fluorescence of an infected
cell generally increases. After infection cells tend to become apoptotic with the apoptosis
coefficient kapo(ϕ).

∂Ĩc(t, ϕ)
∂t

= kvi Ũc(t− τ, ϕ)Vac(t− τ)− ∂

∂ϕ

(
knet(ϕ) Ĩc(t, ϕ)

)
− kapo(ϕ) Ĩc(t, ϕ)

(5.3)
The majority of apoptotic cells originate from infected cells [Schulze-Horsel et al., 2009],
i.e. apoptosis of uninfected cells is neglected. As discussed above, apoptotic cells are
considered to be in an early state of apoptosis, in which they are still capable of virus
replication and release. However, it is assumed that due to a yet unspecified influence
of apoptosis the formation of RNP complexes is intensified, so that NP binding exceeds
the production. Thus, the net coefficient of apoptotic cells knet,apo(ϕ) = kpro,apo(ϕ) −
kbind,apo(ϕ) turns out to be negative, which leads to a generally decreasing degree of
fluorescence. Cell death is accounted for by the respective coefficient kcd(ϕ).

∂Ãc(t, ϕ)
∂t

= kapo(ϕ) Ĩc(t, ϕ)− ∂

∂ϕ

(
knet,apo(ϕ) Ãc(t, ϕ)

)
− kcd(ϕ) Ãc(t, ϕ) (5.4)

Active as well as inactive virus particles are released by infected cells after they have
passed through the latent phase and apoptotic cells alike. The ratio between active and
inactive virions is regulated by the plating efficiency Peff ∈ [0, 1]. Only active virions are
supposed to attach to uninfected cells and successfully infect them. It is assumed that
every active virus particle is infective, so that the attachment coefficient corresponds to
the infection coefficient. Furthermore, active virions degrade to inactive ones with the
degradation coefficient kdeg.

dVac(t)
dt = Peff krel

∫
ϕ

(
Ĩc(t, ϕ) + Ãc(t, ϕ)

)
dϕ− kvi Vac(t)

∫
ϕ
Ũc(t, ϕ) dϕ− kdeg Vac(t)

(5.5)
Inactive virus particles are either released by infected and apoptotic cells or originate
from active virions. As any interaction with host cells and further degradation are ne-
glected, inactive virus particles simply accumulate in the supernatant.

dVinac(t)
dt =

(
1− Peff

)
krel

∫
ϕ

(
Ĩc(t, ϕ) + Ãc(t, ϕ)

)
dϕ+ kdeg Vac(t) (5.6)
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The resulting model structure is presented in Figure 25.

5.5 Numerical solution

As already proposed for the extended model of Müller et al. [2008] (see Section 3.4,
page 25 f.), uninfected cells and infected cells during the latent phase are assumed to
be unable to change their degree of fluorescence. Hence, Eqs. (3.15) and (3.16) hold and
Eq. (5.1) (page 56) can be simplified to

dUc(t)
dt = −kvi Uc(t)Vac(t). (5.7)

As before the latent period is represented by a transport system of constant length, which
infected cells have to pass through before viral replication is initialized (see Section 3.4
and Appendix B (page 99)). Cells enter the transport system upon infection, travel along
the transport coordinate λ ∈ R, [0, 1], and leave after the duration τ has elapsed

∂L̂c(t, λ)
∂t

= −1
τ

∂L̂c(t, λ)
∂λ

(5.8)

with L̂c(t, λ = 0) = τ · kvi Uc(t)Vac(t).

Note, that Eq. 5.8 corresponds to Eq. (3.18) on page 25 for kcdv = 0.

The discretization of Eq. 5.8 via finite-volume method (FVM) is similar to the one
described in Appendix C.2 (page 102 ff.) for kcdv = 0:

dL̂c,i(t)
dt = − 1

∆λ τ
(
L̂c,i(t)− L̂c,i−1(t)

)
(5.9)

with L̂c,0(t) = τ · kvi Uc(t)Vac(t).

This time the number of control volumes is set to M = 1024 to approximate a hard
delay.

After the transport system is traversed cells of species L̂c change over to species Ĩc.
When looking at the last control volume of Eq. (5.9) (i = M) the change of the cell
concentration due to cells leaving the latent phase at time t equals L̂c,M(t)/τ . By multi-
plication with the normalized initial distribution qsim,0(ϕ) this flux constitutes the source
of the infected cells after the latent phase. Therefore, the respective balance equation is
changed to:

∂Ĩc(t, ϕ)
∂t

= L̂c,M(t)
τ

qsim,0(ϕ)− ∂

∂ϕ

(
knet(ϕ) Ĩc(t, ϕ)

)
− kapo(ϕ) Ĩc(t, ϕ). (5.10)
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Figure 26: Scheme of the discretized model of Müller et al. [2013]. Uninfected and infected cells in the
latent phase are assumed to not change their degree of fluorescence ϕ. Therefore, they can
be implemented as lumped species with regard to ϕ. The latent phase is approximated by
a discretized transport system with the transport coordinate λ. When cells reach the end
of the transport system they change over to the species of productive infected cells. By
applying the normalized initial cell distribution, infected cells which have passed the latent
phase are distributed along ϕ.
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Eq. (5.10) is discretized on a logarithmic grid with N = 128 control volumes (see Ap-
pendix C.4, page 106):

dĨc,i(t)
dt = L̂c,M(t)

τ
qsim,0,i −

1
∆ϕi

(
knet,i Ĩc,i(t)− knet,i−1 Ĩc,i−1(t)

)
− kapo,i Ĩc,i(t)

(5.11)
with Ĩc,0(t) = Ĩc,N(t) = 0.

Likewise, the balance equation of the apoptotic cells, Eq. (5.4), is discretized (see Ap-
pendix C.5, page 107) yielding

dÃc,i(t)
dt = kapo,i Ĩc,i(t)−

1
∆ϕi

(
knet,apo,i+1 Ãc,i+1(t)− knet,apo,i Ãc,i(t)

)
− kcd,i Ãc,i(t)

(5.12)
with Ãc,1(t) = Ãc,N+1(t) = 0.

The virus balance equations are reformulated accordingly:

dVac(t)
dt = Peff krel

N∑
i=1

(
Ĩc,i(t) + Ãc,i(t)

)
∆ϕi − kvi Uc(t)Vac(t)− kdeg Vac(t), (5.13)

dVinac(t)
dt =

(
1− Peff

)
krel

N∑
i=1

(
Ĩc,i(t) + Ãc,i(t)

)
∆ϕi + kdeg Vac(t). (5.14)

The resulting model structure is presented in Fig. 26.

5.6 Parameter estimation

Parameter estimation was performed by Robert Dürr as part of the joint publication
of Müller et al. [2013]. Here, a summary of the procedure is given by which the kinetic
parameters of the model were determined from experimental data collected by Schulze-
Horsel et al. [2009]. To translate the emerging infinite dimensional parameter estimation
problem to a finite dimension the parameters are assumed to depend linearly on the
internal coordinate ϕ. For a nonlinear dependency on the degree of fluorescence see
Dürr et al. [2012].
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Transformation of flow cytometric data

As the model is solved numerically on a logarithmic grid with N = 128 finite con-
trol volumes (see Section 5.5), the measurements are transformed to the same grid by
simply averaging the cell numbers over eight sensor channels at a time. In addition, a
transformation is made to include the total cell concentrations (uninfected, infected and
apoptotic cells) obtained from independently performed cell counts

ci(tk) =

8 i∑
j=8 i−7

Zj(tk)∑
j
Zj(tk)

Ctot(tk) for i ∈ N, [1, 128] and j ∈ N, [1, 1024]. (5.15)

Here, ci(tk) is the cell concentration in control volume i, Zj(tk) is the number of cells
assigned to sensor channel j and Ctot(tk) is the total cell concentration in the reactor
obtained from cell counts at sample time tk.

Translation of the inverse problem to a finite dimension

In order to adapt the presented model to experimental data an inverse problem has to
be solved. This problem is set in an infinite dimension as the parameters characteriz-
ing viral protein replication, apoptosis and cell lysis depend on the internal coordinate
ϕ. Two general solution approaches are known from literature to translate this kind of
problem into a finite dimension. In the first one, the functional dependency is assumed to
be known and can be described by an analytical function with a few scalar parameters,
e.g. a gaussian distribution characterized by mean and variance [Sherer et al., 2008]. If
the shape of the function is not known a priori, it can be parametrized with a suitable
approximation, e.g. piecewise constant, piecewise linear or spline approximation, to ob-
tain a finite dimensional representation [Luzyanina et al., 2009; Banks et al., 2011]. In
the present contribution the corresponding kinetic parameters are assumed to depend
linearly on the degree of fluorescence.

k∗(ϕ) = k∗(ϕmax)− k∗(ϕmin)
ϕmax − ϕmin

(
ϕ− ϕmin

)
+ k∗(ϕmin) (5.16)

Parameter estimation setup

The vector of unknown parameters is given by

p =
[
kvi, krel, kdeg, Peff, knet(ϕmin), knet(ϕmax), kapo(ϕmin),

kapo(ϕmax), knet,apo(ϕmin), knet,apo(ϕmax), kcd(ϕmin), kcd(ϕmax)
]
.

(5.17)
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In addition to flow cytometric distribution data, the concentrations of active and inactive
virions are considered yielding the measurement vector

y(tk) =



c1(tk)
...

c128(tk)
Vac(tk)
Vinac(tk)

 . (5.18)

The parameters are now estimated in a weighted least squares framework

min
p

nt∑
k=1

[
y(tk)− yref(tk,p)

]
w
[
y(tk)− yref(tk,p)

]
, (5.19)

in which the weighting vector is chosen according to the measurement variance [Englezos
and Kalogerakis, 2001]

w = diag
(
σi(tk)−2

)
,

with σ1...128(tk) = max
∀k,i=1...128

(
yi(tk)

)
,

and
(
σ129(tk)
σ130(tk)

)
=

max
∀k

(
y129(tk)

)
max
∀k

(
y130(tk)

)
 .

