A Note On Spectral Clustering*

Pavel Kolev Kurt Mehlhorn
Max Planck Institute for Informatics, Saarbrücken, Germany
\{pkolev,mehlhorn\}@mpi-inf.mpg.de

Abstract

Let $G=(V, E)$ be an undirected graph, λ_{k} the k th smallest eigenvalue of the normalized Laplacian matrix of G, and $\rho(k)$ the smallest value of the maximal conductance over all k-way partitions S_{1}, \ldots, S_{k} of V.

Peng et al. [4] gave the first rigorous analysis of k-clustering algorithms that use spectral embedding and k-means clustering algorithms to partition the vertices of a graph G into k disjoint subsets. Their analysis builds upon a gap parameter $\Upsilon=\rho(k) / \lambda_{k+1}$ that was introduced by Oveis Gharan and Trevisan [2]. In their analysis Peng et al. [4] assume a gap assumption $\Upsilon \geqslant \Omega\left(\mathrm{APR} \cdot k^{3}\right)$, where APR >1 is the approximation ratio of a k-means clustering algorithm.

We exhibit an error in one of their Lemmas and provide a correction. With the correction the proof by Peng et al. [4] requires a stronger gap assumption $\Upsilon \geqslant \Omega\left(\mathrm{APR} \cdot k^{4}\right)$.

Our main contribution is to improve the analysis in [4] by an $O(k)$ factor. We demonstrate that a gap assumption $\Psi \geqslant \Omega\left(\mathrm{APR} \cdot k^{3}\right)$ suffices, where $\Psi=\rho_{\text {avr }}(k) / \lambda_{k+1}$ and $\rho_{\text {avr }}(k)$ is the value of the average conductance of a partition S_{1}, \ldots, S_{k} of V that yields $\rho(k)$.

[^0]
Contents

1 Introduction 2
2 Some Notation 5
3 Structure of the Paper 6
4 The Vectors $\widehat{g_{i}}$ and f_{i} are Close 6
4.1 Analyzing the Columns of Matrix \mathbf{F} 7
4.2 Analyzing Eigenvectors f in terms of \widehat{f}_{j} 8
5 Analyzing Matrix B 9
5.1 Analyzing the Column Space of Matrix B 10
5.2 Analyzing the Row Space of Matrix B 11
6 The Points $p^{(i)}$ are Well-Spaced 13
7 Amended Version of [4, Lemma B.2] 14
8 The Proof of Lemma 1.3 15
9 The Proof of Lemma 1.4 17

1 Introduction

Let $G=(V, E)$ be an undirected graph. For any subset of vertices $S \subseteq V$ we denote by $\mu(S)=$ $\sum_{v \in S} \operatorname{deg}(u)$ the volume of S, and we define the conductance of S by

$$
\begin{equation*}
\phi(S)=\frac{|E(S, \bar{S})|}{\mu(S)} \tag{1}
\end{equation*}
$$

The order k conductance constant $\rho(k)$ of a graph G is defined by

$$
\begin{equation*}
\rho(k)=\min _{S_{1}, \ldots, S_{k}} \max _{i \in[1: k]} \phi\left(S_{i}\right) . \tag{2}
\end{equation*}
$$

The k-way partitioning problem asks to cluster a graph G into k-disjoint subsets of vertices S_{1}, \ldots, S_{k} such that the returned partition yields the value of the order k conductance constant $\rho(k)$. Lee et al. [1] established the following relation between the k th eigenvalue of the normalized Laplacian matrix \mathcal{L}_{G} and the order k conductance constant $\rho(k)$ of a graph G

$$
\begin{equation*}
\lambda_{k} / 2 \leqslant \rho(k) \leqslant O\left(k^{2}\right) \sqrt{\lambda_{k}} . \tag{3}
\end{equation*}
$$

Oveis Gharan and Trevisan [2] proved the existence of good clusterings ${ }^{1}$ into k disjoint subsets if the gap between the k th and $(k+1)$ th eigenvalue of the normalized Laplacian matrix \mathcal{L}_{G} satisfies

$$
\begin{equation*}
\lambda_{k+1} \geqslant \Omega\left(k^{2} \sqrt{\lambda_{k}}\right) \tag{6}
\end{equation*}
$$

i.e., if λ_{k+1} is larger than the upper bound on the order k conductance constant $\rho(k)$ in Equation (3).

Peng et al [4] studied approximation schemes for the k-way partitioning problem. They analyzed spectral clustering algorithms that embed the vertices of G into vectors in \mathbb{R}^{k} using the first k eigenvectors of the normalized Laplacian matrix \mathcal{L}_{G}, and then partition the resulting vectors via k-means clustering algorithms. Their analysis crucially relies on the following gap assumption

$$
\begin{equation*}
\Upsilon=\frac{\lambda_{k+1}}{\rho(k)} \geqslant \Omega\left(k^{3}\right) . \tag{7}
\end{equation*}
$$

Theorem 1.1. [4] Let $k \geqslant 3$ and let G be a graph satisfying the gap assumption $\Upsilon=\lambda_{k+1} / \rho(k)=$ $\Omega\left(k^{3}\right)$. Suppose a k-means clustering algorithm that achieves an approximation ratio APR takes as input a spectral embedding ${ }^{2}\{F(u)\}_{u \in V}$ where $F: V \rightarrow \mathbb{R}^{k}$, and outputs a k-way partition $\left\{A_{i}\right\}_{i=1}^{k}$. Then the following two statements hold:

$$
\text { i) } \mu\left(A_{i} \triangle S_{i}\right)=O\left(\mathrm{APR} \cdot k^{3} \cdot \Upsilon^{-1} \cdot \mu\left(S_{i}\right)\right) \quad \text { and } \quad \text { ii) } \phi_{G}\left(A_{i}\right)=O\left(\phi_{G}\left(S_{i}\right)+\mathrm{APR} \cdot k^{3} \cdot \Upsilon^{-1}\right) .
$$

[^1]Our Contribution: We give a counter example to [4, Lemma 4.2] in the Appendix and prove a weaker statement (Lemma 7.1) that is tight up to a factor of 2 . With the weaker version of the lemma, the proof of Theorem 1.1 needs the strengthened gap assumption

$$
\Upsilon \geqslant \Omega\left(k^{4}\right) .
$$

We note that all occurrences of k^{3} in the statement of the Theorem 1.1 have to be replaced by k^{4}.
Let \mathcal{O} be the set of partitions $\left\{S_{i}\right\}_{i=1}^{k}$ with $\max _{i} \phi\left(S_{i}\right)=\rho(k)$, i.e., the set of all partitions that achieve the order k conductance constant. Let

$$
\rho_{\text {avg }}(k)=\min _{\left\{S_{i}\right\}_{i=1}^{k} \in \mathcal{O}} \frac{1}{k} \sum_{i} \phi\left(S_{i}\right)
$$

be the minimal average conductance of any partition in \mathcal{O} and let

$$
\Psi=\frac{\lambda_{k+1}}{\rho_{\text {avg }}(k)} .
$$

For the remainder of the paper we use $\left\{S_{i}\right\}_{i=1}^{k}$ to denote a partition that defines $\rho_{\text {avg }}$. We refine the analysis in [4] and show the following statement.

Theorem 1.2 (Main Theorem). Let G be a graph that satisfies for some fixed $\delta \in(0,1)$ and $k \geqslant 3$ the gap assumption

$$
\Psi=20^{4} \cdot \delta^{-1} \cdot \mathrm{APR} \cdot k^{3} .
$$

Suppose a k-means clustering algorithm that achieves an approximation ratio APR takes as input a spectral embedding $\{F(u)\}_{u \in V}$ where $F: V \rightarrow \mathbb{R}^{k}$, and outputs a k-way partition $\left\{A_{i}\right\}_{i=1}^{k}$. Then for every $i \in[1: k]$ the following two statements hold (after suitable renumbering of one of the partitions):

$$
\text { 1) } \mu\left(A_{i} \triangle S_{i}\right) \leqslant \frac{\delta}{600} \cdot \mu\left(S_{i}\right) \quad \text { and } \quad \text { 2) } \phi\left(A_{i}\right) \leqslant\left(1+\frac{\delta}{300}\right) \cdot \phi\left(S_{i}\right)+\frac{\delta}{300} \text {. }
$$

The Spectral Embedding Let $\mathcal{L}_{G}=I-D^{-1 / 2} A D^{-1 / 2}$ be a normalized Laplacian matrix, where D is diagonal degree matrix and A is adjacency matrix. We refer to the k th eigenvalue of matrix \mathcal{L}_{G} by $\lambda_{k} \triangleq \lambda_{k}\left(\mathcal{L}_{G}\right)$. Let f_{k} be the eigenvector corresponding to λ_{k}. The vectors f_{1} to f_{n} form a orthonormal basis of \mathbb{R}^{n}. Following Peng et al., we define the spectral embedding map $F: V \rightarrow \mathbb{R}^{k}$ by

$$
\begin{equation*}
F(u)=\frac{1}{\sqrt{d_{u}}}\left(f_{1}(u), \ldots, f_{k}(u)\right)^{\mathrm{T}} \tag{8}
\end{equation*}
$$

for all vertices $u \in V$.
The Clustering Algorithm For a set of k centers c_{1}, \ldots, c_{k} and a partition $\mathcal{X}_{1}, \ldots, \mathcal{X}_{k}$ of V, define the cost as

$$
\operatorname{Cost}\left(\left\{\mathcal{X}_{i}, c_{i}\right\}_{i=1}^{k}\right)=\sum_{i=1}^{k} \sum_{u \in \mathcal{X}_{i}} d_{u}\left\|F(u)-c_{i}\right\|^{2} .
$$

Note that the norm $\left\|F(u)-c_{i}\right\|$ is weighted by d_{u}. Alternatively, we may ask to cluster a set containing d_{u} copies of $F(u)$. Let OPT be the minimal cost that can be obtained in this way. The
approximate k-partitioning algorithm returns a partition A_{1}, \ldots, A_{k} of V and corresponding center vectors c_{1}, \ldots, c_{k} such that

$$
\begin{equation*}
\operatorname{Cost}\left(\left\{A_{i}, c_{i}\right\}_{i=1}^{k}\right)=\sum_{i=1}^{k} \sum_{u \in A_{i}} d_{u}\left\|F_{u}-c_{i}\right\|^{2} \leqslant \mathrm{APR} \cdot \mathrm{OPT} \tag{9}
\end{equation*}
$$

Throughout the paper, we use $\left\{A_{i}, c_{i}\right\}_{i=1}^{k}$ to denote the clustering returned by the approximation algorithm. The goal is to show that this clustering satisfies Theorem 1.2.

