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Abstract

Let G = (V,E) be an undirected graph, λk the kth smallest eigenvalue of the normalized
Laplacian matrix of G, and ρ(k) the smallest value of the maximal conductance over all k-way
partitions S1, . . . , Sk of V .

Peng et al. [4] gave the first rigorous analysis of k-clustering algorithms that use spectral
embedding and k-means clustering algorithms to partition the vertices of a graph G into k
disjoint subsets. Their analysis builds upon a gap parameter Υ = ρ(k)/λk+1 that was introduced
by Oveis Gharan and Trevisan [2]. In their analysis Peng et al. [4] assume a gap assumption
Υ > Ω(APR ·k3), where APR > 1 is the approximation ratio of a k-means clustering algorithm.

We exhibit an error in one of their Lemmas and provide a correction. With the correction
the proof by Peng et al. [4] requires a stronger gap assumption Υ > Ω(APR · k4).

Our main contribution is to improve the analysis in [4] by an O(k) factor. We demonstrate
that a gap assumption Ψ > Ω(APR · k3) suffices, where Ψ = ρavr(k)/λk+1 and ρavr(k) is the
value of the average conductance of a partition S1, . . . , Sk of V that yields ρ(k).

∗This work has been funded by the Cluster of Excellence “Multimodal Computing and Interaction” within the
Excellence Initiative of the German Federal Government.
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1 Introduction

Let G = (V,E) be an undirected graph. For any subset of vertices S ⊆ V we denote by µ(S) =∑
v∈S deg(u) the volume of S, and we define the conductance of S by

φ(S) =

∣∣E(S, S)
∣∣

µ(S)
. (1)

The order k conductance constant ρ(k) of a graph G is defined by

ρ(k) = min
S1,...,Sk

max
i∈[1:k]

φ(Si). (2)

The k-way partitioning problem asks to cluster a graph G into k-disjoint subsets of vertices
S1, . . . , Sk such that the returned partition yields the value of the order k conductance constant
ρ(k). Lee et al. [1] established the following relation between the kth eigenvalue of the normalized
Laplacian matrix LG and the order k conductance constant ρ(k) of a graph G

λk/2 6 ρ(k) 6 O(k2)
√

λk. (3)

Oveis Gharan and Trevisan [2] proved the existence of good clusterings1 into k disjoint subsets if
the gap between the kth and (k + 1)th eigenvalue of the normalized Laplacian matrix LG satisfies

λk+1 > Ω(k2
√

λk), (6)

i.e., if λk+1 is larger than the upper bound on the order k conductance constant ρ(k) in Equation (3).
Peng et al [4] studied approximation schemes for the k-way partitioning problem. They analyzed

spectral clustering algorithms that embed the vertices of G into vectors in R
k using the first k

eigenvectors of the normalized Laplacian matrix LG, and then partition the resulting vectors via
k-means clustering algorithms. Their analysis crucially relies on the following gap assumption

Υ =
λk+1

ρ(k)
> Ω(k3). (7)

Theorem 1.1. [4] Let k > 3 and let G be a graph satisfying the gap assumption Υ = λk+1/ρ(k) =
Ω(k3). Suppose a k-means clustering algorithm that achieves an approximation ratio APR takes as
input a spectral embedding2 {F (u)}u∈V where F : V → R

k, and outputs a k-way partition {Ai}ki=1.
Then the following two statements hold:

i) µ(Ai△Si) = O(APR · k3 ·Υ−1 · µ(Si)) and ii) φG(Ai) = O(φG(Si) + APR · k3 ·Υ−1).

1Let S be a subset of vertices. We denote by G[S] the induced subgraph whose edge set consists of all edges of G
with both endpoints in S. The inner conductance of the subset S is defined by

φ(G[S]) = min
X⊂S,µ(X)6µ(S)/2

∣∣ES(X,X)
∣∣

µS(X)
, (4)

where the quantities
∣∣ES(X,X)

∣∣ and µS(X) are defined w.r.t. the induced subgraph G[S]. Oveis Gharan and
Trevisan [2] defined a partition S1, . . . , Sk of V that is (φin, φout)-clustering if for all i ∈ [1 : k] it holds

φ(G[Si]) > φin and φ(Si) 6 φout. (5)

They showed that there exists a k-partitioning of graph G that is a (Ω(λk+1/k), O(k3
√
λk))-clustering if the gap

between the kth and (k + 1)th eigenvalue of matrix LG satisfies λk+1 > Ω(k2
√
λk).

2The function F will be defined in Equation 8.
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Our Contribution: We give a counter example to [4, Lemma 4.2] in the Appendix and prove
a weaker statement (Lemma 7.1) that is tight up to a factor of 2. With the weaker version of the
lemma, the proof of Theorem 1.1 needs the strengthened gap assumption

Υ > Ω(k4).

We note that all occurrences of k3 in the statement of the Theorem 1.1 have to be replaced by k4.
Let O be the set of partitions {Si}ki=1 with maxi φ(Si) = ρ(k), i.e., the set of all partitions that

achieve the order k conductance constant. Let

ρavg(k) = min
{Si}ki=1∈O

1

k

∑

i

φ(Si)

be the minimal average conductance of any partition in O and let

Ψ =
λk+1

ρavg(k)
.

For the remainder of the paper we use {Si}ki=1 to denote a partition that defines ρavg . We refine
the analysis in [4] and show the following statement.

Theorem 1.2 (Main Theorem). Let G be a graph that satisfies for some fixed δ ∈ (0, 1) and k > 3
the gap assumption

Ψ = 204 · δ−1 ·APR · k3.
Suppose a k-means clustering algorithm that achieves an approximation ratio APR takes as input
a spectral embedding {F (u)}u∈V where F : V → R

k, and outputs a k-way partition {Ai}ki=1. Then
for every i ∈ [1 : k] the following two statements hold (after suitable renumbering of one of the
partitions):

1) µ(Ai△Si) 6
δ

600
· µ(Si) and 2) φ(Ai) 6

(
1 +

δ

300

)
· φ(Si) +

δ

300
.

The Spectral Embedding Let LG = I − D−1/2AD−1/2 be a normalized Laplacian matrix,
where D is diagonal degree matrix and A is adjacency matrix. We refer to the kth eigenvalue of
matrix LG by λk , λk (LG). Let fk be the eigenvector corresponding to λk. The vectors f1 to
fn form a orthonormal basis of Rn. Following Peng et al., we define the spectral embedding map
F : V → R

k by

F (u) =
1√
du

(f1 (u) , . . . , fk (u))
T (8)

for all vertices u ∈ V .

