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Abstract

Spectral clustering is a popular and successful approach for partitioning the nodes of a
graph into clusters for which the ratio of outside connections compared to the volume (sum of
degrees) is small. In order to partition into k clusters, one first computes an approximation
of the first k eigenvectors of the (normalized) Laplacian of G, uses it to embed the vertices
of G into k-dimensional Euclidean space Rk, and then partitions the resulting points via a k-
means clustering algorithm. It is an important task for theory to explain the success of spectral
clustering.

Peng et al. (COLT, 2015) made an important step in this direction. They showed that
spectral clustering provably works if the gap between the (k + 1)-th and the k-th eigenvalue of
the normalized Laplacian is sufficiently large. They prove a structural and an algorithmic result.
The algorithmic result needs a considerably stronger gap assumption and does not analyze the
standard spectral clustering paradigm; it replaces spectral embedding by heat kernel embedding
and k-means clustering by locality sensitive hashing.

We extend their work in two directions. Structurally, we improve the quality guarantee for
spectral clustering by a factor of k and simultaneously weaken the gap assumption. Algorith-
mically, we show that the standard paradigm for spectral clustering works. Moreover, it even
works with the same gap assumption as required for the structural result.

∗This work has been funded by the Cluster of Excellence “Multimodal Computing and Interaction” within the
Excellence Initiative of the German Federal Government.
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1 Introduction

A cluster in an undirected graph G = (V,E) is a set S of nodes whose volume is large com-
pared to the number of outside connections. Formally, we define the conductance of S by φ(S) =∣∣E(S, S)

∣∣ /µ(S), where µ(S) =
∑

v∈S deg(u) is the volume of S. The k-way partitioning problem
for graphs asks to partition the vertices of a graph such that the conductance of each block of the
partition is small (formal definition below). This problem arises in many applications, e.g., image
segmentation and exploratory data analysis. We refer to the survey [8] for additional information.
A popular and very successful approach to clustering [3, 7, 8] is spectral clustering. One first com-
putes an approximation of the first k eigenvectors of the (normalized) Laplacian of G, uses it to
embed the vertices of G into k-dimensional Euclidean space Rk, and then partitions the resulting
points via a k-means clustering algorithm. It is an important task for theory to explain the success
of spectral clustering. Peng et al. [6] made an important step in this direction recently. They
showed that spectral clustering provably works if the (k + 1)-th and the k-th eigenvalue of the
normalized Laplacian differ sufficiently. In order to explain their result, we need some notation.

The order k partition constant ρ̂(k) of G is defined by

ρ̂(k) , min
partition (P1,...,Pk) of V

Φ(P1, . . . Pk), where Φ(Z1, . . . , Zk) = max
i∈[1:k]

φ(Zi).

Let LG = I − D−1/2AD−1/2 be the normalized Laplacian matrix of G, where D is the diagonal
degree matrix and A is the adjacency matrix, and let fj ∈ RV be the eigenvector corresponding to
the j-th smallest eigenvalue λj of LG. The spectral embedding map F : V → Rk is defined by

F (u) =
1√
du

(f1 (u) , . . . , fk (u))
T , for all vertices u ∈ V . (1)

Peng et al. [6] construct a k-means instance XV by inserting du many copies of the vector F (u)
into XV , for every vertex u ∈ V .

Let X be a set of vectors of the same dimension. Then

△k(X ) , min
partition (X1,...,Xk) of X

k∑

i=1

∑

x∈Xi

‖x− ci‖2 , where ci =
1

|X|
∑

x∈Xi

x,

is the optimal cost of clustering X into k sets. An α-approximate clustering algorithm returns a
k-way partition (A1, . . . , Ak) and centers c1, . . . , ck such that

Cost({Ai, ci}ki=1) ,
k∑

i=1

∑

x∈Ai

‖x− ci‖2 6 α · △k(X ). (2)

Theorem 1.1 ([6]). Let k > 3 and (P1, . . . , Pk) be a k-way partition of V with Φ(P1, . . . , Pk) = ρ̂(k).
Let G be a graph that satisfies the gap assumption

Υ =
λk+1

ρ̂(k)
= 2 · 105 · k3/δ, (3)

for some δ ∈ (0, 1/2]. Let (A1, . . . , Ak) be the k-way partition1 of V returned by an α-approximate
k-means algorithm applied to XV . Then the following statements hold (after suitable renumbering
of one of the partitions):

1) µ(Ai△Pi) 6 αδ · µ(Pi) and 2) φ(Ai) 6 (1 + 2αδ) · φ(Pi) + 2αδ.

1The k-means algorithm returns a partition of XV . One may assume w.l.o.g. that all copies of F (u) are put into
the same cluster of XV . Thus the algorithm also partitions V .
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Under the stronger gap assumption Υ = 2 · 105 · k5/δ, they showed how to obtain a partition
with essentially the guarantee stated in Theorem 1.1 in time O (m · poly log(n)). We use m = |E|
for the number of edges of G and n = |V | for the number of nodes. The algorithmic result does
not use the standard paradigm for spectral embedding. It uses the heat-kernel for the geometric
embedding and uses locality sensitive hashing for the clustering and hence does not really explain
the success of the standard paradigm for spectral embedding.

Our Contribution: We strengthen the approximation guarantees in Theorem 1.1 by a factor of
k and simultaneously weaken the gap assumption. As a consequence, the variant of Lloyd’s k-means
algorithm analyzed by Ostrovsky et al. [4] applied to2 X̃V achieves the improved approximation
guarantees in time O(m(k2 + (ln)/λk+1)) with constant probability. Table 1 summarizes these
results.

Let O be the set of all k-way partitions (P1, . . . , Pk) with Φ(P1, . . . , Pk) = ρ̂(k), i.e., the set of
all partitions that achieve the order k partition constant. Let

ρ̂avr(k) , min
(P1,...,Pk)∈O

1

k

k∑

i=1

φ(Pi)

be the minimal average conductance over all k-way partitions in O. Our gap assumption is defined
in terms of

Ψ ,
λk+1

ρ̂avr(k)
.

For the remainder of this paper we denote by (P1, . . . , Pk) a k-way partition of V that achieves
ρ̂avr(k). We can now state our main result.