The Proof of the Main Theorem: Part ii) follows from Part i). Indeed,

$$
\mu\left(A_{i}\right) \geqslant \mu\left(S_{i} \cap A_{i}\right)=\mu\left(S_{i}\right)-\mu\left(S_{i} \backslash A_{i}\right) \geqslant \mu\left(S_{i}\right)-\mu\left(A_{i} \triangle S_{i}\right) \geqslant\left(1-\delta / 5^{4}\right) \cdot \mu\left(S_{i}\right)
$$

and $\left|E\left(A_{i}, \overline{A_{i}}\right)\right| \leqslant\left|E\left(S_{i}, \overline{S_{i}}\right)\right|+\mu\left(A_{i} \Delta S_{i}\right)$ since every edge that is counted in $\left|E\left(A_{i}, \overline{A_{i}}\right)\right|$ but not in $\left|E\left(S_{i}, \overline{S_{i}}\right)\right|$ must have an endpoint in $A_{i} \Delta S_{i}$. Thus

$$
\Phi\left(A_{i}\right)=\frac{\left|E\left(A_{i}, \overline{A_{i}}\right)\right|}{\mu\left(A_{i}\right)} \leqslant \frac{\left|E\left(S_{i}, \overline{S_{i}}\right)\right|+\delta \mu\left(S_{i}\right) / 5^{4}}{\left(1-\delta / 5^{4}\right) \mu\left(S_{i}\right)} \leqslant\left(1+\frac{\delta}{300}\right) \cdot \phi\left(S_{i}\right)+\frac{\delta}{300} .
$$

The proof of Part I builds upon the following Lemmas that we will prove in Section 8 and Section 9 respectively.

Lemma 1.3. Under the hypothesis of Theorem 1.2, the following holds. If for every permutation $\sigma:[1: k] \rightarrow[1: k]$ there exists an index $i \in[1: k]$ such that $\mu\left(A_{i} \triangle S_{\sigma(i)}\right) \geqslant\left(\delta / 5^{4}\right) \cdot \mu\left(S_{\sigma(i)}\right)$. Then it holds that

$$
\operatorname{Cost}\left(\left\{A_{i}, c_{i}\right\}_{i=1}^{k}\right)>\frac{2 k^{2}}{\Psi} \cdot \mathrm{APR}
$$

Lemma 1.4. If $\Psi>4 \cdot k^{3 / 2}$ then there are points $\left\{p^{(i)}\right\}_{i=1}^{k}$ such that

$$
\text { OPT } \leqslant \operatorname{Cost}\left(\left\{S_{i}, p^{(i)}\right\}_{i=1}^{k}\right) \leqslant \sum_{i=1}^{k} \sum_{u \in S_{i}} d_{u}\left\|F(u)-p^{(i)}\right\|^{2} \leqslant\left(1+\frac{3 k}{\Psi}\right) \cdot \frac{k^{2}}{\Psi}
$$

Substituting these bounds into Equation 9 yields a contradiction, since

$$
\frac{2 k^{2}}{\Psi} \mathrm{APR}<\operatorname{Cost}\left(\left\{A_{i}, c_{i}\right\}_{i=1}^{k}\right) \leqslant \mathrm{APR} \cdot \mathrm{OPT} \leqslant \mathrm{APR} \cdot \operatorname{Cost}\left(\left\{S_{i}, p^{(i)}\right\}_{i=1}^{k}\right) \leqslant \mathrm{APR} \cdot\left(1+\frac{3 k}{\Psi}\right) \cdot \frac{k^{2}}{\Psi} .
$$

Thus there must be a permutation π (the identity after suitable renumbering of one of the partitions) such that $\mu\left(A_{i} \triangle S_{\sigma(i)}\right)<\left(\delta / 5^{4}\right) \cdot \mu\left(S_{\sigma(i)}\right)$ for all $i \in[1: k]$. This completes the proof of Theorem 1.2.

Remark 1.5. Based on the counter example to [4, Lemma 4.2] and the weaker statement of Lemma 7.1, we can show that the analogue [4, Lemma 4.4] of Lemma 1.3 requires an extra $\Theta(k)$ factor. More precisely, the gap assumption in [4, Lemma 4.4] has to be replaced with

$$
\operatorname{Cost}\left(\left\{A_{i}, c_{i}\right\}_{i=1}^{k}\right)>\Omega\left(\frac{k^{3}}{\Upsilon} \cdot \operatorname{APR}\right)
$$

which leads to $\Theta\left(k^{4}\right)$ instead of the stated $\Theta\left(k^{3}\right)$ dependance in Theorem 1.1.

2 Some Notation

We use the notation adopted by Peng et al. [4] and restate it below for completeness. Let $\mathcal{L}_{G}=$ $I-D^{-1 / 2} A D^{-1 / 2}$ be a normalized Laplacian matrix, where D is diagonal degree matrix and A is adjacency matrix. We refer to the k th eigenvalue of matrix \mathcal{L}_{G} by $\lambda_{k} \triangleq \lambda_{k}\left(\mathcal{L}_{G}\right)$. The (unit) eigenvector corresponding to λ_{k} is denoted by f_{k}.

Let $\overline{g_{i}}=\frac{D^{1 / 2} \chi S_{i}}{\left\|D^{1 / 2} \chi s_{i}\right\|}$, where $\chi_{S_{i}}$ is the characteristic vector of a subset $S_{i} \subseteq V$. Note $\overline{g_{i}}$ is the normalized characteristic vector of S_{i} and that $\left\|D^{1 / 2} \chi_{S_{i}}\right\|^{2}=\sum_{v \in S_{i}} \operatorname{deg}_{v}=\mu\left(S_{i}\right)$. We will write μ_{i} instead of $\mu\left(S_{i}\right)$. The Rayleigh quotient is defined by and satisfies that

$$
\mathcal{R}\left(\overline{g_{i}}\right) \triangleq \frac{\bar{g}_{i}^{\mathrm{T}} \mathcal{L}_{G} \overline{g_{i}}}{{\overline{g_{i}}}^{\mathrm{T}} \overline{g_{i}}}=\frac{1}{\mu_{S_{i}}} \chi_{S_{i}}^{\mathrm{T}} L \chi_{S_{i}}=\frac{|E(S, \bar{S})|}{\mu_{S_{i}}}=\phi_{S_{i}},
$$

where $L=D-A$ is the graph Laplacian matrix.
The eigenvectors $\left\{f_{i}\right\}_{i=1}^{n}$ form an orthonormal basis of \mathbb{R}^{n}. Thus each characteristic vector $\overline{g_{i}}$ can be expressed as $\overline{g_{i}}=\sum_{j=1}^{n} \alpha_{j}^{(i)} f_{j}$ for all $i \in[1: k]$. We define its projection onto the first k eigenvectors by $\widehat{f}_{i}=\sum_{j=1}^{k} \alpha_{j}^{(i)} f_{j}$.

Peng et al. [4] showed that $\operatorname{span}\left(\left\{\widehat{f}_{i}\right\}_{i=1}^{k}\right)=\operatorname{span}\left(\left\{f_{i}\right\}_{i=1}^{k}\right)$ if Υ is sufficiently small. In Lemma 4.2 we will show that equality holds if Ψ sufficiently small. Hence, each of the first k eigenvectors can be expressed by $f_{i}=\sum_{j=1}^{k} \beta_{j}^{(i)} \widehat{f}_{j}$. Moreover, they demonstrated that each vector

$$
\widehat{g}_{i}=\sum_{j=1}^{k} \beta_{j}^{(i)} \overline{g_{j}}
$$

approximates the eigenvector f_{i} for all $i \in[1: k]$, if Υ is sufficiently small. Theorem 4.1 states that Ψ being small suffices.

In the proof of Lemma 1.4, we will use the points

$$
\begin{equation*}
p^{(i)}=\frac{1}{\sqrt{\mu\left(S_{i}\right)}}\left(\beta_{i}^{(1)}, \ldots, \beta_{i}^{(k)}\right)^{\mathrm{T}} \tag{10}
\end{equation*}
$$

For any vertex $u \in S_{i}$, we have

$$
\begin{equation*}
p^{(i)}=\left(\left[D^{-1 / 2} \widehat{g_{1}}\right](u), \ldots,\left[D^{-1 / 2} \widehat{g_{k}}\right](u)\right) . \tag{11}
\end{equation*}
$$

Indeed, for any $h \in[1: k]$,

$$
D^{-1 / 2} \widehat{g_{h}}(u)=\sum_{1 \leqslant j \leqslant k} \beta_{j}^{(h)} D^{-1 / 2} \frac{D^{1 / 2} \chi_{S_{i}}}{\sqrt{\mu\left(S_{i}\right)}}(u)=\frac{1}{\sqrt{\mu\left(S_{i}\right)}} \beta_{i}^{(h)} .
$$

Our analysis builds upon the following two matrices. Let $\mathbf{F}, \mathbf{B} \in \mathbb{R}^{k \times k}$ be square matrices such that for all indices $i, j \in[1: k]$ we have

$$
\begin{equation*}
\mathbf{F}_{j, i}=\alpha_{j}^{(i)} \quad \text { and } \quad \mathbf{B}_{j, i}=\beta_{j}^{(i)} . \tag{12}
\end{equation*}
$$

$$
\begin{aligned}
& \widehat{f}_{i}=\sum_{j=1}^{k} \alpha_{j}^{(i)} f_{j} \frac{\text { Lemma } 4.3}{\left\|\widehat{f}_{i}-\overline{g_{i}}\right\|^{2} \leqslant \phi_{S_{i}} / \lambda_{k+1}} \overline{g_{i}}=\frac{D^{1 / 2} \chi S_{i}}{\sqrt{\mu\left(S_{i}\right)}}=\sum_{j=1}^{n} \alpha_{j}^{(i)} f_{j} \\
& f_{i}=\sum_{j=1}^{k} \beta_{j}^{(i)} \widehat{f}_{j} \frac{\text { Theorem } 4.1}{\left\|f_{i}-\widehat{g}_{i}\right\|^{2} \leqslant(1+3 k / \Psi) \cdot k / \Psi} \widehat{g}_{i}=\sum_{j=1}^{k} \beta_{j}^{(i)} \overline{g_{j}}
\end{aligned}
$$

Figure 1: The relation between the vectors $f_{i}, \widehat{f_{i}}, \widehat{g_{i}}$ and $\overline{g_{i}}$. The vectors $\left\{f_{i}\right\}_{i=1}^{n}$ are eigenvectors of the normalized Laplacian matrix \mathcal{L}_{G} of a graph G satisfying $\Psi>4 \cdot k^{3 / 2}$. The vectors $\left\{\bar{g}_{i}\right\}_{i=1}^{k}$ are the normalized characteristic vectors of an optimal partition $\left\{S_{i}\right\}_{i=1}^{k}$. For each $i \in[1: k]$ the vector \widehat{f}_{i} is the projection of vector $\overline{g_{i}}$ onto $\operatorname{span}\left(f_{1}, \ldots, f_{k}\right)$. By Lemma 4.3 the vectors \widehat{f}_{i} and \bar{g}_{i} are close for $i \in[1: k]$. By Lemma 4.2 it holds $\operatorname{span}\left(f_{1}, \ldots, f_{k}\right)=\operatorname{span}\left(\widehat{f_{1}}, \ldots, \widehat{f_{k}}\right)$ when $\Psi>4 \cdot k^{3 / 2}$, and thus we can write $f_{i}=\sum_{j=1}^{k} \beta_{j}^{(i)} \widehat{f_{j}}$. Moreover, by Theorem 4.1 the vectors f_{i} and $\widehat{g_{i}}=\sum_{j=1}^{k} \beta_{j}^{(i)} \overline{g_{j}}$ are close for $i \in[1: k]$.