The Clustering Algorithm For a set of k centers c1, . . . , ck and a partition X1, . . . ,Xk of V ,
define the cost as

Cost({Xi, ci}ki=1) =
k∑

i=1

∑

u∈Xi

du ‖F (u)− ci‖2 .

Note that the norm ‖F (u)− ci‖ is weighted by du. Alternatively, we may ask to cluster a set
containing du copies of F (u). Let OPT be the minimal cost that can be obtained in this way. The
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approximate k-partitioning algorithm returns a partition A1, . . . , Ak of V and corresponding center
vectors c1, . . . , ck such that

Cost({Ai, ci}ki=1) =
k∑

i=1

∑

u∈Ai

du ‖Fu − ci‖2 6 APR ·OPT . (9)

Throughout the paper, we use {Ai, ci}ki=1 to denote the clustering returned by the approximation
algorithm. The goal is to show that this clustering satisfies Theorem 1.2.

The Proof of the Main Theorem: Part ii) follows from Part i). Indeed,

µ(Ai) > µ(Si ∩Ai) = µ(Si)− µ(Si \ Ai) > µ(Si)− µ(Ai△Si) > (1− δ/54) · µ(Si)

and |E(Ai, Ai)| 6 |E(Si, Si)|+ µ(Ai∆Si) since every edge that is counted in |E(Ai, Ai)| but not in
|E(Si, Si)| must have an endpoint in Ai∆Si. Thus

Φ(Ai) =
|E(Ai, Ai)|

µ(Ai)
6

|E(Si, Si)|+ δµ(Si)/5
4

(1− δ/54)µ(Si)
6

(
1 +

δ

300

)
· φ(Si) +

δ

300
.

The proof of Part I builds upon the following Lemmas that we will prove in Section 8 and
Section 9 respectively.

Lemma 1.3. Under the hypothesis of Theorem 1.2, the following holds. If for every permutation
σ : [1 : k] → [1 : k] there exists an index i ∈ [1 : k] such that µ(Ai△Sσ(i)) > (δ/54) · µ(Sσ(i)). Then
it holds that

Cost({Ai, ci}ki=1) >
2k2

Ψ
·APR.

Lemma 1.4. If Ψ > 4 · k3/2 then there are points {p(i)}ki=1 such that

OPT 6 Cost({Si, p
(i)}ki=1) 6

k∑

i=1

∑

u∈Si

du

∥∥∥F (u)− p(i)
∥∥∥
2
6

(
1 +

3k

Ψ

)
· k

2

Ψ
.

Substituting these bounds into Equation 9 yields a contradiction, since

2k2

Ψ
APR < Cost({Ai, ci}ki=1) 6 APR ·OPT 6 APR · Cost({Si, p

(i)}ki=1) 6 APR ·
(
1 +

3k

Ψ

)
· k

2

Ψ
.

Thus there must be a permutation π (the identity after suitable renumbering of one of the partitions)
such that µ(Ai△Sσ(i)) < (δ/54)·µ(Sσ(i)) for all i ∈ [1 : k]. This completes the proof of Theorem 1.2.

Remark 1.5. Based on the counter example to [4, Lemma 4.2] and the weaker statement of
Lemma 7.1, we can show that the analogue [4, Lemma 4.4] of Lemma 1.3 requires an extra Θ(k)-
factor. More precisely, the gap assumption in [4, Lemma 4.4] has to be replaced with

Cost({Ai, ci}ki=1) > Ω

(
k3

Υ
·APR

)
,

which leads to Θ(k4) instead of the stated Θ(k3) dependance in Theorem 1.1.
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2 Some Notation

We use the notation adopted by Peng et al. [4] and restate it below for completeness. Let LG =
I − D−1/2AD−1/2 be a normalized Laplacian matrix, where D is diagonal degree matrix and A
is adjacency matrix. We refer to the kth eigenvalue of matrix LG by λk , λk (LG). The (unit)
eigenvector corresponding to λk is denoted by fk.

Let gi =
D1/2χSi

‖D1/2χSi‖
, where χSi is the characteristic vector of a subset Si ⊆ V . Note gi is the

normalized characteristic vector of Si and that
∥∥D1/2χSi

∥∥2 =
∑

v∈Si
degv = µ(Si). We will write

µi instead of µ(Si). The Rayleigh quotient is defined by and satisfies that

R (gi) ,
gi

TLGgi

giTgi
=

1

µSi

χT
Si
LχSi =

|E(S, S)|
µSi

= φSi ,

where L = D −A is the graph Laplacian matrix.
The eigenvectors {fi}ni=1 form an orthonormal basis of Rn. Thus each characteristic vector gi

can be expressed as gi =
∑n

j=1 α
(i)
j fj for all i ∈ [1 : k]. We define its projection onto the first k

eigenvectors by f̂i =
∑k

j=1 α
(i)
j fj.

Peng et al. [4] showed that span({f̂i}ki=1) = span({fi}ki=1) if Υ is sufficiently small. In Lemma 4.2
we will show that equality holds if Ψ sufficiently small. Hence, each of the first k eigenvectors can

be expressed by fi =
∑k

j=1 β
(i)
j f̂j. Moreover, they demonstrated that each vector

ĝi =

k∑

j=1

β
(i)
j gj

approximates the eigenvector fi for all i ∈ [1 : k], if Υ is sufficiently small. Theorem 4.1 states that
Ψ being small suffices.

In the proof of Lemma 1.4, we will use the points

p(i) =
1√
µ(Si)

(
β
(1)
i , . . . , β

(k)
i

)T
. (10)

For any vertex u ∈ Si, we have

p(i) =
([

D−1/2ĝ1

]
(u) , . . . ,

[
D−1/2ĝk

]
(u)
)
. (11)

Indeed, for any h ∈ [1 : k],

D−1/2ĝh(u) =
∑

16j6k

β
(h)
j D−1/2D

1/2χSi√
µ(Si)

(u) =
1√
µ(Si)

β
(h)
i .