(5.20)

This nonlinear least squares problem is solved with the Matlab [2012] optimization
routine fmincon, which uses a sequential quadratic programming algorithm. As this
method can trap in local minima for non-convex objective functions, several runs with
different initial guesses were performed.

Due to the complexity of the parameter estimation procedure, particularly caused by the
high sensitivity of the cost function on the delay, a two-step procedure was pursued. At
first, the length of the latent phase τ was fixed and all other parameters were estimated.
The initial values were taken from Müller et al. [2011]. In a second step, all parameters
with the exception of τ were set to the estimated values of the first step and τ was
estimated.

In Table IV the parameter sets for one experiment with A/H1N1-RKI and two inde-
pendent experiments with A/H3N2 are summarized. All sets differ quantitatively, but
show qualitative similarity with respect to the trends of the linearly dependent parame-
ters. Initial conditions were derived from experimental data [Schulze-Horsel et al., 2009;
Schulze-Horsel, 2011].
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Parameter Experiment Unit
A/H1N1-RKI A/H3N2, Exp. 1 A/H3N2, Exp. 2

FVE 2.6 2.645 2.464 FU
kapo(ϕmin) 0.238 · 10−1 9.654 · 10−1 8.36 · 10−1 h−1

kapo(ϕmax) 1.178 19.21 6.237 h−1

kcd(ϕmin) 4.132 · 10−2 2.863 · 10−2 3.239 · 10−2 h−1

kcd(ϕmax) 0 h−1

kdeg 0.045 0.143 9.63 · 10−2 h−1

knet(ϕmin) 0.132 · 103 3.207 · 103 3.536 · 103 h−1

knet(ϕmax) 1.232 · 103 1.313 · 104 4.683 · 103 h−1

knet,apo(ϕmin) −0.65 −0.87 −1.1 h−1

knet,apo(ϕmax) −122.6 −48.36 −70.4 h−1

krel 324.3 597.2 783.8 h−1

kvi 1.16 · 10−6 6.337 · 10−7 9.583 · 10−7 ml/h
Peff 5.177 · 10−2 3.568 · 10−2 2.33 · 10−2 —
τ 4 5 4.75 h

Ic,0 0 ml−1

Uc,0 1.77 · 106 1.65 · 106 1.09 · 106 ml−1

Vac,0 7.6 · 103 7.6 · 103 3.2 · 103 ml−1

Vinac,0 3.724 · 105 3.724 · 105 1.568 · 105 ml−1

µ0 35.2 34.8 45.1 FU
σ0 0.165 0.188 0.175 FU

Table IV: Parameter sets and initial conditions for the model of Müller et al. [2013]. Parameters were
fitted to experimental data from three independent experiments with A/H1N1-RKI and
A/H3N2, respectively [Schulze-Horsel et al., 2009; Schulze-Horsel, 2011].

5.7 Simulation results

In this section simulation results are compared with experimental data collected by
Schulze-Horsel et al. [2009] for three independent experiments with A/H1N1-RKI and
A/H3N2, respectively. In Table IV the applied parameter set and initial conditions are
summarized. Note, that Schulze-Horsel et al. [2009] also used a variant of A/Puerto
Rico/8/34 from NIBSC in Hertfortshire (A/H1N1-NIBSC) whose experimental results
differ significantly from the other two virus strains. Therefore, the case of A/H1N1-
NIBSC is discussed separately in Section 5.8 (page 78 ff.).
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a) A/H1N1-RKI

b) A/H3N2, Experiment 1 c) A/H3N2, Experiment 2

Figure 27: Comparison of the integral dynamics of the model of Müller et al. [2013] with experimental
data of Schulze-Horsel et al. [2009] for the infection of adherent MDCK cells with A/H1N1-
RKI and A/H3N2 – lines represent simulation results for the total virus concentration
(black) and the active virus concentration (red); circles represent experimental virus
titers of HA measurements (black) and TCID50 titration (red) including standard error
bars of the respective method (±0.15 lg HA

100 µl and ±0.3 lg PFU/ml). The applied parameter
set and initial conditions are summarized in Tab. IV (page 64).

Integral dynamics

In Fig. 27 simulation results of the temporal change of the total virus concentration
and the active virus concentration are compared with experimental results. For the
comparison the HA measurements have to be converted with Eq. (3.25) on page 29.
According to Schulze-Horsel et al. [2009] the limits of detection of the HA assay and the
TCID50 titration amount to 2 · 107 virusparticles/ml and 3.2 · 102 PFU/ml, respectively.
Because of the logarithmic scale of the ordinate, experimental results that equal zero are
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not depicted. Thus, the first three to five measurements of the total virus titer do not
show up in Fig. 27.

Note, that due to an improved workflow the standard error of the HA assay has been
decreased from ±0.3 lgHA

100 µl to ±0.15 lgHA
100 µl [Schulze-Horsel et al., 2009] setting higher re-

quirements for a good fit between simulation and experiment. Hence, in the first 20 h p.i.
the fit turns out to be less accurate with respect to the total virus concentrations. This
stems from the assumption that eclipse phase and latent phase coincide, which produces
a trade-off between the fit of the integral dynamics and the distribution dynamics result-
ing in a too small τ with respect to the integral dynamics. Although, for A/H1N1-RKI
the length of the latent period seems to be quite correct as far as the incline of the active
virus concentration is concerned.

After the virus seed is added active virus particles attach to uninfected cells and are taken
up by means of endocytosis. As for all three experiments the infection coefficients kvi
are rather low in comparison to the ones used for the experiments with equine influenza
(see Section 3.5, page 28), the distinct drop of the active virus concentration happens to
have a rather moderate slope, which nicely corresponds to the experimental data – the
second measurement of the experiment with A/H1N1-RKI equals zero and is therefore
not visible. The total virus concentration starts below the detection limit of the HA
assay and stays constant for the length of the latent period of the first generation of
infected cells. As soon as the latter begin to release virus particles, both virus titers
increase in two distinct steps which start at around 5 and 10 h p.i., respectively. These
steps mark the relatively abrupt increase of the productive host cell population each
time a new generation of infected cells completes the latent phase. Though, because of
the necessarily limited number of measurements, the experimental determination of the
exact time of emergence of a new generation of productive cells is not possible.

While the total virus concentration keeps on increasing, which is true for the simulation
and the HA assay and underlines the assumption of a negligible degradation of inactive
virus particles, the course of the TCID50-values seems to be less decided between the
different experiments. For A/H1N1-RKI and the first experiment of A/H3N2 the active
virus concentrations reach their maximum at about 22 h p.i. and generally decrease from
that point on – the seemingly existing oscillation of the TCID50-values of A/H1N1-RKI
for the time period between 20 and 50 h p.i. stems most likely from assay and sampling
limitations. With respect to the simulation the decline of the active virus concentration
sets in as the degradation of active virus particles gains more influence, due to an ever
decreasing number of productive cells. While this seems to be in good agreement with
the first experiment of A/H3N2, the predicted decline turns out to be insufficient for
A/H1N1-RKI. On the other hand, the TCID50 measurements of the second experiment
with A/H3N2 suggest that the active virus concentration can continue to rise for a pro-
longed period of time. However, this could easily be resolved by considering a variable
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plating efficiency Peff, which defines the ratio of active virus particles, as it is very likely
that the ability to produce effective virions is subject to change during the progress of
infection, e.g. by limitations in the supply of precursors of viral components, deteriora-
tion of cells, and the influence of defective interfering particles (DIPs). However, with
respect to the integral dynamics of the first experiment with A/H3N2 a constant plating
efficiency seems to be appropriate.

In general, the simulation results show reasonable agreement with the experimental data.
Though, there are some difficulties in predicting the exact appearance time of the initial
rise. This presumably stems from the assumption of a combined eclipse and latent phase,
which constitutes a kind of enforced conformity between the integral and the distribution
dynamics. Another option would be to consider the release rate krel as being dependent
on the inner state of an infected cell. For instance, one could think of a virus release
rate which starts out low in order to reach a maximum value during the progress of the
process and possibly declines again at a later stage.

Distribution dynamics

In Figure 28 the mean fluorescence intensities (MFI) of the simulation are compared with
experimental MFIs for A/H1N1-RKI and A/H3N2. For all three experiments a sharp
increase of the MFI can be detected at about 10 h p.i. In the simulations this increase is
preceded by either a small step (A/H3N2) or a moderate incline (A/H1N1), which both
start around 5 h p.i. due to the appearance of the first productive cells. Approximately
at 20 h p.i. the maximum MFI is reached and a more or less pronounced decline sets in.
Although the MFI is a rather crude measure for the course of the distribution dynamics,
it provides a general overview and delivers a first indication for the quality of the fit.
The backshift of the cell distributions is clearly visible and, with exception of the last
measurement of A/H1N1-RKI, also quite nicely reproduced.

In Figures 29 to 35 (page 71 ff.) simulated cell distributions are compared with their
experimental counterparts for A/H1N1-RKI and A/H3N2. While the experimental cell
distributions are determined by Eq. (3.5) (page 19), the simulated cell distributions are
calculated from the scaled and normalized sum of the individual cell distributions of all
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a) A/H1N1-RKI

b) A/H3N2, Experiment 1 c) A/H3N2, Experiment 2

Figure 28: Comparison of the mean fluorescence intensities (MFIs) of the model of Müller et al. [2013]
with experimental data of Schulze-Horsel et al. [2009] for three independent experiments –
temporal changes of the simulated MFIs are represented by lines; experimental MFIs are
represented by circles.
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cell populations:

qc,i(t) =

(
Uc(t) + ∆λ

M∑
j=1

Lc,j(t)
)
qsim,i,0 + Ic,i(t) + Ac,i(t)

Uc(t) + ∆λ
M∑
j=1

Lc,j(t) +
N∑
j=1

∆ϕj
(
Ic,j(t) + Ac,j(t)

) · ∆ϕi
∆Flg

[
1

“lgFU”

]

(5.21)

for i ∈ N, [1, N ] with ∆Flg = 4
N

[“lgFU”] .