3 Structure of the Paper

In Section 4, we will show that if $\Psi>4 \cdot k^{3 / 2}$ then the vectors \widehat{g}_{i} and f_{i} are close for all $i \in[1: k]$, i.e.,

$$
\left\|f_{i}-\widehat{g}_{i}\right\|^{2} \leqslant\left(1+\frac{3 k}{\Psi}\right) \cdot \frac{k}{\Psi}
$$

The proof follows [4] but our analysis depends on the less restrictive gap parameter Ψ.
In contrast to [4] we exhibit in Section 5 key spectral properties of the matrices $\mathbf{B}^{\mathrm{T}} \mathbf{B}$ and $\mathbf{B B}^{\mathrm{T}}$. More precisely, we show that they are close to the identity matrix in the following sense. If $\Psi \geqslant 10^{4} \cdot k^{3} / \varepsilon^{2}$ and $\varepsilon \in(0,1)$ then for all distinct $i, j \in[1: k]$ it holds

$$
\begin{equation*}
1-\varepsilon \leqslant\left\langle\mathbf{B}_{i,:}, \mathbf{B}_{i,:}\right\rangle \leqslant 1+\varepsilon \quad \text { and } \quad\left|\left\langle\mathbf{B}_{i,:}, \mathbf{B}_{j,:}\right\rangle\right| \leqslant \sqrt{\varepsilon} . \tag{13}
\end{equation*}
$$

Peng et al. (c.f. [4, Lemma 4.2]) proved that the L_{2} square norm between any distinct estimation center points satisfies

$$
\left\|p^{(i)}-p^{(j)}\right\|^{2} \geqslant\left[10^{3} \cdot k \cdot \min \left\{\mu\left(S_{i}\right), \mu\left(S_{j}\right)\right\}\right]^{-1}
$$

In Section 6 we improve their result by $\Theta(k)$-factor. Our analysis depends on a less restrictive gap assumption $\Psi \geqslant 20^{4} \cdot k^{3}$ and builds upon Equation 13. We show in Lemma 6.2 that for all distinct $i, j \in[1: k]$ it holds

$$
\left\|p^{(i)}-p^{(j)}\right\|^{2} \geqslant\left[3 \cdot \min \left\{\mu\left(S_{i}\right), \mu\left(S_{j}\right)\right\}\right]^{-1} .
$$

In Section 7, we formulate and prove a weaker version of [4, Lemma B.2] that is optimal up to a factor of 2 . We demonstrate its tightness in the Appendix.

We prove Lemma 1.3 in Section 8 and Lemma 1.4 in Section 9. The analysis of these two Lemmas builds upon our improved results from Section 4 to Section 7, and in contrast depends on the gap parameter Ψ instead of Υ.

4 The Vectors \widehat{g}_{i} and f_{i} are Close

In this section we prove Theorem 4.1. We argue in a similar manner as in [4], however, in terms of Ψ instead of Υ. For completeness, we show in Subsection 4.1 that the span of the first k
eigenvectors is equal to the span of the projections of the characteristic vectors of the S_{i} onto the first k eigenvectors. Then in Subsection 4.2 by expressing the eigenvectors f_{i} in terms of the vectors \widehat{f}_{i} we conclude the proof of Theorem 4.1.
Theorem 4.1. If $\Psi>4 \cdot k^{3 / 2}$ then the vectors $\widehat{g}_{i}=\sum_{j=1}^{k} \beta_{j}^{(i)} \overline{g_{j}}, i \in[1: k]$, satisfy

$$
\left\|f_{i}-\widehat{g_{i}}\right\|^{2} \leqslant\left(1+\frac{3 k}{\Psi}\right) \cdot \frac{k}{\Psi}
$$

4.1 Analyzing the Columns of Matrix F

We prove in this subsection the following result that depends on gap parameter Ψ.
Lemma 4.2. If $\Psi>k^{3 / 2}$ then the $\operatorname{span}\left(\left\{\widehat{f}_{i}\right\}_{i=1}^{k}\right)=\operatorname{span}\left(\left\{f_{i}\right\}_{i=1}^{k}\right)$ and thus each eigenvector can be expressed as $f_{i}=\sum_{j=1}^{k} \beta_{j}^{(i)} \cdot \widehat{f}_{j}$ for every $i \in[1: k]$.

To prove Lemma 4.2 we build upon the following result shown by Peng et al. [4].
Lemma 4.3. [4, Theorem 3.1 Part 1] For any $i \in[1: k]$ it holds that

$$
\left\|\overline{g_{i}}-\widehat{f}_{i}\right\|^{2}=\sum_{j=k+1}^{n}\left(\alpha_{j}^{(i)}\right)^{2} \leqslant \frac{\mathcal{R}\left(\overline{g_{i}}\right)}{\lambda_{k+1}}=\frac{\phi_{S_{i}}}{\lambda_{k+1}} .
$$

Based on the following two results we prove Lemma 4.2.
Lemma 4.4. For every $i \in[1: k]$ and $p \neq q \in[1: k]$ it holds that

$$
1-\phi_{S_{i}} / \lambda_{k+1} \leqslant\left\|\widehat{f}_{i}\right\|^{2}=\left\|\alpha^{(i)}\right\|^{2} \leqslant 1 \quad \text { and } \quad\left|\left\langle\widehat{f}_{p}, \widehat{f}_{q}\right\rangle\right|=\left|\left\langle\alpha^{p}, \alpha^{q}\right\rangle\right| \leqslant \frac{\sqrt{\phi_{S_{p}} \cdot \phi_{S_{q}}}}{\lambda_{k+1}} .
$$

Proof. The first part follows by Lemma 4.3 and the following chain of inequalities

$$
1-\frac{\phi_{S_{i}}}{\lambda_{k+1}} \leqslant 1-\sum_{j=k+1}^{n}\left(\alpha_{j}^{(i)}\right)^{2}=\left\|\widehat{f}_{i}\right\|^{2}=\sum_{j=1}^{k}\left(\alpha_{j}^{(i)}\right)^{2} \leqslant \sum_{j=1}^{n}\left(\alpha_{j}^{(i)}\right)^{2}=1
$$

We show now the second part. Since $\left\{f_{i}\right\}_{i=1}^{n}$ are orthonormal eigenvectors we have for all $p \neq q$ that

$$
\begin{equation*}
\left\langle f_{p}, f_{q}\right\rangle=\sum_{l=1}^{n} \alpha_{l}^{(p)} \cdot \alpha_{l}^{(q)}=0 . \tag{14}
\end{equation*}
$$

We combine Equation 14 and Cauchy-Schwarz to obtain

$$
\begin{aligned}
\left|\left\langle\widehat{f}_{p}, \widehat{f}_{q}\right\rangle\right| & =\left|\sum_{l=1}^{k} \alpha_{l}^{(p)} \cdot \alpha_{l}^{(q)}\right|=\left|\sum_{l=k+1}^{n} \alpha_{l}^{(p)} \cdot \alpha_{l}^{(q)}\right| \\
& \leqslant \sqrt{\sum_{l=k+1}^{n}\left(\alpha_{l}^{(p)}\right)^{2}} \cdot \sqrt{\sum_{l=k+1}^{n}\left(\alpha_{l}^{(q)}\right)^{2}} \leqslant \frac{\sqrt{\phi_{S_{p}} \cdot \phi_{S_{q}}}}{\lambda_{k+1}}
\end{aligned}
$$

Lemma 4.5. If $\Psi>k^{3 / 2}$ then the columns $\left\{\mathbf{F}_{:, i}\right\}_{i=1}^{k}$ are linearly independent.

Proof. We show that the columns of matrix \mathbf{F} are almost orthonormal. Consider the symmetric matrix $\mathbf{F}^{\mathrm{T}} \mathbf{F}$. It is known that $\operatorname{ker}\left(\mathbf{F}^{\mathrm{T}} \mathbf{F}\right)=\operatorname{ker}(\mathbf{F})$ and that all eigenvalues of matrix $\mathbf{F}^{\mathrm{T}} \mathbf{F}$ are real numbers. We proceeds by showing that the smallest eigenvalue $\lambda_{\min }\left(\mathbf{F}^{\mathrm{T}} \mathbf{F}\right)>0$. This would imply that $\operatorname{ker}(\mathbf{F})=\emptyset$ and hence yields the statement.

By combining Gersgorin Circle Theorem, Lemma 4.4 and Cauchy-Schwarz it holds that

$$
\begin{aligned}
\lambda\left(\mathbf{F}^{\mathrm{T}} \mathbf{F}\right) & \geqslant \min _{i \in[k]}\left\{\left(\mathbf{F}^{\mathrm{T}} \mathbf{F}\right)_{i i}-\sum_{j \neq i}^{k}\left|\left(\mathbf{F}^{\mathrm{T}} \mathbf{F}\right)_{i j}\right|\right\}=\min _{i \in[k]}\left\{\left\|\alpha^{(i)}\right\|^{2}-\sum_{j \neq i}^{k}\left|\left\langle\alpha^{(j)}, \alpha^{(i)}\right\rangle\right|\right\} \\
& \geqslant 1-\sum_{j=1}^{k} \sqrt{\frac{\phi_{S_{j}}}{\lambda_{k+1}}} \sqrt{\frac{\phi_{S_{i^{\star}}}}{\lambda_{k+1}}} \geqslant 1-\sqrt{k} \sqrt{\sum_{j=1}^{k} \frac{\phi_{S_{j}}}{\lambda_{k+1}}} \sqrt{\frac{\phi_{S_{i^{\star}}}}{\lambda_{k+1}}} \geqslant 1-\frac{k^{3 / 2}}{\Psi}>0 .
\end{aligned}
$$

We present now the proof of Lemma 4.2.
Proof of Lemma 4.2. Let λ be an arbitrary non-zero vector. Notice that

$$
\begin{equation*}
\sum_{i=1}^{k} \lambda_{i} \cdot \widehat{f}_{i}=\sum_{i=1}^{k} \lambda_{i} \sum_{j=1}^{k} \alpha_{j}^{(i)} f_{j}=\sum_{j=1}^{k}\left(\sum_{i=1}^{k} \lambda_{i} \alpha_{j}^{(i)}\right) f_{j}=\sum_{j=1}^{k} \gamma_{j} f_{j}, \quad \text { where } \quad \gamma_{j}=\left\langle\mathbf{F}_{j,:}, \lambda\right\rangle . \tag{15}
\end{equation*}
$$

By Lemma 4.5 the columns $\left\{\mathbf{F}_{:, i}\right\}_{i=1}^{k}$ are linearly independent and since $\gamma=\mathbf{F} \lambda$, it follows at least one component $\gamma_{j} \neq 0$. Therefore the vectors $\left\{\widehat{f}_{i}\right\}_{i=1}^{k}$ are linearly independent and span \mathbb{R}^{k}.

