A Note On Spectral Clustering^{*}

Pavel Kolev Kurt Mehlhorn Max Planck Institute for Informatics, Saarbrücken, Germany {pkolev,mehlhorn}@mpi-inf.mpg.de

Abstract

Let G = (V, E) be an undirected graph, λ_k the kth smallest eigenvalue of the normalized Laplacian matrix of G, and $\rho(k)$ the smallest value of the maximal conductance over all k-way partitions S_1, \ldots, S_k of V.

Peng et al. [4] gave the first rigorous analysis of k-clustering algorithms that use spectral embedding and k-means clustering algorithms to partition the vertices of a graph G into k disjoint subsets. Their analysis builds upon a gap parameter $\Upsilon = \rho(k)/\lambda_{k+1}$ that was introduced by Oveis Gharan and Trevisan [2]. In their analysis Peng et al. [4] assume a gap assumption $\Upsilon \ge \Omega(\text{APR} \cdot k^3)$, where APR > 1 is the approximation ratio of a k-means clustering algorithm. We exhibit an error in one of their Lemmas and provide a correction. With the correction

the proof by Peng et al. [4] requires a stronger gap assumption $\Upsilon \ge \Omega(\text{APR} \cdot k^4)$.

Our main contribution is to improve the analysis in [4] by an O(k) factor. We demonstrate that a gap assumption $\Psi \ge \Omega(\text{APR} \cdot k^3)$ suffices, where $\Psi = \rho_{avr}(k)/\lambda_{k+1}$ and $\rho_{avr}(k)$ is the value of the *average* conductance of a partition S_1, \ldots, S_k of V that yields $\rho(k)$.

^{*}This work has been funded by the Cluster of Excellence "Multimodal Computing and Interaction" within the Excellence Initiative of the German Federal Government.

Contents

1	Introduction	2
2	Some Notation	5
3	Structure of the Paper	6
4	The Vectors \hat{g}_i and f_i are Close4.1Analyzing the Columns of Matrix \mathbf{F} 4.2Analyzing Eigenvectors f in terms of \hat{f}_j	6 7 8
5	Analyzing Matrix B 5.1 Analyzing the Column Space of Matrix B 5.2 Analyzing the Row Space of Matrix B	
6	The Points $p^{(i)}$ are Well-Spaced	13
7	Amended Version of [4, Lemma B.2]	14
8	The Proof of Lemma 1.3	15
9	The Proof of Lemma 1.4	17

1 Introduction

Let G = (V, E) be an undirected graph. For any subset of vertices $S \subseteq V$ we denote by $\mu(S) = \sum_{v \in S} \deg(u)$ the volume of S, and we define the conductance of S by

$$\phi(S) = \frac{\left|E(S,\overline{S})\right|}{\mu(S)}.$$
(1)

The order k conductance constant $\rho(k)$ of a graph G is defined by

$$\rho(k) = \min_{S_1, \dots, S_k} \max_{i \in [1:k]} \phi(S_i).$$
(2)

The k-way partitioning problem asks to cluster a graph G into k-disjoint subsets of vertices S_1, \ldots, S_k such that the returned partition yields the value of the order k conductance constant $\rho(k)$. Lee et al. [1] established the following relation between the kth eigenvalue of the normalized Laplacian matrix \mathcal{L}_G and the order k conductance constant $\rho(k)$ of a graph G

$$\lambda_k/2 \leqslant \rho(k) \leqslant O(k^2) \sqrt{\lambda_k}.$$
(3)

Oveis Gharan and Trevisan [2] proved the existence of good clusterings¹ into k disjoint subsets if the gap between the kth and (k + 1)th eigenvalue of the normalized Laplacian matrix \mathcal{L}_G satisfies

$$\lambda_{k+1} \ge \Omega(k^2 \sqrt{\lambda_k}),\tag{6}$$

i.e., if λ_{k+1} is larger than the upper bound on the order k conductance constant $\rho(k)$ in Equation (3).

Peng et al [4] studied approximation schemes for the k-way partitioning problem. They analyzed spectral clustering algorithms that embed the vertices of G into vectors in \mathbb{R}^k using the first k eigenvectors of the normalized Laplacian matrix \mathcal{L}_G , and then partition the resulting vectors via k-means clustering algorithms. Their analysis crucially relies on the following gap assumption

$$\Upsilon = \frac{\lambda_{k+1}}{\rho(k)} \ge \Omega(k^3). \tag{7}$$

Theorem 1.1. [4] Let $k \ge 3$ and let G be a graph satisfying the gap assumption $\Upsilon = \lambda_{k+1}/\rho(k) = \Omega(k^3)$. Suppose a k-means clustering algorithm that achieves an approximation ratio APR takes as input a spectral embedding² $\{F(u)\}_{u \in V}$ where $F : V \to \mathbb{R}^k$, and outputs a k-way partition $\{A_i\}_{i=1}^k$. Then the following two statements hold:

$$i) \ \mu(A_i \triangle S_i) = O(\operatorname{APR} \cdot k^3 \cdot \Upsilon^{-1} \cdot \mu(S_i)) \quad and \quad ii) \ \phi_G(A_i) = O(\phi_G(S_i) + \operatorname{APR} \cdot k^3 \cdot \Upsilon^{-1}).$$

¹Let S be a subset of vertices. We denote by G[S] the induced subgraph whose edge set consists of all edges of G with both endpoints in S. The inner conductance of the subset S is defined by

$$\phi(G[S]) = \min_{X \subset S, \mu(X) \leq \mu(S)/2} \frac{\left| E_S(X, \overline{X}) \right|}{\mu_S(X)},\tag{4}$$

where the quantities $|E_S(X, \overline{X})|$ and $\mu_S(X)$ are defined w.r.t. the induced subgraph G[S]. Oveis Gharan and Trevisan [2] defined a partition S_1, \ldots, S_k of V that is (ϕ_{in}, ϕ_{out}) -clustering if for all $i \in [1:k]$ it holds

$$\phi(G[S_i]) \ge \phi_{in} \quad \text{and} \quad \phi(S_i) \le \phi_{out}.$$
 (5)

They showed that there exists a k-partitioning of graph G that is a $(\Omega(\lambda_{k+1}/k), O(k^3\sqrt{\lambda_k}))$ -clustering if the gap between the kth and (k+1)th eigenvalue of matrix \mathcal{L}_G satisfies $\lambda_{k+1} \ge \Omega(k^2\sqrt{\lambda_k})$.

²The function F will be defined in Equation 8.

Our Contribution: We give a counter example to [4, Lemma 4.2] in the Appendix and prove a weaker statement (Lemma 7.1) that is tight up to a factor of 2. With the weaker version of the lemma, the proof of Theorem 1.1 needs the strengthened gap assumption

$$\Upsilon \geqslant \Omega(k^4).$$

We note that all occurrences of k^3 in the statement of the Theorem 1.1 have to be replaced by k^4 .

Let \mathcal{O} be the set of partitions $\{S_i\}_{i=1}^k$ with $\max_i \phi(S_i) = \rho(k)$, i.e., the set of all partitions that achieve the order k conductance constant. Let

$$\rho_{avg}(k) = \min_{\{S_i\}_{i=1}^k \in \mathcal{O}} \frac{1}{k} \sum_i \phi(S_i)$$

be the minimal *average* conductance of any partition in \mathcal{O} and let

$$\Psi = \frac{\lambda_{k+1}}{\rho_{avg}(k)}.$$

For the remainder of the paper we use $\{S_i\}_{i=1}^k$ to denote a partition that defines ρ_{avg} . We refine the analysis in [4] and show the following statement.

Theorem 1.2 (Main Theorem). Let G be a graph that satisfies for some fixed $\delta \in (0,1)$ and $k \ge 3$ the gap assumption

$$\Psi = 20^4 \cdot \delta^{-1} \cdot \text{APR} \cdot k^3.$$

Suppose a k-means clustering algorithm that achieves an approximation ratio APR takes as input a spectral embedding $\{F(u)\}_{u\in V}$ where $F: V \to \mathbb{R}^k$, and outputs a k-way partition $\{A_i\}_{i=1}^k$. Then for every $i \in [1:k]$ the following two statements hold (after suitable renumbering of one of the partitions):

1)
$$\mu(A_i \triangle S_i) \leq \frac{\delta}{600} \cdot \mu(S_i)$$
 and 2) $\phi(A_i) \leq \left(1 + \frac{\delta}{300}\right) \cdot \phi(S_i) + \frac{\delta}{300}$.

The Spectral Embedding Let $\mathcal{L}_G = I - D^{-1/2}AD^{-1/2}$ be a normalized Laplacian matrix, where D is diagonal degree matrix and A is adjacency matrix. We refer to the kth eigenvalue of matrix \mathcal{L}_G by $\lambda_k \triangleq \lambda_k(\mathcal{L}_G)$. Let f_k be the eigenvector corresponding to λ_k . The vectors f_1 to f_n form a orthonormal basis of \mathbb{R}^n . Following Peng et al., we define the *spectral embedding map* $F: V \to \mathbb{R}^k$ by

$$F(u) = \frac{1}{\sqrt{d_u}} \left(f_1(u), \dots, f_k(u) \right)^{\mathrm{T}}$$
(8)

for all vertices $u \in V$.