Theorem 1.2 (Main Theorem). a) (Existence of a Good Clustering) Let G be a graph satisfying

Ψ = 204 · k3/δ (4)

for some δ ∈ (0, 1/2] and k > 3 and let (A1, . . . , Ak) be the k-way partition output by an α-
approximate clustering algorithm applied to the spectral embedding XV . Then for every i ∈ [1 : k]
the following two statements hold (after suitable renumbering of one of the partitions):

1) µ(Ai△Pi) 6
αδ

103k
· µ(Pi) and 2) φ(Ai) 6

(
1 +

2αδ

103k

)
· φ(Pi) +

2αδ

103k
.

b) (An Efficient Algorithm) If in addition k/δ > 109 and3 △k(XV ) > n−O(1), then the variant

of Lloyd’s algorithm analyzed by Ostrovsky et al. [4] applied to X̃V returns in time O(m(k2 +
(lnn)/λk+1)) with constant probability a partition (A1, . . . , Ak) such that for every i ∈ [1 : k] the
following two statements hold (after suitable renumbering of one of the partitions):

3) µ(Ai△Pi) 6
2δ

103k
· µ(Pi) and 4) φ(Ai) 6

(
1 +

4δ

103k

)
· φ(Pi) +

4δ

103k
.

Part (b) of the Theorem gives theoretical support for the practical success of spectral clustering
based on spectral embedding followed by k-means clustering. Previous papers [2, 6] replaced k-
means clustering by other techniques for their algorithmic results.
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Gap Assumption Partition Quality Running Time

Peng et al. [6] Υ = 2 · 105 · k3/δ
µ(Ai△Pi) 6 αδ · µ(Pi)

φ(Ai) 6 (1 + 2αδ) φ(Pi) + 2αδ
Existential result

This paper Ψ = 204 · k3/δ
µ(Ai△Pi) 6

αδ
103k · µ(Pi)

φ(Ai) 6
(
1 + 2αδ

103k

)
φ(Pi) +

2αδ
103k

Existential result

Peng et al. [6] Υ = 2 · 105 · k5/δ
µ(Ai△Pi) 6

δ log2 k
k2 · µ(Pi)

φ(Ai) 6
(
1 + 2δ log2 k

k2

)
φ(Pi) +

2δ log2 k
k2

O (m · poly log(n))

This paper

Ψ = 204 · k3/δ
k/δ > 109

△k(XV ) > n−O(1)

µ(Ai△Pi) 6
2δ

103k · µ(Pi)

φ(Ai) 6
(
1 + 4δ

103k

)
φ(Pi) +

4δ
103k

O
(
m
(
k2 + lnn

λk+1

))

Table 1: A comparison of the results in Peng et al. [6] and our results. The parameter δ ∈ (0, 1/2] relates the approximation
guarantees with the gap assumption.

If k 6 poly(log n) and λk+1 > poly(log n), our algorithm works in nearly linear time.
The k-means algorithm in [4] is efficient only for inputs X for which some partition into k

clusters is much better than any partition into k − 1 clusters; formally, for inputs X satisfying
△k(X ) 6 ε2 · △k−1(X ) for some ε ∈ (0, 6 · 10−7]. For the proof of Part (b), we show in Section 10

that X̃V satisfies this assumption.

The order k conductance constant ρ(k) is defined by

ρ(k) = min
disjoint nonempty Z1,...,Zk

Φ(Z1, . . . , Zk), where Φ(Z1, . . . , Zk) = max
i∈[1:k]

φ(Zi). (5)

Lee et al. [2] connected ρ(k) and the k-th smallest eigenvalue of the normalized Laplacian matrix
LG through the relation

λk/2 6 ρ(k) 6 O(k2)
√

λk, (6)

and Oveis Gharan and Trevisan [5] showed

ρ̂(k) 6 kρ(k). (7)

In Section 11, we establish an analogous relation for ρ̂avr(k).

The Proof of Part (a) of the Main Theorem: The proof of Part (a.1) builds upon the
following Lemmas that we will prove in Section 7 and Section 8, respectively. Recall that XV

contains du copies of F (u) for each u ∈ V . W.l.o.g. we may restrict attention to clusterings of
XV that put all copies of F (u) into the same cluster and hence induce a clustering of V . Let
(A1, . . . , Ak) with cluster centers c1 to ck be a clustering of V . Its k-means cost is

Cost({Ai, ci}ki=1) =
k∑

i=1

∑

u∈Ai

du ‖F (u)− ci‖2 .

2X̃V is defined as XV but in terms of approximate eigenvectors, see Section 10.1
3The case △k(XV ) 6 n−O(1) constitutes a trivial clustering problem. For technical reasons, we have to exclude

too easy inputs.
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Lemma 1.3 ((P1, . . . , Pk) is a good k-means partition). If Ψ > 4 · k3/2 then there are vectors
{p(i)}ki=1 such that

Cost({Pi, p
(i)}ki=1) 6

(
1 +

3k

Ψ

)
· k

2

Ψ
.

Lemma 1.4 (Only partitions close to (P1, . . . , Pk) are good). Under the hypothesis of Theorem 1.2,
the following holds. If for every permutation σ : [1 : k] → [1 : k] there exists an index i ∈ [1 : k]
such that

µ(Ai△Pσ(i)) >
8αδ

104k
· µ(Pσ(i)).

Then it holds that

Cost({Ai, ci}ki=1) >
2αk2

Ψ
.

Substituting these bounds into (2) yields a contradiction, since

2αk2

Ψ
< Cost({Ai, ci}ki=1) 6 α · △k(XV ) 6 α · Cost({Pi, p

(i)}ki=1) 6

(
1 +

3k

Ψ

)
· αk

2

Ψ
.

Therefore, there exists a permutation π (the identity after suitable renumbering of one of the
partitions) such that µ(Ai△Pi) <

8αδ
104k · µ(Pi) for all i ∈ [1 : k].

Part (a.2) follows from Part (a.1). Indeed, for δ′ = 8δ/104 we have

µ(Ai) > µ(Pi ∩Ai) = µ(Pi)− µ(Pi \ Ai) > µ(Pi)− µ(Ai△Pi) >

(
1− αδ′

k

)
· µ(Pi)

and |E(Ai, Ai)| 6 |E(Pi, Pi)|+ µ(Ai∆Pi) since every edge that is counted in |E(Ai, Ai)| but not in
|E(Pi, Pi)| must have an endpoint in Ai∆Pi. Thus

Φ(Ai) =
|E(Ai, Ai)|

µ(Ai)
6

|E(Pi, Pi)|+ αδ′

k · µ(Pi)

(1− α·δ′
k ) · µ(Pi)

6

(
1 +

2αδ′

k

)
· φ(Pi) +

2αδ′

k
.

This completes the proof of Part (a) of Theorem 1.2.

2 Notations

We use the notation adopted by Peng et al. [6] and restate it below for completeness. Let LG =
I − D−1/2AD−1/2 be a normalized Laplacian matrix, where D is diagonal degree matrix and A
is adjacency matrix. We refer to the j-th eigenvalue of matrix LG by λj , λj (LG). The (unit)
eigenvector corresponding to λj is denoted by fj.