4.2 Analyzing Eigenvectors f in terms of \widehat{f}_{j}

To prove Theorem 4.1 we establish next the following result.
Lemma 4.6. If $\Psi>k^{3 / 2}$ then for $i \in[k]$ it holds

$$
\left(1+\frac{2 k}{\Psi}\right)^{-1} \leqslant \sum_{j=1}^{k}\left(\beta_{j}^{(i)}\right)^{2} \leqslant\left(1-\frac{2 k}{\Psi}\right)^{-1}
$$

Proof. We show now the upper bound. By Lemma $4.2 f_{i}=\sum_{j=1}^{k} \beta_{j}^{(i)} \widehat{f}_{j}$ for all $i \in[1: k]$ and thus

$$
\begin{aligned}
1 & =\left\|f_{i}\right\|^{2}=\left\langle\sum_{a=1}^{k} \beta_{a}^{(i)} \widehat{f_{a}}, \sum_{b=1}^{k} \beta_{b}^{(i)} \widehat{f}_{b}\right\rangle \\
& =\sum_{j=1}^{k}\left(\beta_{j}^{(i)}\right)^{2}\left\|\widehat{f}_{j}\right\|^{2}+\sum_{a=1}^{k} \sum_{b \neq a}^{k} \beta_{a}^{(i)} \beta_{b}^{(i)}\left\langle\widehat{f}_{a}, \widehat{f}_{b}\right\rangle \\
& \stackrel{(\star)}{\geqslant}\left(1-\frac{2 k}{\Psi}\right) \cdot \sum_{j=1}^{k}\left(\beta_{j}^{(i)}\right)^{2}
\end{aligned}
$$

To prove the inequality (\star) we consider the two terms separately.

By Lemma 4.4, $\left\|\widehat{f}_{j}\right\|^{2} \geqslant 1-\phi_{S_{j}} / \lambda_{k+1}$. We then apply $\sum_{i} a_{i} b_{i} \leqslant\left(\sum_{i} a_{i}\right)\left(\sum_{i} b_{i}\right)$ for all nonnegative vectors a, b and obtain

$$
\sum_{j=1}^{k}\left(\beta_{j}^{(i)}\right)^{2}\left(1-\frac{\phi_{S_{j}}}{\lambda_{k+1}}\right)=\sum_{j=1}^{k}\left(\beta_{j}^{(i)}\right)^{2}-\sum_{j=1}^{k}\left(\beta_{j}^{(i)}\right)^{2} \frac{\phi_{S_{j}}}{\lambda_{k+1}} \geqslant\left(1-\frac{k}{\Psi}\right) \sum_{j=1}^{k}\left(\beta_{j}^{(i)}\right)^{2}
$$

Again by Lemma 4.4, we have $\left|\left\langle\widehat{f}_{a}, \widehat{f}_{b}\right\rangle\right| \leqslant \sqrt{\phi_{S_{a}} \phi_{S_{b}}} / \lambda_{k+1}$, and by Cauchy-Schwarz it holds

$$
\begin{aligned}
\sum_{a=1}^{k} \sum_{b \neq a}^{k} \beta_{a}^{(i)} \beta_{b}^{(i)}\left\langle\widehat{f}_{a}, \widehat{f}_{b}\right\rangle & \geqslant-\sum_{a=1}^{k} \sum_{b \neq a}^{k}\left|\beta_{a}^{(i)}\right| \cdot\left|\beta_{b}^{(i)}\right| \cdot\left|\left\langle\widehat{f}_{a}, \widehat{f}_{b}\right\rangle\right| \\
& \geqslant-\frac{1}{\lambda_{k+1}} \sum_{a=1}^{k} \sum_{b \neq a}^{k}\left|\beta_{a}^{(i)}\right| \sqrt{\phi_{S_{a}}} \cdot\left|\beta_{b}^{(i)}\right| \sqrt{\phi_{S_{b}}} \\
& \geqslant-\frac{1}{\lambda_{k+1}}\left(\sum_{j=1}^{k}\left|\beta_{j}^{(i)}\right| \sqrt{\phi_{S_{j}}}\right)^{2} \geqslant-\frac{k}{\Psi} \cdot \sum_{j=1}^{k}\left(\beta_{j}^{(i)}\right)^{2}
\end{aligned}
$$

The lower bound follows by analogous arguments.
We are ready now to prove Theorem 4.1.
Proof of Theorem 4.1. By Lemma 4.2, we have $f_{i}=\sum_{j=1}^{k} \beta_{j}^{(i)} \widehat{f}_{j}$ and recall that $\widehat{g_{i}}=\sum_{j=1}^{k} \beta_{j}^{(i)} \overline{g_{j}}$ for all $i \in[1: k]$. We combine triangle inequality, Cauchy-Schwarz, Lemma 4.3 and Lemma 4.6 to obtain

$$
\begin{aligned}
& \left\|f_{i}-\widehat{g_{i}}\right\|^{2}=\left\|\sum_{j=1}^{k} \beta_{j}^{(i)}\left(\widehat{f}_{j}-\overline{g_{j}}\right)\right\|^{2} \leqslant\left(\sum_{j=1}^{k}\left|\beta_{j}^{i}\right| \cdot\left\|\widehat{f}_{j}-\overline{g_{j}}\right\|\right)^{2} \\
\leqslant & \left(\sum_{j=1}^{k}\left(\beta_{j}^{(i)}\right)^{2}\right) \cdot\left(\sum_{j=1}^{k}\left\|\widehat{f}_{j}-\overline{g_{j}}\right\|^{2}\right) \leqslant\left(1-\frac{2 k}{\Psi}\right)^{-1}\left(\frac{1}{\lambda_{k+1}} \sum_{j=1}^{k} \phi_{S_{j}}\right) \\
= & \left(1-\frac{2 k}{\Psi}\right)^{-1} \cdot \frac{k}{\Psi} \leqslant\left(1+\frac{3 k}{\Psi}\right) \cdot \frac{k}{\Psi},
\end{aligned}
$$

where the last inequality uses $\Psi>4 \cdot k$.

5 Analyzing Matrix B

In this section we bound the inner product of any two rows of matrix \mathbf{B} (c.f. Equation 12).

Theorem 5.1. If $\Psi \geqslant 10^{4} \cdot k^{3} / \varepsilon^{2}$ and $\varepsilon \in(0,1)$ then for all distinct $i, j \in[1: k]$ it holds

$$
1-\varepsilon \leqslant\left\langle\mathbf{B}_{i,:}, \mathbf{B}_{i,:}\right\rangle \leqslant 1+\varepsilon \quad \text { and } \quad\left|\left\langle\mathbf{B}_{i,:}, \mathbf{B}_{j,:}\right\rangle\right| \leqslant \sqrt{\varepsilon} .
$$

The proof is divided into two parts. We show in Lemma 5.4 that $1-\varepsilon \leqslant\left\langle\mathbf{B}_{i,:}, \mathbf{B}_{i,:}\right\rangle \leqslant 1+\varepsilon$, and we establish the second statement $\left|\left\langle\mathbf{B}_{i, \text {, }}, \mathbf{B}_{j,:}\right\rangle\right| \leqslant \sqrt{\varepsilon}$ in Lemma 5.5.

5.1 Analyzing the Column Space of Matrix B

We show below that the matrix $\mathbf{B}^{\mathrm{T}} \mathbf{B}$ is close to the identity matrix.
Lemma 5.2. (Columns) If $\Psi>4 \cdot k^{3 / 2}$ then for all distinct $i, j \in[1: k]$ it holds

$$
1-\frac{3 k}{\Psi} \leqslant\left\langle\mathbf{B}_{:, i}, \mathbf{B}_{:, i}\right\rangle \leqslant 1+\frac{3 k}{\Psi} \quad \text { and } \quad\left|\left\langle\mathbf{B}_{:, i}, \mathbf{B}_{:, j}\right\rangle\right| \leqslant 4 \sqrt{\frac{k}{\Psi}} .
$$

Proof. By Lemma 4.6 it holds that

$$
1-\frac{3 k}{\Psi} \leqslant\left\langle\mathbf{B}_{: i, i}, \mathbf{B}_{:, i}\right\rangle=\sum_{j=1}^{k}\left(\beta_{j}^{(i)}\right)^{2} \leqslant 1+\frac{3 k}{\Psi} .
$$

Recall that $\widehat{g_{i}}=\sum_{j=1}^{k} \beta_{j}^{(i)} \cdot \overline{g_{j}}$. Moreover, since the eigenvectors $\left\{f_{i}\right\}_{i=1}^{k}$ and the characteristic vectors $\left\{\overline{g_{i}}\right\}_{i=1}^{k}$ are orthonormal by combing Cauchy-Schwarz and by Theorem 4.1 it holds

$$
\begin{aligned}
\left|\left\langle\mathbf{B}_{:, i}, \mathbf{B}_{:, j}\right\rangle\right| & =\sum_{l=1}^{k} \beta_{l}^{(i)} \beta_{l}^{(j)}=\left\langle\sum_{a=1}^{k} \beta_{a}^{(i)} \cdot \overline{g_{a}}, \sum_{b=1}^{k} \beta_{b}^{(j)} \cdot \overline{g_{b}}\right\rangle=\left\langle\widehat{g_{i}}, \widehat{g_{j}}\right\rangle \\
& =\left\langle\left(\widehat{g_{i}}-f_{i}\right)+f_{i},\left(\widehat{g_{j}}-f_{j}\right)+f_{j}\right\rangle \\
& =\left\langle\widehat{g_{i}}-f_{i}, \widehat{g_{j}}-f_{j}\right\rangle+\left\langle\widehat{g_{i}}-f_{i}, f_{j}\right\rangle+\left\langle f_{i}, \widehat{g_{j}}-f_{j}\right\rangle \\
& \leqslant\left\|\widehat{g_{i}}-f_{i}\right\| \cdot\left\|\widehat{g_{j}}-f_{j}\right\|+\left\|\widehat{g_{i}}-f_{i}\right\|+\left\|\widehat{g_{j}}-f_{j}\right\| \\
& \leqslant\left(1+\frac{3 k}{\Psi}\right) \cdot \frac{k}{\Psi}+2 \sqrt{\left(1+\frac{3 k}{\Psi}\right) \cdot \frac{k}{\Psi}} \leqslant 4 \sqrt{\frac{k}{\Psi}} .
\end{aligned}
$$