The Clustering Algorithm For a set of k centers c_1, \ldots, c_k and a partition $\mathcal{X}_1, \ldots, \mathcal{X}_k$ of V, define the cost as

$$\operatorname{Cost}(\{\mathcal{X}_i, c_i\}_{i=1}^k) = \sum_{i=1}^k \sum_{u \in \mathcal{X}_i} d_u \, \|F(u) - c_i\|^2 \, .$$

Note that the norm $||F(u) - c_i||$ is weighted by d_u . Alternatively, we may ask to cluster a set containing d_u copies of F(u). Let OPT be the minimal cost that can be obtained in this way. The

approximate k-partitioning algorithm returns a partition A_1, \ldots, A_k of V and corresponding center vectors c_1, \ldots, c_k such that

$$Cost(\{A_i, c_i\}_{i=1}^k) = \sum_{i=1}^k \sum_{u \in A_i} d_u \, \|F_u - c_i\|^2 \leq APR \cdot OPT \,.$$
(9)

Throughout the paper, we use $\{A_i, c_i\}_{i=1}^k$ to denote the clustering returned by the approximation algorithm. The goal is to show that this clustering satisfies Theorem 1.2.

The Proof of the Main Theorem: Part ii) follows from Part i). Indeed,

$$\mu(A_i) \ge \mu(S_i \cap A_i) = \mu(S_i) - \mu(S_i \setminus A_i) \ge \mu(S_i) - \mu(A_i \triangle S_i) \ge (1 - \delta/5^4) \cdot \mu(S_i)$$

and $|E(A_i, \overline{A_i})| \leq |E(S_i, \overline{S_i})| + \mu(A_i \Delta S_i)$ since every edge that is counted in $|E(A_i, \overline{A_i})|$ but not in $|E(S_i, \overline{S_i})|$ must have an endpoint in $A_i \Delta S_i$. Thus

$$\Phi(A_i) = \frac{|E(A_i, \overline{A_i})|}{\mu(A_i)} \leqslant \frac{|E(S_i, \overline{S_i})| + \delta\mu(S_i)/5^4}{(1 - \delta/5^4)\mu(S_i)} \leqslant \left(1 + \frac{\delta}{300}\right) \cdot \phi(S_i) + \frac{\delta}{300}$$

The proof of Part I builds upon the following Lemmas that we will prove in Section 8 and Section 9 respectively.

Lemma 1.3. Under the hypothesis of Theorem 1.2, the following holds. If for every permutation $\sigma : [1:k] \to [1:k]$ there exists an index $i \in [1:k]$ such that $\mu(A_i \triangle S_{\sigma(i)}) \ge (\delta/5^4) \cdot \mu(S_{\sigma(i)})$. Then it holds that

$$\operatorname{Cost}(\{A_i, c_i\}_{i=1}^k) > \frac{2k^2}{\Psi} \cdot \operatorname{APR}$$

Lemma 1.4. If $\Psi > 4 \cdot k^{3/2}$ then there are points $\{p^{(i)}\}_{i=1}^k$ such that

$$OPT \leq Cost(\{S_i, p^{(i)}\}_{i=1}^k) \leq \sum_{i=1}^k \sum_{u \in S_i} d_u \left\| F(u) - p^{(i)} \right\|^2 \leq \left(1 + \frac{3k}{\Psi}\right) \cdot \frac{k^2}{\Psi}.$$

Substituting these bounds into Equation 9 yields a contradiction, since

$$\frac{2k^2}{\Psi} \operatorname{APR} < \operatorname{Cost}(\{A_i, c_i\}_{i=1}^k) \leqslant \operatorname{APR} \cdot \operatorname{OPT} \leqslant \operatorname{APR} \cdot \operatorname{Cost}(\{S_i, p^{(i)}\}_{i=1}^k) \leqslant \operatorname{APR} \cdot \left(1 + \frac{3k}{\Psi}\right) \cdot \frac{k^2}{\Psi}.$$

Thus there must be a permutation π (the identity after suitable renumbering of one of the partitions) such that $\mu(A_i \triangle S_{\sigma(i)}) < (\delta/5^4) \cdot \mu(S_{\sigma(i)})$ for all $i \in [1:k]$. This completes the proof of Theorem 1.2.

Remark 1.5. Based on the counter example to [4, Lemma 4.2] and the weaker statement of Lemma 7.1, we can show that the analogue [4, Lemma 4.4] of Lemma 1.3 requires an extra $\Theta(k)$ -factor. More precisely, the gap assumption in [4, Lemma 4.4] has to be replaced with

$$\operatorname{Cost}(\{A_i, c_i\}_{i=1}^k) > \Omega\left(\frac{k^3}{\Upsilon} \cdot \operatorname{APR}\right),$$

which leads to $\Theta(k^4)$ instead of the stated $\Theta(k^3)$ dependance in Theorem 1.1.

2 Some Notation

We use the notation adopted by Peng et al. [4] and restate it below for completeness. Let $\mathcal{L}_G = I - D^{-1/2}AD^{-1/2}$ be a normalized Laplacian matrix, where D is diagonal degree matrix and A is adjacency matrix. We refer to the kth eigenvalue of matrix \mathcal{L}_G by $\lambda_k \triangleq \lambda_k(\mathcal{L}_G)$. The (unit) eigenvector corresponding to λ_k is denoted by f_k .

Let $\overline{g_i} = \frac{D^{1/2}\chi_{S_i}}{\|D^{1/2}\chi_{S_i}\|}$, where χ_{S_i} is the characteristic vector of a subset $S_i \subseteq V$. Note $\overline{g_i}$ is the normalized characteristic vector of S_i and that $\|D^{1/2}\chi_{S_i}\|^2 = \sum_{v \in S_i} \deg_v = \mu(S_i)$. We will write μ_i instead of $\mu(S_i)$. The Rayleigh quotient is defined by and satisfies that

$$\mathcal{R}\left(\overline{g_{i}}\right) \triangleq \frac{\overline{g_{i}}^{\mathrm{T}} \mathcal{L}_{G} \overline{g_{i}}}{\overline{g_{i}}^{\mathrm{T}} \overline{g_{i}}} = \frac{1}{\mu_{S_{i}}} \chi_{S_{i}}^{\mathrm{T}} L \chi_{S_{i}} = \frac{|E(S, \overline{S})|}{\mu_{S_{i}}} = \phi_{S_{i}},$$

where L = D - A is the graph Laplacian matrix.

The eigenvectors $\{f_i\}_{i=1}^n$ form an orthonormal basis of \mathbb{R}^n . Thus each characteristic vector $\overline{g_i}$ can be expressed as $\overline{g_i} = \sum_{j=1}^n \alpha_j^{(i)} f_j$ for all $i \in [1:k]$. We define its projection onto the first k eigenvectors by $\widehat{f_i} = \sum_{j=1}^k \alpha_j^{(i)} f_j$.

Peng et al. [4] showed that $\operatorname{span}(\{\widehat{f}_i\}_{i=1}^k) = \operatorname{span}(\{f_i\}_{i=1}^k)$ if Υ is sufficiently small. In Lemma 4.2 we will show that equality holds if Ψ sufficiently small. Hence, each of the first k eigenvectors can be expressed by $f_i = \sum_{j=1}^k \beta_j^{(i)} \widehat{f}_j$. Moreover, they demonstrated that each vector

$$\widehat{g}_i = \sum_{j=1}^k \beta_j^{(i)} \overline{g_j}$$

approximates the eigenvector f_i for all $i \in [1:k]$, if Υ is sufficiently small. Theorem 4.1 states that Ψ being small suffices.

In the proof of Lemma 1.4, we will use the points

$$p^{(i)} = \frac{1}{\sqrt{\mu(S_i)}} \left(\beta_i^{(1)}, \dots, \beta_i^{(k)}\right)^{\mathrm{T}}.$$
(10)

For any vertex $u \in S_i$, we have

$$p^{(i)} = \left(\left[D^{-1/2} \widehat{g}_1 \right] (u), \dots, \left[D^{-1/2} \widehat{g}_k \right] (u) \right).$$
(11)

Indeed, for any $h \in [1:k]$,

$$D^{-1/2}\widehat{g}_{h}(u) = \sum_{1 \leq j \leq k} \beta_{j}^{(h)} D^{-1/2} \frac{D^{1/2} \chi_{S_{i}}}{\sqrt{\mu(S_{i})}}(u) = \frac{1}{\sqrt{\mu(S_{i})}} \beta_{i}^{(h)}.$$

Our analysis builds upon the following two matrices. Let $\mathbf{F}, \mathbf{B} \in \mathbb{R}^{k \times k}$ be square matrices such that for all indices $i, j \in [1:k]$ we have

$$\mathbf{F}_{j,i} = \alpha_j^{(i)} \quad \text{and} \quad \mathbf{B}_{j,i} = \beta_j^{(i)}.$$
(12)

$$\widehat{f}_{i} = \sum_{j=1}^{k} \alpha_{j}^{(i)} f_{j} \quad \underbrace{ \text{Lemma 4.3}}_{\|\widehat{f}_{i} - \overline{g_{i}}\|^{2} \leqslant \phi_{S_{i}}/\lambda_{k+1}} \quad \overline{g_{i}} = \sum_{j=1}^{D^{1/2}\chi_{S_{i}}} = \sum_{j=1}^{n} \alpha_{j}^{(i)} f_{j}$$

$$f_{i} = \sum_{j=1}^{k} \beta_{j}^{(i)} \widehat{f}_{j} \quad \underbrace{ \text{Theorem 4.1}}_{\|f_{i} - \widehat{g_{i}}\|^{2} \leqslant (1 + 3k/\Psi) \cdot k/\Psi} \quad \widehat{g_{i}} = \sum_{j=1}^{k} \beta_{j}^{(i)} \overline{g_{j}}$$

Figure 1: The relation between the vectors f_i , \hat{f}_i , \hat{g}_i and $\overline{g_i}$. The vectors $\{f_i\}_{i=1}^n$ are eigenvectors of the normalized Laplacian matrix \mathcal{L}_G of a graph G satisfying $\Psi > 4 \cdot k^{3/2}$. The vectors $\{\overline{g}_i\}_{i=1}^k$ are the normalized characteristic vectors of an optimal partition $\{S_i\}_{i=1}^k$. For each $i \in [1:k]$ the vector \hat{f}_i is the projection of vector $\overline{g_i}$ onto $\operatorname{span}(f_1, \ldots, f_k)$. By Lemma 4.3 the vectors \hat{f}_i and \overline{g}_i are close for $i \in [1:k]$. By Lemma 4.2 it holds $\operatorname{span}(f_1, \ldots, f_k) = \operatorname{span}(\hat{f}_1, \ldots, \hat{f}_k)$ when $\Psi > 4 \cdot k^{3/2}$, and thus we can write $f_i = \sum_{j=1}^k \beta_j^{(j)} \hat{f}_j$. Moreover, by Theorem 4.1 the vectors f_i and $\hat{g}_i = \sum_{j=1}^k \beta_j^{(i)} \overline{g_j}$ are close for $i \in [1:k]$.