Let gi =
D1/2χPi

‖D1/2χPi‖
, where χPi is the characteristic vector of a subset Pi ⊆ V . Note gi is the

normalized characteristic vector of Pi and that
∥∥D1/2χPi

∥∥2 =
∑

v∈Pi
degv = µ(Pi). We will write

µi instead of µ(Pi). The Rayleigh quotient is defined by and satisfies that

R (gi) ,
gi

TLGgi

giTgi
=

1

µ(Pi)
χT
Pi
LχPi =

|E(S, S)|
µ(Pi)

= φPi ,

where L = D −A is the graph Laplacian matrix.
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fi =
∑k

j=1 β
(i)
j f̂j

f̂i =
∑k

j=1 α
(i)
j fj

ĝi =
∑k

j=1 β
(i)
j gj

gi =
D1/2χPi√

µ(Pi)
=
∑n

j=1 α
(i)
j fj

Lemma 4.3

‖f̂i − gi‖
2 6 φPi

/λk+1

Theorem 4.1

‖fi − ĝi‖
2 6 (1 + 3k/Ψ) · k/Ψ

Figure 1: The relation between the vectors fi, f̂i, ĝi and gi. The vectors {fi}ni=1 are eigenvectors of the normalized Laplacian

matrix LG of a graph G satisfying Ψ > 4 · k3/2. The vectors {gi}ki=1 are the normalized characteristic vectors of an optimal

partition (P1, . . . , Pk). For each i ∈ [1 : k] the vector f̂i is the projection of vector gi onto span(f1, . . . , fk). By Lemma 4.3 the

vectors f̂i and gi are close for i ∈ [1 : k]. By Lemma 4.2 it holds span(f1, . . . , fk) = span(f̂1, . . . , f̂k) when Ψ > 4 · k3/2, and
thus we can write fi =

∑k
j=1 β

(i)
j f̂j . Moreover, by Theorem 4.1 the vectors fi and ĝi =

∑k
j=1 β

(i)
j gj are close for i ∈ [1 : k].

The eigenvectors {fi}ni=1 form an orthonormal basis of Rn. Thus each characteristic vector gi

can be expressed as gi =
∑n

j=1 α
(i)
j fj for all i ∈ [1 : k]. We define its projection onto the first k

eigenvectors by f̂i =
∑k

j=1 α
(i)
j fj.

Peng et al. [6] showed that span({f̂i}ki=1) = span({fi}ki=1) if the gap parameter Υ is large enough.
In Lemma 4.2 we demonstrate that similar statement holds with substituted gap parameter Ψ. This

implies that each of the first k eigenvectors can be expressed by fi =
∑k

j=1 β
(i)
j f̂j. Moreover, Peng

et al. [6] showed that each vector

ĝi =

k∑

j=1

β
(i)
j gj

approximates the eigenvector fi for all i ∈ [1 : k], if Υ is large. We prove in Theorem 4.1 that it
suffices to have a large gap parameter Ψ.

In the proof of Lemma 1.3, we will use the vectors

p(i) =
1√
µ(Pi)

(
β
(1)
i , . . . , β

(k)
i

)T
. (8)

For any vertex u ∈ Pi, we have

p(i) =
([

D−1/2ĝ1

]
(u) , . . . ,

[
D−1/2ĝk

]
(u)
)
. (9)

Indeed, for any h ∈ [1 : k],

D−1/2ĝh(u) =
∑

16j6k

β
(h)
j D−1/2D

1/2χPi√
µ(Pi)

(u) =
1√
µ(Pi)

β
(h)
i .

Our analysis builds upon the following two matrices. Let F,B ∈ Rk×k be square matrices such
that for all indices i, j ∈ [1 : k] we have

Fj,i = α
(i)
j and Bj,i = β

(i)
j . (10)
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3 Technical Advances in The Improved Quality Guarantee

In Section 4, we show that if Ψ > 4 · k3/2 then the vectors ĝi and fi are close for all i ∈ [1 : k], i.e.,

‖fi − ĝi‖2 6
(
1 +

3k

Ψ

)
· k
Ψ
.

The proof follows [6] but our analysis depends on the less restrictive gap parameter Ψ.
In contrast to [6] we exhibit in Section 5 key spectral properties of the matrices BTB and

BBT. More precisely, we show that they are close to the identity matrix. For our improved quality
guarantee we use the fact that if Ψ > 104 · k3/ε2 and ε ∈ (0, 1) then for all distinct i, j ∈ [1 : k] it
holds

1− ε 6 〈Bi,:,Bi,:〉 6 1 + ε and |〈Bi,:,Bj,:〉| 6
√
ε. (11)

Peng et al. (c.f. [6, Lemma 4.2]) proved that the square Euclidean distance between any distinct
estimation centers satisfies

∥∥∥p(i) − p(j)
∥∥∥
2
>
[
103 · k ·min {µ(Pi), µ(Pj)}

]−1
.

In Section 6, we improve their result by a factor of k. Our analysis depends on the less restrictive
gap assumption Ψ > 204 · k3 and builds upon (11). We show in Lemma 6.2 that for all distinct
i, j ∈ [1 : k] it holds ∥∥∥p(i) − p(j)

∥∥∥
2
> [3 ·min {µ(Pi), µ(Pj)}]−1 .

We prove Lemma 1.3 in Section 7 and Lemma 1.4 in Section 8. The analysis of these Lemmas
builds upon the results from Section 4 to Section 6.

4 Vectors ĝi and fi are Close

In this section we prove Theorem 4.1. We argue in a similar manner as in [6], however, in terms of Ψ
instead of Υ. For completeness, we show in Subsection 4.1 that the span of the first k eigenvectors
is equal to the span of the projections of the characteristic vectors of subsets Pi onto the first k
eigenvectors. Then in Subsection 4.2 by expressing the eigenvectors fi in terms of the vectors f̂i
we conclude the proof of Theorem 4.1.

Theorem 4.1. If Ψ > 4 · k3/2 then the vectors ĝi =
∑k

j=1 β
(i)
j gj , i ∈ [1 : k], satisfy

‖fi − ĝi‖2 6
(
1 +

3k

Ψ

)
· k
Ψ
.

4.1 Analyzing the Columns of Matrix F

We prove in this subsection the following result that depends on gap parameter Ψ.

Lemma 4.2. If Ψ > k3/2 then the span({f̂i}ki=1) = span({fi}ki=1) and thus each eigenvector can be

expressed as fi =
∑k

j=1 β
(i)
j · f̂j for every i ∈ [1 : k].