The distribution dynamics of A/H1N1-RKI are presented in Figs. 29 to 31. The ex-
perimental cell distribution at 0.25 h p.i. is considered to correspond to the initial cell
distribution, because no change of the distribution is expected at such a short time post
infection. As long as no cells have left the latent phase in order to initialize the produc-
tion of NP and thereby increase the degree of fluorescence, the position of the initial
distribution is fixed as far as the model is concerned. However, at 6 and 10 h p.i. the
position of the experimental distribution shifts to slightly lower fluorescence intensities
– this can also be observed for both experiments with A/H3N2 (Figs. 32 and 34). The
cause of this effect is not clear.

The comparison at 10 h p.i. reveals that in the simulation the accumulation of viral
NP proceeds too slow, i.e. knet is too small. The experimental results suggest that at
that time p.i. the second generation of productive cells already should have reached
regions of more than 103 FU. At 14 h p.i. this impression is strengthened. In the model
the second generation of productive cells has covered some distance, albeit not enough.
It is followed by the third generation, which constitutes a middle peak, resulting in a
trimodal distribution. Due to a larger cell-to-cell variability, e.g. with respect to the
length of the latent period, or the rate of viral protein accumulation, the sequence of
individual generations of productive cells is not as strictly outlined in the actual cell
population, resulting in a more homogeneous distribution. Hence, the experiment is
characterized by a bimodal cell distribution, with a left peak of not yet infected cells or
cells in the latent phase and a right peak with productive cells which show an increased
fluorescence intensity. The transient bimodality of the experimental cell distributions is
a distinct feature of all human influenza A virus strains that were examined by Schulze-
Horsel et al. [2009].

In the simulation virtually all cells have been infected and already left the latent phase
at 18 h p.i. Though, in the experiments bimodality remains intact for at least another
four hours. Basically, a small amount of cells seems to stick to the region of relatively
low fluorescence intensity until 42 h p.i. These cells are either still uninfected, which is
rather unlikely at later times, or they are infected but not or hardly productive. Reasons
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for this could either lie in a vast cell-to-cell variability or in the induction of an antiviral
state by means of interferon (IFN) signaling. The latter assumption is also supported by
experimental results for A/H1N1-NIBSC (see Section 5.8, page 78). As Seitz et al. [2010]
show, the level of IFN expression strongly depends on the specific influenza virus strain.
They also demonstrate that, though there is no significant effect on the final virus yield
of the specific virus strain, manipulation of the IFN expression in MDCK cells has an
influence on the intermediate dynamics of influenza virus replication.

As apoptosis is induced in more and more cells, the depletion of viral NP commences and
the reversal of the propagation direction of the cell distribution takes place. At first the
simulation rushes ahead somewhat (22 h p.i.), but afterwards, with exception of the last
measurement (72 h p.i.), it is in reasonable agreement with the experiment. The results
at 72 h p.i. suggest that presumably due to a high variability being present in the cell
population the backshift is not uniformly executed, resulting in a wide spread of cells
over the fluorescence intensity axis, which cannot be reproduced by the model.

The distribution dynamics of the first experiment with A/H3N2 are presented in Figs.
32 and 33. In this case the second generation of productive cells proceeds fast enough
along the degree of fluorescence (14 h p.i.) – the cells of the first generation are too few
to be noticed. Though, variability is higher in the experimental results leading to a more
homogeneous spread over the fluorescence intensity. At 18 h p.i. a bimodal distribution
can be seen for both simulation and experiment. However, the left peak of the exper-
imental distribution changed its position to higher fluorescence intensities between 14
and 18 h p.i. This seems to suggest that the generation of infected cells that moved to
fluorescence intensities larger than 103 FU between 14 and 18 h p.i. must have started
their movement predominantly from the left flank of the main peak that existed at
14 h p.i. Another explanation could be that for later generations of infected cells viral
NP production starts out in a more “cautious” manner due to the antiviral effect of IFN
signaling, so that these cells accumulate NP very slowly at first in order to accelerate
the viral protein production at a later stage. However, after 18 h p.i. only small residues
are left at low fluorescence intensities. Note that the experimental cell distribution at
66.17 h p.i. bears some resemblance to the last measurement of A/H1N1-RKI and to the
last measurement of the alternative experiment with A/H3N2 (Fig. 35).

In principal, the second experiment with A/H3N2 is similar to the first one (Figs. 34 and
35). A transient bimodality is produced between 14 and 18 h p.i. and, with respect to
the simulation, is resolved between 18 and 22 h p.i. As before, in the experiments a small
amount of cells is maintained at low fluorescence intensities. After 22 h p.i. the backshift
is performed. While the cell distribution stays coherent in the simulation, fluctuations
caused by nonuniform behavior are detectable in the experimental results. However, con-
sidering the simple structure of the presented model, that lumps a complex system into
only one internal coordinate, it should be no surprise that some issues remain. Especially
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at later times p.i. the agreement can be improved by the definition of parameters with a
nonlinear dependency on the degree of fluorescence as it has been shown by Dürr et al.
[2012]. Though, the potential of this approach is limited due to restrictions imposed by
other modeling assumptions. In particular, interpretation of the respective parameter
functions has to be treated with caution as the actual model structure has to be taken
into account. Nonetheless, despite its simple structure the model is able to reproduce
the characteristic dynamic phenomena – i.e. transient multimodality, and reversal of
propagation direction – in reasonable agreement with experimental data of two of the
considered virus strains.

The third virus strain used by Schulze-Horsel et al. [2009] is the NIBSC variant of
A/Puerto Rico/8/34 (A/H1N1-NIBSC) which, for instance, can be distinguished from
the RKI variant (A/H1N1-RKI) on the basis of the amino acid sequence of the viral non-
structural protein 1 (NS1) [Seitz et al., 2010]. Consequently, the distribution dynamics
of A/H1N1-NIBSC differ from the ones previously published and shall therefore be
discussed separately in the next section.

a) t = 0.25 h p.i. b) t = 6 h p.i.

Figure 29: Comparison of the distribution dynamics of the model of Müller et al. [2013] with ex-
perimental data of Schulze-Horsel et al. [2009] for A/H1N1-RKI (Part I) – simulated cell
distributions are represented by lines; experimental cell distributions are represented by
dots.
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a) t = 10 h p.i. b) t = 14 h p.i.

c) t = 18 h p.i. d) t = 22 h p.i.

e) t = 26 h p.i. f) t = 30.25 h p.i.

Figure 30: Comparison of the distribution dynamics of the model of Müller et al. [2013] with exper-
imental data of Schulze-Horsel et al. [2009] for A/H1N1-RKI (Part II) – simulated cell
distributions are represented by lines; experimental cell distributions are represented by
dots.

72



Dissertation

a) t = 34 h p.i. b) t = 38 h p.i.

c) t = 42 h p.i. d) t = 46 h p.i.

e) t = 50 h p.i. f) t = 72 h p.i.

Figure 31: Comparison of the distribution dynamics of the model of Müller et al. [2013] with exper-
imental data of Schulze-Horsel et al. [2009] for A/H1N1-RKI (Part III) – simulated cell
distributions are represented by lines; experimental cell distributions are represented by
dots.
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a) t = 0.25 h p.i. b) t = 6 h p.i.

c) t = 10 h p.i. d) t = 14 h p.i.

e) t = 18 h p.i. f) t = 22 h p.i.

Figure 32: Comparison of the distribution dynamics of the model of Müller et al. [2013] with experi-
mental data of Schulze-Horsel et al. [2009] for A/H3N2, Experiment 1 (Part I) – simulated
cell distributions are represented by lines; experimental cell distributions are represented
by dots.
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a) t = 26 h p.i. b) t = 34 h p.i.

c) t = 42 h p.i. d) t = 54 h p.i.

e) t = 66.17 h p.i. f) t = 78 h p.i.

Figure 33: Comparison of the distribution dynamics of the model of Müller et al. [2013] with experi-
mental data of Schulze-Horsel et al. [2009] for A/H3N2, Experiment 1 (Part II) – simulated
cell distributions are represented by lines; experimental cell distributions are represented
by dots.
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a) t = 0.25 h p.i. b) t = 6 h p.i.

c) t = 10 h p.i. d) t = 14 h p.i.

e) t = 18 h p.i. f) t = 22 h p.i.

Figure 34: Comparison of the distribution dynamics of the model of Müller et al. [2013] with experi-
mental data of Schulze-Horsel et al. [2009] for A/H3N2, Experiment 2 (Part I) – simulated
cell distributions are represented by lines; experimental cell distributions are represented
by dots.
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a) t = 26 h p.i. b) t = 34 h p.i.

c) t = 42 h p.i. d) t = 54 h p.i.

e) t = 66.17 h p.i. f) t = 78 h p.i.

Figure 35: Comparison of the distribution dynamics of the model of Müller et al. [2013] with experi-
mental data of Schulze-Horsel et al. [2009] for A/H3N2, Experiment 2 (Part II) – simulated
cell distributions are represented by lines; experimental cell distributions are represented
by dots.
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5.8 Special case A/H1N1-NIBSC

As already mentioned, besides a high growth reassortant of A/Wisconsin/67/2005
(A/H3N2) Schulze-Horsel et al. [2009] also used two variants of A/Puerto Rico/8/34:
A/H1N1-RKI and A/H1N1-NIBSC. Interestingly, the latter two, though nominally be-
ing the same strain, differ significantly in total virus yield and overall dynamics. In the
case of A/H1N1-NIBSC virus replication occurs faster and apoptosis is induced earlier
and stronger leading to a reduced virus yield [Schulze-Horsel et al., 2009]. This was fur-
ther investigated by Seitz et al. [2010], Heynisch et al. [2010] and Vester et al. [2010].
They found out that A/H1N1-NIBSC is a generally stronger inducer of several signaling
pathways belonging to the innate immune response, with particular emphasis on the
IFN system, leading to a more intense stimulation of the cellular antiviral state. This
directly translates into a distinct alteration of the distribution dynamics of the host cell
population.