3 Structure of the Paper

In Section 4, we will show that if $\Psi > 4 \cdot k^{3/2}$ then the vectors \widehat{g}_i and f_i are close for all $i \in [1:k]$, i.e.,

$$\|f_i - \widehat{g}_i\|^2 \leqslant \left(1 + \frac{3k}{\Psi}\right) \cdot \frac{k}{\Psi}.$$

The proof follows [4] but our analysis depends on the less restrictive gap parameter Ψ .

In contrast to [4] we exhibit in Section 5 key spectral properties of the matrices $\mathbf{B}^{\mathrm{T}}\mathbf{B}$ and $\mathbf{B}\mathbf{B}^{\mathrm{T}}$. More precisely, we show that they are close to the identity matrix in the following sense. If $\Psi \ge 10^4 \cdot k^3/\varepsilon^2$ and $\varepsilon \in (0, 1)$ then for all distinct $i, j \in [1 : k]$ it holds

$$1 - \varepsilon \leqslant \langle \mathbf{B}_{i,:}, \mathbf{B}_{i,:} \rangle \leqslant 1 + \varepsilon \quad \text{and} \quad |\langle \mathbf{B}_{i,:}, \mathbf{B}_{j,:} \rangle| \leqslant \sqrt{\varepsilon}.$$
(13)

Peng et al. (c.f. [4, Lemma 4.2]) proved that the L_2 square norm between any distinct estimation center points satisfies

$$\left\| p^{(i)} - p^{(j)} \right\|^2 \ge \left[10^3 \cdot k \cdot \min \left\{ \mu(S_i), \mu(S_j) \right\} \right]^{-1}.$$

In Section 6 we improve their result by $\Theta(k)$ -factor. Our analysis depends on a less restrictive gap assumption $\Psi \ge 20^4 \cdot k^3$ and builds upon Equation 13. We show in Lemma 6.2 that for all distinct $i, j \in [1:k]$ it holds

$$\left\| p^{(i)} - p^{(j)} \right\|^2 \ge [3 \cdot \min \{ \mu(S_i), \mu(S_j) \}]^{-1}.$$

In Section 7, we formulate and prove a weaker version of [4, Lemma B.2] that is optimal up to a factor of 2. We demonstrate its tightness in the Appendix.

We prove Lemma 1.3 in Section 8 and Lemma 1.4 in Section 9. The analysis of these two Lemmas builds upon our improved results from Section 4 to Section 7, and in contrast depends on the gap parameter Ψ instead of Υ .

4 The Vectors \hat{g}_i and f_i are Close

In this section we prove Theorem 4.1. We argue in a similar manner as in [4], however, in terms of Ψ instead of Υ . For completeness, we show in Subsection 4.1 that the span of the first k

eigenvectors is equal to the span of the projections of the characteristic vectors of the S_i onto the first k eigenvectors. Then in Subsection 4.2 by expressing the eigenvectors f_i in terms of the vectors \hat{f}_i we conclude the proof of Theorem 4.1.

Theorem 4.1. If $\Psi > 4 \cdot k^{3/2}$ then the vectors $\widehat{g}_i = \sum_{j=1}^k \beta_j^{(i)} \overline{g}_j$, $i \in [1:k]$, satisfy $\|f_i - \widehat{g}_i\|^2 \leq \left(1 + \frac{3k}{\Psi}\right) \cdot \frac{k}{\Psi}.$

4.1 Analyzing the Columns of Matrix F

We prove in this subsection the following result that depends on gap parameter Ψ .

Lemma 4.2. If $\Psi > k^{3/2}$ then the span $(\{\widehat{f}_i\}_{i=1}^k) = \text{span}(\{f_i\}_{i=1}^k)$ and thus each eigenvector can be expressed as $f_i = \sum_{j=1}^k \beta_j^{(i)} \cdot \widehat{f}_j$ for every $i \in [1:k]$.

To prove Lemma 4.2 we build upon the following result shown by Peng et al. [4].

Lemma 4.3. [4, Theorem 3.1 Part 1] For any $i \in [1:k]$ it holds that

$$\left\|\overline{g_i} - \widehat{f_i}\right\|^2 = \sum_{j=k+1}^n \left(\alpha_j^{(i)}\right)^2 \leqslant \frac{\mathcal{R}\left(\overline{g_i}\right)}{\lambda_{k+1}} = \frac{\phi_{S_i}}{\lambda_{k+1}}$$

Based on the following two results we prove Lemma 4.2.

Lemma 4.4. For every $i \in [1:k]$ and $p \neq q \in [1:k]$ it holds that

$$1 - \phi_{S_i}/\lambda_{k+1} \leqslant \left\|\widehat{f}_i\right\|^2 = \left\|\alpha^{(i)}\right\|^2 \leqslant 1 \quad and \quad \left|\left\langle\widehat{f}_p, \widehat{f}_q\right\rangle\right| = \left|\left\langle\alpha^p, \alpha^q\right\rangle\right| \leqslant \frac{\sqrt{\phi_{S_p} \cdot \phi_{S_q}}}{\lambda_{k+1}}.$$

Proof. The first part follows by Lemma 4.3 and the following chain of inequalities

$$1 - \frac{\phi_{S_i}}{\lambda_{k+1}} \leqslant 1 - \sum_{j=k+1}^n \left(\alpha_j^{(i)}\right)^2 = \left\|\widehat{f}_i\right\|^2 = \sum_{j=1}^k \left(\alpha_j^{(i)}\right)^2 \leqslant \sum_{j=1}^n \left(\alpha_j^{(i)}\right)^2 = 1.$$

We show now the second part. Since $\{f_i\}_{i=1}^n$ are orthonormal eigenvectors we have for all $p \neq q$ that

$$\langle f_p, f_q \rangle = \sum_{l=1}^n \alpha_l^{(p)} \cdot \alpha_l^{(q)} = 0.$$
(14)

We combine Equation 14 and Cauchy-Schwarz to obtain

$$\begin{aligned} \left| \left\langle \widehat{f}_{p}, \widehat{f}_{q} \right\rangle \right| &= \left| \sum_{l=1}^{k} \alpha_{l}^{(p)} \cdot \alpha_{l}^{(q)} \right| = \left| \sum_{l=k+1}^{n} \alpha_{l}^{(p)} \cdot \alpha_{l}^{(q)} \right| \\ &\leqslant \sqrt{\sum_{l=k+1}^{n} \left(\alpha_{l}^{(p)} \right)^{2}} \cdot \sqrt{\sum_{l=k+1}^{n} \left(\alpha_{l}^{(q)} \right)^{2}} \leqslant \frac{\sqrt{\phi_{S_{p}} \cdot \phi_{S_{q}}}}{\lambda_{k+1}}. \end{aligned}$$

Lemma 4.5. If $\Psi > k^{3/2}$ then the columns $\{\mathbf{F}_{:,i}\}_{i=1}^k$ are linearly independent.

Proof. We show that the columns of matrix \mathbf{F} are almost orthonormal. Consider the symmetric matrix $\mathbf{F}^{\mathrm{T}}\mathbf{F}$. It is known that $ker(\mathbf{F}^{\mathrm{T}}\mathbf{F}) = ker(\mathbf{F})$ and that all eigenvalues of matrix $\mathbf{F}^{\mathrm{T}}\mathbf{F}$ are real numbers. We proceeds by showing that the smallest eigenvalue $\lambda_{\min}(\mathbf{F}^{\mathrm{T}}\mathbf{F}) > 0$. This would imply that $ker(\mathbf{F}) = \emptyset$ and hence yields the statement.

By combining Gersgorin Circle Theorem, Lemma 4.4 and Cauchy-Schwarz it holds that

$$\lambda(\mathbf{F}^{\mathrm{T}}\mathbf{F}) \geq \min_{i \in [k]} \left\{ \left(\mathbf{F}^{\mathrm{T}}\mathbf{F}\right)_{ii} - \sum_{j \neq i}^{k} \left| \left(\mathbf{F}^{\mathrm{T}}\mathbf{F}\right)_{ij} \right| \right\} = \min_{i \in [k]} \left\{ \left\| \alpha^{(i)} \right\|^{2} - \sum_{j \neq i}^{k} \left| \left\langle \alpha^{(j)}, \alpha^{(i)} \right\rangle \right| \right\}$$
$$\geq 1 - \sum_{j=1}^{k} \sqrt{\frac{\phi_{S_{j}}}{\lambda_{k+1}}} \sqrt{\frac{\phi_{S_{i^{\star}}}}{\lambda_{k+1}}} \geq 1 - \sqrt{k} \sqrt{\sum_{j=1}^{k} \frac{\phi_{S_{j}}}{\lambda_{k+1}}} \sqrt{\frac{\phi_{S_{i^{\star}}}}{\lambda_{k+1}}} \geq 1 - \frac{k^{3/2}}{\Psi} > 0.$$

We present now the proof of Lemma 4.2.