Our analysis builds upon the following two matrices. Let F,B ∈ R
k×k be square matrices such

that for all indices i, j ∈ [1 : k] we have

Fj,i = α
(i)
j and Bj,i = β

(i)
j . (12)
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fi =
∑k

j=1 β
(i)
j f̂j

f̂i =
∑k

j=1 α
(i)
j fj

ĝi =
∑k

j=1 β
(i)
j gj

gi =
D1/2χSi√

µ(Si)
=
∑n

j=1 α
(i)
j fj

Lemma 4.3

‖f̂i − gi‖2 6 φSi
/λk+1

Theorem 4.1

‖fi − ĝi‖2 6 (1 + 3k/Ψ) · k/Ψ

Figure 1: The relation between the vectors fi, f̂i, ĝi and gi. The vectors {fi}ni=1 are eigenvectors of the normalized Laplacian

matrix LG of a graph G satisfying Ψ > 4 · k3/2. The vectors {gi}
k
i=1 are the normalized characteristic vectors of an optimal

partition {Si}ki=1. For each i ∈ [1 : k] the vector f̂i is the projection of vector gi onto span(f1, . . . , fk). By Lemma 4.3 the

vectors f̂i and gi are close for i ∈ [1 : k]. By Lemma 4.2 it holds span(f1, . . . , fk) = span(f̂1, . . . , f̂k) when Ψ > 4 · k3/2, and

thus we can write fi =
∑k

j=1 β
(i)
j f̂j . Moreover, by Theorem 4.1 the vectors fi and ĝi =

∑k
j=1 β

(i)
j gj are close for i ∈ [1 : k].

3 Structure of the Paper

In Section 4, we will show that if Ψ > 4 · k3/2 then the vectors ĝi and fi are close for all i ∈ [1 : k],
i.e.,

‖fi − ĝi‖2 6
(
1 +

3k

Ψ

)
· k
Ψ
.

The proof follows [4] but our analysis depends on the less restrictive gap parameter Ψ.
In contrast to [4] we exhibit in Section 5 key spectral properties of the matrices BTB and

BBT. More precisely, we show that they are close to the identity matrix in the following sense. If
Ψ > 104 · k3/ε2 and ε ∈ (0, 1) then for all distinct i, j ∈ [1 : k] it holds

1− ε 6 〈Bi,:,Bi,:〉 6 1 + ε and |〈Bi,:,Bj,:〉| 6
√
ε. (13)

Peng et al. (c.f. [4, Lemma 4.2]) proved that the L2 square norm between any distinct estimation
center points satisfies

∥∥∥p(i) − p(j)
∥∥∥
2
>
[
103 · k ·min {µ(Si), µ(Sj)}

]−1
.

In Section 6 we improve their result by Θ(k)-factor. Our analysis depends on a less restrictive
gap assumption Ψ > 204 · k3 and builds upon Equation 13. We show in Lemma 6.2 that for all
distinct i, j ∈ [1 : k] it holds

∥∥∥p(i) − p(j)
∥∥∥
2
> [3 ·min {µ(Si), µ(Sj)}]−1 .

In Section 7, we formulate and prove a weaker version of [4, Lemma B.2] that is optimal up to
a factor of 2. We demonstrate its tightness in the Appendix.

We prove Lemma 1.3 in Section 8 and Lemma 1.4 in Section 9. The analysis of these two
Lemmas builds upon our improved results from Section 4 to Section 7, and in contrast depends on
the gap parameter Ψ instead of Υ.

4 The Vectors ĝi and fi are Close

In this section we prove Theorem 4.1. We argue in a similar manner as in [4], however, in terms
of Ψ instead of Υ. For completeness, we show in Subsection 4.1 that the span of the first k

6



eigenvectors is equal to the span of the projections of the characteristic vectors of the Si onto the
first k eigenvectors. Then in Subsection 4.2 by expressing the eigenvectors fi in terms of the vectors
f̂i we conclude the proof of Theorem 4.1.

Theorem 4.1. If Ψ > 4 · k3/2 then the vectors ĝi =
∑k

j=1 β
(i)
j gj , i ∈ [1 : k], satisfy

‖fi − ĝi‖2 6
(
1 +

3k

Ψ

)
· k
Ψ
.

4.1 Analyzing the Columns of Matrix F

We prove in this subsection the following result that depends on gap parameter Ψ.

Lemma 4.2. If Ψ > k3/2 then the span({f̂i}ki=1) = span({fi}ki=1) and thus each eigenvector can be

expressed as fi =
∑k

j=1 β
(i)
j · f̂j for every i ∈ [1 : k].

To prove Lemma 4.2 we build upon the following result shown by Peng et al. [4].

Lemma 4.3. [4, Theorem 3.1 Part 1] For any i ∈ [1 : k] it holds that

∥∥∥gi − f̂i

∥∥∥
2
=

n∑

j=k+1

(
α
(i)
j

)2
6

R (gi)

λk+1
=

φSi

λk+1
.

Based on the following two results we prove Lemma 4.2.

Lemma 4.4. For every i ∈ [1 : k] and p 6= q ∈ [1 : k] it holds that

1− φSi/λk+1 6
∥∥∥f̂i
∥∥∥
2
=
∥∥∥α(i)

∥∥∥
2
6 1 and

∣∣∣
〈
f̂p, f̂q

〉∣∣∣ = |〈αp, αq〉| 6
√

φSp · φSq

λk+1
.

Proof. The first part follows by Lemma 4.3 and the following chain of inequalities

1− φSi

λk+1
6 1−

n∑

j=k+1

(
α
(i)
j

)2
=
∥∥∥f̂i
∥∥∥
2
=

k∑

j=1

(
α
(i)
j

)2
6

n∑

j=1

(
α
(i)
j

)2
= 1.

We show now the second part. Since {fi}ni=1 are orthonormal eigenvectors we have for all p 6= q
that

〈fp, fq〉 =
n∑

l=1

α
(p)
l · α(q)

l = 0. (14)

We combine Equation 14 and Cauchy-Schwarz to obtain

∣∣∣
〈
f̂p, f̂q

〉∣∣∣ =

∣∣∣∣∣

k∑

l=1

α
(p)
l · α(q)

l

∣∣∣∣∣ =
∣∣∣∣∣

n∑

l=k+1

α
(p)
l · α(q)

l

∣∣∣∣∣

6

√√√√
n∑

l=k+1

(
α
(p)
l

)2
·

√√√√
n∑

l=k+1

(
α
(q)
l

)2
6

√
φSp · φSq

λk+1
.