In Figs. 36 and 37 experimental cell distributions of the first experiment with A/H1N1-
NIBSC are presented. At 6.5 h p.i. a comparatively large fraction of cells has already
accumulated significant amounts of viral NP. Note, that also the position of the left
peak has moved to higher fluorescence intensities when compared to the initial distribu-
tion. This could either be caused by minimal viral protein production before an antiviral
state is completely established, or it could be an artifact of the measurement procedure.
However, the hallmark of this and the other experiment with A/H1N1-NIBSC is the ex-
tremely long perseverance of cells at rather low fluorescence intensities, presumably due
to inhibition of successful replication by induction of an antiviral state. As an immune
response and the respective alteration of the replication process are not considered in
the model of Müller et al. [2013], difficulties arise to reproduce this behavior with bi-
ologically reasonable parameters. In the framework of the model an emulation of the
described distribution dynamics would be possible by implying an increased transition
to the second phase of replication, which is associated with the induction of apoptosis,
and simultaneously boosting cell death at low degrees of fluorescence to prevent the cells
from reaching the left boundary due to the related backshift. Though, not only does this
seem biologically questionable. It would also be a rather poor substitute for a distinct
consideration of an immune response of the host cell population of whatever kind.

When looking at the distribution dynamics of A/H1N1-RKI and A/H3N2 (Figs. 29 to
35), the cells virtually seem to change over from one subpopulation or, in the case of
the model, from one species to another in a more or less predefined sequence: from
uninfected cells to infected cells and eventually apoptotic cells. As soon as all cells are
infected and productive this virtually results in a homogeneous cell distribution, which
exclusively consists of apoptotic cells at later times post infection. The results with
A/H1N1-NIBSC suggest that, in order to reproduce the experiments, there must be
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a) t = 0.5 h p.i. b) t = 6.5 h p.i.

c) t = 10.5 h p.i. d) t = 14.5 h p.i.

e) t = 18.5 h p.i. f) t = 26.5 h p.i.

Figure 36: Experimental distribution dynamics for A/H1N1-NIBSC, Experiment 1 (Part I) [Schulze-
Horsel et al., 2009].
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a) t = 30.5 h p.i. b) t = 34.5 h p.i.

c) t = 38.5 h p.i. d) t = 42.5 h p.i.

e) t = 50.5 h p.i. f) t = 72.5 h p.i.

Figure 37: Experimental distribution dynamics for A/H1N1-NIBSC, Experiment 1 (Part II) [Schulze-
Horsel et al., 2009].
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at least one more subpopulation, namely, cells in the antiviral state, which eventually
also turn apoptotic. The second experiment with A/H1N1-NIBSC (Figs. 38 and 39)
further underlines the necessity of this estimation. Furthermore, a peculiar phenomenon
is revealed which sets the second experiment with A/H1N1-NIBSC apart from previous
results and also impedes a plausible reproduction by the present model. From 26 h p.i.
on a third peak is formed as a result of proceeding apoptosis of cells with both high
and low intracellular content of viral NP, leading to a trimodal cell distribution, which
is slowly resolved at later times, when eventually all cells have turned apoptotic.

The comparison of the experimental results for all three considered viruses underlines
the importance of properly adapted virus strains for the influenza A vaccine production.
With exception of the HA and the NA gene A/H1N1-RKI and A/H3N2 share the same
genome – A/H3N2 is a high growth reassortant with a A/Puerto Rico/8/34 backbone.
Hence, both virus strains are characterized by high yields and a relatively small num-
ber of apoptotic cells. Only a “minor” alteration of the NS1 gene sets A/H1N1-NIBSC
apart from the others [Seitz et al., 2010] and renders it as rather unfavorable for vac-
cine production. Accordingly, A/H1N1-NIBSC takes a distinguished position among the
considered virus strains and its case nicely illustrates the need for further experimental
and theoretical investigation of the influenza vaccine production process.
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a) t = 0.25 h p.i. b) t = 6 h p.i.

c) t = 10 h p.i. d) t = 14 h p.i.

e) t = 18 h p.i. f) t = 26 h p.i.

Figure 38: Experimental distribution dynamics for A/H1N1-NIBSC, Experiment 2 (Part I) [Schulze-
Horsel et al., 2009].
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a) t = 30 h p.i. b) t = 34 h p.i.

c) t = 38 h p.i. d) t = 42 h p.i.

e) t = 49.5 h p.i. f) t = 72.5 h p.i.

Figure 39: Experimental distribution dynamics for A/H1N1-NIBSC, Experiment 2 (Part II) [Schulze-
Horsel et al., 2009].
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6 Conclusion

6.1 Summary

In the preceding sections the development and evolution of a deterministic population
balance model of the influenza A virus infection of adherent MDCK cells has been
presented. From the basic distributed model [Müller et al., 2008] based on the lumped
approach by Möhler et al. [2005] to the latest installment by Müller et al. [2013] every
step of development was driven by the ambition to enhance the existing model structure
in order to refine the general understanding of the underlying process with regard to the
available experimental information.

In the first distributed model by Müller et al. [2008] the degree of fluorescence was in-
troduced as an internal coordinate to directly incorporate flow cytometric data collected
by Schulze-Horsel et al. [2008] for the infection of adherent MDCK cell cultures with
equine influenza A virus (see Section 3). The degree of fluorescence is linked to the in-
tracellular amount of viral protein and its temporal change constitutes a gauge for the
progress of infection. The most significant feature of the experimental cell distribution
dynamics is the non-monotonous progression along the fluorescence intensity with the
typical reversal of the propagation direction at later times post infection. Although other
characteristic phenomena, e.g. transient multimodality, are also present in the experi-
mental data of equine influenza A virus (see Figs. 15 to 20, page 36 ff.), they are not as
pronounced as in the case of the human influenza A virus strains Schulze-Horsel et al.
[2009] examined later. In addition, in contrast to Sections 3 and 4, before the publication
of the model of Müller et al. [2013] the latent phase was approximated by simply shifting
the simulation results for a certain amount of time (tshift) [Müller et al., 2008, 2011], as
already performed before by Möhler et al. [2005]. Thus, experimental data between the
time of infection and tshift have not been considered back when the model of Müller et al.
[2008] was published. Accordingly, at that time highest priority was given to the further
development of the existing model framework with the aim of reproducing the so called
backshift.

Though never officially published, many different approaches have been proposed to
reproduce the backshift. Finally, the idea to split up the virus replication process into two
phases provided the most promising candidate, which proved to be the stepping stone
for future model approaches when more substantial experimental data were available
(see Section 4). Hence, together with the experimental work concerning different human
influenza A virus strains published by Schulze-Horsel et al. [2009] and Schulze-Horsel
[2011] the “two-phase model” established the basis for what would become the population
balance model of Müller et al. [2013] (see Section 5).
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The main hypothesis, which formed in the light of the new experimental data, was, that
the transition from one replication phase to the other is eventually triggered by the
induction of apoptosis. Thus, with respect to the model, cells in the second phase of
replication are considered to be in an early state of apoptosis, which is characterized by
altered distribution dynamics. Unfortunately, the experimental data turned out to be
unsuitable to further elaborate this hypothesis, because Schulze-Horsel et al. focused on
the apoptotic fragmentation of host cell DNA, which is too late an event in the course
of apoptosis to actually be responsible for the backshift of the cell distribution. Hence,
as the hypothesis could not be substantiated yet, it stays debatable whether cells in the
second phase of replication are apoptotic or not and, if the former is true, in which phase
of induction of apoptosis they are. Alternatively, a less biased terminology, as applied
in Section 4, could have been adopted, but eventually was given up in order to stay in
accordance with the original publication of Müller et al. [2013]. However, with respect
to the current knowledge a significant influence of apoptosis on the overall process of
vaccine production can be taken for granted, but in the end, only further experimental
research that investigates the induction or very early events of apoptosis during influenza
A virus infection can help to clarify the matter.

As mentioned above, the model of Müller et al. [2013] actually constitutes the first in-
stance in which the latent phase is implemented in a direct manner. In this way, distinct
waves of virus release can be produced, which are characteristic for the early phase of
vaccine production processes with low multiplicities of infection. In addition, delicate
distribution dynamics comprising transient multimodalities can be addressed more di-
rectly. In summary, the model is able to reproduce all characteristic dynamic phenomena
of the considered process at least for two of the examined virus strains. Of course not
every trait is covered in full detail and there are weaknesses and drawbacks concerning
certain model assumptions. But this should come as no surprise when one compares the
relative simplicity of the model with the complexity of the underlying process. As the
example of A/H1N1-NIBSC shows, there is always a need for thorough experimental
investigation to reveal certain aspects that otherwise could have been overlooked, e.g.
the importance of the immune response.

In general, the comparison of simulation results with respective experimental data at
best provides correspondence between the two and meets the desired expectations. But
more often existing discrepancies are exposed, which eventually proves to be even more
fruitful, as the ambition to resolve these discrepancies constitutes the driving force that
stimulates a reconsideration of the model assumptions and an improvement of the model
structure, which, in the end, promotes further progress. Hence, in combination with
meaningful experimental data mathematical models provide an essential contribution
to the understanding of the underlying process. Accordingly, the presented approach
constitutes a useful framework for the deterministic population balance modeling of the
influenza vaccine production and its improvement should be further promoted.
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6.2 Outlook

In order to pick up on the last proposal some suggestions on how to improve certain
aspects of the model are presented in the following.