Proof of Lemma 4.2. Let λ be an arbitrary non-zero vector. Notice that

$$\sum_{i=1}^{k} \lambda_i \cdot \widehat{f}_i = \sum_{i=1}^{k} \lambda_i \sum_{j=1}^{k} \alpha_j^{(i)} f_j = \sum_{j=1}^{k} \left(\sum_{i=1}^{k} \lambda_i \alpha_j^{(i)} \right) f_j = \sum_{j=1}^{k} \gamma_j f_j, \quad \text{where} \quad \gamma_j = \langle \mathbf{F}_{j,:}, \lambda \rangle.$$
(15)

By Lemma 4.5 the columns $\{\mathbf{F}_{:,i}\}_{i=1}^{k}$ are linearly independent and since $\gamma = \mathbf{F}\lambda$, it follows at least one component $\gamma_j \neq 0$. Therefore the vectors $\{\widehat{f}_i\}_{i=1}^{k}$ are linearly independent and span \mathbb{R}^k .

4.2 Analyzing Eigenvectors f in terms of \hat{f}_i

To prove Theorem 4.1 we establish next the following result.

Lemma 4.6. If $\Psi > k^{3/2}$ then for $i \in [k]$ it holds

$$\left(1+\frac{2k}{\Psi}\right)^{-1} \leqslant \sum_{j=1}^{k} \left(\beta_j^{(i)}\right)^2 \leqslant \left(1-\frac{2k}{\Psi}\right)^{-1}.$$

Proof. We show now the upper bound. By Lemma 4.2 $f_i = \sum_{j=1}^k \beta_j^{(i)} \hat{f_j}$ for all $i \in [1:k]$ and thus

$$1 = ||f_i||^2 = \left\langle \sum_{a=1}^k \beta_a^{(i)} \widehat{f}_a, \sum_{b=1}^k \beta_b^{(i)} \widehat{f}_b \right\rangle$$
$$= \sum_{j=1}^k \left(\beta_j^{(i)} \right)^2 \left\| \widehat{f}_j \right\|^2 + \sum_{a=1}^k \sum_{b \neq a}^k \beta_a^{(i)} \beta_b^{(i)} \left\langle \widehat{f}_a, \widehat{f}_b \right\rangle$$
$$\stackrel{(\star)}{\geq} \left(1 - \frac{2k}{\Psi} \right) \cdot \sum_{j=1}^k \left(\beta_j^{(i)} \right)^2.$$

To prove the inequality (\star) we consider the two terms separately.

By Lemma 4.4, $\|\widehat{f}_j\|^2 \ge 1 - \phi_{S_j}/\lambda_{k+1}$. We then apply $\sum_i a_i b_i \le (\sum_i a_i)(\sum_i b_i)$ for all non-negative vectors a, b and obtain

$$\sum_{j=1}^{k} \left(\beta_{j}^{(i)}\right)^{2} \left(1 - \frac{\phi_{S_{j}}}{\lambda_{k+1}}\right) = \sum_{j=1}^{k} \left(\beta_{j}^{(i)}\right)^{2} - \sum_{j=1}^{k} \left(\beta_{j}^{(i)}\right)^{2} \frac{\phi_{S_{j}}}{\lambda_{k+1}} \ge \left(1 - \frac{k}{\Psi}\right) \sum_{j=1}^{k} \left(\beta_{j}^{(i)}\right)^{2}$$

Again by Lemma 4.4, we have $\left|\left\langle \widehat{f}_{a}, \widehat{f}_{b}\right\rangle\right| \leq \sqrt{\phi_{S_{a}}\phi_{S_{b}}}/\lambda_{k+1}$, and by Cauchy-Schwarz it holds

$$\begin{split} \sum_{a=1}^{k} \sum_{b \neq a}^{k} \beta_{a}^{(i)} \beta_{b}^{(i)} \left\langle \widehat{f}_{a}, \widehat{f}_{b} \right\rangle & \geqslant \quad -\sum_{a=1}^{k} \sum_{b \neq a}^{k} \left| \beta_{a}^{(i)} \right| \cdot \left| \left\langle \widehat{f}_{a}, \widehat{f}_{b} \right\rangle \right| \\ & \geqslant \quad -\frac{1}{\lambda_{k+1}} \sum_{a=1}^{k} \sum_{b \neq a}^{k} \left| \beta_{a}^{(i)} \right| \sqrt{\phi_{S_{a}}} \cdot \left| \beta_{b}^{(i)} \right| \sqrt{\phi_{S_{b}}} \\ & \geqslant \quad -\frac{1}{\lambda_{k+1}} \left(\sum_{j=1}^{k} \left| \beta_{j}^{(i)} \right| \sqrt{\phi_{S_{j}}} \right)^{2} \geqslant -\frac{k}{\Psi} \cdot \sum_{j=1}^{k} \left(\beta_{j}^{(i)} \right)^{2}. \end{split}$$

The lower bound follows by analogous arguments.

We are ready now to prove Theorem 4.1.

Proof of Theorem 4.1. By Lemma 4.2, we have $f_i = \sum_{j=1}^k \beta_j^{(i)} \widehat{f}_j$ and recall that $\widehat{g}_i = \sum_{j=1}^k \beta_j^{(i)} \overline{g}_j$ for all $i \in [1:k]$. We combine triangle inequality, Cauchy-Schwarz, Lemma 4.3 and Lemma 4.6 to obtain

$$\|f_{i} - \widehat{g_{i}}\|^{2} = \left\|\sum_{j=1}^{k} \beta_{j}^{(i)}\left(\widehat{f_{j}} - \overline{g_{j}}\right)\right\|^{2} \leqslant \left(\sum_{j=1}^{k} |\beta_{j}^{i}| \cdot \left\|\widehat{f_{j}} - \overline{g_{j}}\right\|\right)^{2}$$
$$\leqslant \left(\sum_{j=1}^{k} \left(\beta_{j}^{(i)}\right)^{2}\right) \cdot \left(\sum_{j=1}^{k} \left\|\widehat{f_{j}} - \overline{g_{j}}\right\|^{2}\right) \leqslant \left(1 - \frac{2k}{\Psi}\right)^{-1} \left(\frac{1}{\lambda_{k+1}} \sum_{j=1}^{k} \phi_{S_{j}}\right)$$
$$= \left(1 - \frac{2k}{\Psi}\right)^{-1} \cdot \frac{k}{\Psi} \leqslant \left(1 + \frac{3k}{\Psi}\right) \cdot \frac{k}{\Psi},$$

where the last inequality uses $\Psi > 4 \cdot k$.

5 Analyzing Matrix B

In this section we bound the inner product of any two rows of matrix \mathbf{B} (c.f. Equation 12).

Theorem 5.1. If $\Psi \ge 10^4 \cdot k^3 / \varepsilon^2$ and $\varepsilon \in (0,1)$ then for all distinct $i, j \in [1:k]$ it holds

$$1 - \varepsilon \leqslant \langle \mathbf{B}_{i,:}, \mathbf{B}_{i,:} \rangle \leqslant 1 + \varepsilon$$
 and $|\langle \mathbf{B}_{i,:}, \mathbf{B}_{j,:} \rangle| \leqslant \sqrt{\varepsilon}$.

The proof is divided into two parts. We show in Lemma 5.4 that $1 - \varepsilon \leq \langle \mathbf{B}_{i,:}, \mathbf{B}_{i,:} \rangle \leq 1 + \varepsilon$, and we establish the second statement $|\langle \mathbf{B}_{i,:}, \mathbf{B}_{j,:} \rangle| \leq \sqrt{\varepsilon}$ in Lemma 5.5.

5.1 Analyzing the Column Space of Matrix B

We show below that the matrix $\mathbf{B}^{\mathrm{T}}\mathbf{B}$ is close to the identity matrix.

Lemma 5.2. (Columns) If $\Psi > 4 \cdot k^{3/2}$ then for all distinct $i, j \in [1:k]$ it holds

$$1 - \frac{3k}{\Psi} \leqslant \langle \mathbf{B}_{:,i}, \mathbf{B}_{:,i} \rangle \leqslant 1 + \frac{3k}{\Psi} \quad and \quad |\langle \mathbf{B}_{:,i}, \mathbf{B}_{:,j} \rangle| \leqslant 4\sqrt{\frac{k}{\Psi}}.$$

Proof. By Lemma 4.6 it holds that

$$1 - \frac{3k}{\Psi} \leqslant \langle \mathbf{B}_{:,i}, \mathbf{B}_{:,i} \rangle = \sum_{j=1}^{k} \left(\beta_j^{(i)} \right)^2 \leqslant 1 + \frac{3k}{\Psi}.$$

Recall that $\widehat{g}_i = \sum_{j=1}^k \beta_j^{(i)} \cdot \overline{g_j}$. Moreover, since the eigenvectors $\{f_i\}_{i=1}^k$ and the characteristic vectors $\{\overline{g_i}\}_{i=1}^k$ are orthonormal by combing Cauchy-Schwarz and by Theorem 4.1 it holds

$$\begin{aligned} |\langle \mathbf{B}_{:,i}, \mathbf{B}_{:,j} \rangle| &= \sum_{l=1}^{k} \beta_{l}^{(i)} \beta_{l}^{(j)} = \left\langle \sum_{a=1}^{k} \beta_{a}^{(i)} \cdot \overline{g_{a}}, \sum_{b=1}^{k} \beta_{b}^{(j)} \cdot \overline{g_{b}} \right\rangle = \langle \widehat{g_{i}}, \widehat{g_{j}} \rangle \\ &= \left\langle (\widehat{g_{i}} - f_{i}) + f_{i}, (\widehat{g_{j}} - f_{j}) + f_{j} \right\rangle \\ &= \left\langle \widehat{g_{i}} - f_{i}, \widehat{g_{j}} - f_{j} \right\rangle + \left\langle \widehat{g_{i}} - f_{i}, f_{j} \right\rangle + \left\langle f_{i}, \widehat{g_{j}} - f_{j} \right\rangle \\ &\leqslant \|\widehat{g_{i}} - f_{i}\| \cdot \|\widehat{g_{j}} - f_{j}\| + \|\widehat{g_{i}} - f_{i}\| + \|\widehat{g_{j}} - f_{j}\| \\ &\leqslant \left(1 + \frac{3k}{\Psi} \right) \cdot \frac{k}{\Psi} + 2\sqrt{\left(1 + \frac{3k}{\Psi} \right) \cdot \frac{k}{\Psi}} \leqslant 4\sqrt{\frac{k}{\Psi}}. \end{aligned}$$

Using a stronger gap assumption we show that the columns of matrix **B** are linearly independent. Lemma 5.3. If $\Psi > 25 \cdot k^3$ then the columns $\{\mathbf{B}_{:,i}\}_{i=1}^k$ are linearly independent.