Using a stronger gap assumption we show that the columns of matrix \mathbf{B} are linearly independent.
Lemma 5.3. If $\Psi>25 \cdot k^{3}$ then the columns $\left\{\mathbf{B}_{: i}\right\}_{i=1}^{k}$ are linearly independent.
Proof. Since $\operatorname{ker}(\mathbf{B})=\operatorname{ker}\left(\mathbf{B}^{\mathrm{T}} \mathbf{B}\right)$ and $\mathbf{B}^{\mathrm{T}} \mathbf{B}$ is SPSD^{3} matrix, it suffices to show that the smallest eigenvalue

$$
\lambda\left(\mathbf{B}^{\mathrm{T}} \mathbf{B}\right)=\min _{x \neq 0} \frac{x^{\mathrm{T}} \mathbf{B}^{\mathrm{T}} \mathbf{B} x}{x^{\mathrm{T}} x}>0 .
$$

By Lemma 5.2,

$$
\sum_{i=1}^{k} \sum_{j \neq i}^{k}\left|x_{i}\right|\left|x_{j}\right|\left|\left\langle\beta^{(i)}, \beta^{(j)}\right\rangle\right| \leqslant 4 \sqrt{\frac{k}{\Psi}}\left(\sum_{i=1}^{k}\left|x_{i}\right|\right)^{2} \leqslant\|x\|^{2} \cdot 4 k \sqrt{\frac{k}{\Psi}},
$$

and

$$
\begin{aligned}
x^{\mathrm{T}} \mathbf{B}^{\mathrm{T}} \mathbf{B} x & =\left\langle\sum_{i=1}^{k} x_{i} \beta^{(i)}, \sum_{j=1}^{k} x_{j} \beta^{(j)}\right\rangle=\sum_{i=1}^{k} x_{i}^{2}\left\|\beta^{(i)}\right\|^{2}+\sum_{i=1}^{k} \sum_{j \neq i}^{k} x_{i} x_{j}\left\langle\beta^{(i)}, \beta^{(j)}\right\rangle \\
& \geqslant\left(1-\frac{3 k}{\Psi}\right)\|x\|^{2}-\sum_{i=1}^{k} \sum_{j \neq i}^{k}\left|x_{i}\right|\left|x_{j}\right|\left|\left\langle\beta^{(i)}, \beta^{(j)}\right\rangle\right| \geqslant\left(1-5 k \sqrt{\frac{k}{\Psi}}\right) \cdot\|x\|^{2} .
\end{aligned}
$$

Therefore $\lambda\left(\mathbf{B}^{\mathrm{T}} \mathbf{B}\right)>0$ and the statement follows.

[^2]
5.2 Analyzing the Row Space of Matrix B

In this subsection we show that the matrix $\mathbf{B B}^{\mathrm{T}}$ is close to the identity matrix. We bound now the squared L_{2} norm of the rows in matrix \mathbf{B}, i.e. the diagonal entries in matrix $\mathbf{B B}^{\mathrm{T}}$.
Lemma 5.4. (Rows) If $\Psi \geqslant 400 \cdot k^{3} / \varepsilon^{2}$ and $\varepsilon \in(0,1)$ then for all distinct $i, j \in[1: k]$ it holds

$$
1-\varepsilon \leqslant\left\langle\mathbf{B}_{i,:}, \mathbf{B}_{i,:}\right\rangle \leqslant 1+\varepsilon .
$$

Proof. We show that the eigenvalues of matrix $\mathbf{B B}^{\mathrm{T}}$ are consentrated around 1. This would imply that $\mathbf{1}_{i}^{\mathrm{T}} \mathbf{B B}^{\mathrm{T}} \mathbf{1}_{i}=\left\langle\mathbf{B}_{i,:}, \mathbf{B}_{i,:}\right\rangle \approx 1$. By Lemma 5.2 we have

$$
\left(1-\frac{3 k}{\Psi}\right)^{2} \leqslant\left(\beta^{(i)}\right)^{\mathrm{T}} \cdot \mathbf{B B}^{\mathrm{T}} \cdot \beta^{(i)}=\left\|\beta^{(i)}\right\|^{4}+\sum_{j \neq i}^{k}\left\langle\beta^{(j)}, \beta^{(i)}\right\rangle^{2} \leqslant\left(1+\frac{3 k}{\Psi}\right)^{2}+\frac{16 k^{2}}{\Psi} \leqslant 1+\frac{23 k^{2}}{\Psi}
$$

and

$$
\left|\left(\beta^{(i)}\right)^{\mathrm{T}} \cdot \mathbf{B B}^{\mathrm{T}} \cdot \beta^{(j)}\right| \leqslant \sum_{l=1}^{k}\left|\left\langle\beta^{(i)}, \beta^{(l)}\right\rangle\right|\left|\left\langle\beta^{(l)}, \beta^{(j)}\right\rangle\right| \leqslant 8\left(1+\frac{3 k}{\Psi}\right) \sqrt{\frac{k}{\Psi}}+16 \frac{k^{2}}{\Psi} \leqslant 11 \sqrt{\frac{k}{\Psi}} .
$$

By Lemma 5.3 every vector $x \in \mathbb{R}^{k}$ can be expressed as $x=\sum_{i=1}^{k} \gamma_{i} \beta^{(i)}$.

$$
\begin{aligned}
x^{\mathrm{T}} \mathbf{B B}^{\mathrm{T}} x & =\sum_{i=1}^{k} \gamma_{i}\left(\beta^{(i)}\right)^{\mathrm{T}} \cdot \mathbf{B B}^{\mathrm{T}} \cdot \sum_{j=1}^{k} \gamma_{j} \beta^{(j)} \\
& =\sum_{i=1}^{k} \gamma_{i}^{2}\left(\beta^{(i)}\right)^{\mathrm{T}} \cdot \mathbf{B B}^{\mathrm{T}} \cdot \beta^{(i)}+\sum_{i=1}^{k} \sum_{j \neq i}^{k} \gamma_{i} \gamma_{j}\left(\beta^{(i)}\right)^{\mathrm{T}} \cdot \mathbf{B B}^{\mathrm{T}} \cdot \beta^{(j)} \\
& \geqslant\left(1-\frac{23 k^{2}}{\Psi}-11 k \sqrt{\frac{k}{\Psi}}\right)\|\gamma\|^{2} \geqslant\left(1-14 k \sqrt{\frac{k}{\Psi}}\right)\|\gamma\|^{2} .
\end{aligned}
$$

and

$$
x^{\mathrm{T}} x=\sum_{i=1}^{k} \sum_{j=1}^{k} \gamma_{i} \gamma_{j}\left\langle\beta^{(i)}, \beta^{(j)}\right\rangle=\sum_{i=1}^{k} \gamma_{i}^{2}\left\|\beta^{(i)}\right\|^{2}+\sum_{i=1}^{k} \sum_{j \neq i}^{k} \gamma_{i} \gamma_{j}\left\langle\beta^{(i)}, \beta^{(j)}\right\rangle
$$

By Lemma 5.2 we have $\left|\sum_{i=1}^{k} \sum_{j \neq i}^{k} \gamma_{i} \gamma_{j}\left\langle\beta^{(i)}, \beta^{(j)}\right\rangle\right| \leqslant\|\gamma\|^{2} \cdot 4 k \sqrt{\frac{k}{\Psi}}$ and $\left\|\beta^{(i)}\right\|^{2} \leqslant 1+\frac{3 k}{\Psi}$. Thus it holds

$$
\left(1-5 k \sqrt{\frac{k}{\Psi}}\right)\|\gamma\|^{2} \leqslant x^{\mathrm{T}} x \leqslant\left(1+5 k \sqrt{\frac{k}{\Psi}}\right)\|\gamma\|^{2} .
$$

Therefore

$$
1-20 k \sqrt{\frac{k}{\Psi}} \leqslant \lambda\left(\mathbf{B B}^{\mathrm{T}}\right) \leqslant 1+20 k \sqrt{\frac{k}{\Psi}} .
$$

We have now established the first part of Theorem 5.1. We turn to the second part and restate it in the following Lemma.

Lemma 5.5. (Rows) If $\Psi \geqslant 10^{4} \cdot k^{3} / \varepsilon^{2}$ and $\varepsilon \in(0,1)$ then for all distinct $i, j \in[1: k]$ it holds

$$
\left|\left\langle\mathbf{B}_{i,:}, \mathbf{B}_{j,:}\right\rangle\right| \leqslant \sqrt{\varepsilon} .
$$

To prove Lemma 5.5 we establish the following three Lemmas. Before stating them we need some notation that is inspired by Lemma 5.2.

Definition 5.6. Let $\mathbf{B}^{\mathrm{T}} \mathbf{B}=\mathbf{I}+\mathbf{E}$, where $\left|\mathbf{E}_{i j}\right| \leqslant 4 \sqrt{\frac{k}{\Psi}}$ and \mathbf{E} is symmetric matrix. Then we have

$$
\left(\mathbf{B B}^{\mathrm{T}}\right)^{2}=\mathbf{B}(\mathbf{I}+\mathbf{E}) \mathbf{B}^{\mathrm{T}}=\mathbf{B B}^{\mathrm{T}}+\mathbf{B E B}^{\mathrm{T}} .
$$

Lemma 5.7. If $\Psi \geqslant 40^{2} \cdot k^{3} / \varepsilon^{2}$ and $\varepsilon \in(0,1)$ then all eigenvalues of matrix $\mathbf{B E B}^{\mathrm{T}}$ satisfy

$$
\left|\lambda\left(\mathbf{B E B}^{\mathrm{T}}\right)\right| \leqslant \varepsilon / 5 .
$$

Proof. Let $z=\mathbf{B}^{\mathrm{T}} x$. We upper bound the quadratic form

$$
\left|x^{\mathrm{T}} \mathbf{B E B}^{\mathrm{T}} x\right|=\left|z^{\mathrm{T}} \mathbf{E} z\right| \leqslant \sum_{i j}\left|\mathbf{E}_{i j}\right|\left|z_{i}\right|\left|z_{j}\right| \leqslant 4 \sqrt{\frac{k}{\Psi}} \cdot\left(\sum_{i=1}^{k}\left|z_{i}\right|\right)^{2} \leqslant\|z\|^{2} \cdot 4 k \sqrt{\frac{k}{\Psi}} .
$$

By Lemma 5.4 we have $1-\varepsilon \leqslant \lambda\left(\mathbf{B B}^{\mathrm{T}}\right) \leqslant 1+\varepsilon$ and since $\|z\|^{2}=\frac{x \mathbf{B B}^{\mathrm{T}} x}{x^{\mathrm{T}} x} \cdot\|x\|^{2}$ it follows that

$$
\frac{\|z\|^{2}}{1+\varepsilon} \leqslant\|x\|^{2} \leqslant \frac{\|z\|^{2}}{1-\varepsilon}
$$

and hence

$$
\left|\lambda\left(\mathbf{B E B}^{\mathrm{T}}\right)\right| \leqslant \max _{x} \frac{\left|x^{\mathrm{T}} \mathbf{B E B}^{\mathrm{T}} x\right|}{x^{\mathrm{T}} x} \leqslant 4(1+\varepsilon) \cdot k \sqrt{\frac{k}{\Psi}} \leqslant \varepsilon / 5 .
$$

Lemma 5.8. Suppose $\left\{u_{i}\right\}_{i=1}^{k}$ is orthonormal basis and the square matrix \mathbf{U} has u_{i} as its ith column. Then $\mathbf{U}^{\mathrm{T}} \mathbf{U}=\mathbf{I}=\mathbf{U U}^{\mathrm{T}}$.