6.2.1 Continuous alteration of the replication dynamics

In order to allow a smoother transition from one replication phase to another, instead of
the switching behavior implemented in the model, a further differentiation of the infected
cells seems to be required. This would result in a two-dimensional cell population and
points in a possible direction for the development of deterministic population balance
models, namely, to define significant state variables on the single cell level, which can
be translated into significant internal coordinates on the population level. For instance,
in accordance with the hypothesis of the induction of apoptosis being responsible for
the altered replication dynamics one could think of an additional internal coordinate α,
which is determined by the state of the infected cells with respect to their progress within
the apoptotic cascade. Therefore, characteristic positions or states within the apoptotic
network have to be defined and methods to detect these states have to be established.
Under consideration of the two-dimensional distribution of the cell population a very
simple implementation of these thoughts could be formulated for the infected cells:

∂ ˘̃Ic(t, ϕ, α)
∂t

= kvi
˘̃Uc(t− τ, ϕ, α)Vac(t− τ)− kcd(ϕ, α) ˘̃Ic(t, ϕ, α)

− ∂

∂ϕ

(
knet(ϕ, α) ˘̃Ic(t, ϕ, α)

)
− ∂

∂α

(
kapo(ϕ, α) ˘̃Ic(t, ϕ, α)

)
.

In the equation above infection of uninfected cells is handled in a similar fashion as in Eq.
(5.3) on page 58. Progress along α is determined by the apoptosis coefficient kapo which
may depend on both internal coordinates ϕ and α. Likewise, the net coefficient knet and
the cell death rate kcd may be functions of ϕ and α. In this way the cell population is
able to move within the two-dimensional space defined by the two internal coordinates.
Thus, a separate population of apoptotic cells is not required anymore.

In fact, after the work of Schulze-Horsel et al. [2009] had been published, attempts have
been made to adapt a similar approach to two-dimensional flow cytometric data with
the intracellular amount of viral NP constituting one dimension and the accumulation
of DNA strand breaks serving as the other dimension. In Figure 40 examples of flow
cytometric data of the first experiment with A/H3N2 are given for selected times post
infection. These examples show that in the beginning the fluorescence intensity is low
in both dimensions. Due to NP production of infected cells the latter move towards the
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a) t = 0.25 h p.i. b) t = 18 h p.i.

c) t = 26 h p.i. d) t = 78 h p.i.

Figure 40: Flow cytometric data, raw cell counts for selected times p.i. for A/H3N2, Experiment 1
[Schulze-Horsel et al., 2009] (cell counts of 16 consecutive sensor channels are combined to
form one “pixel”) – ordinate: fluorescence intensity due to viral NP, abscissa: fluorescence
intensity due to DNA strand breaks

right side of the plane (18 h p.i.). A slight upward movement may already indicate a
slow accumulation of DNA strand breaks. At 26 h p.i. nearly all cells can be found in
the lower right quadrant of the fluorescence intensity plane. Though, the reason for the
noticeable formation of two subpopulations with similar NP content is not clear as both
subpopulations do not differ in their subsequent behavior with respect to NP content.
However, later in the experiment more or less all cells are united again in one population
that shows lower fluorescence intensity due to viral NP, but higher fluorescence intensity
due to DNA strand breaks (78 h p.i.).

Although these results look promising, the differentiation of cells according to their
accumulated number of DNA strand breaks turns out to be of only minor significance
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as far as the reversal of the propagation direction is concerned. That is because when
DNA fragmentation is finally induced respective cells are already in a very late state
of apoptosis where virus replication eventually stops. Unfortunately, with regard to the
present model formulation the transient towards this state of interest is not resolved.
This underlines the great importance of a suitable definition and meaningful detection of
various characteristic states between the induction of apoptosis and the eventual DNA
fragmentation in order to facilitate a significant differentiation of the cell population.

6.2.2 Distinction between the eclipse phase and the latent phase

As mentioned before, in the presented model it is assumed that the eclipse phase and
the latent phase coincide. Hence, when fitting the model to experimental data a trade-
off between the integral dynamics and the distribution dynamics is made. In order to
resolve this trade-off and simultaneously improve the biological plausibility of the model
a distinction between the two phases is recommendable. With respect to the model the
eclipse phase is considered to incorporate all processes between the successful infection
of a host cell and the initial production of viral NP. Furthermore, the latent phase
comprises all processes from the infection to the release of the first free virus particles.
The durations of the eclipse phase and the latent phase shall be defined as τ1 and τ2,
respectively. Their difference shall be defined as τ2−1, yielding

τ1 ∈ [0,∞] and τ2 ≥ τ1 and τ2−1 = τ2 − τ1.

Hence, the change of the number density of the infected cells that have passed the eclipse
phase (former Eq. (5.3)) accounts to

∂Ĩc(t, ϕ)
∂t

= kvi Ũc(t− τ1, ϕ)Vac(t− τ1)− ∂

∂ϕ

(
knet(ϕ) Ĩc(t, ϕ)

)
− kapo(ϕ) Ĩc(t, ϕ).

(6.1)

After the eclipse phase has been traversed infected cells start to change their degree of
fluorescence by means of viral NP production and RNP complex formation. Nevertheless,
free virus particles are not released before the latent phase has been passed. Eqs. (5.5)
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and (5.6) have to be adapted accordingly:

dVac(t)
dt = Peff krel

∫
ϕ

(
Ĩc(t− τ2−1, ϕ) + Ãc(t− τ2−1, ϕ)

)
dϕ

− kvi Vac
∫
ϕ
Ũc(t, ϕ) dϕ− kdeg Vac(t),

(6.2)

dVinac(t)
dt =

(
1− Peff

)
krel

∫
ϕ

(
Ĩc(t− τ2−1, ϕ) + Ãc(t− τ2−1, ϕ)

)
dϕ+ kdeg Vac(t).

(6.3)

A schematic depiction of the resulting model is presented in Fig. 41.

6.2.3 Multiple infections

The genome of influenza A virus comprises eight individual RNA segments. When multi-
ple influenza A virus particles infect the same host cell their possibly varying genomes are
replicated equally, resulting in the release of virus particles with all kinds of arbitrary
combinations of the original RNA segments provided by the infecting virus particles.
This ability of influenza A virus is called antigenic shift. Together with the so called
antigenic drift, i.e. the tendency of influenza A virus to change its antigenic properties
by means of mutation, antigenic shift represents the most significant asset that affects
the genetic variability of the virus. For this process to happen multiple infections are a
basic prerequisite and should therefore not be neglected in a model of the process.

Accordingly, free virus particles should not only be allowed to attach to uninfected cells
but to any cell. If the basic distinction between active and inactive virus particles is
maintained, in the simplest case active virus particles are assumed to attach to any cell
with equal affinity and inactive virus particles are assumed to stay passive. Hence, Eq.
(5.5) is changed to

dVac(t)
dt = Peff krel

∫
ϕ

(
Ĩc(t, ϕ) + Ãc(t, ϕ)

)
dϕ

− kva Vac(t)
∫
ϕ
X̃c(t, ϕ) dϕ− kdeg Vac(t)

(6.4)

with X̃c(t, ϕ) = Ũc(t, ϕ) + L̃c(t, ϕ) + Ĩc(t, ϕ) + Ãc(t, ϕ).

Here, X̃c(t, ϕ) denotes the sum of the number densities of all cells. The attachment of
active virus particles to these cells is characterized by the attachment coefficient kva. If
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InfectedUCellsU(inUtheUEclipseUPhase)

InfectedUCellsU(afterUtheUEclipseUPhase)
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Figure 41: Scheme of a proposed model in consideration of the distinction between the eclipse phase
and the latent phase. After the eclipse phase infected cells start to produce viral NP and
form RNP complexes. Subsequently, free virus particles are released by infected and apop-
totic cells after the remaining difference between the latent phase and the eclipse phase has
been passed.
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every event of attachment of an active virus particle leads to a successful infection of
the host cell, as it has been assumed in the model of Müller et al. [2013], kva equals the
infection coefficient kvi. Respectively, if the possibility of an incomplete infection despite
successful attachment should be considered, kva has to be larger than kvi.

This approach of tackling multiple infections is very straightforward. Nevertheless, it can
form the basis for more intricate variants that incorporate more specific considerations.
Possible questions that arise during the implementation of multiple infections are, for
example: Does the affinity with which active virus particles attach to cells depend on
the state of the host cell? Is the number of susceptible binding cites a limiting factor?
Does the detachment of an already attached virus particle have to be considered? How
important is the number of available endosomes? Does the uptake of multiple virus
particles affect the replication dynamics and the performance of the host cell, and is it
therefore useful to discriminate between cells with different numbers of absorbed virus
particles? If the number of infecting virus particles has an effect on the replication
dynamics, does the eclipse phase have to be considered separately for each virus particle
that is taken up? These questions shall give an impression of the potential complexity
of multiple infections.

In summary, multiple infections are an integral part of influenza virus replication and
should therefore be taken into account in one way or another. This is underlined in the
next section, as multiple infections are also a necessary prerequisite for defective virus
particles to interfere with standard virus particles.

6.2.4 Defective interfering particles

Defective interfering particles (DIPs) are part of the family of biologically active in-
fluenza virus particles [Marcus et al., 2009]. As Frensing et al. [2013] show, their influ-
ence becomes especially apparent in continuous vaccine production processes. However,
in conventional batch processes DIPs also play an important role by virtue of their spe-
cific properties, since their presence, particularly in the virus seed, can decisively affect
the population dynamics.

DIPs differ from standard virus particles (STVs) in that they posses one or more defective
RNA segments. Due to this imperfection DIPs are unable to successfully accomplish
their propagation as long as the respective host cell is not simultaneously coinfected
by an STV. However, in the case of a coinfection with DIPs and STVs both virus
subpopulations compete for resources, most notably for the RNA synthesis capacities of
the host cell. As a result, the defective RNA segments are synthesized faster than their
counterparts with standard configuration leading to the predominant release of DIPs
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[Nayak et al., 1989].