To prove Lemma 4.2 we build upon the following result shown by Peng et al. [6].
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Lemma 4.3. [6, Theorem 1.1 Part 1] For Pi ⊂ V let gi =
D1/2χPi

‖D1/2χPi‖
. Then any i ∈ [1 : k] it holds

that ∥∥∥gi − f̂i

∥∥∥
2
=

n∑

j=k+1

(
α
(i)
j

)2
6

R (gi)

λk+1
=

φ(Pi)

λk+1
.

Based on the following two results we prove Lemma 4.2.

Lemma 4.4. For every i ∈ [1 : k] and p 6= q ∈ [1 : k] it holds that

1− φ(Pi)/λk+1 6
∥∥∥f̂i
∥∥∥
2
=
∥∥∥α(i)

∥∥∥
2
6 1 and

∣∣∣
〈
f̂p, f̂q

〉∣∣∣ = |〈αp, αq〉| 6
√

φ(Pp) · φ(Pq)

λk+1
.

Proof. The first part follows by Lemma 4.3 and the following chain of inequalities

1− φ(Pi)

λk+1
6 1−

n∑

j=k+1

(
α
(i)
j

)2
=
∥∥∥f̂i
∥∥∥
2
=

k∑

j=1

(
α
(i)
j

)2
6

n∑

j=1

(
α
(i)
j

)2
= 1.

We show now the second part. Since {fi}ni=1 are orthonormal eigenvectors we have for all p 6= q
that

〈fp, fq〉 =
n∑

l=1

α
(p)
l · α(q)

l = 0. (12)

We combine (12) and Cauchy-Schwarz to obtain

∣∣∣
〈
f̂p, f̂q

〉∣∣∣ =

∣∣∣∣∣

k∑

l=1

α
(p)
l · α(q)

l

∣∣∣∣∣ =
∣∣∣∣∣

n∑

l=k+1

α
(p)
l · α(q)

l

∣∣∣∣∣

6

√√√√
n∑

l=k+1

(
α
(p)
l

)2
·

√√√√
n∑

l=k+1

(
α
(q)
l

)2
6

√
φ(Pp) · φ(Pq)

λk+1
.

�

Lemma 4.5. If Ψ > k3/2 then the columns {F:,i}ki=1 are linearly independent.

Proof. We show that the columns of matrix F are almost orthonormal. Consider the symmetric
matrix FTF. It is known that ker

(
FTF

)
= ker(F) and that all eigenvalues of matrix FTF are real

numbers. We proceeds by showing that the smallest eigenvalue λmin(F
TF) > 0. This would imply

that ker(F) = ∅ and hence yields the statement.
By combining Gersgorin Circle Theorem, Lemma 4.4 and Cauchy-Schwarz it holds that

λmin(F
TF) > min

i∈[1:k]




(
FTF

)
ii
−

k∑

j 6=i

∣∣∣
(
FTF

)
ij

∣∣∣



 = min

i∈[1:k]




∥∥∥α(i)

∥∥∥
2
−

k∑

j 6=i

∣∣∣
〈
α(j), α(i)

〉∣∣∣





> 1−
k∑

j=1

√
φ(Pj)

λk+1

√
φ(Pi⋆)

λk+1
> 1−

√
k

√√√√
k∑

j=1

φ(Pj)

λk+1

√
φ(Pi⋆)

λk+1
> 1− k3/2

Ψ
> 0,

where i⋆ ∈ [1 : k] is the index that minimizes the expression above. �

We present now the proof of Lemma 4.2.
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Proof of Lemma 4.2. Let λ be an arbitrary non-zero vector. Notice that

k∑

i=1

λi · f̂i =
k∑

i=1

λi

k∑

j=1

α
(i)
j fj =

k∑

j=1

(
k∑

i=1

λiα
(i)
j

)
fj =

k∑

j=1

γjfj, where γj = 〈Fj,:, λ〉 . (13)

By Lemma 4.5 the columns {F:,i}ki=1 are linearly independent and since γ = Fλ, it follows at least

one component γj 6= 0. Therefore the vectors
{
f̂i

}k

i=1
are linearly independent and span Rk. �

4.2 Analyzing Eigenvectors f in terms of f̂j

To prove Theorem 4.1 we establish next the following result.

Lemma 4.6. If Ψ > k3/2 then for i ∈ [k] it holds

(
1 +

2k

Ψ

)−1

6

k∑

j=1

(
β
(i)
j

)2
6

(
1− 2k

Ψ

)−1

.

Proof. We show now the upper bound. By Lemma 4.2 fi =
∑k

j=1 β
(i)
j f̂j for all i ∈ [1 : k] and thus

1 = ‖fi‖2 =
〈

k∑

a=1

β(i)
a f̂a,

k∑

b=1

β
(i)
b f̂b

〉

=
k∑

j=1

(
β
(i)
j

)2 ∥∥∥f̂j
∥∥∥
2
+

k∑

a=1

k∑

b6=a

β(i)
a β

(i)
b

〈
f̂a, f̂b

〉

(⋆)

>

(
1− 2k

Ψ

)
·

k∑

j=1

(
β
(i)
j

)2
.

To prove the inequality (⋆) we consider the two terms separately.

By Lemma 4.4,
∥∥∥f̂j
∥∥∥
2
> 1 − φ(Pj)/λk+1. We then apply

∑
i aibi 6 (

∑
i ai)(

∑
i bi) for all

non-negative vectors a, b and obtain

k∑

j=1

(
β
(i)
j

)2(
1− φ(Pj)

λk+1

)
=

k∑

j=1

(
β
(i)
j

)2
−

k∑

j=1

(
β
(i)
j

)2 φ(Pj)

λk+1
>

(
1− k

Ψ

) k∑

j=1

(
β
(i)
j

)2
.

Again by Lemma 4.4, we have
∣∣∣
〈
f̂a, f̂b

〉∣∣∣ 6
√

φ(Pa)φ(Pb)/λk+1, and by Cauchy-Schwarz it holds

k∑

a=1

k∑

b6=a

β(i)
a β

(i)
b

〈
f̂a, f̂b

〉
> −

k∑

a=1

k∑

b6=a

∣∣∣β(i)
a

∣∣∣ ·
∣∣∣β(i)

b

∣∣∣ ·
∣∣∣
〈
f̂a, f̂b

〉∣∣∣

> − 1

λk+1

k∑

a=1

k∑

b6=a

∣∣∣β(i)
a

∣∣∣
√

φ(Pa) ·
∣∣∣β(i)

b

∣∣∣
√

φ(Pb)

> − 1

λk+1




k∑

j=1

∣∣∣β(i)
j

∣∣∣
√

φ(Pj)




2

> − k

Ψ
·

k∑

j=1

(
β
(i)
j

)2
.