Proof. Notice that by the definition of \mathbf{U} it holds $\mathbf{U}^{\mathrm{T}} \mathbf{U}=\mathbf{I}$. Moreover, the matrix \mathbf{U}^{-1} exists. Hence, we have $\mathbf{U}^{\mathrm{T}}=\mathbf{U}^{-1}$, and thus $\mathbf{U U}^{\mathrm{T}}=\mathbf{I}$ as claimed.
Lemma 5.9. If $\Psi \geqslant 40^{2} \cdot k^{3} / \varepsilon^{2}$ and $\varepsilon \in(0,1)$ then it holds $\left|\left(\mathbf{B E B}^{T}\right)_{i j}\right| \leqslant \varepsilon / 5$ for every $i, j \in[1: k]$. Proof. Notice that $\mathbf{B E B}^{\mathrm{T}}$ is symmetric matix, since E is symmetric. By SVD Theorem there is an orthonormal basis $\left\{u_{i}\right\}_{i=1}^{k}$ such that $\mathbf{B E B}^{\mathrm{T}}=\sum_{i=1}^{k} \lambda_{i}\left(\mathbf{B E B}^{\mathrm{T}}\right) \cdot u_{i} u_{i}^{\mathrm{T}}$. Thus, it suffices to bound the expression

$$
\left|\left(\mathbf{B E B}^{\mathrm{T}}\right)_{i j}\right| \leqslant \sum_{l=1}^{k}\left|\lambda_{l}\left(\mathbf{B E B}^{\mathrm{T}}\right)\right| \cdot\left|\left(u_{l} u_{l}^{\mathrm{T}}\right)_{i j}\right| .
$$

By Lemma 5.8 we have

$$
\sum_{l=1}^{k}\left|\left(u_{l}\right)_{i}\right| \cdot\left|\left(u_{l}\right)_{j}\right| \leqslant \sqrt{\left\|\mathbf{U}_{i,:}\right\|^{2}} \sqrt{\left\|\mathbf{U}_{j,:}\right\|^{2}}=1
$$

We apply now Lemma 5.7 to obtain

$$
\sum_{l=1}^{k}\left|\lambda_{l}\left(\mathbf{B E B}^{\mathrm{T}}\right)\right| \cdot\left|\left(u_{l} u_{l}^{\mathrm{T}}\right)_{i j}\right| \leqslant \frac{\varepsilon}{5} \cdot \sum_{l=1}^{k}\left|\left(u_{l}\right)_{i}\right| \cdot\left|\left(u_{l}\right)_{j}\right| \leqslant \frac{\varepsilon}{5} .
$$

We are ready now to prove Lemma 5.5, i.e. $\left|\left\langle\mathbf{B}_{i,:}, \mathbf{B}_{j,:}\right\rangle\right| \leqslant \sqrt{\varepsilon}$ for all $i \neq j$.
Proof of Lemma 5.5. By Definition 5.6 we have $\left(\mathbf{B B}^{T}\right)^{2}=\mathbf{B B}^{\mathrm{T}}+\mathbf{B E B}^{\mathrm{T}}$. Observe that the (i, j) th entry of matrix $\mathbf{B B}^{\mathrm{T}}$ is equal to the inner product between the i th and j th row of matrix \mathbf{B}, i.e. $\left(\mathbf{B B}^{\mathrm{T}}\right)_{i j}=\left\langle\mathbf{B}_{i,:}, \mathbf{B}_{j,:}\right\rangle$. Moreover, we have

$$
\left[\left(\mathbf{B B}^{\mathrm{T}}\right)^{2}\right]_{i j}=\sum_{l=1}^{k}\left(\mathbf{B B}^{\mathrm{T}}\right)_{i, l}\left(\mathbf{B B}^{\mathrm{T}}\right)_{l, j}=\sum_{l=1}^{k}\left\langle\mathbf{B}_{i,:}, \mathbf{B}_{l,:}\right\rangle\left\langle\mathbf{B}_{l,:}, \mathbf{B}_{j,:}\right\rangle .
$$

For the entries on the main diagonal, it holds

$$
\left\langle\mathbf{B}_{i,:}, \mathbf{B}_{i,:}\right\rangle^{2}+\sum_{l \neq i}^{k}\left\langle\mathbf{B}_{i,:}, \mathbf{B}_{l,:}\right\rangle^{2}=\left[\left(\mathbf{B B}^{\mathrm{T}}\right)^{2}\right]_{i i}=\left[\mathbf{B B}^{\mathrm{T}}+\mathbf{B E B}^{\mathrm{T}}\right]_{i i}=\left\langle\mathbf{B}_{i,:}, \mathbf{B}_{i,:}\right\rangle+\left(\mathbf{B E B}^{\mathrm{T}}\right)_{i i},
$$

and hence by applying Lemma 5.4 with $\varepsilon^{\prime}=\varepsilon / 5$ and Lemma 5.9 with $\varepsilon^{\prime}=\varepsilon$ we obtain

$$
\left\langle\mathbf{B}_{i,:}, \mathbf{B}_{j,:}\right\rangle^{2} \leqslant \sum_{l \neq i}\left\langle\mathbf{B}_{i,:}, \mathbf{B}_{l,:}\right\rangle^{2} \leqslant\left(1+\frac{\varepsilon}{5}\right)+\frac{\varepsilon}{5}-\left(1-\frac{\varepsilon}{5}\right)^{2} \leqslant \varepsilon .
$$

6 The Points $p^{(i)}$ are Well-Spaced

Peng et al. (c.f. [4, Lemma 4.2]) showed that the L_{2} square norm between any distinct estimation center points (defined in Equation (10)) is lower bounded by

$$
\left\|p^{(i)}-p^{(j)}\right\|^{2} \geqslant\left[10^{3} \cdot k \cdot \min \left\{\mu\left(S_{i}\right), \mu\left(S_{j}\right)\right\}\right]^{-1} .
$$

We now improve their result by $\Theta(k)$-factor. We achieve this by building upon Theorem 5.1, rather than invoking [4, Lemma 4.2]. We use the following fact.

Lemma 6.1. [4, Lemma B.1] We have $\left\|p^{(i)}\right\|^{2} \in\left[\left(1 \pm \frac{1}{10}\right) \mu\left(S_{i}\right)\right]$ for every $i \in[1: k]$.
Lemma 6.2. If $\Psi \geqslant 20^{4} \cdot k^{3}$ then for distinct $i, j \in[1: k]$ it holds that

$$
\left\|p^{(i)}-p^{(j)}\right\|^{2} \geqslant\left[3 \cdot \min \left\{\mu\left(S_{i}\right), \mu\left(S_{j}\right)\right\}\right]^{-1} .
$$

Suppose c_{i} is the center of a cluster A_{i}. If $\left\|c_{i}-p^{\left(i_{1}\right)}\right\| \geqslant\left\|c_{i}-p^{\left(i_{2}\right)}\right\|$ then it holds

$$
\left\|c_{i}-p^{\left(i_{1}\right)}\right\|^{2} \geqslant \frac{1}{4}\left\|p^{\left(i_{1}\right)}-p^{\left(i_{2}\right)}\right\|^{2} \geqslant\left[12 \cdot \min \left\{\mu\left(S_{i_{1}}\right), \mu\left(S_{i_{2}}\right)\right\}\right]^{-1} .
$$

Proof. We argue in a similar manner as in [4] but in contrast apply Theorem 5.1 with $\varepsilon=1 / 4$ to obtain

$$
\left\langle\frac{p^{(i)}}{\left\|p^{(i)}\right\|}, \frac{p^{(j)}}{\left\|p^{(j)}\right\|}\right\rangle=\frac{\left\langle\mathbf{B}_{i,:}, \mathbf{B}_{j,:}\right\rangle}{\left\|\mathbf{B}_{i,:}:\right\|\left\|\mathbf{B}_{j,:}\right\|} \leqslant \frac{\sqrt{\varepsilon}}{1-\varepsilon}=\frac{2}{3} .
$$

W.l.o.g. assume that $\left\|p^{(i)}\right\|^{2} \geqslant\left\|p^{(j)}\right\|^{2}$. Then by Lemma 6.1 we have

$$
\left\|p^{(i)}\right\|^{2} \geqslant \frac{9}{10}\left[\min \left\{\mu\left(S_{i}\right), \mu\left(S_{j}\right)\right\}\right]^{-1} .
$$

Let $\left\|p^{(j)}\right\|=\alpha \cdot\left\|p^{(i)}\right\|$ for some $\alpha \in(0,1]$. Then

$$
\begin{aligned}
\left\|p^{(i)}-p^{(j)}\right\|^{2} & =\left\|p^{(i)}\right\|^{2}+\left\|p^{(j)}\right\|^{2}-2\left\langle\frac{p^{(i)}}{\left\|p^{(i)}\right\|}, \frac{p^{(j)}}{\left\|p^{(j)}\right\|}\right\rangle\left\|p^{(i)}\right\|\left\|p^{(j)}\right\| \\
& \geqslant\left(\alpha^{2}-\frac{4}{3} \cdot \alpha+1\right)\left\|p^{(i)}\right\|^{2} \geqslant\left[3 \cdot \min \left\{\mu\left(S_{i}\right), \mu\left(S_{j}\right)\right\}\right]^{-1}
\end{aligned}
$$

since for all $\alpha \in \mathbb{R}$ it holds $\alpha^{2}-4 \alpha / 3+1>1 / 2$.
The second claim follows immediately from the first.

7 Amended Version of [4, Lemma B.2]

In Appendix 9 we give a counter example of [4, Lemma B.2]. Here, we formulate and prove a correction. The counter example in the appendix shows that the revised statement is tight up to a factor of 2 .