�

Lemma 4.5. If Ψ > k3/2 then the columns {F:,i}ki=1 are linearly independent.
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Proof. We show that the columns of matrix F are almost orthonormal. Consider the symmetric
matrix FTF. It is known that ker

(
FTF

)
= ker(F) and that all eigenvalues of matrix FTF are real

numbers. We proceeds by showing that the smallest eigenvalue λmin(F
TF) > 0. This would imply

that ker(F) = ∅ and hence yields the statement.
By combining Gersgorin Circle Theorem, Lemma 4.4 and Cauchy-Schwarz it holds that

λ(FTF) > min
i∈[k]




(
FTF

)
ii
−

k∑

j 6=i

∣∣∣
(
FTF

)
ij

∣∣∣



 = min

i∈[k]




∥∥∥α(i)

∥∥∥
2
−

k∑

j 6=i

∣∣∣
〈
α(j), α(i)

〉∣∣∣





> 1−
k∑

j=1

√
φSj

λk+1

√
φSi⋆

λk+1
> 1−

√
k

√√√√
k∑

j=1

φSj

λk+1

√
φSi⋆

λk+1
> 1− k3/2

Ψ
> 0.

�

We present now the proof of Lemma 4.2.

Proof of Lemma 4.2. Let λ be an arbitrary non-zero vector. Notice that

k∑

i=1

λi · f̂i =
k∑

i=1

λi

k∑

j=1

α
(i)
j fj =

k∑

j=1

(
k∑

i=1

λiα
(i)
j

)
fj =

k∑

j=1

γjfj, where γj = 〈Fj,:, λ〉 . (15)

By Lemma 4.5 the columns {F:,i}ki=1 are linearly independent and since γ = Fλ, it follows at least

one component γj 6= 0. Therefore the vectors
{
f̂i

}k

i=1
are linearly independent and span R

k. �

4.2 Analyzing Eigenvectors f in terms of f̂j

To prove Theorem 4.1 we establish next the following result.

Lemma 4.6. If Ψ > k3/2 then for i ∈ [k] it holds

(
1 +

2k

Ψ

)−1

6

k∑

j=1

(
β
(i)
j

)2
6

(
1− 2k

Ψ

)−1

.

Proof. We show now the upper bound. By Lemma 4.2 fi =
∑k

j=1 β
(i)
j f̂j for all i ∈ [1 : k] and thus

1 = ‖fi‖2 =
〈

k∑

a=1

β(i)
a f̂a,

k∑

b=1

β
(i)
b f̂b

〉

=
k∑

j=1

(
β
(i)
j

)2 ∥∥∥f̂j
∥∥∥
2
+

k∑

a=1

k∑

b6=a

β(i)
a β

(i)
b

〈
f̂a, f̂b

〉

(⋆)

>

(
1− 2k

Ψ

)
·

k∑

j=1

(
β
(i)
j

)2
.

To prove the inequality (⋆) we consider the two terms separately.

8



By Lemma 4.4,
∥∥∥f̂j
∥∥∥
2
> 1 − φSj/λk+1. We then apply

∑
i aibi 6 (

∑
i ai)(

∑
i bi) for all non-

negative vectors a, b and obtain

k∑

j=1

(
β
(i)
j

)2(
1− φSj

λk+1

)
=

k∑

j=1

(
β
(i)
j

)2
−

k∑

j=1

(
β
(i)
j

)2 φSj

λk+1
>

(
1− k

Ψ

) k∑

j=1

(
β
(i)
j

)2
.

Again by Lemma 4.4, we have
∣∣∣
〈
f̂a, f̂b

〉∣∣∣ 6
√
φSaφSb

/λk+1, and by Cauchy-Schwarz it holds

k∑

a=1

k∑

b6=a

β(i)
a β

(i)
b

〈
f̂a, f̂b

〉
> −

k∑

a=1

k∑

b6=a

∣∣∣β(i)
a

∣∣∣ ·
∣∣∣β(i)

b

∣∣∣ ·
∣∣∣
〈
f̂a, f̂b

〉∣∣∣

> − 1

λk+1

k∑

a=1

k∑

b6=a

∣∣∣β(i)
a

∣∣∣
√

φSa ·
∣∣∣β(i)

b

∣∣∣
√

φSb

> − 1

λk+1




k∑

j=1

∣∣∣β(i)
j

∣∣∣
√

φSj




2

> − k

Ψ
·

k∑

j=1

(
β
(i)
j

)2
.

The lower bound follows by analogous arguments. �

We are ready now to prove Theorem 4.1.

Proof of Theorem 4.1. By Lemma 4.2, we have fi =
∑k

j=1 β
(i)
j f̂j and recall that ĝi =

∑k
j=1 β

(i)
j gj

for all i ∈ [1 : k]. We combine triangle inequality, Cauchy-Schwarz, Lemma 4.3 and Lemma 4.6 to
obtain

‖fi − ĝi‖2 =

∥∥∥∥∥∥

k∑

j=1

β
(i)
j

(
f̂j − gj

)
∥∥∥∥∥∥

2

6




k∑

j=1

∣∣βi
j

∣∣ ·
∥∥∥f̂j − gj

∥∥∥




2

6




k∑

j=1

(
β
(i)
j

)2

 ·




k∑

j=1

∥∥∥f̂j − gj

∥∥∥
2


 6

(
1− 2k

Ψ

)−1

 1

λk+1

k∑

j=1

φSj




=

(
1− 2k

Ψ

)−1

· k
Ψ

6

(
1 +

3k

Ψ

)
· k
Ψ
,

where the last inequality uses Ψ > 4 · k. �

5 Analyzing Matrix B

In this section we bound the inner product of any two rows of matrix B (c.f. Equation 12).

Theorem 5.1. If Ψ > 104 · k3/ε2 and ε ∈ (0, 1) then for all distinct i, j ∈ [1 : k] it holds

1− ε 6 〈Bi,:,Bi,:〉 6 1 + ε and |〈Bi,:,Bj,:〉| 6
√
ε.

The proof is divided into two parts. We show in Lemma 5.4 that 1 − ε 6 〈Bi,:,Bi,:〉 6 1 + ε,
and we establish the second statement |〈Bi,:,Bj,:〉| 6

√
ε in Lemma 5.5.

9



5.1 Analyzing the Column Space of Matrix B

We show below that the matrix BTB is close to the identity matrix.

Lemma 5.2. (Columns) If Ψ > 4 · k3/2 then for all distinct i, j ∈ [1 : k] it holds

1− 3k

Ψ
6 〈B:,i,B:,i〉 6 1 +

3k

Ψ
and |〈B:,i,B:,j〉| 6 4

√
k

Ψ
.