The lower bound follows by analogous arguments. �
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We are ready now to prove Theorem 4.1.

Proof of Theorem 4.1. By Lemma 4.2, we have fi =
∑k

j=1 β
(i)
j f̂j and recall that ĝi =

∑k
j=1 β

(i)
j gj

for all i ∈ [1 : k]. We combine triangle inequality, Cauchy-Schwarz, Lemma 4.3 and Lemma 4.6 to
obtain

‖fi − ĝi‖2 =

∥∥∥∥∥∥

k∑

j=1

β
(i)
j

(
f̂j − gj

)
∥∥∥∥∥∥

2

6




k∑

j=1

∣∣βi
j

∣∣ ·
∥∥∥f̂j − gj

∥∥∥




2

6




k∑

j=1

(
β
(i)
j

)2

 ·




k∑

j=1

∥∥∥f̂j − gj

∥∥∥
2


 6

(
1− 2k

Ψ

)−1

 1

λk+1

k∑

j=1

φ(Pj)




=

(
1− 2k

Ψ

)−1

· k
Ψ

6

(
1 +

3k

Ψ

)
· k
Ψ
,

where the last inequality uses Ψ > 4 · k. �

5 Spectral Properties of Matrix B

In this section we bound the inner product of any two rows of matrix B (c.f. Equation 10).

Theorem 5.1. If Ψ > 104 · k3/ε2 and ε ∈ (0, 1) then for all distinct i, j ∈ [1 : k] it holds

1− ε 6 〈Bi,:,Bi,:〉 6 1 + ε and |〈Bi,:,Bj,:〉| 6
√
ε.

The proof is divided into two parts. We show in Lemma 5.4 that 1 − ε 6 〈Bi,:,Bi,:〉 6 1 + ε,
and we establish the second statement |〈Bi,:,Bj,:〉| 6

√
ε in Lemma 5.5.

5.1 Analyzing the Column Space of Matrix B

We show below that the matrix BTB is close to the identity matrix.

Lemma 5.2. (Columns) If Ψ > 4 · k3/2 then for all distinct i, j ∈ [1 : k] it holds

1− 3k

Ψ
6 〈B:,i,B:,i〉 6 1 +

3k

Ψ
and |〈B:,i,B:,j〉| 6 4

√
k

Ψ
.

Proof. By Lemma 4.6 it holds that

1− 3k

Ψ
6 〈B:,i,B:,i〉 =

k∑

j=1

(
β
(i)
j

)2
6 1 +

3k

Ψ
.

Recall that ĝi =
∑k

j=1 β
(i)
j · gj . Moreover, since the eigenvectors {fi}ki=1 and the characteristic

vectors {gi}ki=1 are orthonormal by combing Cauchy-Schwarz and by Theorem 4.1 it holds

|〈B:,i,B:,j〉| =
k∑

l=1

β
(i)
l β

(j)
l =

〈
k∑

a=1

β(i)
a · ga,

k∑

b=1

β
(j)
b · gb

〉
= 〈ĝi, ĝj〉

= 〈(ĝi − fi) + fi, (ĝj − fj) + fj〉
= 〈ĝi − fi, ĝj − fj〉+ 〈ĝi − fi, fj〉+ 〈fi, ĝj − fj〉
6 ‖ĝi − fi‖ · ‖ĝj − fj‖+ ‖ĝi − fi‖+ ‖ĝj − fj‖

6

(
1 +

3k

Ψ

)
· k
Ψ

+ 2

√(
1 +

3k

Ψ

)
· k
Ψ

6 4

√
k

Ψ
.
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Using a stronger gap assumption we show that the columns of matrixB are linearly independent.

Lemma 5.3. If Ψ > 25 · k3 then the columns {B:,i}ki=1 are linearly independent.

Proof. Since ker (B) = ker
(
BTB

)
and BTB is SPSD4 matrix, it suffices to show that the smallest

eigenvalue

λ(BTB) = min
x 6=0

xTBTBx

xTx
> 0.

By Lemma 5.2,

k∑

i=1

k∑

j 6=i

|xi| |xj |
∣∣∣
〈
β(i), β(j)

〉∣∣∣ 6 4

√
k

Ψ

(
k∑

i=1

|xi|
)2

6 ‖x‖2 · 4k
√

k

Ψ
,

and

xTBTBx =

〈
k∑

i=1

xiβ
(i),

k∑

j=1

xjβ
(j)

〉
=

k∑

i=1

x2i

∥∥∥β(i)
∥∥∥
2
+

k∑

i=1

k∑

j 6=i

xixj

〈
β(i), β(j)

〉

>

(
1− 3k

Ψ

)
‖x‖2 −

k∑

i=1

k∑

j 6=i

|xi| |xj |
∣∣∣
〈
β(i), β(j)

〉∣∣∣ >
(
1− 5k

√
k

Ψ

)
· ‖x‖2 .

Therefore λ(BTB) > 0 and the statement follows. �

5.2 Analyzing the Row Space of Matrix B

In this subsection we show that the matrix BBT is close to the identity matrix. We bound now
the squared L2 norm of the rows in matrix B, i.e. the diagonal entries in matrix BBT.

Lemma 5.4. (Rows) If Ψ > 400 · k3/ε2 and ε ∈ (0, 1) then for all distinct i, j ∈ [1 : k] it holds

1− ε 6 〈Bi,:,Bi,:〉 6 1 + ε.

Proof. We show that the eigenvalues of matrix BBT are concentrated around 1. This would imply
that χT

i BBTχi = 〈Bi,:,Bi,:〉 ≈ 1, where χi is a characteristic vector. By Lemma 5.2 we have

(
1− 3k

Ψ

)2

6
(
β(i)
)T

·BBT · β(i) =
∥∥∥β(i)

∥∥∥
4
+

k∑

j 6=i

〈
β(j), β(i)

〉2
6

(
1 +

3k

Ψ

)2

+
16k2

Ψ
6 1 +

23k2

Ψ

and

∣∣∣∣
(
β(i)
)T

·BBT · β(j)

∣∣∣∣ 6
k∑

l=1

∣∣∣
〈
β(i), β(l)

〉∣∣∣
∣∣∣
〈
β(l), β(j)

〉∣∣∣ 6 8

(
1 +

3k

Ψ

)√
k

Ψ
+ 16

k2

Ψ
6 11

√
k

Ψ
.