Proof. Since $ker(\mathbf{B}) = ker(\mathbf{B}^{\mathrm{T}}\mathbf{B})$ and $\mathbf{B}^{\mathrm{T}}\mathbf{B}$ is SPSD³ matrix, it suffices to show that the smallest eigenvalue

$$\lambda(\mathbf{B}^{\mathrm{T}}\mathbf{B}) = \min_{x \neq 0} \frac{x^{\mathrm{T}}\mathbf{B}^{\mathrm{T}}\mathbf{B}x}{x^{\mathrm{T}}x} > 0.$$

By Lemma 5.2,

$$\sum_{i=1}^{k} \sum_{j\neq i}^{k} |x_i| |x_j| \left| \left\langle \beta^{(i)}, \beta^{(j)} \right\rangle \right| \leqslant 4\sqrt{\frac{k}{\Psi}} \left(\sum_{i=1}^{k} |x_i| \right)^2 \leqslant ||x||^2 \cdot 4k\sqrt{\frac{k}{\Psi}}.$$

and

$$x^{\mathrm{T}}\mathbf{B}^{\mathrm{T}}\mathbf{B}x = \left\langle \sum_{i=1}^{k} x_{i}\beta^{(i)}, \sum_{j=1}^{k} x_{j}\beta^{(j)} \right\rangle = \sum_{i=1}^{k} x_{i}^{2} \left\| \beta^{(i)} \right\|^{2} + \sum_{i=1}^{k} \sum_{j\neq i}^{k} x_{i}x_{j} \left\langle \beta^{(i)}, \beta^{(j)} \right\rangle$$
$$\geqslant \left(1 - \frac{3k}{\Psi} \right) \|x\|^{2} - \sum_{i=1}^{k} \sum_{j\neq i}^{k} |x_{i}| |x_{j}| \left| \left\langle \beta^{(i)}, \beta^{(j)} \right\rangle \right| \geqslant \left(1 - 5k\sqrt{\frac{k}{\Psi}} \right) \cdot \|x\|^{2}$$

Therefore $\lambda(\mathbf{B}^{\mathrm{T}}\mathbf{B}) > 0$ and the statement follows.

³We denote by SPSD the class of symmetric positive semi-definite matrices.

5.2Analyzing the Row Space of Matrix B

In this subsection we show that the matrix \mathbf{BB}^{T} is close to the identity matrix. We bound now the squared L_2 norm of the rows in matrix **B**, i.e. the diagonal entries in matrix **BB**^T.

Lemma 5.4. (Rows) If $\Psi \ge 400 \cdot k^3 / \varepsilon^2$ and $\varepsilon \in (0,1)$ then for all distinct $i, j \in [1:k]$ it holds

$$1 - \varepsilon \leqslant \langle \mathbf{B}_{i,:}, \mathbf{B}_{i,:} \rangle \leqslant 1 + \varepsilon.$$

Proof. We show that the eigenvalues of matrix \mathbf{BB}^{T} are consentrated around 1. This would imply that $\mathbf{1}_{i}^{\mathrm{T}}\mathbf{B}\mathbf{B}^{\mathrm{T}}\mathbf{1}_{i} = \langle \mathbf{B}_{i,:}, \mathbf{B}_{i,:} \rangle \approx 1$. By Lemma 5.2 we have

$$\left(1 - \frac{3k}{\Psi}\right)^2 \leqslant \left(\beta^{(i)}\right)^{\mathrm{T}} \cdot \mathbf{B}\mathbf{B}^{\mathrm{T}} \cdot \beta^{(i)} = \left\|\beta^{(i)}\right\|^4 + \sum_{j \neq i}^k \left\langle\beta^{(j)}, \beta^{(i)}\right\rangle^2 \leqslant \left(1 + \frac{3k}{\Psi}\right)^2 + \frac{16k^2}{\Psi} \leqslant 1 + \frac{23k^2}{\Psi}$$

and

$$\left| \left(\beta^{(i)} \right)^{\mathrm{T}} \cdot \mathbf{B}\mathbf{B}^{\mathrm{T}} \cdot \beta^{(j)} \right| \leqslant \sum_{l=1}^{k} \left| \left\langle \beta^{(i)}, \beta^{(l)} \right\rangle \right| \left| \left\langle \beta^{(l)}, \beta^{(j)} \right\rangle \right| \leqslant 8 \left(1 + \frac{3k}{\Psi} \right) \sqrt{\frac{k}{\Psi}} + 16 \frac{k^2}{\Psi} \leqslant 11 \sqrt{\frac{k}{\Psi}}$$

By Lemma 5.3 every vector $x \in \mathbb{R}^k$ can be expressed as $x = \sum_{i=1}^k \gamma_i \beta^{(i)}$.

$$\begin{aligned} x^{\mathrm{T}}\mathbf{B}\mathbf{B}^{\mathrm{T}}x &= \sum_{i=1}^{k} \gamma_{i} \left(\beta^{(i)}\right)^{\mathrm{T}} \cdot \mathbf{B}\mathbf{B}^{\mathrm{T}} \cdot \sum_{j=1}^{k} \gamma_{j}\beta^{(j)} \\ &= \sum_{i=1}^{k} \gamma_{i}^{2} \left(\beta^{(i)}\right)^{\mathrm{T}} \cdot \mathbf{B}\mathbf{B}^{\mathrm{T}} \cdot \beta^{(i)} + \sum_{i=1}^{k} \sum_{j\neq i}^{k} \gamma_{i}\gamma_{j} \left(\beta^{(i)}\right)^{\mathrm{T}} \cdot \mathbf{B}\mathbf{B}^{\mathrm{T}} \cdot \beta^{(j)} \\ &\geqslant \left(1 - \frac{23k^{2}}{\Psi} - 11k\sqrt{\frac{k}{\Psi}}\right) \|\gamma\|^{2} \geqslant \left(1 - 14k\sqrt{\frac{k}{\Psi}}\right) \|\gamma\|^{2} \,. \end{aligned}$$

and

$$x^{\mathrm{T}}x = \sum_{i=1}^{k} \sum_{j=1}^{k} \gamma_{i}\gamma_{j} \left\langle \beta^{(i)}, \beta^{(j)} \right\rangle = \sum_{i=1}^{k} \gamma_{i}^{2} \left\| \beta^{(i)} \right\|^{2} + \sum_{i=1}^{k} \sum_{j\neq i}^{k} \gamma_{i}\gamma_{j} \left\langle \beta^{(i)}, \beta^{(j)} \right\rangle$$

By Lemma 5.2 we have $\left|\sum_{i=1}^{k}\sum_{j\neq i}^{k}\gamma_{i}\gamma_{j}\left\langle\beta^{(i)},\beta^{(j)}\right\rangle\right| \leq \|\gamma\|^{2} \cdot 4k\sqrt{\frac{k}{\Psi}} \text{ and } \|\beta^{(i)}\|^{2} \leq 1+\frac{3k}{\Psi}.$ Thus it holds $\left(1-5k\sqrt{\frac{k}{\Psi}}\right)\|\gamma\|^{2} \leq x^{\mathrm{T}}x \leq \left(1+5k\sqrt{\frac{k}{\Psi}}\right)\|\gamma\|^{2}.$

$$\left(1 - 5k\sqrt{\frac{k}{\Psi}}\right) \left\|\gamma\right\|^2 \leqslant x^{\mathrm{T}}x \leqslant \left(1 + 5k\sqrt{\frac{k}{\Psi}}\right) \left\|\gamma\right\|^2$$

Therefore

$$1 - 20k\sqrt{\frac{k}{\Psi}} \leqslant \lambda(\mathbf{B}\mathbf{B}^{\mathrm{T}}) \leqslant 1 + 20k\sqrt{\frac{k}{\Psi}}.$$

We have now established the first part of Theorem 5.1. We turn to the second part and restate it in the following Lemma.

Lemma 5.5. (Rows) If $\Psi \ge 10^4 \cdot k^3 / \varepsilon^2$ and $\varepsilon \in (0,1)$ then for all distinct $i, j \in [1:k]$ it holds

$$|\langle \mathbf{B}_{i,:},\mathbf{B}_{j,:}\rangle| \leqslant \sqrt{\varepsilon}.$$

To prove Lemma 5.5 we establish the following three Lemmas. Before stating them we need some notation that is inspired by Lemma 5.2.