Proof. By Lemma 4.6 it holds that

1− 3k

Ψ
6 〈B:,i,B:,i〉 =

k∑

j=1

(
β
(i)
j

)2
6 1 +

3k

Ψ
.

Recall that ĝi =
∑k

j=1 β
(i)
j · gj . Moreover, since the eigenvectors {fi}ki=1 and the characteristic

vectors {gi}ki=1 are orthonormal by combing Cauchy-Schwarz and by Theorem 4.1 it holds

|〈B:,i,B:,j〉| =
k∑

l=1

β
(i)
l β

(j)
l =

〈
k∑

a=1

β(i)
a · ga,

k∑

b=1

β
(j)
b · gb

〉
= 〈ĝi, ĝj〉

= 〈(ĝi − fi) + fi, (ĝj − fj) + fj〉
= 〈ĝi − fi, ĝj − fj〉+ 〈ĝi − fi, fj〉+ 〈fi, ĝj − fj〉
6 ‖ĝi − fi‖ · ‖ĝj − fj‖+ ‖ĝi − fi‖+ ‖ĝj − fj‖

6

(
1 +

3k

Ψ

)
· k
Ψ

+ 2

√(
1 +

3k

Ψ

)
· k
Ψ

6 4

√
k

Ψ
.

�

Using a stronger gap assumption we show that the columns of matrixB are linearly independent.

Lemma 5.3. If Ψ > 25 · k3 then the columns {B:,i}ki=1 are linearly independent.

Proof. Since ker (B) = ker
(
BTB

)
and BTB is SPSD3 matrix, it suffices to show that the smallest

eigenvalue

λ(BTB) = min
x 6=0

xTBTBx

xTx
> 0.

By Lemma 5.2,

k∑

i=1

k∑

j 6=i

|xi| |xj |
∣∣∣
〈
β(i), β(j)

〉∣∣∣ 6 4

√
k

Ψ

(
k∑

i=1

|xi|
)2

6 ‖x‖2 · 4k
√

k

Ψ
,

and

xTBTBx =

〈
k∑

i=1

xiβ
(i),

k∑

j=1

xjβ
(j)

〉
=

k∑

i=1

x2i

∥∥∥β(i)
∥∥∥
2
+

k∑

i=1

k∑

j 6=i

xixj

〈
β(i), β(j)

〉

>

(
1− 3k

Ψ

)
‖x‖2 −

k∑

i=1

k∑

j 6=i

|xi| |xj |
∣∣∣
〈
β(i), β(j)

〉∣∣∣ >
(
1− 5k

√
k

Ψ

)
· ‖x‖2 .

Therefore λ(BTB) > 0 and the statement follows. �

3We denote by SPSD the class of symmetric positive semi-definite matrices.
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5.2 Analyzing the Row Space of Matrix B

In this subsection we show that the matrix BBT is close to the identity matrix. We bound now
the squared L2 norm of the rows in matrix B, i.e. the diagonal entries in matrix BBT.

Lemma 5.4. (Rows) If Ψ > 400 · k3/ε2 and ε ∈ (0, 1) then for all distinct i, j ∈ [1 : k] it holds

1− ε 6 〈Bi,:,Bi,:〉 6 1 + ε.

Proof. We show that the eigenvalues of matrix BBT are consentrated around 1. This would imply
that 1Ti BBT1i = 〈Bi,:,Bi,:〉 ≈ 1. By Lemma 5.2 we have

(
1− 3k

Ψ

)2

6
(
β(i)
)T

·BBT · β(i) =
∥∥∥β(i)

∥∥∥
4
+

k∑

j 6=i

〈
β(j), β(i)

〉2
6

(
1 +

3k

Ψ

)2

+
16k2

Ψ
6 1 +

23k2

Ψ

and

∣∣∣∣
(
β(i)
)T

·BBT · β(j)

∣∣∣∣ 6
k∑

l=1

∣∣∣
〈
β(i), β(l)

〉∣∣∣
∣∣∣
〈
β(l), β(j)

〉∣∣∣ 6 8

(
1 +

3k

Ψ

)√
k

Ψ
+ 16

k2

Ψ
6 11

√
k

Ψ
.

By Lemma 5.3 every vector x ∈ R
k can be expressed as x =

∑k
i=1 γiβ

(i).

xTBBTx =

k∑

i=1

γi

(
β(i)
)T

·BBT ·
k∑

j=1

γjβ
(j)

=

k∑

i=1

γ2i

(
β(i)
)T

·BBT · β(i) +

k∑

i=1

k∑

j 6=i

γiγj

(
β(i)
)T

·BBT · β(j)

>

(
1− 23k2

Ψ
− 11k

√
k

Ψ

)
‖γ‖2 >

(
1− 14k

√
k

Ψ

)
‖γ‖2 .

and

xTx =

k∑

i=1

k∑

j=1

γiγj

〈
β(i), β(j)

〉
=

k∑

i=1

γ2i

∥∥∥β(i)
∥∥∥
2
+

k∑

i=1

k∑

j 6=i

γiγj

〈
β(i), β(j)

〉

By Lemma 5.2 we have
∣∣∣
∑k

i=1

∑k
j 6=i γiγj

〈
β(i), β(j)

〉∣∣∣ 6 ‖γ‖2 · 4k
√

k
Ψ and

∥∥β(i)
∥∥2 6 1 + 3k

Ψ . Thus it

holds (
1− 5k

√
k

Ψ

)
‖γ‖2 6 xTx 6

(
1 + 5k

√
k

Ψ

)
‖γ‖2 .

Therefore

1− 20k

√
k

Ψ
6 λ(BBT) 6 1 + 20k

√
k

Ψ
.

�

We have now established the first part of Theorem 5.1. We turn to the second part and restate
it in the following Lemma.

Lemma 5.5. (Rows) If Ψ > 104 · k3/ε2 and ε ∈ (0, 1) then for all distinct i, j ∈ [1 : k] it holds

|〈Bi,:,Bj,:〉| 6
√
ε.
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To prove Lemma 5.5 we establish the following three Lemmas. Before stating them we need
some notation that is inspired by Lemma 5.2.

Definition 5.6. Let BTB = I+E, where |Eij | 6 4
√

k
Ψ and E is symmetric matrix. Then we have

(
BBT

)2
= B (I+E)BT = BBT +BEBT.

Lemma 5.7. If Ψ > 402 · k3/ε2 and ε ∈ (0, 1) then all eigenvalues of matrix BEBT satisfy

∣∣λ(BEBT)
∣∣ 6 ε/5.