In order to model the effect of DIPs on a basic level additional types of infected cells
have to be considered. Besides cells that have been infected by STVs (or active virus
particles, respectively) there need to be DIP-infected as well as coinfected cells. This
differentiation of the infected cells has also been applied by Frensing et al. [2013] in a
lumped model of a continuous influenza vaccine production process, which is based on
an earlier approach by Kirkwood and Bangham [1994]. In Fig. 42 a possible scheme is
presented in which the principle influence of DIPs is considered within the framework
of the established distributed population balance model of Müller et al. [2013] with
additional regard to the differentiation between the eclipse phase and the latent phase.
Note, that although the event of cell death is not graphically represented in Fig. 42, it
must not be neglected in a respectively derived model.

With respect to a potential model formulation the general distinction according to the
infecting virus particle results in two paths of progression. Cells that are infected by
STVs in principle behave like the generic infected cells of the previously established
model. The only and decisive deviation stems from the additional release of DIPs, which
opens up the second path of possible progression. DIP-infected cells are assumed to stay
passive until they are eventually coinfected by an STV and start to produce viral protein
after an eclipse phase. In contrast to STV-infected cells coinfected cells are assumed to no
longer release STVs, but a significantly higher percentage of DIPs instead. Furthermore,
coinfected cells are assumed to become apoptotic and suffer the same consequences as
STV-infected cells as a result, albeit a deviant behavior is thinkable.

When modeling the transition of STV-infected cells to the coinfected state the change
of the release behavior may have to be considered in more detail than it is depicted
in Fig. 42. Due to the time difference between a successful coinfection and the actual
synthesis of defective viral RNA and the subsequent release of DIPs coinfected cells can
be assumed to go through a transitional phase, during which the release of STVs is still
possible (see Fig. 43). Depending on the time of coinfection and the duration of the
subsequent latent phase the length and characteristics of this transitional phase may
vary. For instance, if the coinfection happens after the STV-infected cell has passed its
regular latent phase the release of STVs is not interrupted by the coinfection. Instead
the release of STVs continues until the second latent phase is over, at which point the
release of DIPs commences (Fig. 43a). If coinfection happens during the regular latent
phase the respective cell, despite coinfection, starts to release STVs after the regular
latent phase has been passed. As before, the subsequent release of DIPs begins with
completion of the second latent phase (Fig. 43b).

Apparently, the presence of DIPs can have decisive influence on the dynamics of vaccine
production processes and should therefore be considered in a future model formulation.
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Figure 42: Possible scheme of a distributed model in consideration of the principal influence of defec-
tive interfering particles (DIPs). In addition, the differentiation between the eclipse phase
and the latent phase is included. (Note that the event of cell death is not graphically rep-
resented.) Depending on the virus particle that successfully completes the initial infection,
infected cells are divided into DIP-infected and STV-infected cells. The latter eventually
release standard virus particles (STVs), inactive virus particles and a small fraction of
DIPs, while the former are assumed to stay passive. After coinfection with a respective
complementary virus particle the release of STVs ceases for the benefit of an increased
fraction of released DIPs.
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a) Coinfection after the latent phase of the STV-infected cell
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b) Coinfection during the latent phase of the STV-infected cell

Figure 43: The change of the virus release behavior during the transition of STV-infected cells to the
coinfected state for two possible scenarios (STV: standard virus particle, DIP: defective
interfering particle)

6.2.5 Consideration of an immune response

Depending on the applied virus strain the immune response of the host cell population
can have a significant influence on the overall process dynamics, as the case of A/H1N1-
NIBSC indicates (see Section 5.8, page 78 ff.). In order to increase the convergence of
experiment and simulation in a straight forward approach the elementary effects of the
immune response have to be taken into account. The experimental distribution dynamics
of A/H1N1-NIBSC (see Figs. 37–39) imply that host cells take up an antiviral state that
either impedes successful infection or at least minimizes viral protein production. The
promotion of the antiviral state depends on the secretion of cell signaling molecules (e.g.
members of the type I interferon family) induced by viral infection [Ehrhardt et al.,
2010; Heynisch et al., 2010].

Accordingly, virus induced cell signaling and the resulting antiviral state should be rep-
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resented in a future model formulation, for instance, by considering the production and
release of signaling molecules that promote the transition into an antiviral state which
significantly impedes viral replication. In Fig. 44 a possible model scheme is proposed.
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Figure 44: Scheme of a proposed model that considers the adoption of an antiviral state promoted
by cell signaling. This scheme is based on an approach that includes the differentiation
between the eclipse phase and the latent phase and adds the release of signaling molecules
by infected and apoptotic cells. As a result, these signaling molecules promote the transition
of uninfected cells to the antiviral state, which eventually inhibits successful infection or
replication, respectively.
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Appendix

A Determination of the limit of the scaling factor in Eq. (3.7)

The limit of the scaling factor in Eq. (3.7) for ∆ϕi → 0 is determined with the help of
L’Hospital’s rule:

lim
∆ϕi→0

lg
(
1 + ∆ϕi/ϕi

)
∆ϕi

!= lim
∆ϕi→0

d
d∆ϕi

lg
(
1 + ∆ϕi/ϕi

)
d

d∆ϕi
∆ϕi

= lim
∆ϕi→0

d
d∆ϕi

1
ln(10) ln

(
1 + ∆ϕi/ϕi

)
d

d∆ϕi
∆ϕi

= lim
∆ϕi→0

1
ln(10) (1+∆ϕi/ϕi)

d
d∆ϕi

(1 + ∆ϕi/ϕi)
1

= lim
∆ϕi→0

1
ln(10) (1+∆ϕi/ϕi)

1
ϕi

1

= lim
∆ϕi→0

1
ln(10) (ϕi + ∆ϕi)

= 1
ln(10)ϕi

.
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B Derivation of Eq. (3.12)

For the derivation of Eq. (3.12) the latent phase is represented by a transport system
with the spatial coordinate λ ∈ R, [0, 1]. The new state variable is marked with an
additional hat symbol:

∂ ˆ̃Lc(t, ϕ, λ)
∂t

= −1
τ

∂ ˆ̃Lc(t, ϕ, λ)
∂λ

− kcdv ˆ̃Lc(t, ϕ, λ). (B.1)

Cells enter the transport system upon infection, which is specified by the boundary
condition

ˆ̃Lc(t, ϕ, λ = 0) = τ · kvi Ũc(t, ϕ)V (t). (B.2)

Eq. (3.12) is obtained by integration of Eq. (B.1) over the λ domain:

∂L̃c(t, ϕ)
∂t

= −1
τ

ˆ̃Lc(t, ϕ, λ)
∣∣∣1
λ=0
− kcdv L̃c(t, ϕ) (B.3)

with L̃c(t, ϕ) =
∫
λ

ˆ̃Lc(t, ϕ, λ) dλ.

While the left boundary condition is given by Eq. (B.2), the number density at the right
boundary of the transport system follows from the solution of Eq. (B.1). Therefore, a
Laplace transformation is performed under consideration of the initial condition ˆ̃Lc(t =
0, ϕ, λ) = 0:

s ˆ̃L∗c(s, ϕ, λ) = −1
τ

∂ ˆ̃L∗c(s, ϕ, λ)
∂λ

− kcdv ˆ̃L∗c(s, ϕ, λ). (B.4)

with ˆ̃L∗c(s, ϕ, λ) = L
{

ˆ̃Lc

}
After rearrangement Eq. (B.4) is integrated:

∫ ˆ̃L∗
c (s,ϕ,λ)

ˆ̃L∗
c (s,ϕ,λ=0)

∂ ˆ̃L∗c(s, ϕ, λ)
ˆ̃L∗c(s, ϕ, λ)

= −
∫ λ

λ=0
τ
(
s+ kcdv

)
∂λ

yielding the solution in the complex variable domain:

ˆ̃L∗c(s, ϕ, λ) = ˆ̃L∗c(s, ϕ, λ = 0) · e−τ
(
s+kcdv

)
λ

= ˆ̃L∗c(s, ϕ, λ = 0) · e−τ s λ · e−τ kcdv λ.

(B.5)
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Back transformation to the time domain and setting λ = 1 yields the right boundary
condition of Eq. (B.3):

ˆ̃Lc(t, ϕ, λ = 1) = ˆ̃Lc(t− τ, ϕ, λ = 0) · e−kcdv τ

= τ · kvi Ũc(t− τ, ϕ)V (t− τ) · e−kcdv τ .

(B.6)

Finally, by combination of Eqs. (B.2), (B.3) and (B.6) the desired Eq. (3.12) is ob-
tained:

∂L̃c(t, ϕ)
∂t

= kvi Ũc(t, ϕ)V (t)− kvi Ũc(t− τ, ϕ)V (t− τ) · e−kcdv τ − kcdv L̃c(t, ϕ).
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C Discretization via finite-volume method (FVM)

C.1 Discretization of Eq. (2.5)

First, the transport coordinate λ is discretized into M equidistant control volumes of
constant width

∆λ = 1/(M − 1).

In this way, upon reaching the last control volume, the transported cells have covered a
distance of 1. Hence, the transport coordinate λ has to be defined in the interval from 0
to 1 + ∆λ (see Fig. 45). The left and right boundaries of control volume i (λi and λi+1)
are determined by

λi = ∆λ · (i− 1) and λi+1 = ∆λ · i with i ∈ N, [1,M ].

first control volume last control volumecontrol volume i

Figure 45: Equidistant discretization of the transport coordinate λ ∈ [0, 1 + ∆λ].

When assuming a constant course of Tc(t, λ) within a control volume, one can specify

Tc(t, λ) = Tc,i(t) for ]λi, λi+1].