Definition 5.6. Let $\mathbf{B}^{\mathrm{T}}\mathbf{B} = \mathbf{I} + \mathbf{E}$, where $|\mathbf{E}_{ij}| \leq 4\sqrt{\frac{k}{\Psi}}$ and \mathbf{E} is symmetric matrix. Then we have $(\mathbf{B}\mathbf{B}^{\mathrm{T}})^{2} - \mathbf{B}(\mathbf{I} + \mathbf{E})\mathbf{B}^{\mathrm{T}} - \mathbf{B}\mathbf{B}^{\mathrm{T}} + \mathbf{B}\mathbf{E}\mathbf{B}^{\mathrm{T}}$

$$(\mathbf{D}\mathbf{D}) = \mathbf{D}(\mathbf{I} + \mathbf{E})\mathbf{D} = \mathbf{D}\mathbf{D} + \mathbf{D}\mathbf{E}\mathbf{D}$$
.

Lemma 5.7. If $\Psi \ge 40^2 \cdot k^3 / \varepsilon^2$ and $\varepsilon \in (0,1)$ then all eigenvalues of matrix **BEB**^T satisfy

$$\left|\lambda(\mathbf{B}\mathbf{E}\mathbf{B}^{\mathrm{T}})\right| \leq \varepsilon/5.$$

Proof. Let $z = \mathbf{B}^{\mathrm{T}} x$. We upper bound the quadratic form

$$\left|x^{\mathrm{T}}\mathbf{B}\mathbf{E}\mathbf{B}^{\mathrm{T}}x\right| = \left|z^{\mathrm{T}}\mathbf{E}z\right| \leqslant \sum_{ij} |\mathbf{E}_{ij}| |z_i| |z_j| \leqslant 4\sqrt{\frac{k}{\Psi}} \cdot \left(\sum_{i=1}^k |z_i|\right)^2 \leqslant ||z||^2 \cdot 4k\sqrt{\frac{k}{\Psi}}.$$

By Lemma 5.4 we have $1 - \varepsilon \leq \lambda(\mathbf{BB}^{\mathrm{T}}) \leq 1 + \varepsilon$ and since $||z||^2 = \frac{x\mathbf{BB}^{\mathrm{T}}x}{x^{\mathrm{T}}x} \cdot ||x||^2$ it follows that

$$\frac{\|z\|^2}{1+\varepsilon} \leqslant \|x\|^2 \leqslant \frac{\|z\|^2}{1-\varepsilon},$$

and hence

$$\left|\lambda(\mathbf{B}\mathbf{E}\mathbf{B}^{\mathrm{T}})\right| \leq \max_{x} \frac{\left|x^{\mathrm{T}}\mathbf{B}\mathbf{E}\mathbf{B}^{\mathrm{T}}x\right|}{x^{\mathrm{T}}x} \leq 4\left(1+\varepsilon\right) \cdot k\sqrt{\frac{k}{\Psi}} \leq \varepsilon/5.$$

Lemma 5.8. Suppose $\{u_i\}_{i=1}^k$ is orthonormal basis and the square matrix **U** has u_i as its ith column. Then $\mathbf{U}^{\mathrm{T}}\mathbf{U} = \mathbf{I} = \mathbf{U}\mathbf{U}^{\mathrm{T}}$.

Proof. Notice that by the definition of **U** it holds $\mathbf{U}^{\mathrm{T}}\mathbf{U} = \mathbf{I}$. Moreover, the matrix \mathbf{U}^{-1} exists. Hence, we have $\mathbf{U}^{\mathrm{T}} = \mathbf{U}^{-1}$, and thus $\mathbf{U}\mathbf{U}^{\mathrm{T}} = \mathbf{I}$ as claimed.

Lemma 5.9. If $\Psi \ge 40^2 \cdot k^3 / \varepsilon^2$ and $\varepsilon \in (0,1)$ then it holds $|(\mathbf{BEB}^T)_{ij}| \le \varepsilon/5$ for every $i, j \in [1:k]$.

Proof. Notice that **BEB**^T is symmetric matix, since E is symmetric. By SVD Theorem there is an orthonormal basis $\{u_i\}_{i=1}^k$ such that $\mathbf{BEB}^{\mathrm{T}} = \sum_{i=1}^k \lambda_i (\mathbf{BEB}^{\mathrm{T}}) \cdot u_i u_i^{\mathrm{T}}$. Thus, it suffices to bound the expression

$$|(\mathbf{B}\mathbf{E}\mathbf{B}^{\mathrm{T}})_{ij}| \leq \sum_{l=1}^{k} |\lambda_l(\mathbf{B}\mathbf{E}\mathbf{B}^{\mathrm{T}})| \cdot |(u_l u_l^{\mathrm{T}})_{ij}|.$$

By Lemma 5.8 we have

$$\sum_{l=1}^{k} |(u_l)_i| \cdot |(u_l)_j| \leq \sqrt{\|\mathbf{U}_{i,:}\|^2} \sqrt{\|\mathbf{U}_{j,:}\|^2} = 1$$

We apply now Lemma 5.7 to obtain

$$\sum_{l=1}^{k} |\lambda_l(\mathbf{B}\mathbf{E}\mathbf{B}^{\mathrm{T}})| \cdot |(u_l u_l^{\mathrm{T}})_{ij}| \leq \frac{\varepsilon}{5} \cdot \sum_{l=1}^{k} |(u_l)_i| \cdot |(u_l)_j| \leq \frac{\varepsilon}{5}.$$

We are ready now to prove Lemma 5.5, i.e. $|\langle \mathbf{B}_{i,:}, \mathbf{B}_{j,:} \rangle| \leq \sqrt{\varepsilon}$ for all $i \neq j$.

Proof of Lemma 5.5. By Definition 5.6 we have $(\mathbf{BB}^{\mathrm{T}})^2 = \mathbf{BB}^{\mathrm{T}} + \mathbf{BEB}^{\mathrm{T}}$. Observe that the (i, j)th entry of matrix \mathbf{BB}^{T} is equal to the inner product between the *i*th and *j*th row of matrix \mathbf{B} , i.e. $(\mathbf{BB}^{\mathrm{T}})_{ij} = \langle \mathbf{B}_{i,:}, \mathbf{B}_{j,:} \rangle$. Moreover, we have

$$\left[\left(\mathbf{B}\mathbf{B}^{\mathrm{T}} \right)^{2} \right]_{ij} = \sum_{l=1}^{k} \left(\mathbf{B}\mathbf{B}^{\mathrm{T}} \right)_{i,l} \left(\mathbf{B}\mathbf{B}^{\mathrm{T}} \right)_{l,j} = \sum_{l=1}^{k} \left\langle \mathbf{B}_{i,:}, \mathbf{B}_{l,:} \right\rangle \left\langle \mathbf{B}_{l,:}, \mathbf{B}_{j,:} \right\rangle$$

For the entries on the main diagonal, it holds

$$\langle \mathbf{B}_{i,:}, \mathbf{B}_{i,:} \rangle^2 + \sum_{l \neq i}^k \langle \mathbf{B}_{i,:}, \mathbf{B}_{l,:} \rangle^2 = [(\mathbf{B}\mathbf{B}^{\mathrm{T}})^2]_{ii} = [\mathbf{B}\mathbf{B}^{\mathrm{T}} + \mathbf{B}\mathbf{E}\mathbf{B}^{\mathrm{T}}]_{ii} = \langle \mathbf{B}_{i,:}, \mathbf{B}_{i,:} \rangle + (\mathbf{B}\mathbf{E}\mathbf{B}^{\mathrm{T}})_{ii},$$

and hence by applying Lemma 5.4 with $\varepsilon' = \varepsilon/5$ and Lemma 5.9 with $\varepsilon' = \varepsilon$ we obtain

$$\langle \mathbf{B}_{i,:}, \mathbf{B}_{j,:} \rangle^2 \leqslant \sum_{l \neq i} \langle \mathbf{B}_{i,:}, \mathbf{B}_{l,:} \rangle^2 \leqslant \left(1 + \frac{\varepsilon}{5}\right) + \frac{\varepsilon}{5} - \left(1 - \frac{\varepsilon}{5}\right)^2 \leqslant \varepsilon.$$

6 The Points $p^{(i)}$ are Well-Spaced

Peng et al. (c.f. [4, Lemma 4.2]) showed that the L_2 square norm between any distinct estimation center points (defined in Equation (10)) is lower bounded by

$$\left\| p^{(i)} - p^{(j)} \right\|^2 \ge \left[10^3 \cdot k \cdot \min \left\{ \mu(S_i), \mu(S_j) \right\} \right]^{-1}$$

We now improve their result by $\Theta(k)$ -factor. We achieve this by building upon Theorem 5.1, rather than invoking [4, Lemma 4.2]. We use the following fact.