Proof. Let z = BTx. We upper bound the quadratic form

∣∣xTBEBTx
∣∣ =

∣∣zTEz
∣∣ 6

∑

ij

|Eij| |zi| |zj | 6 4

√
k

Ψ
·
(

k∑

i=1

|zi|
)2

6 ‖z‖2 · 4k
√

k

Ψ
.

By Lemma 5.4 we have 1− ε 6 λ(BBT) 6 1 + ε and since ‖z‖2 = xBBTx
xTx

· ‖x‖2 it follows that

‖z‖2
1 + ε

6 ‖x‖2 6 ‖z‖2
1− ε

,

and hence
∣∣λ(BEBT)

∣∣ 6 max
x

∣∣xTBEBTx
∣∣

xTx
6 4 (1 + ε) · k

√
k

Ψ
6 ε/5.

�

Lemma 5.8. Suppose {ui}ki=1 is orthonormal basis and the square matrix U has ui as its ith
column. Then UTU = I = UUT.

Proof. Notice that by the definition of U it holds UTU = I. Moreover, the matrix U−1 exists.
Hence, we have UT = U−1, and thus UUT = I as claimed. �

Lemma 5.9. If Ψ > 402 ·k3/ε2 and ε ∈ (0, 1) then it holds |(BEBT)ij | 6 ε/5 for every i, j ∈ [1 : k].

Proof. Notice that BEBT is symmetric matix, since E is symmetric. By SVD Theorem there is an
orthonormal basis {ui}ki=1 such that BEBT =

∑k
i=1 λi(BEBT) · uiuTi . Thus, it suffices to bound

the expression

|(BEBT)ij | 6
k∑

l=1

|λl(BEBT)| · |(uluTl )ij |.

By Lemma 5.8 we have

k∑

l=1

|(ul)i| · |(ul)j | 6
√

‖Ui,:‖2
√
‖Uj,:‖2 = 1.

We apply now Lemma 5.7 to obtain

k∑

l=1

|λl(BEBT)| · |(uluTl )ij | 6
ε

5
·

k∑

l=1

|(ul)i| · |(ul)j| 6
ε

5
.

�
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We are ready now to prove Lemma 5.5, i.e. |〈Bi,:,Bj,:〉| 6
√
ε for all i 6= j.

Proof of Lemma 5.5. By Definition 5.6 we have
(
BBT

)2
= BBT+BEBT. Observe that the (i, j)th

entry of matrix BBT is equal to the inner product between the ith and jth row of matrix B, i.e.(
BBT

)
ij
= 〈Bi,:,Bj,:〉. Moreover, we have

[(
BBT

)2]
ij

=

k∑

l=1

(
BBT

)
i,l

(
BBT

)
l,j

=

k∑

l=1

〈Bi,:,Bl,:〉 〈Bl,:,Bj,:〉 .

For the entries on the main diagonal, it holds

〈Bi,:,Bi,:〉2 +
k∑

l 6=i

〈Bi,:,Bl,:〉2 = [(BBT)2]ii = [BBT +BEBT]ii = 〈Bi,:,Bi,:〉+
(
BEBT

)
ii
,

and hence by applying Lemma 5.4 with ε′ = ε/5 and Lemma 5.9 with ε′ = ε we obtain

〈Bi,:,Bj,:〉2 6
∑

l 6=i

〈Bi,:,Bl,:〉2 6
(
1 +

ε

5

)
+

ε

5
−
(
1− ε

5

)2
6 ε.

�

6 The Points p(i) are Well-Spaced

Peng et al. (c.f. [4, Lemma 4.2]) showed that the L2 square norm between any distinct estimation
center points (defined in Equation (10)) is lower bounded by

∥∥∥p(i) − p(j)
∥∥∥
2
>
[
103 · k ·min {µ(Si), µ(Sj)}

]−1
.

We now improve their result by Θ(k)-factor. We achieve this by building upon Theorem 5.1, rather
than invoking [4, Lemma 4.2]. We use the following fact.

Lemma 6.1. [4, Lemma B.1] We have
∥∥p(i)

∥∥2 ∈
[(
1± 1

10

)
µ(Si)

]
for every i ∈ [1 : k].

Lemma 6.2. If Ψ > 204 · k3 then for distinct i, j ∈ [1 : k] it holds that

∥∥∥p(i) − p(j)
∥∥∥
2
> [3 ·min {µ(Si), µ(Sj)}]−1 .

Suppose ci is the center of a cluster Ai. If
∥∥ci − p(i1)

∥∥ >
∥∥ci − p(i2)

∥∥ then it holds

∥∥∥ci − p(i1)
∥∥∥
2
>

1

4

∥∥∥p(i1) − p(i2)
∥∥∥
2
> [12 ·min {µ(Si1), µ(Si2)}]−1 .

Proof. We argue in a similar manner as in [4] but in contrast apply Theorem 5.1 with ε = 1/4 to
obtain 〈

p(i)∥∥p(i)
∥∥ ,

p(j)∥∥p(j)
∥∥

〉
=

〈Bi,:,Bj,:〉
‖Bi,:‖ ‖Bj,:‖

6

√
ε

1− ε
=

2

3
.

W.l.o.g. assume that
∥∥p(i)

∥∥2 >
∥∥p(j)

∥∥2. Then by Lemma 6.1 we have

∥∥∥p(i)
∥∥∥
2
>

9

10
[min {µ(Si), µ(Sj)}]−1 .
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Let
∥∥p(j)

∥∥ = α ·
∥∥p(i)

∥∥ for some α ∈ (0, 1]. Then

∥∥∥p(i) − p(j)
∥∥∥
2

=
∥∥∥p(i)

∥∥∥
2
+
∥∥∥p(j)

∥∥∥
2
− 2

〈
p(i)∥∥p(i)
∥∥ ,

p(j)∥∥p(j)
∥∥

〉∥∥∥p(i)
∥∥∥
∥∥∥p(j)

∥∥∥

>

(
α2 − 4

3
· α+ 1

)∥∥∥p(i)
∥∥∥
2
> [3 ·min {µ(Si), µ(Sj)}]−1 ,

since for all α ∈ R it holds α2 − 4α/3 + 1 > 1/2.
The second claim follows immediately from the first. �

7 Amended Version of [4, Lemma B.2]

In Appendix 9 we give a counter example of [4, Lemma B.2]. Here, we formulate and prove a
correction. The counter example in the appendix shows that the revised statement is tight up to a
factor of 2.