The value of Tc at the left boundary of the first control volume is defined by the boundary
condition (Eq. (2.6)):

Tc(t, λ1) = Tc(t, λ = 0) = Ic(t).

Now, Eq. (2.5) is discretized by integration within the limits of control volume i:∫ λi+1

λi

∂Tc(t, λ)
∂t

dλ︸ ︷︷ ︸
A

= − 1
τ

∫ λi+1

λi

∂Tc(t, λ)
∂λ

dλ︸ ︷︷ ︸
B

,

A = d
dt
[
Tc λ

]λi+1

λi

= dTc,i
dt ∆λ,
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B = −1
τ

[
Tc
]λi+1

λi

= −1
τ

(
Tc,i − Tc,i−1

)
.

In the case of term B an upwind scheme is applied. Concatenating terms A and B yields
the discretized transport equation

dTc,i(t)
dt = − 1

∆λ τ
(
Tc,i(t)− Tc,i−1(t)

)
with Tc,0(t) = Ic(t).

Selection of the number of control volumes

The number of control volumes M affects the accuracy of the transport system. The
higher the number of control volumes the sharper the front of transported cells, until all
cells retain nearly the same retention time which equals τ . A reduction of the number
of control volumes results in a smearing effect and causes the retention time to become
distributed around τ .

Although hard delays are not desirable when modeling virus dynamics [Holder and
Beauchemin, 2011], Möhler et al. decided to apply a hard delay. In the context of the
work at hand this decision is adopted and a suitable number of control volumes is
chosen. Therefore, simulations have been carried out with different numbers of control
volumes:

Mj = 2j for j ∈ N, [2, 9].

Apart from that, the parameters published by Möhler et al. [2005] (see Tab. I, page 14)
have been applied. The results are presented in Figure 46.

When modifying M the time when Ic reaches its maximum (tIc,max) changes. While the
number of control volumes is doubled with each step the change of tIc,max decreases
(see Tab. V, page 103). In order to reach a suitable compromise between accuracy and
computational effort the number of control volumes was chosen by looking for the step
which results in a change of tIc,max which is closest to one percent of the duration of the
latent period τ . It can be seen in Table V, that a number of 64 control volumes complies
with this requirement and is therefore chosen to be sufficiently accurate.

C.2 Discretization of Eq. (3.18)

Analog to Appendix C.1 λ is discretized into M = 64 equidistant control volumes of
constant width ∆λ with λi and λi+1 as the left and right boundary of control volume
i ∈ N, [1,M ].
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Figure 46: Simulation results for the model of Möhler et al. [2005] with the application of different
numbers of control volumes (M) for the discretized transport system. The concentrations of
uninfected and infected cells are colored blue and red, respectively. The virus concentration
is shown in gray. Results are drawn in 8 different shades of the respective color referring to
8 different numbers of control volumes. The lightest color represents M = 4 while the most
saturated color represents M = 512. The number of control volumes is doubled from one
step to the next. The rest of the parameters are taken from Möhler et al. [2005] (see Tab.
I, page 14). Note, the individual waves of infection get more pronounced when the number
of control volumes is increased.

M tIc,max [h] ∆tIc,max [h] ∆tIc,max/τ [%]
4 17.001 — —
8 16.398 0.603 13.394

16 16.16 0.238 5.286
32 16.06 0.1 2.216
64 16.018 0.042 0.934

128 16 0.018 0.403
256 15.992 0.008 0.187
512 15.988 0.004 0.09

Table V: Selection of the number of control volumes of the discretized transport system. Simulations
were carried out for different numbers of control volumes (M). The table lists the time when
Ic reaches its maximum (tIc,max), the difference in tIc,max from one simulation to the next
(∆tIc,max), and the ratio of ∆tIc,max to the duration of the latent period τ . The step from
32 to 64 control volumes results in the change of tIc,max which is closest to one percent of τ .
Hence, a number of 64 control volumes is chosen to be sufficiently accurate.
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Eq. (3.18) is discretized by integration within the limits of control volume i:∫ λi+1

λi

∂L̂c(t, λ)
∂t

dλ︸ ︷︷ ︸
A

= − 1
τ

∫ λi+1

λi

∂L̂c(t, λ)
∂λ

dλ︸ ︷︷ ︸
B

− kcdv

∫ λi+1

λi

L̂c(t, λ) dλ︸ ︷︷ ︸
C

,

A = d
dt
[
L̂c λ

]λi+1

λi

= dL̂c,i

dt ∆λ,

B = −1
τ

[
L̂c
]λi+1

λi

= −1
τ

(
L̂c,i − L̂c,i−1

)
,

C = −kcdv
[
L̂c λ

]λi+1

λi

= −kcdv L̂c,i ∆λ.

In the case of term B an upwind scheme is applied. Summarizing terms A to C yields
the discretized balance equation for cells in the latent phase:

dL̂c,i(t)
dt = − 1

∆λ τ
(
L̂c,i(t)− L̂c,i−1(t)

)
− kcdv L̂c,i(t)

with L̂c,0(t) = τ · kvi Uc(t)V (t).

C.3 Discretization of Eq. (3.21)

Similar to the sensor channels of the flow cytometer, the internal coordinate ϕ is dis-
cretized into N control volumes of logarithmically increasing width

∆ϕi = ϕi+1 − ϕi = 1
FVE

(
10 4

N
·i − 10 4

N
·(i−1)

)
with i ∈ N, [1, N ].

In the equation above ϕi and ϕi+1 are the left and right boundary of control volume
i. Thus, the degree of fluorescence is confined within the intensity range of the flow
cytometer (1 to 104 FU)

ϕ ∈ [ϕmin = 1 FU/FVE, ϕmax = 104 FU/FVE].

The course of Ĩc(t, ϕ) is assumed to be constant within a control volume, so that
Ĩc(t, ϕ) = Ĩc,i(t) for ]ϕi, ϕi+1] when an upwind scheme is applied,

or for [ϕi, ϕi+1[ when a downwind scheme is applied.
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Eq. (3.21) is discretized by integrating within the limits of control volume i:

∫ ϕi+1

ϕi

∂Ĩc(t, ϕ)
∂t

dϕ︸ ︷︷ ︸
A

= L̂c,M(t)
τ

∫ ϕi+1

ϕi

qsim,0(ϕ) dϕ︸ ︷︷ ︸
B

− kpro

∫ ϕi+1

ϕi

∂Ĩc(t, ϕ)
∂ϕ

dϕ︸ ︷︷ ︸
C

+ krel

∫ ϕi+1

ϕi

∂Ĩc(t, ϕ)
∂ϕ

dϕ︸ ︷︷ ︸
D

− kcdv

∫ ϕi+1

ϕi

Ĩc(t, ϕ) dϕ︸ ︷︷ ︸
E

,

A = d
dt
[
Ĩc ϕ

]ϕi+1

ϕi

= dĨc,i
dt ∆ϕi,

B = L̂c,M

τ

[
qsim,0 ϕ

]ϕi+1

ϕi

= L̂c,M

τ
qsim,0,i ∆ϕi,

C = −kpro
[
Ĩc
]ϕi+1

ϕi

= −kpro
(
Ĩc,i − Ĩc,i−1

)
,

D = krel
[
Ĩc
]ϕi+1

ϕi

= krel
(
Ĩc,i+1 − Ĩc,i

)
,

E = −kcdv
[
Ĩc ϕ

]ϕi+1

ϕi

= −kcdv Ĩc,i ∆ϕi.

While term C is conceived with an upwind scheme, for term D a downwind scheme is
applied. Combining terms A to E yields the discretized balance equation for infected
cells after the latent phase:

dĨc,i(t)
dt = L̂c,M(t)

τ
qsim,0,i −

kpro
∆ϕi

(
Ĩc,i(t)− Ĩc,i−1(t)

)

+ krel
∆ϕi

(
Ĩc,i+1(t)− Ĩc,i(t)

)
− kcdv Ic,i

with Ĩc,0 = Ĩc,N+1 = 0.

In addition, convection across the boundaries is prevented by defining Ĩc,N = 0 for the
protein production term and Ĩc,1 = 0 for the virus release term.
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C.4 Discretization of Eq. (5.10)

Analog to Appendix C.3 the internal coordinate ϕ is discretized into N control volumes
of logarithmically increasing width ∆ϕi with ϕi and ϕi+1 as the left and right boundary
of control volume i ∈ N, [1, N ].

The course of Ĩc(t, ϕ) is assumed to be constant within a control volume, so that

Ĩc(t, ϕ) = Ĩc,i(t) for ]ϕi, ϕi+1].

The value of Ĩc at the left boundary of the first control volume is defined by the boundary
condition:

Ĩc(t, ϕ1) = Ĩc(t, ϕ = 0) = 0.

Now, Eq. (5.10) is discretized by integrating within the limits of control volume i:
∫ ϕi+1

ϕi

∂Ĩc(t, ϕ)
∂t

dϕ︸ ︷︷ ︸
A

= L̂c,M(t)
τ

∫ ϕi+1

ϕi

qsim,0(ϕ) dϕ︸ ︷︷ ︸
B

−
∫ ϕi+1

ϕi

∂

∂ϕ

(
knet(ϕ) Ĩc(t, ϕ)

)
dϕ︸ ︷︷ ︸

C

−
∫ ϕi+1

ϕi

kapo(ϕ) Ĩc(t, ϕ) dϕ︸ ︷︷ ︸
D

,

A = d
dt
[
Ĩc ϕ

]ϕi+1

ϕi

= dĨc,i
dt ∆ϕi,

B = L̂c,M

τ

[
qsim,0 ϕ

]ϕi+1

ϕi

= L̂c,M

τ
qsim,0,i ∆ϕi,

C = −
[
knet Ĩc

]ϕi+1

ϕi

= −
(
knet,i Ĩc,i − knet,i−1 Ĩc,i−1

)
,

D = −
[
kapo Ĩc ϕ

]ϕi+1

ϕi

= −kapo,i Ĩc,i ∆ϕi.