Lemma 6.1. [4, Lemma B.1] We have $\|p^{(i)}\|^2 \in \left[\left(1 \pm \frac{1}{10}\right)\mu(S_i)\right]$ for every $i \in [1:k]$. **Lemma 6.2.** If $\Psi \ge 20^4 \cdot k^3$ then for distinct $i, j \in [1:k]$ it holds that

$$\left\| p^{(i)} - p^{(j)} \right\|^2 \ge [3 \cdot \min \{ \mu(S_i), \mu(S_j) \}]^{-1}.$$

Suppose c_i is the center of a cluster A_i . If $||c_i - p^{(i_1)}|| \ge ||c_i - p^{(i_2)}||$ then it holds

$$\left\|c_{i}-p^{(i_{1})}\right\|^{2} \ge \frac{1}{4}\left\|p^{(i_{1})}-p^{(i_{2})}\right\|^{2} \ge [12 \cdot \min\left\{\mu(S_{i_{1}}),\mu(S_{i_{2}})\right\}]^{-1}$$

Proof. We argue in a similar manner as in [4] but in contrast apply Theorem 5.1 with $\varepsilon = 1/4$ to obtain

$$\left\langle \frac{p^{(i)}}{\left\| p^{(i)} \right\|}, \frac{p^{(j)}}{\left\| p^{(j)} \right\|} \right\rangle = \frac{\left\langle \mathbf{B}_{i,:}, \mathbf{B}_{j,:} \right\rangle}{\left\| \mathbf{B}_{i,:} \right\| \left\| \mathbf{B}_{j,:} \right\|} \leqslant \frac{\sqrt{\varepsilon}}{1 - \varepsilon} = \frac{2}{3}$$

W.l.o.g. assume that $\|p^{(i)}\|^2 \ge \|p^{(j)}\|^2$. Then by Lemma 6.1 we have

$$\left\|p^{(i)}\right\|^2 \ge \frac{9}{10} \left[\min\left\{\mu(S_i), \mu(S_j)\right\}\right]^{-1}.$$

Let $\|p^{(j)}\| = \alpha \cdot \|p^{(i)}\|$ for some $\alpha \in (0, 1]$. Then

$$\begin{aligned} \left\| p^{(i)} - p^{(j)} \right\|^2 &= \left\| p^{(i)} \right\|^2 + \left\| p^{(j)} \right\|^2 - 2 \left\langle \frac{p^{(i)}}{\|p^{(i)}\|}, \frac{p^{(j)}}{\|p^{(j)}\|} \right\rangle \left\| p^{(i)} \right\| \left\| p^{(j)} \right\| \\ &\geqslant \left(\alpha^2 - \frac{4}{3} \cdot \alpha + 1 \right) \left\| p^{(i)} \right\|^2 \ge \left[3 \cdot \min\left\{ \mu(S_i), \mu(S_j) \right\} \right]^{-1}, \end{aligned}$$

since for all $\alpha \in \mathbb{R}$ it holds $\alpha^2 - 4\alpha/3 + 1 > 1/2$.

The second claim follows immediately from the first.

7 Amended Version of [4, Lemma B.2]

In Appendix 9 we give a counter example of [4, Lemma B.2]. Here, we formulate and prove a correction. The counter example in the appendix shows that the revised statement is tight up to a factor of 2.

Lemma 7.1. Let S_1 to S_k and A_1 to A_k be partitions of the vertex set. Suppose for every permutation $\pi : [1:k] \to [1:k]$ there is an index $i \in [1:k]$ such that

$$\mu(A_i \triangle S_{\pi(i)}) \ge 2\varepsilon \cdot \mu(S_{\pi(i)}),\tag{16}$$

where $\varepsilon \in (0, 1 - 1/k)$ is a parameter. Then there is an index $j \in [1 : k]$ and distinct indices $j_1, j_2 \in [1 : k]$ such that

$$\mu(A_j \cap S_{j_1}) \ge \mu(A_j \cap S_{j_2}) \ge \frac{\varepsilon}{k-1} \cdot \min\left\{\mu(S_{j_1}), \mu(S_{j_2})\right\}.$$

Proof. We argue in a similar manner as in [4], but correct an oversight in Part 1, Case 2. We begin by defining a function

$$\sigma(l) = \arg \max_{j \in [k]} \frac{\mu(A_l \cap S_j)}{\mu(S_j)}$$

Part 1. Suppose σ is a permutation. By Equation 16 there is an index i such that

$$\mu(A_i \triangle S_{\sigma(i)}) = \mu(S_{\sigma(i)} \backslash A_i) + \mu(A_i \backslash S_{\sigma(i)}) \ge 2\varepsilon \cdot \mu(S_{\sigma(i)})$$

Case 1: Suppose $\mu(S_{\sigma(i)} \setminus A_i) \ge \varepsilon \cdot \mu(S_{\sigma(i)})$. Since $S_{\sigma(i)} \setminus A_i = \bigcup_{j \neq i} \mu(A_j \cap S_{\sigma(i)})$, there is an index $j \neq i$ such that

$$\mu(A_j \cap S_{\sigma(i)}) \ge \frac{\epsilon}{k-1} \mu(S_{\sigma(i)}) \ge \frac{\epsilon}{k-1} \cdot \min\left\{\mu(S_{\sigma(j)}), \mu(S_{\sigma(i)})\right\}$$

Moreover, by the definition of σ it holds that

$$\frac{\mu(A_j \cap S_{\sigma(j)})}{\mu(S_{\sigma(j)})} \ge \frac{\mu(A_j \cap S_{\sigma(i)})}{\mu(S_{\sigma(i)})} \ge \frac{\epsilon}{k-1}.$$

Thus

$$\mu(A_j \cap S_{\sigma(j)}) \ge \frac{\epsilon}{k-1} \cdot \min\left\{\mu(S_{\sigma(j)}), \mu(S_{\sigma(i)})\right\}$$

Case 2: Suppose $\mu(A_i \setminus S_{\sigma(i)}) \ge \varepsilon \cdot \mu(S_{\sigma(i)})$. Since $A_i \setminus S_{\sigma(i)} = \bigcup_{\sigma(j) \ne \sigma(i)} A_i \cap S_{\sigma(j)}$, there is an index $\sigma(j) \ne \sigma(i)$ such that

$$\mu(A_i \cap S_{\sigma(j)}) \ge \frac{\varepsilon}{k-1} \cdot \mu(S_{\sigma(j)}) \ge \frac{\varepsilon}{k-1} \cdot \min\left\{\mu(S_{\sigma(j)}), \mu(S_{\sigma(i)})\right\}.$$

If $\mu(A_i \cap S_{\sigma(i)}) \leq (1-\varepsilon) \cdot \mu(S_{\sigma(i)}), \sum_{j \neq i} \mu(A_j \cap S_{\sigma(i)}) \geq \varepsilon \cdot \mu(S_{\sigma(i)})$ and we are in the first case. Otherwise, for every $\sigma(j) \neq \sigma(i)$ it holds

$$\mu(A_i \cap S_{\sigma(i)}) \ge (1 - \varepsilon) \cdot \mu(S_{\sigma(i)}) \ge \varepsilon \cdot \min\left\{\mu(S_{\sigma(j)}), \mu(S_{\sigma(i)})\right\}.$$

Part 2. Suppose σ is NOT a permutation. There is an index $l \in [k]$ such that $l \notin \{\sigma(1), \ldots, \sigma(k)\}$. Since $\{A_i\}_{i=1}^k$ and $\{S_i\}_{i=1}^k$ are partitions, there is an index $j \in [k]$ such that

$$\mu(A_j \cap S_l) \ge \frac{1}{k} \cdot \min\{\mu(S_{\sigma(j)}), \mu(S_l)\}.$$

Notice that $\sigma(j) \neq l$ and thus by the definition of σ it holds

$$\frac{\mu(A_j \cap S_{\sigma(j)})}{\mu(S_{\sigma(j)})} \ge \frac{\mu(A_j \cap S_l)}{\mu(S_l)} \ge \frac{1}{k}.$$

Thus

$$\mu(A_j \cap S_{\sigma(j)}) \ge \frac{1}{k} \cdot \min\left\{\mu(S_{\sigma(j)}), \mu(S_l)\right\}.$$

8	\mathbf{The}	Proof	of	Lemma	1.3
---	----------------	-------	----	-------	-----

We first establish

$$\operatorname{Cost}(\{A_i, c_i\}_{i=1}^k) \ge \left[\sum_{i=1}^k \sum_{j=1}^k \sum_{u \in A_i \cap S_j}^k d_u \left\| p^{(j)} - c_i \right\|^2\right] - \frac{7k^2}{\Psi} \cdot \operatorname{APR}^{1/2}.$$
 (17)

Observe that

$$\sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{u \in A_i \cap S_j} d_u \|F(u) - c_i\|^2$$

$$\geq \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{u \in A_i \cap S_j} d_u \left\|F_u - p^{(j)}\right\|^2 + \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{u \in A_i \cap S_j} d_u \left\|p^{(j)} - c_i\right\|^2$$

$$-2 \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{u \in A_i \cap S_j} d_u \left\|F_u - p^{(j)}\right\| \cdot \left\|p^j - c^i\right\|$$

$$\geq \left[\sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{u \in A_i \cap S_j} d_u \left\|p^{(j)} - c_i\right\|^2\right] - 2\sqrt{2(\text{APR} + 1)} \cdot \text{Cost}(\{S_i, p^{(i)}\}_{i=1}^k),$$

where the first inequality follows from

$$||F(u) - c_i||^2 = ||(F_u - p^{(j)}) + (p^{(j)} - c_i)||^2 \ge (||F_u - p^{(j)}|| - ||p^{(j)} - c_i||)^2$$

= $||F_u - p^{(j)}||^2 + ||p^{(j)} - c_i||^2 - 2 ||F_u - p^{(j)}|| \cdot ||p^{(j)} - c_i||.$

We prove now that

$$\sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{u \in A_i \cap S_j} d_u \left\| F_u - p^{(j)} \right\| \cdot \left\| p^{(j)} - c_i \right\|$$

$$\leqslant \sqrt{\sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{u \in A_i \cap S_j} d_u \left\| F_u - p^{(j)} \right\|^2} \cdot \sqrt{\sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{u \in A_i \cap S_j} d_u \left\| p^{(j)} - c_i \right\|^2}$$

$$\leqslant \sqrt{2 (\text{APR} + 1)} \cdot \text{Cost}(\{S_i, p^{(i)}\}_{i=1}^k)$$

To upper bound the first summation we use the fact that

$$\sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{u \in A_i \cap S_j} d_u \left\| F_u - p^{(j)} \right\|^2 = \sum_{j=1}^{k} \sum_{u \in S_j} d_u \left\| F_u - p^{(j)} \right\|^2 = \operatorname{Cost}(\{S_i, p^{(i)}\}_{i=1}^k).$$