Lemma 7.1. Let S1 to Sk and A1 to Ak be partitions of the vertex set. Suppose for every permu-
tation π : [1 : k] → [1 : k] there is an index i ∈ [1 : k] such that

µ(Ai△Sπ(i)) > 2ε · µ(Sπ(i)), (16)

where ε ∈ (0, 1 − 1/k) is a parameter. Then there is an index j ∈ [1 : k] and distinct indices
j1, j2 ∈ [1 : k] such that

µ(Aj ∩ Sj1) > µ(Aj ∩ Sj2) >
ε

k − 1
·min {µ(Sj1), µ(Sj2)} .

Proof. We argue in a similar manner as in [4], but correct an oversight in Part 1, Case 2. We begin
by defining a function

σ(l) = argmax
j∈[k]

µ(Al ∩ Sj)

µ(Sj)
.

Part 1. Suppose σ is a permutation. By Equation 16 there is an index i such that

µ(Ai△Sσ(i)) = µ(Sσ(i)\Ai) + µ(Ai\Sσ(i)) > 2ε · µ(Sσ(i)).

Case 1: Suppose µ(Sσ(i)\Ai) > ε · µ(Sσ(i)). Since Sσ(i)\Ai =
.∪j 6=i µ(Aj ∩ Sσ(i)), there is an index

j 6= i such that

µ(Aj ∩ Sσ(i)) >
ǫ

k − 1
µ(Sσ(i)) >

ǫ

k − 1
·min

{
µ(Sσ(j)), µ(Sσ(i))

}
.

Moreover, by the definition of σ it holds that

µ(Aj ∩ Sσ(j))

µ(Sσ(j))
>

µ(Aj ∩ Sσ(i))

µ(Sσ(i))
>

ǫ

k − 1
.

Thus
µ(Aj ∩ Sσ(j)) >

ǫ

k − 1
·min

{
µ(Sσ(j)), µ(Sσ(i))

}

14



Case 2: Suppose µ(Ai\Sσ(i)) > ε ·µ(Sσ(i)). Since Ai\Sσ(i) =
.∪σ(j)6=σ(i) Ai ∩Sσ(j), there is an index

σ(j) 6= σ(i) such that

µ(Ai ∩ Sσ(j)) >
ε

k − 1
· µ(Sσ(j)) >

ε

k − 1
·min

{
µ(Sσ(j)), µ(Sσ(i))

}
.

If µ(Ai ∩ Sσ(i)) 6 (1 − ε) · µ(Sσ(i)),
∑

j 6=i µ(Aj ∩ Sσ(i)) > ε · µ(Sσ(i)) and we are in the first case.
Otherwise, for every σ(j) 6= σ(i) it holds

µ(Ai ∩ Sσ(i)) > (1− ε) · µ(Sσ(i)) > ε ·min
{
µ(Sσ(j)), µ(Sσ(i))

}
.

Part 2. Suppose σ is NOT a permutation. There is an index l ∈ [k] such that l /∈
{σ(1), . . . , σ(k)}. Since {Ai}ki=1 and {Si}ki=1 are partitions, there is an index j ∈ [k] such that

µ(Aj ∩ Sl) >
1

k
·min{µ(Sσ(j)), µ(Sl)}.

Notice that σ(j) 6= l and thus by the definition of σ it holds

µ(Aj ∩ Sσ(j))

µ(Sσ(j))
>

µ(Aj ∩ Sl)

µ(Sl)
>

1

k
.

Thus

µ(Aj ∩ Sσ(j)) >
1

k
·min

{
µ(Sσ(j)), µ(Sl)

}
.

�

8 The Proof of Lemma 1.3

We first establish

Cost({Ai, ci}ki=1) >




k∑

i=1

k∑

j=1

∑

u∈Ai∩Sj

du

∥∥∥p(j) − ci

∥∥∥
2


− 7k2

Ψ
·APR1/2. (17)

Observe that

k∑

i=1

k∑

j=1

∑

u∈Ai∩Sj

du ‖F (u)− ci‖2

>
k∑

i=1

k∑

j=1

∑

u∈Ai∩Sj

du

∥∥∥Fu − p(j)
∥∥∥
2
+

k∑

i=1

k∑

j=1

∑

u∈Ai∩Sj

du

∥∥∥p(j) − ci

∥∥∥
2

−2

k∑

i=1

k∑

j=1

∑

u∈Ai∩Sj

du

∥∥∥Fu − p(j)
∥∥∥ ·
∥∥pj − ci

∥∥

>




k∑

i=1

k∑

j=1

∑

u∈Ai∩Sj

du

∥∥∥p(j) − ci

∥∥∥
2


− 2

√
2(APR + 1) · Cost({Si, p

(i)}ki=1),

15



where the first inequality follows from

‖F (u)− ci‖2 =
∥∥∥
(
Fu − p(j)

)
+
(
p(j) − ci

)∥∥∥
2
>
(∥∥∥Fu − p(j)

∥∥∥−
∥∥∥p(j) − ci

∥∥∥
)2

=
∥∥∥Fu − p(j)

∥∥∥
2
+
∥∥∥p(j) − ci

∥∥∥
2
− 2

∥∥∥Fu − p(j)
∥∥∥ ·
∥∥∥p(j) − ci

∥∥∥ .

We prove now that

k∑

i=1

k∑

j=1

∑

u∈Ai∩Sj

du

∥∥∥Fu − p(j)
∥∥∥ ·
∥∥∥p(j) − ci

∥∥∥

6

√√√√
k∑

i=1

k∑

j=1

∑

u∈Ai∩Sj

du
∥∥Fu − p(j)

∥∥2 ·

√√√√
k∑

i=1

k∑

j=1

∑

u∈Ai∩Sj

du
∥∥p(j) − ci

∥∥2

6
√

2 (APR + 1) · Cost({Si, p
(i)}ki=1)

To upper bound the first summation we use the fact that

k∑

i=1

k∑

j=1

∑

u∈Ai∩Sj

du

∥∥∥Fu − p(j)
∥∥∥
2
=

k∑

j=1

∑

u∈Sj

du

∥∥∥Fu − p(j)
∥∥∥
2
= Cost({Si, p

(i)}ki=1).