An upwind scheme is applied to term C. Combining terms A to D yields the discretized
balance equation:

dĨc,i(t)
dt = L̂c,M(t)

τ
qsim,0,i −

1
∆ϕi

(
knet,i Ĩc,i(t)− knet,i−1 Ĩc,i−1(t)

)
− kapo,i Ĩc,i(t)

with Ĩc,0(t) = Ĩc,N(t) = 0.
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C.5 Discretization of Eq. (5.4)

As shown in Appendix C.3 (page 104) ϕ is discretized into N control volumes of log-
arithmically increasing width ∆ϕi with ϕi and ϕi+1 as the left and right boundary of
control volume i ∈ N, [1, N ].

The course of Ãc(t, ϕ) is assumed to be constant within a control volume, so that

Ãc(t, ϕ) = Ãc,i(t) for [ϕi, ϕi+1[.

The value of Ãc at the right boundary of the last control volume is defined by the
boundary condition:

Ãc(t, ϕN+1) = Ãc(t, ϕ = 104 FU/FVE) = 0.

Now, Eq. (5.4) is discretized by integrating within the limits of control volume i:
∫ ϕi+1

ϕi

∂Ãc(t, ϕ)
∂t

dϕ︸ ︷︷ ︸
A

=
∫ ϕi+1

ϕi

kapo(ϕ) Ĩc(t, ϕ) dϕ︸ ︷︷ ︸
B

−
∫ ϕi+1

ϕi

∂

∂ϕ

(
knet,apo(ϕ) Ãc(t, ϕ)

)
dϕ︸ ︷︷ ︸

C

−
∫ ϕi+1

ϕi

kcd(ϕ) Ãc(t, ϕ) dϕ︸ ︷︷ ︸
D

,

A = d
dt
[
Ãc ϕ

]ϕi+1

ϕi

= dÃc,i

dt ∆ϕi,

B =
[
kapo Ĩc ϕ

]ϕi+1

ϕi

= kapo,i Ĩc,i ∆ϕi,

C = −
[
knet,apo Ãc

]ϕi+1

ϕi

= −
(
knet,apo,i+1 Ãc,i+1 − knet,apo,i Ãc,i

)
,

D = −
[
kcd Ãc ϕ

]ϕi+1

ϕi

= −kcd,i Ãc,i ∆ϕi.

A downwind scheme is applied to term C. Combining terms A to D yields the discretized
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balance equation:

dÃc,i(t)
dt = kapo,i Ĩc,i(t)−

1
∆ϕi

(
knet,apo,i+1 Ãc,i+1(t)− knet,apo,i Ãc,i(t)

)
− kcd,i Ãc,i(t)

with Ãc,1(t) = Ãc,N+1(t) = 0.
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Nomenclature

Abbreviations

A/Equi/H3N8 Equine influenza A/Newmarket/1/93
A/H1N1 Human influenza A/Puerto Rico/8/34
A/H3N2 Reassortant of human influenza A/Wisconsin/67/2005
CAD Caspase-activated deoxyribonuclease
CV Control volume
DFF DNA fragmentation factor
DIP(s) Defective interfering particle(s)
DNA Deoxyribonucleic acid
dUTP Deoxyuridine triphosphate
FITC Fluorescein isothiocyanate
FU Fluorescence units
FVM Finite-volume method
HA Hemagglutinin/Hemagglutination
ICAD Inhibitor of caspase-activated deoxyribonuclease
IFN Interferon
M1 Matrix protein 1
MDCK Madin-Darby canine kidney
MFI Mean fluorescence intensity
MOI Multiplicity of infection, number of infectious virus particles per un-

infected cell
MOMP Mitochondrial outer membrane permeabilization
NA Neuraminidase
NIBSC National Institute for Biological Standards and Control (Hert-

fortshire)
NP Nucleoprotein
NS1 Nonstructural protein 1
PFU Plaque forming unit
p.i. Post infection
RBC Red blood cell
RKI Robert Koch Institute (Berlin)
RNA Ribonucleic acid
RNP Ribonucleoprotein
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STV(s) Standard virus particle(s)
TCID50 Tissue culture infectious dose
TdT Terminal deoxyribonucleotidyl transferase
TMR red Tetramethylrhodamine
TNF Tumor necrosis factor
TOI Time of infection
TRAIL TNF-related apoptosis-inducing ligand
TUNEL TdT-mediated dUTP nick end labeling
VE Virus equivalent

Latin letters

Ãc(t, ϕ) [ml−1] Number density of apoptotic cells
Ãc,i(t) [ml−1] Number density of apoptotic cells in control volume i
ci [ml−1] Cell concentration in control volume i
Cmax [ml−1] Maximum total number of cells
cRBC [ml−1] Concentration of red blood cells
F [FU] Fluorescence intensity
Fsensor,i [FU] Left boundary of sensor channel i
Fsensor,m,i [FU] Mean fluorescence intensity of sensor channel i
FVE [FU] Fluorescence intensity per virus equivalent
Ic(t) [ml−1] Concentration of infected cells
Ic,0 [ml−1] Initial concentration of infected cells
Ĩc(t, ϕ) [ml−1] Number density of infected cells
Ĩc,i(t) [ml−1] Number density of infected cells in control volume i
Ĩ Ic(t, ϕ) [ml−1] Number density of infected cells in the first phase of viral

replication
Ĩ IIc (t, ϕ) [ml−1] Number density of infected cells in the second phase of viral

replication
kapo [h−1] Apoptosis coefficient
kbind [h−1] NP binding coefficient
kbind,apo [h−1] NP binding coefficient of apoptotic cells
kcd [h−1] Cell death coefficient
kcdf [h−1] Cell death coefficient before viral infection
kcdv [h−1] Cell death coefficient after viral infection
kdeg [h−1] Virus degradation coefficient
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knet [h−1] Net coefficient
knet,apo [h−1] Net coefficient of apoptotic cells
kpro [h−1] Protein production coefficient
kpro,apo [h−1] Protein production coefficient of apoptotic cells
kIpro [h−1] Protein production coefficient in the first phase of viral

replication
kIIpro [h−1] Protein production coefficient in the second phase of viral

replication
kpt [h−1] Phase transition coefficient
kpt,max [h−1] Maximum phase transition coefficient
kpt,min [h−1] Minimum phase transition coefficient
krel [h−1] Virus release coefficient
kva [ml/h] Virus attachment coefficient
kvd [h−1] Virus degradation coefficient
kvi [ml/h] Infection coefficient
Lc(t) [ml−1] Concentration of infected cells during the latent phase
L̃c(t, ϕ) [ml−1] Number density (with respect to ϕ) of infected cells during

the latent phase
L̂c(t, λ) [ml−1] Number density (with respect to λ) of infected cells during

the latent phase
L̂c,i(t) [ml−1] Number density of infected cells during the latent phase in

control volume iˆ̃Lc(t, ϕ, λ) [ml−1] Number density of infected cells during the latent phase
ˆ̃L∗c(s, ϕ, λ) [ml−1] Laplace transform of ˆ̃Lc(t, ϕ, λ)
N [—] Number
NCV [—] Number of control volumes
Nsensor [—] Number sensor channel of flow cytometer
M [—] Number
Peff [—] Plating efficiency, number of infectious virions per total

number of virus particles
qapprox,i,0 [1/“lgFU”] Approximated initial cell distribution of the experiment for

sensor channel i
qc,i [1/“lgFU”] Normalized cell distribution of the simulation in control vol-

ume i
qexp,i [1/“lgFU”] Experimental cell distribution for sensor channel i
qsim,0(ϕ) [—] Normalized initial cell distribution of the simulation
qsim,i,0 [—] Normalized initial cell distribution of the simulation in con-

trol volume i
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t [h] Time
Tc(t, λ) [ml−1] Generic number density within the transport system
tshift [h] Amount of time that simulation results are shifted to ap-

proximate the lag period
Uc(t) [ml−1] Concentration of uninfected cells
Uc,0 [ml−1] Initial concentration of uninfected cells
Ũc(t, ϕ) [ml−1] Number density of uninfected cells
V [ml−1] Total virus concentration
V0 [ml−1] Initial total virus concentration
Vac [ml−1] Concentration of active/infectious virus particles
Vac,0 [ml−1] Initial concentration of active/infectious virus particles
Vinac [ml−1] Concentration of inactive/uninfectious virus particles
Vinac,0 [ml−1] Initial concentration of inactive/uninfectious virus particles
Vinf,seed [ml−1] Concentration of infectious virus particles in the virus seed
Vseed [ml−1] Total virus concentration of the virus seed
Zi [—] Total number of cells assigned to sensor channel i

Greek letters

α [—] Generic internal coordinate
δ [—] Degree of infection
∆Flg [“lgFU”] Logarithmic width of a control volume
∆Fsensor,i [FU] Width of sensor channel i
∆Fsensor,lg [“lgFU”] Logarithmic width of a sensor channel
∆λ [—] Width of one control volume of the discretized transport sys-

tem
∆ϕi [—] Width of control volume i of the degree of fluorescence
λ [—] Transport coordinate
µ0 [FU] Expectation of the initial cell distribution
µc [h−1] Cell growth coefficient
µc,max [h−1] Maximum cell growth coefficient
µpt [FU] Expectation of the phase transition coefficient
σ0 [FU] Standard deviation of the initial cell distribution
σpt [FU] Standard deviation of the phase transition coefficient
τ [h] Length of the latent period
ϕ [—] Degree of fluorescence

112



Dissertation

ϕi [—] Left boundary of the degree of fluorescence of control volume
i

ϕm,i [—] Mean degree of fluorescence of control volume i
ϕmax [—] Maximum degree of fluorescence
ϕmin [—] Minimum degree of fluorescence
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