4We denote by SPSD the class of symmetric positive semi-definite matrices.
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By Lemma 5.3 every vector x ∈ Rk can be expressed as x =
∑k

i=1 γiβ
(i).

xTBBTx =

k∑

i=1

γi

(
β(i)
)T

·BBT ·
k∑

j=1

γjβ
(j)

=

k∑

i=1

γ2i

(
β(i)
)T

·BBT · β(i) +

k∑

i=1

k∑

j 6=i

γiγj

(
β(i)
)T

·BBT · β(j)

>

(
1− 23k2

Ψ
− 11k

√
k

Ψ

)
‖γ‖2 >

(
1− 14k

√
k

Ψ

)
‖γ‖2 .

and

xTx =

k∑

i=1

k∑

j=1

γiγj

〈
β(i), β(j)

〉
=

k∑

i=1

γ2i

∥∥∥β(i)
∥∥∥
2
+

k∑

i=1

k∑

j 6=i

γiγj

〈
β(i), β(j)

〉

By Lemma 5.2 we have
∣∣∣
∑k

i=1

∑k
j 6=i γiγj

〈
β(i), β(j)

〉∣∣∣ 6 ‖γ‖2 · 4k
√

k
Ψ and

∥∥β(i)
∥∥2 6 1 + 3k

Ψ . Thus it

holds (
1− 5k

√
k

Ψ

)
‖γ‖2 6 xTx 6

(
1 + 5k

√
k

Ψ

)
‖γ‖2 .

Therefore

1− 20k

√
k

Ψ
6 λ(BBT) 6 1 + 20k

√
k

Ψ
.

�

We have now established the first part of Theorem 5.1. We turn to the second part and restate
it in the following Lemma.

Lemma 5.5. (Rows) If Ψ > 104 · k3/ε2 and ε ∈ (0, 1) then for all distinct i, j ∈ [1 : k] it holds

|〈Bi,:,Bj,:〉| 6
√
ε.

To prove Lemma 5.5 we establish the following three Lemmas. Before stating them we need
some notation that is inspired by Lemma 5.2.

Definition 5.6. Let BTB = I+E, where |Eij | 6 4
√

k
Ψ and E is symmetric matrix. Then we have

(
BBT

)2
= B (I+E)BT = BBT +BEBT.

Lemma 5.7. If Ψ > 402 · k3/ε2 and ε ∈ (0, 1) then all eigenvalues of matrix BEBT satisfy

∣∣λ(BEBT)
∣∣ 6 ε/5.

Proof. Let z = BTx. We upper bound the quadratic form

∣∣xTBEBTx
∣∣ =

∣∣zTEz
∣∣ 6

∑

ij

|Eij| |zi| |zj | 6 4

√
k

Ψ
·
(

k∑

i=1

|zi|
)2

6 ‖z‖2 · 4k
√

k

Ψ
.
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By Lemma 5.4 we have 1− ε 6 λ(BBT) 6 1 + ε and since ‖z‖2 = xBBTx
xTx

· ‖x‖2 it follows that

‖z‖2
1 + ε

6 ‖x‖2 6 ‖z‖2
1− ε

,

and hence
∣∣λ(BEBT)

∣∣ 6 max
x

∣∣xTBEBTx
∣∣

xTx
6 4 (1 + ε) · k

√
k

Ψ
6 ε/5.

�

Lemma 5.8. Suppose {ui}ki=1 is orthonormal basis and the square matrix U has ui as its i-th
column. Then UTU = I = UUT.

Proof. Notice that by the definition of U it holds UTU = I. Moreover, the matrix U−1 exists and
thus UT = U−1. Therefore, we have UUT = I as claimed. �

Lemma 5.9. If Ψ > 402 ·k3/ε2 and ε ∈ (0, 1) then it holds |(BEBT)ij | 6 ε/5 for every i, j ∈ [1 : k].

Proof. Notice that BEBT is symmetric matrix, since E is symmetric. By SVD Theorem there is
an orthonormal basis {ui}ki=1 such that BEBT =

∑k
i=1 λi(BEBT) ·uiuTi . Thus, it suffices to bound

the expression

|(BEBT)ij | 6
k∑

l=1

|λl(BEBT)| · |(uluTl )ij |.

By Lemma 5.8 we have

k∑

l=1

|(ul)i| · |(ul)j | 6
√

‖Ui,:‖2
√
‖Uj,:‖2 = 1.

We apply now Lemma 5.7 to obtain

k∑

l=1

|λl(BEBT)| · |(uluTl )ij | 6
ε

5
·

k∑

l=1

|(ul)i| · |(ul)j| 6
ε

5
.

�

We are ready now to prove Lemma 5.5, i.e. |〈Bi,:,Bj,:〉| 6
√
ε for all i 6= j.

Proof of Lemma 5.5. By Definition 5.6 we have
(
BBT

)2
= BBT+BEBT. Observe that the (i, j)-

th entry of matrix BBT is equal to the inner product between the i-th and j-th row of matrix B,
i.e.

(
BBT

)
ij
= 〈Bi,:,Bj,:〉. Moreover, we have

[(
BBT

)2]
ij

=
k∑

l=1

(
BBT

)
i,l

(
BBT

)
l,j

=
k∑

l=1

〈Bi,:,Bl,:〉 〈Bl,:,Bj,:〉 .

For the entries on the main diagonal, it holds

〈Bi,:,Bi,:〉2 +
k∑

l 6=i

〈Bi,:,Bl,:〉2 = [(BBT)2]ii = [BBT +BEBT]ii = 〈Bi,:,Bi,:〉+
(
BEBT

)
ii
,

and hence by applying Lemma 5.4 with ε′ = ε/5 and Lemma 5.9 with ε′ = ε we obtain

〈Bi,:,Bj,:〉2 6
∑

l 6=i

〈Bi,:,Bl,:〉2 6
(
1 +

ε

5

)
+

ε

5
−
(
1− ε

5

)2
6 ε.

�
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6 Vectors p(i) are Well-Spread

Peng et al. (c.f. [6, Lemma 4.2]) showed for Υ > Ω(k3) that the square Euclidean distance between
any distinct estimation center vectors (c.f. Equation 8) is lower bounded by

∥∥∥p(i) − p(j)
∥∥∥
2
>
[
103 · k ·min {µ(Pi), µ(Pj)}

]−1
.

Under a less restrictive gap assumption Ψ > Ω(k3) we improve [6, Lemma 4.2] by a factor of k.
Our analysis builds upon Theorem 5.1 and bounds a summation of k terms, instead of applying
[6, Lemma 4.2] to a single component. We show now a statement similar to [6, Lemma B.1] that
depends on Ψ.

Lemma 6.1. If Ψ = 204 · k3/δ for some δ ∈ (0, 1] then for every i ∈ [1 : k] it holds

∥∥∥p(i)
∥∥∥
2
∈ 1

µ(Pi)

[
1±

√
δ

4

]
.