Lemma 7.1. Let S_{1} to S_{k} and A_{1} to A_{k} be partitions of the vertex set. Suppose for every permutation $\pi:[1: k] \rightarrow[1: k]$ there is an index $i \in[1: k]$ such that

$$
\begin{equation*}
\mu\left(A_{i} \triangle S_{\pi(i)}\right) \geqslant 2 \varepsilon \cdot \mu\left(S_{\pi(i)}\right) \tag{16}
\end{equation*}
$$

where $\varepsilon \in(0,1-1 / k)$ is a parameter. Then there is an index $j \in[1: k]$ and distinct indices $j_{1}, j_{2} \in[1: k]$ such that

$$
\mu\left(A_{j} \cap S_{j_{1}}\right) \geqslant \mu\left(A_{j} \cap S_{j_{2}}\right) \geqslant \frac{\varepsilon}{k-1} \cdot \min \left\{\mu\left(S_{j_{1}}\right), \mu\left(S_{j_{2}}\right)\right\} .
$$

Proof. We argue in a similar manner as in [4], but correct an oversight in Part 1, Case 2. We begin by defining a function

$$
\sigma(l)=\arg \max _{j \in[k]} \frac{\mu\left(A_{l} \cap S_{j}\right)}{\mu\left(S_{j}\right)} .
$$

Part 1. Suppose σ is a permutation. By Equation 16 there is an index i such that

$$
\mu\left(A_{i} \triangle S_{\sigma(i)}\right)=\mu\left(S_{\sigma(i)} \backslash A_{i}\right)+\mu\left(A_{i} \backslash S_{\sigma(i)}\right) \geqslant 2 \varepsilon \cdot \mu\left(S_{\sigma(i)}\right) .
$$

Case 1: Suppose $\mu\left(S_{\sigma(i)} \backslash A_{i}\right) \geqslant \varepsilon \cdot \mu\left(S_{\sigma(i)}\right)$. Since $S_{\sigma(i)} \backslash A_{i}=\dot{\cup}_{j \neq i} \mu\left(A_{j} \cap S_{\sigma(i)}\right)$, there is an index $j \neq i$ such that

$$
\mu\left(A_{j} \cap S_{\sigma(i)}\right) \geqslant \frac{\epsilon}{k-1} \mu\left(S_{\sigma(i)}\right) \geqslant \frac{\epsilon}{k-1} \cdot \min \left\{\mu\left(S_{\sigma(j)}\right), \mu\left(S_{\sigma(i)}\right)\right\}
$$

Moreover, by the definition of σ it holds that

$$
\frac{\mu\left(A_{j} \cap S_{\sigma(j)}\right)}{\mu\left(S_{\sigma(j)}\right)} \geqslant \frac{\mu\left(A_{j} \cap S_{\sigma(i)}\right)}{\mu\left(S_{\sigma(i)}\right)} \geqslant \frac{\epsilon}{k-1} .
$$

Thus

$$
\mu\left(A_{j} \cap S_{\sigma(j)}\right) \geqslant \frac{\epsilon}{k-1} \cdot \min \left\{\mu\left(S_{\sigma(j)}\right), \mu\left(S_{\sigma(i)}\right)\right\}
$$

Case 2: Suppose $\mu\left(A_{i} \backslash S_{\sigma(i)}\right) \geqslant \varepsilon \cdot \mu\left(S_{\sigma(i)}\right)$. Since $A_{i} \backslash S_{\sigma(i)}=\dot{\cup}_{\sigma(j) \neq \sigma(i)} A_{i} \cap S_{\sigma(j)}$, there is an index $\sigma(j) \neq \sigma(i)$ such that

$$
\mu\left(A_{i} \cap S_{\sigma(j)}\right) \geqslant \frac{\varepsilon}{k-1} \cdot \mu\left(S_{\sigma(j)}\right) \geqslant \frac{\varepsilon}{k-1} \cdot \min \left\{\mu\left(S_{\sigma(j)}\right), \mu\left(S_{\sigma(i)}\right)\right\}
$$

If $\mu\left(A_{i} \cap S_{\sigma(i)}\right) \leqslant(1-\varepsilon) \cdot \mu\left(S_{\sigma(i)}\right), \sum_{j \neq i} \mu\left(A_{j} \cap S_{\sigma(i)}\right) \geqslant \varepsilon \cdot \mu\left(S_{\sigma(i)}\right)$ and we are in the first case. Otherwise, for every $\sigma(j) \neq \sigma(i)$ it holds

$$
\mu\left(A_{i} \cap S_{\sigma(i)}\right) \geqslant(1-\varepsilon) \cdot \mu\left(S_{\sigma(i)}\right) \geqslant \varepsilon \cdot \min \left\{\mu\left(S_{\sigma(j)}\right), \mu\left(S_{\sigma(i)}\right)\right\} .
$$

Part 2. Suppose σ is NOT a permutation. There is an index $l \in[k]$ such that $l \notin$ $\{\sigma(1), \ldots, \sigma(k)\}$. Since $\left\{A_{i}\right\}_{i=1}^{k}$ and $\left\{S_{i}\right\}_{i=1}^{k}$ are partitions, there is an index $j \in[k]$ such that

$$
\mu\left(A_{j} \cap S_{l}\right) \geqslant \frac{1}{k} \cdot \min \left\{\mu\left(S_{\sigma(j)}\right), \mu\left(S_{l}\right)\right\}
$$

Notice that $\sigma(j) \neq l$ and thus by the definition of σ it holds

$$
\frac{\mu\left(A_{j} \cap S_{\sigma(j)}\right)}{\mu\left(S_{\sigma(j)}\right)} \geqslant \frac{\mu\left(A_{j} \cap S_{l}\right)}{\mu\left(S_{l}\right)} \geqslant \frac{1}{k} .
$$

Thus

$$
\mu\left(A_{j} \cap S_{\sigma(j)}\right) \geqslant \frac{1}{k} \cdot \min \left\{\mu\left(S_{\sigma(j)}\right), \mu\left(S_{l}\right)\right\} .
$$

8 The Proof of Lemma 1.3

We first establish

$$
\begin{equation*}
\operatorname{Cost}\left(\left\{A_{i}, c_{i}\right\}_{i=1}^{k}\right) \geqslant\left[\sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{u \in A_{i} \cap S_{j}} d_{u}\left\|p^{(j)}-c_{i}\right\|^{2}\right]-\frac{7 k^{2}}{\Psi} \cdot \mathrm{APR}^{1 / 2} \tag{17}
\end{equation*}
$$

Observe that

$$
\begin{aligned}
& \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{u \in A_{i} \cap S_{j}} d_{u}\left\|F(u)-c_{i}\right\|^{2} \\
\geqslant & \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{u \in A_{i} \cap S_{j}} d_{u}\left\|F_{u}-p^{(j)}\right\|^{2}+\sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{u \in A_{i} \cap S_{j}} d_{u}\left\|p^{(j)}-c_{i}\right\|^{2} \\
& -2 \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{u \in A_{i} \cap S_{j}} d_{u}\left\|F_{u}-p^{(j)}\right\| \cdot\left\|p^{j}-c^{i}\right\| \\
\geqslant & {\left[\sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{u \in A_{i} \cap S_{j}} d_{u}\left\|p^{(j)}-c_{i}\right\|^{2}\right]-2 \sqrt{2(\operatorname{APR}+1)} \cdot \operatorname{Cost}\left(\left\{S_{i}, p^{(i)}\right\}_{i=1}^{k}\right), }
\end{aligned}
$$

where the first inequality follows from

$$
\begin{aligned}
\left\|F(u)-c_{i}\right\|^{2} & =\left\|\left(F_{u}-p^{(j)}\right)+\left(p^{(j)}-c_{i}\right)\right\|^{2} \geqslant\left(\left\|F_{u}-p^{(j)}\right\|-\left\|p^{(j)}-c_{i}\right\|\right)^{2} \\
& =\left\|F_{u}-p^{(j)}\right\|^{2}+\left\|p^{(j)}-c_{i}\right\|^{2}-2\left\|F_{u}-p^{(j)}\right\| \cdot\left\|p^{(j)}-c_{i}\right\|
\end{aligned}
$$

We prove now that

$$
\begin{aligned}
& \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{u \in A_{i} \cap S_{j}} d_{u}\left\|F_{u}-p^{(j)}\right\| \cdot\left\|p^{(j)}-c_{i}\right\| \\
\leqslant & \sqrt{\sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{u \in A_{i} \cap S_{j}} d_{u}\left\|F_{u}-p^{(j)}\right\|^{2}} \cdot \sqrt{\sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{u \in A_{i} \cap S_{j}} d_{u}\left\|p^{(j)}-c_{i}\right\|^{2}} \\
\leqslant & \sqrt{2(\mathrm{APR}+1)} \cdot \operatorname{Cost}\left(\left\{S_{i}, p^{(i)}\right\}_{i=1}^{k}\right)
\end{aligned}
$$

To upper bound the first summation we use the fact that

$$
\sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{u \in A_{i} \cap S_{j}} d_{u}\left\|F_{u}-p^{(j)}\right\|^{2}=\sum_{j=1}^{k} \sum_{u \in S_{j}} d_{u}\left\|F_{u}-p^{(j)}\right\|^{2}=\operatorname{Cost}\left(\left\{S_{i}, p^{(i)}\right\}_{i=1}^{k}\right) .
$$

For the second summation we introduce a vector F_{u} for every $u \in A_{i} \cap S_{j}$. Then it follows that

$$
\left\|p^{(j)}-c_{i}\right\|^{2} \leqslant\left(\left\|F_{u}-p^{(j)}\right\|+\left\|F_{u}-c_{i}\right\|\right)^{2} \leqslant 2\left[\left\|F_{u}-p^{(j)}\right\|^{2}+\left\|F_{u}-c_{i}\right\|^{2}\right]
$$

and thus

$$
\begin{aligned}
& \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{u \in A_{i} \cap S_{j}} d_{u}\left\|p^{(j)}-c_{i}\right\|^{2} \\
\leqslant & 2\left[\sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{u \in A_{i} \cap S_{j}} d_{u}\left\|F_{u}-p^{(j)}\right\|^{2}+\sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{u \in A_{i} \cap S_{j}} d_{u}\left\|F_{u}-c_{i}\right\|^{2}\right] \\
\leqslant & 2\left[\sum_{j=1}^{k} \sum_{u \in S_{j}} d_{u}\left\|F_{u}-p^{(j)}\right\|^{2}+\sum_{i=1}^{k} \sum_{u \in A_{i}} d_{u}\left\|F_{u}-c_{i}\right\|^{2}\right] \\
\leqslant & 2(\mathrm{APR}+1) \cdot \operatorname{Cost}\left(\left\{S_{i}, p^{(i)}\right\}_{i=1}^{k}\right),
\end{aligned}
$$

since

$$
\begin{aligned}
\sum_{i=1}^{k} \sum_{u \in A_{i}} d_{u}\left\|F_{u}-c_{i}\right\|^{2} & =\operatorname{Cost}\left(\left\{A_{i}, c_{i}\right\}_{i=1}^{k}\right) \leqslant \operatorname{APR} \cdot \operatorname{Cost}\left(\left\{S_{i}, c_{i}^{\star}\right\}_{i=1}^{k}\right) \\
& \leqslant \operatorname{APR} \cdot \operatorname{Cost}\left(\left\{S_{i}, p^{(i)}\right\}_{i=1}^{k}\right)
\end{aligned}
$$

Moreover, by Lemma 1.4 we have

$$
2 \sqrt{2(\mathrm{APR}+1)} \cdot \operatorname{Cost}\left(\left\{S_{i}, p^{(i)}\right\}_{i=1}^{k}\right) \leqslant \frac{7 k^{2}}{\Psi} \cdot \sqrt{\mathrm{APR}} .
$$

Having established Equation 17, it is now easy to complete the proof of Lemma 1.3. By Lemma 7.1 there is an index i and distinct indices $i_{1} \neq i_{2}$ such that

$$
\left\{\mu\left(A_{i} \cap S_{i_{1}}\right), \mu\left(A_{i} \cap S_{i_{2}}\right)\right\} \geqslant \frac{\varepsilon}{k} \cdot \min \left\{\mu\left(S_{i_{1}}\right), \mu\left(S_{i_{2}}\right)\right\} .
$$

Let c_{i} be the center of the cluster A_{i}. Assume w.l.o.g. that $\left\|c_{i}-p^{\left(i_{1}\right)}\right\| \geqslant\left\|c_{i}-p^{\left(i_{2}\right)}\right\|$. We lower bound C_{A} by the loss accumulated from points only in the subset $A_{i} \cap S_{i_{1}}$. By Equation 17, the choice of $A_{i} \cap S_{i_{1}}$ and Lemma 6.2 it holds that

$$
\sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{u \in A_{i} \cap S_{j}} d_{u}\left\|p^{(j)}-c_{i}\right\|^{2} \geqslant \sum_{u \in A_{i} \cap S_{i_{1}}} d_{u}\left\|p^{\left(i_{1}\right)}-c_{i}\right\|^{2} \geqslant \mu\left(A_{i} \cap S_{i_{1}}\right) \cdot\left\|p^{\left(i_{1}\right)}-c_{i}\right\|^{2} \geqslant \frac{1}{12} \cdot \frac{\varepsilon}{k} .
$$

This completes the proof of Lemma 1.3.