For the second summation we introduce a vector F_u for every $u \in A_i \cap S_j$. Then it follows that

$$\left| p^{(j)} - c_i \right\|^2 \leq \left(\left\| F_u - p^{(j)} \right\| + \left\| F_u - c_i \right\| \right)^2 \leq 2 \left[\left\| F_u - p^{(j)} \right\|^2 + \left\| F_u - c_i \right\|^2 \right]$$

and thus

$$\begin{split} &\sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{u \in A_i \cap S_j} d_u \left\| p^{(j)} - c_i \right\|^2 \\ \leqslant & 2 \left[\sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{u \in A_i \cap S_j} d_u \left\| F_u - p^{(j)} \right\|^2 + \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{u \in A_i \cap S_j} d_u \left\| F_u - c_i \right\|^2 \right] \\ \leqslant & 2 \left[\sum_{j=1}^{k} \sum_{u \in S_j} d_u \left\| F_u - p^{(j)} \right\|^2 + \sum_{i=1}^{k} \sum_{u \in A_i} d_u \left\| F_u - c_i \right\|^2 \right] \\ \leqslant & 2 \left(\text{APR} + 1 \right) \cdot \text{Cost}(\{S_i, p^{(i)}\}_{i=1}^k), \end{split}$$

since

$$\sum_{i=1}^{k} \sum_{u \in A_{i}} d_{u} \|F_{u} - c_{i}\|^{2} = \operatorname{Cost}(\{A_{i}, c_{i}\}_{i=1}^{k}) \leqslant \operatorname{APR} \cdot \operatorname{Cost}(\{S_{i}, c_{i}^{\star}\}_{i=1}^{k})$$
$$\leqslant \operatorname{APR} \cdot \operatorname{Cost}(\{S_{i}, p^{(i)}\}_{i=1}^{k}).$$

Moreover, by Lemma 1.4 we have

$$2\sqrt{2(\text{APR}+1)} \cdot \text{Cost}(\{S_i, p^{(i)}\}_{i=1}^k) \leq \frac{7k^2}{\Psi} \cdot \sqrt{\text{APR}}.$$

Having established Equation 17, it is now easy to complete the proof of Lemma 1.3. By Lemma 7.1 there is an index i and distinct indices $i_1 \neq i_2$ such that

$$\{\mu(A_i \cap S_{i_1}), \mu(A_i \cap S_{i_2})\} \geqslant \frac{\varepsilon}{k} \cdot \min\{\mu(S_{i_1}), \mu(S_{i_2})\}.$$

Let c_i be the center of the cluster A_i . Assume w.l.o.g. that $||c_i - p^{(i_1)}|| \ge ||c_i - p^{(i_2)}||$. We lower bound C_A by the loss accumulated from points only in the subset $A_i \cap S_{i_1}$. By Equation 17, the choice of $A_i \cap S_{i_1}$ and Lemma 6.2 it holds that

$$\sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{u \in A_i \cap S_j} d_u \left\| p^{(j)} - c_i \right\|^2 \ge \sum_{u \in A_i \cap S_{i_1}} d_u \left\| p^{(i_1)} - c_i \right\|^2 \ge \mu(A_i \cap S_{i_1}) \cdot \left\| p^{(i_1)} - c_i \right\|^2 \ge \frac{1}{12} \cdot \frac{\varepsilon}{k}$$

This completes the proof of Lemma 1.3.

9 The Proof of Lemma 1.4

By Theorem 4.1 we have $||f_i - \hat{g}_i||^2 \leq (1 + \frac{3k}{\Psi}) \cdot \frac{k}{\Psi}$ and thus

$$\sum_{i=1}^{k} \sum_{u \in S_{i}} d_{u} \|F(u) - c_{i}^{*}\|^{2} \leq \sum_{i=1}^{k} \sum_{u \in S_{i}} d_{u} \left\|F(u) - p^{(i)}\right\|^{2} = \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{u \in S_{i}} d_{u} \left(F(u)_{j} - p^{(i)}_{j}\right)^{2}$$
$$= \sum_{j=1}^{k} \sum_{u \in S_{i}} \sum_{u \in S_{i}} (f_{j}(u) - \widehat{g}_{j}(u))^{2} = \sum_{j=1}^{k} \|f_{j} - \widehat{g}_{j}\|^{2} \leq \left(1 + \frac{3k}{\Psi}\right) \cdot \frac{k^{2}}{\Psi}.$$

References

- J. R. Lee, S. Oveis Gharan, and L. Trevisan. Multi-way spectral partitioning and higher-order cheeger inequalities. In *Proceedings of the Forty-fourth Annual ACM* Symposium on Theory of Computing, STOC '12, pages 1117–1130, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1245-5. doi: 10.1145/2213977.2214078. URL http://doi.acm.org/10.1145/2213977.2214078.
- [2] S. Oveis Gharan and L. Trevisan. Partitioning into expanders. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 1256–1266, 2014. doi: 10.1137/1.9781611973402.93. URL http://dx.doi.org/10.1137/1.9781611973402.93.
- [3] R. Peng, H. Sun, and L. Zanetti. Partitioning well-clustered graphs with k-means and heat kernel. CoRR, abs/1411.2021, 2014. URL http://arxiv.org/abs/1411.2021.
- [4] R. Peng, H. Sun, and L. Zanetti. Partitioning well-clustered graphs: Spectral clustering works! In Proceedings of The 28th Conference on Learning Theory, COLT 2015, Paris, France, July 3-6, 2015, pages 1423-1455, 2015. URL http://jmlr.org/proceedings/papers/v40/Peng15.html.

Appendix

We give a counterexample to the following Lemma in [4].

Lemma 9.1. [4, Lemma B.2] Let (A_1, \ldots, A_k) and (S_1, \ldots, S_k) be partitions of the vertex set of a graph G. Suppose for every permutation $\pi : \{1, \ldots, k\} \to \{1, \ldots, k\}$ there exists index i such that $\mu(A_i \Delta S_{\pi(i)}) \ge 2\varepsilon \cdot \mu(S_{\pi(i)})$. Then, for any index i, there are ε_i and distinct indices i_1 and i_2 such that $\sum_{i=1}^k \varepsilon_i \ge \varepsilon$ and

 $\mu(A_i \cap S_{i_1}) \ge \mu(A_i \cap S_{i_2}) \ge \varepsilon_i \cdot \min(\mu(S_{i_1}), \mu(S_{i_2})).$

In the arXiv-version of the paper [3], the Lemma is formulated weaker.

Lemma 9.2. [4, Lemma 4.8] Let (A_1, \ldots, A_k) and (S_1, \ldots, S_k) be partitions of the vertex set of a graph G. Suppose for every permutation $\pi : \{1, \ldots, k\} \to \{1, \ldots, k\}$ there exists index i such that $\mu(A_i \Delta S_{\pi(i)}) \ge 2\varepsilon \cdot \mu(S_{\pi(i)})$. Then one of the following statements holds:

• For any index *i*, there are ε_i and distinct indices i_1 and i_2 such that $\sum_{i=1}^k \varepsilon_i \ge \varepsilon$ and

$$\mu(A_i \cap S_{i_1}) \ge \mu(A_i \cap S_{i_2}) \ge \varepsilon_i \cdot \min\{\mu(S_{i_1}), \mu(S_{i_2})\}$$

• There are indices i', j, ℓ (they mean $j \neq \ell$) such that

$$\mu(A_{i'} \cap S_j) \ge \mu(A_{i'} \cap S_\ell) \ge \frac{1}{k} \cdot \mu(S_\ell)$$

The Counter Example: Let G be any regular graph. Then the volume of a set of vertices is proportional to the cardinality of the set. The partition S_1 to S_k is into equal sized sets, and the number of disjoint sets satisfies $k \ge 4$. The partition A_1 to A_k is such that for a fixed $\varepsilon \in (0, 1/4)$ it holds

1)
$$S_1 \subseteq A_1$$
 and 2) $A_i \subseteq S_i$ and $\mu(A_1 \cap S_i) = \frac{2\varepsilon}{k-1} \cdot \mu(S_i)$, for $i \ge 2$.

Notice that $\mu(A_1) = (1 + 2\varepsilon) \cdot \mu(S_1)$.

We verify next that the above instance satisfies the hypothesis of Lemma 9.1 and Lemma 9.2. Observe that

$$\mu(A_1 \Delta S_j) = \begin{cases} \mu(A_1 \setminus S_1) = 2\varepsilon \cdot \mu(S_1) & \text{if } j = 1, \\ \mu(S_1) + \mu(A_i) \ge \mu(S_1) & \text{if } j > 1. \end{cases}$$

Thus for every permutation π of the integers 1 to k, there is an i, namely i = 1, such that

$$\mu(A_i \Delta S_{\pi(i)}) \ge 2\varepsilon \cdot \mu(S_{\pi(i)}).$$

How about the conclusion of Lemma 9.1 and Lemma 9.2? Since $A_j \subset S_j$ for $j \ge 2$, for any two distinct indices j_1 and j_2 , we have

$$\min\{\mu(A_j \cap S_{j_1}), \mu(A_j \cap S_{j_2})\} = 0.$$

Thus the conclusion of Lemma 9.1 and the first alternative of Lemma 9.2 do not hold, due to

$$\sum_{i=1}^{k} \varepsilon_i = \varepsilon_1 = \frac{2\varepsilon}{k-1} < \varepsilon.$$

The second alternative of Lemma 9.2 certainly does not hold for $i' \ge 2$. On the other hand, for i' = 1 and $\ell \ge 2$ we have

$$\mu(A_1 \cap S_\ell) = \frac{2\varepsilon}{k-1} \cdot \mu(S_\ell) < \frac{1}{k} \cdot \mu(S_\ell),$$

and hence the second alternative of Lemma 9.2 does not hold.