Proof. By definition pi =
1√
µ(Pi)

·Bi,: and by Theorem 5.1 we have ‖Bi,:‖2 ∈ [1±
√
δ/4]. �

We present now our statement.

Lemma 6.2. If Ψ = 204 · k3/δ for some δ ∈ (0, 1/2] then for any distinct i, j ∈ [1 : k] it holds that

∥∥∥p(i) − p(j)
∥∥∥
2
> [2 ·min {µ(Pi), µ(Pj)}]−1 .

Suppose ci is the center of a cluster Ai. If
∥∥ci − p(i1)

∥∥ >
∥∥ci − p(i2)

∥∥ then it holds

∥∥∥ci − p(i1)
∥∥∥
2
>

1

4

∥∥∥p(i1) − p(i2)
∥∥∥
2
> [8 ·min {µ(Pi1), µ(Pi2)}]−1 .

Proof. We argue in a similar manner as in [6] but in contrast apply Theorem 5.1 with ε =
√
δ/4 to

obtain 〈
p(i)∥∥p(i)
∥∥ ,

p(j)∥∥p(j)
∥∥

〉
=

〈Bi,:,Bj,:〉
‖Bi,:‖ ‖Bj,:‖

6

√
ε

1− ε
=

2δ1/4

3
.

W.l.o.g. assume that
∥∥p(i)

∥∥2 >
∥∥p(j)

∥∥2. Then by Lemma 6.1 we have

∥∥∥p(i)
∥∥∥
2
>

(
1−

√
δ

4

)
· [min {µ(Pi), µ(Pj)}]−1 .

Let
∥∥p(j)

∥∥ = α ·
∥∥p(i)

∥∥ for some α ∈ (0, 1]. Then

∥∥∥p(i) − p(j)
∥∥∥
2

=
∥∥∥p(i)

∥∥∥
2
+
∥∥∥p(j)

∥∥∥
2
− 2

〈
p(i)∥∥p(i)
∥∥ ,

p(j)∥∥p(j)
∥∥

〉∥∥∥p(i)
∥∥∥
∥∥∥p(j)

∥∥∥

>

(
α2 − 4δ1/4

3
· α+ 1

)∥∥∥p(i)
∥∥∥
2
> [2 ·min {µ(Pi), µ(Pj)}]−1 .

The second claim follows immediately from the first. �
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7 Proof of Lemma 1.3

By Theorem 4.1 we have ‖fi − ĝi‖2 6
(
1 + 3k

Ψ

)
· k
Ψ and thus

k∑

i=1

∑

u∈Pi

du ‖F (u) − c⋆i ‖2 6
k∑

i=1

∑

u∈Pi

du

∥∥∥F (u)− p(i)
∥∥∥
2
=

k∑

i=1

k∑

j=1

∑

u∈Pi

du

(
F (u)j − p

(i)
j

)2

=

k∑

j=1

k∑

i=1

∑

u∈Pi

(fj (u)− ĝj (u))
2 =

k∑

j=1

‖fj − ĝj‖2 6
(
1 +

3k

Ψ

)
· k

2

Ψ
,

where the k-way partition (P1, . . . , Pk) achieving ρ̂avr(k) has corresponding centers c⋆1, . . . , c
⋆
k.

8 Proof of Lemma 1.4

Our main result in this section improves [6, Lemma 4.4] by a factor of k. We argue in a similar
manner as in [6], but in contrast our result relies on Lemma 6.2 and the gap parameter Ψ.

We begin our discussion by restating [6, Lemma B.2] whose analysis crucially relies on a function
σ defined by

σ(l) = arg max
j∈[1:k]

µ(Al ∩ Pj)

µ(Pj)
. (14)

Lemma 8.1. [6, Lemma B.2] Let (P1, . . . , Pk) and (A1, . . . , Ak) be partitions of the vector set.
Suppose for every permutation π : [1 : k] → [1 : k] there is an index i ∈ [1 : k] such that

µ(Ai△Pπ(i)) > 2ε · µ(Pπ(i)), (15)

where ε ∈ (0, 1/2) is a parameter. Then one of the following three statements holds:
1. If σ is a permutation and µ(Pσ(i)\Ai) > ε · µ(Pσ(i)), then for every index j 6= i there is a real
εj > 0 such that

µ(Aj ∩ Pσ(j)) > µ(Aj ∩ Pσ(i)) > εj ·min{µ(Pσ(j)), µ(Pσ(i))},

and
∑

j 6=i εj > ε.
2. If σ is a permutation and µ(Ai\Pσ(i)) > ε · µ(Pσ(i)), then for every j 6= i there is a real εj > 0
such that

µ(Ai ∩ Pσ(i)) > εj · µ(Pσ(i)), µ(Ai ∩ Pσ(j)) > εj · µ(Pσ(i)),

and
∑

j 6=i εj > ε.
3. If σ is not a permutation, then there is an index ℓ 6∈ {σ(1), . . . , σ(k)} and for every index j there
is a real εj > 0 such that

µ(Aj ∩ Pσ(j)) > µ(Aj ∩ Pℓ) > εj ·min{µ(Pσ(j)), µ(Pℓ)},

and
∑k

j=1 εj = 1.

We prove now our main technical result that yields an improved lower bound by a factor of k.

Lemma 8.2. Suppose the hypothesis of Lemma 8.1 is satisfied and Ψ = 204 · k3/δ for some
δ ∈ (0, 1/2]. Then it holds

Cost({Ai, ci}ki=1) >
ε

16
− 2k2

Ψ
.
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Proof. By definition

Cost({Ai, ci}ki=1) =
k∑

i=1

k∑

j=1

∑

u∈Ai∩Pj

du ‖F (u)− ci‖2 , Λ. (16)

Since for every vectors x, y, z ∈ Rk it holds

2
(
‖x− y‖2 + ‖z − y‖2

)
> (‖x− y‖+ ‖z − y‖)2 > ‖x− z‖2 ,

we have for all indices i, j ∈ [1 : k] that

‖F (u)− ci‖2 >
∥∥p(j) − ci

∥∥2

2
−
∥∥∥F (u)− p(j)

∥∥∥
2
. (17)

Our proof proceeds by considering three cases. Let i ∈ [1 : k] be the index from the hypothesis in
Lemma 8.1.

Case 1. Suppose the first conclusion of Lemma 8.1 holds. For every index j 6= i let

pγ(j) =

{
pσ(j) , if

∥∥pσ(j) − cj
∥∥ >

∥∥pσ(i) − cj
∥∥ ;

pσ(i) , otherwise.