For the second summation we introduce a vector Fu for every u ∈ Ai ∩ Sj. Then it follows that

∥∥∥p(j) − ci

∥∥∥
2
6
(∥∥∥Fu − p(j)

∥∥∥+ ‖Fu − ci‖
)2

6 2

[∥∥∥Fu − p(j)
∥∥∥
2
+ ‖Fu − ci‖2

]

and thus

k∑

i=1

k∑

j=1

∑

u∈Ai∩Sj

du

∥∥∥p(j) − ci

∥∥∥
2

6 2




k∑

i=1

k∑

j=1

∑

u∈Ai∩Sj

du

∥∥∥Fu − p(j)
∥∥∥
2
+

k∑

i=1

k∑

j=1

∑

u∈Ai∩Sj

du ‖Fu − ci‖2



6 2




k∑

j=1

∑

u∈Sj

du

∥∥∥Fu − p(j)
∥∥∥
2
+

k∑

i=1

∑

u∈Ai

du ‖Fu − ci‖2



6 2 (APR + 1) · Cost({Si, p
(i)}ki=1),

since

k∑

i=1

∑

u∈Ai

du ‖Fu − ci‖2 = Cost({Ai, ci}ki=1) 6 APR · Cost({Si, c
⋆
i }ki=1)

6 APR · Cost({Si, p
(i)}ki=1).

Moreover, by Lemma 1.4 we have

2
√

2(APR + 1) · Cost({Si, p
(i)}ki=1) 6

7k2

Ψ
·
√
APR.
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Having established Equation 17, it is now easy to complete the proof of Lemma 1.3. By
Lemma 7.1 there is an index i and distinct indices i1 6= i2 such that

{µ(Ai ∩ Si1), µ(Ai ∩ Si2)} >
ε

k
·min {µ(Si1), µ(Si2)} .

Let ci be the center of the cluster Ai. Assume w.l.o.g. that
∥∥ci − p(i1)

∥∥ >
∥∥ci − p(i2)

∥∥. We lower
bound CA by the loss accumulated from points only in the subset Ai ∩ Si1 . By Equation 17, the
choice of Ai ∩ Si1 and Lemma 6.2 it holds that

k∑

i=1

k∑

j=1

∑

u∈Ai∩Sj

du

∥∥∥p(j) − ci

∥∥∥
2
>

∑

u∈Ai∩Si1

du

∥∥∥p(i1) − ci

∥∥∥
2
> µ(Ai ∩ Si1) ·

∥∥∥p(i1) − ci

∥∥∥
2
>

1

12
· ε
k
.

This completes the proof of Lemma 1.3.

9 The Proof of Lemma 1.4

By Theorem 4.1 we have ‖fi − ĝi‖2 6
(
1 + 3k

Ψ

)
· k
Ψ and thus

k∑

i=1

∑

u∈Si

du ‖F (u)− c∗i ‖2 6
k∑

i=1

∑

u∈Si

du

∥∥∥F (u)− p(i)
∥∥∥
2
=

k∑

i=1

k∑

j=1

∑

u∈Si

du

(
F (u)j − p

(i)
j

)2

=

k∑

j=1

k∑

i=1

∑

u∈Si

(fj (u)− ĝj (u))
2 =

k∑

j=1

‖fj − ĝj‖2 6
(
1 +

3k

Ψ

)
· k

2

Ψ
.
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Lemma 9.1. [4, Lemma B.2] Let (A1, . . . , Ak) and (S1, . . . , Sk) be partitions of the vertex set of a
graph G. Suppose for every permutation π : {1, . . . , k} → {1, . . . , k} there exists index i such that
µ(Ai∆Sπ(i)) > 2ε · µ(Sπ(i)). Then, for any index i, there are εi and distinct indices i1 and i2 such

that
∑k

i=1 εi > ε and

µ(Ai ∩ Si1) > µ(Ai ∩ Si2) > εi ·min(µ(Si1), µ(Si2)).

In the arXiv-version of the paper [3], the Lemma is formulated weaker.

Lemma 9.2. [4, Lemma 4.8] Let (A1, . . . , Ak) and (S1, . . . , Sk) be partitions of the vertex set of a
graph G. Suppose for every permutation π : {1, . . . , k} → {1, . . . , k} there exists index i such that
µ(Ai∆Sπ(i)) > 2ε · µ(Sπ(i)). Then one of the following statements holds:

• For any index i, there are εi and distinct indices i1 and i2 such that
∑k

i=1 εi > ε and

µ(Ai ∩ Si1) > µ(Ai ∩ Si2) > εi ·min{µ(Si1), µ(Si2)}.

• There are indices i′, j, ℓ (they mean j 6= ℓ) such that

µ(Ai′ ∩ Sj) > µ(Ai′ ∩ Sℓ) >
1

k
· µ(Sℓ).

The Counter Example: Let G be any regular graph. Then the volume of a set of vertices is
proportional to the cardinality of the set. The partition S1 to Sk is into equal sized sets, and the
number of disjoint sets satisfies k > 4. The partition A1 to Ak is such that for a fixed ε ∈ (0, 1/4)
it holds

1) S1 ⊆ A1 and 2) Ai ⊆ Si and µ(A1 ∩ Si) =
2ε

k − 1
· µ(Si), for i > 2.

Notice that µ(A1) = (1 + 2ε) · µ(S1).

We verify next that the above instance satisfies the hypothesis of Lemma 9.1 and Lemma 9.2.
Observe that

µ(A1∆Sj) =

{
µ(A1 \ S1) = 2ε · µ(S1) if j = 1,

µ(S1) + µ(Ai) > µ(S1) if j > 1.

Thus for every permutation π of the integers 1 to k, there is an i, namely i = 1, such that

µ(Ai∆Sπ(i)) > 2ε · µ(Sπ(i)).

How about the conclusion of Lemma 9.1 and Lemma 9.2? Since Aj ⊂ Sj for j > 2, for any two
distinct indices j1 and j2, we have

min{µ(Aj ∩ Sj1), µ(Aj ∩ Sj2)} = 0.

Thus the conclusion of Lemma 9.1 and the first alternative of Lemma 9.2 do not hold, due to

k∑

i=1

εi = ε1 =
2ε

k − 1
< ε.

The second alternative of Lemma 9.2 certainly does not hold for i′ > 2. On the other hand, for
i′ = 1 and ℓ > 2 we have

µ(A1 ∩ Sℓ) =
2ε

k − 1
· µ(Sℓ) <

1

k
· µ(Sℓ),

and hence the second alternative of Lemma 9.2 does not hold.
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