9 The Proof of Lemma 1.4

By Theorem 4.1 we have $\left\|f_{i}-\widehat{g}_{i}\right\|^{2} \leqslant\left(1+\frac{3 k}{\Psi}\right) \cdot \frac{k}{\Psi}$ and thus

$$
\begin{aligned}
& \sum_{i=1}^{k} \sum_{u \in S_{i}} d_{u}\left\|F(u)-c_{i}^{*}\right\|^{2} \leqslant \sum_{i=1}^{k} \sum_{u \in S_{i}} d_{u}\left\|F(u)-p^{(i)}\right\|^{2}=\sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{u \in S_{i}} d_{u}\left(F(u)_{j}-p_{j}^{(i)}\right)^{2} \\
= & \sum_{j=1}^{k} \sum_{i=1}^{k} \sum_{u \in S_{i}}\left(f_{j}(u)-\widehat{g_{j}}(u)\right)^{2}=\sum_{j=1}^{k}\left\|f_{j}-\widehat{g_{j}}\right\|^{2} \leqslant\left(1+\frac{3 k}{\Psi}\right) \cdot \frac{k^{2}}{\Psi} .
\end{aligned}
$$

References

[1] J. R. Lee, S. Oveis Gharan, and L. Trevisan. Multi-way spectral partitioning and higher-order cheeger inequalities. In Proceedings of the Forty-fourth Annual ACM Symposium on Theory of Computing, STOC '12, pages 1117-1130, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1245-5. doi: 10.1145/2213977.2214078. URL http://doi.acm.org/10.1145/2213977.2214078.
[2] S. Oveis Gharan and L. Trevisan. Partitioning into expanders. In Proceedings of the TwentyFifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 1256-1266, 2014. doi: 10.1137/1.9781611973402.93. URL http://dx.doi.org/10.1137/1.9781611973402.93.
[3] R. Peng, H. Sun, and L. Zanetti. Partitioning well-clustered graphs with k-means and heat kernel. CoRR, abs/1411.2021, 2014. URL http://arxiv.org/abs/1411.2021.
[4] R. Peng, H. Sun, and L. Zanetti. Partitioning well-clustered graphs: Spectral clustering works! In Proceedings of The 28th Conference on Learning Theory, COLT 2015, Paris, France, July 3-6, 2015, pages 1423-1455, 2015. URL http://jmlr.org/proceedings/papers/v40/Peng15.html.

Appendix

We give a counterexample to the following Lemma in [4].

Lemma 9.1. [4, Lemma B.2] Let $\left(A_{1}, \ldots, A_{k}\right)$ and $\left(S_{1}, \ldots, S_{k}\right)$ be partitions of the vertex set of a graph G. Suppose for every permutation $\pi:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\}$ there exists index i such that $\mu\left(A_{i} \Delta S_{\pi(i)}\right) \geqslant 2 \varepsilon \cdot \mu\left(S_{\pi(i)}\right)$. Then, for any index i, there are ε_{i} and distinct indices i_{1} and i_{2} such that $\sum_{i=1}^{k} \varepsilon_{i} \geqslant \varepsilon$ and

$$
\mu\left(A_{i} \cap S_{i_{1}}\right) \geqslant \mu\left(A_{i} \cap S_{i_{2}}\right) \geqslant \varepsilon_{i} \cdot \min \left(\mu\left(S_{i_{1}}\right), \mu\left(S_{i_{2}}\right)\right)
$$

In the arXiv-version of the paper [3], the Lemma is formulated weaker.
Lemma 9.2. [4, Lemma 4.8] Let $\left(A_{1}, \ldots, A_{k}\right)$ and $\left(S_{1}, \ldots, S_{k}\right)$ be partitions of the vertex set of a graph G. Suppose for every permutation $\pi:\{1, \ldots, k\} \rightarrow\{1, \ldots, k\}$ there exists index i such that $\mu\left(A_{i} \Delta S_{\pi(i)}\right) \geqslant 2 \varepsilon \cdot \mu\left(S_{\pi(i)}\right)$. Then one of the following statements holds:

- For any index i, there are ε_{i} and distinct indices i_{1} and i_{2} such that $\sum_{i=1}^{k} \varepsilon_{i} \geqslant \varepsilon$ and

$$
\mu\left(A_{i} \cap S_{i_{1}}\right) \geqslant \mu\left(A_{i} \cap S_{i_{2}}\right) \geqslant \varepsilon_{i} \cdot \min \left\{\mu\left(S_{i_{1}}\right), \mu\left(S_{i_{2}}\right)\right\} .
$$

- There are indices $i^{\prime}, j, \ell($ they mean $j \neq \ell)$ such that

$$
\mu\left(A_{i^{\prime}} \cap S_{j}\right) \geqslant \mu\left(A_{i^{\prime}} \cap S_{\ell}\right) \geqslant \frac{1}{k} \cdot \mu\left(S_{\ell}\right) .
$$

The Counter Example: Let G be any regular graph. Then the volume of a set of vertices is proportional to the cardinality of the set. The partition S_{1} to S_{k} is into equal sized sets, and the number of disjoint sets satisfies $k \geqslant 4$. The partition A_{1} to A_{k} is such that for a fixed $\varepsilon \in(0,1 / 4)$ it holds

$$
\text { 1) } S_{1} \subseteq A_{1} \quad \text { and } \quad \text { 2) } A_{i} \subseteq S_{i} \text { and } \mu\left(A_{1} \cap S_{i}\right)=\frac{2 \varepsilon}{k-1} \cdot \mu\left(S_{i}\right) \text {, for } i \geqslant 2 \text {. }
$$

Notice that $\mu\left(A_{1}\right)=(1+2 \varepsilon) \cdot \mu\left(S_{1}\right)$.
We verify next that the above instance satisfies the hypothesis of Lemma 9.1 and Lemma 9.2. Observe that

$$
\mu\left(A_{1} \Delta S_{j}\right)= \begin{cases}\mu\left(A_{1} \backslash S_{1}\right)=2 \varepsilon \cdot \mu\left(S_{1}\right) & \text { if } j=1 \\ \mu\left(S_{1}\right)+\mu\left(A_{i}\right) \geqslant \mu\left(S_{1}\right) & \text { if } j>1\end{cases}
$$

Thus for every permutation π of the integers 1 to k, there is an i, namely $i=1$, such that

$$
\mu\left(A_{i} \Delta S_{\pi(i)}\right) \geqslant 2 \varepsilon \cdot \mu\left(S_{\pi(i)}\right)
$$

How about the conclusion of Lemma 9.1 and Lemma 9.2? Since $A_{j} \subset S_{j}$ for $j \geqslant 2$, for any two distinct indices j_{1} and j_{2}, we have

$$
\min \left\{\mu\left(A_{j} \cap S_{j_{1}}\right), \mu\left(A_{j} \cap S_{j_{2}}\right)\right\}=0
$$

Thus the conclusion of Lemma 9.1 and the first alternative of Lemma 9.2 do not hold, due to

$$
\sum_{i=1}^{k} \varepsilon_{i}=\varepsilon_{1}=\frac{2 \varepsilon}{k-1}<\varepsilon
$$

The second alternative of Lemma 9.2 certainly does not hold for $i^{\prime} \geqslant 2$. On the other hand, for $i^{\prime}=1$ and $\ell \geqslant 2$ we have

$$
\mu\left(A_{1} \cap S_{\ell}\right)=\frac{2 \varepsilon}{k-1} \cdot \mu\left(S_{\ell}\right)<\frac{1}{k} \cdot \mu\left(S_{\ell}\right)
$$

and hence the second alternative of Lemma 9.2 does not hold.

[^0]: *This work has been funded by the Cluster of Excellence "Multimodal Computing and Interaction" within the Excellence Initiative of the German Federal Government.

[^1]: ${ }^{1}$ Let S be a subset of vertices. We denote by $G[S]$ the induced subgraph whose edge set consists of all edges of G with both endpoints in S. The inner conductance of the subset S is defined by

 $$
 \begin{equation*}
 \phi(G[S])=\min _{X \subset S, \mu(X) \leqslant \mu(S) / 2} \frac{\left|E_{S}(X, \bar{X})\right|}{\mu_{S}(X)}, \tag{4}
 \end{equation*}
 $$

 where the quantities $\left|E_{S}(X, \bar{X})\right|$ and $\mu_{S}(X)$ are defined w.r.t. the induced subgraph $G[S]$. Oveis Gharan and Trevisan [2] defined a partition S_{1}, \ldots, S_{k} of V that is ($\phi_{\text {in }}, \phi_{\text {out }}$)-clustering if for all $i \in[1: k]$ it holds

 $$
 \begin{equation*}
 \phi\left(G\left[S_{i}\right]\right) \geqslant \phi_{\text {in }} \quad \text { and } \quad \phi\left(S_{i}\right) \leqslant \phi_{\text {out }} . \tag{5}
 \end{equation*}
 $$

 They showed that there exists a k-partitioning of graph G that is a $\left(\Omega\left(\lambda_{k+1} / k\right), O\left(k^{3} \sqrt{\lambda_{k}}\right)\right)$-clustering if the gap between the k th and $(k+1)$ th eigenvalue of matrix \mathcal{L}_{G} satisfies $\lambda_{k+1} \geqslant \Omega\left(k^{2} \sqrt{\lambda_{k}}\right)$.
 ${ }^{2}$ The function F will be defined in Equation 8.

[^2]: ${ }^{3}$ We denote by SPSD the class of symmetric positive semi-definite matrices.