Then by combining (17), Lemma 6.2 and Lemma 1.3, we have

Λ >
1

2

∑

j 6=i

∑

u∈Aj∩Pγ(j)

du

∥∥∥pγ(j) − cj

∥∥∥
2
−
∑

j 6=i

∑

u∈Aj∩Pγ(j)

∥∥∥F (u)− pγ(j)
∥∥∥
2

>
1

16

∑

j 6=i

µ(Aj ∩ Pγ(j))

min{µ(Pσ(i)), µ(Pσ(j))}
−
(
1 +

3k

Ψ

)
· k

2

Ψ
>

ε

16
− 2k2

Ψ
.

Case 2. Suppose the second conclusion of Lemma 8.1 holds. Notice that if µ(Ai ∩ Pσ(i)) 6
(1− ε) · µ(Pσ(i)) then µ(Pσ(i)\Ai) > ε · µ(Pσ(i)) and thus we can argue as in Case 1. Hence, we can
assume that it holds

µ(Ai ∩ Pσ(i)) > (1− ε) · µ(Pσ(i)). (18)

We proceed by analyzing two subcases.
a) If

∥∥pσ(j) − ci
∥∥ >

∥∥pσ(i) − ci
∥∥ holds for all j 6= i then by combining (17), Lemma 6.2 and

Lemma 1.3 it follows

Λ >
1

2

∑

j 6=i

∑

u∈Ai∩Pσ(j)

du

∥∥∥pσ(j) − ci

∥∥∥
2
−
∑

j 6=i

∑

u∈Ai∩Pσ(j)

∥∥∥F (u)− pσ(j)
∥∥∥
2

>
1

2

∑

j 6=i

µ(Ai ∩ Pσ(j))

min{µ(Pσ(i)), µ(Pσ(j))}
−
(
1 +

3k

Ψ

)
· k

2

Ψ
>

ε

16
− 2k2

Ψ
.

b) Suppose there is an index j 6= i such that
∥∥pσ(j) − ci

∥∥ <
∥∥pσ(i) − ci

∥∥. Then by triangle
inequality combined with Lemma 6.2 we have

∥∥∥pσ(i) − ci

∥∥∥
2
>

1

4

∥∥∥pσ(i) − pσ(j)
∥∥∥ >

[
8 ·min{µ(Pσ(i)), µ(Pσ(j))}

]−1
.
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Thus, by combining (17), (18) and Lemma 1.3 we obtain

Λ >
1

2

∑

u∈Ai∩Pσ(i)

du

∥∥∥pσ(i) − ci

∥∥∥
2
−

∑

u∈Ai∩Pσ(i)

du

∥∥∥F (u)− pσ(i)
∥∥∥
2

>
1

16
· µ(Ai ∩ Pσ(i))

min{µ(Pσ(i)), µ(Pσ(j))}
−
(
1 +

3k

Ψ

)
· k

2

Ψ
>

1− ε

16
− 2k2

Ψ
.

Case 3. Suppose the third conclusion of Lemma 8.1 holds, i.e., σ is not a permutation. Then
there is an index ℓ ∈ [1 : k] \ {σ(1), . . . , σ(k)} and for every index j ∈ [1 : k] let

pγ(j) =

{
pℓ , if

∥∥pℓ − cj
∥∥ >

∥∥pσ(j) − cj
∥∥ ;

pσ(j) , otherwise.

By combining (17), Lemma 6.2 and Lemma 1.3 it follows that

Λ >
1

2

k∑

j=1

∑

u∈Aj∩Pγ(j)

du

∥∥∥pγ(j) − cj

∥∥∥
2
−

k∑

j=1

∑

u∈Aj∩Pγ(j)

du

∥∥∥F (u)− pγ(j)
∥∥∥
2

>
1

16

k∑

j=1

µ(Aj ∩ Pγ(j))

min{µ(Pσ(j)), µ(Pℓ)}
−
(
1 +

3k

Ψ

)
· k

2

Ψ
>

1

16
− 2k2

Ψ
.

�

Based on Lemma 8.2 we improve [6, Lemma 4.4] by a factor of k and condition our analysis on
a less restrictive gap assumption that depends on Ψ.

Corollary 8.3. Let (P1, . . . , Pk) and (A1, . . . , Ak) are partitions of the vector set. Suppose for
every permutation π : [1 : k] → [1 : k] there is an index i ∈ [1 : k] such that

µ(Ai△Pπ(i)) >
2ε

k
· µ(Pπ(i)), (19)

where ε ∈ (0, 1) is a parameter. If Ψ = 204 · k3/δ for some δ ∈ (0, 1/2], and ε > 64 · α · k3/Ψ then

Cost({Ai, ci}ki=1) >
2k2

Ψ
α.

Proof. We apply Lemma 8.1 with ε′ = ε/k. Then by Lemma 8.2 we have

Cost({Ai, ci}ki=1) >
ε

16k
− 2k2

Ψ
,

and the desired result follows by setting ε > 64 · α · k3/Ψ. �

We note that Lemma 1.4 follows directly by applying Corollary 8.3 with ε = 64 · α · k3/Ψ.

9 The Normalized Spectral Embedding is ε-separated

In this section, we prove that the normalized spectral embedding XV is ε-separated.

Theorem 9.1. Let G be a graph that satisfies Ψ = 204 · k3/δ, δ ∈ (0, 1/2] and k/δ > 109. Then
for ε = 6 · 10−7 it holds

△k(XV ) 6 ε2△k−1(XV ). (20)
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Proof of Theorem 9.1 We establish first a lower bound on △k−1(XV ).

Lemma 9.2. Let G be a graph that satisfies Ψ = 204 · k3/δ for some δ ∈ (0, 1/2]. Then for
δ′ = 2δ/204 it holds

△k−1(XV ) >
1

12
− δ′

k
. (21)

Before we present the proof of Lemma 9.2 we show that it implies (20). By Lemma 1.3 we have

△k(XV ) 6
2k2

Ψ
=

δ′

k
.

Moreover, by applying Lemma 9.2 with k/δ > 109 and ε = 6 · 10−7 we obtain

△k−1(XV ) >
1

12
− δ′

k
=

1

12
− 2

204
· δ
k
>

1010

9 · 25 · δ
k
=

1

ε2
· δ

′

k
>

1

ε2
· △k(XV ).

Proof of Lemma 9.2 We argue in a similar manner as in Lemma 8.2 (c.f. Case 3). We start by
giving some notations. Then we prove Lemma 9.3 which is later used in the proof of Lemma 9.2.

We redefine the function σ (c.f. Equation 14) such that for any two partitions (P1, . . . , Pk) and
(Z1, . . . , Zk−1) of V , we define a function σ : [1 : k − 1] 7→ [1 : k] by

σ(i) = arg max
j∈[1:k]

µ(Zi ∩ Pj)

µ(Pj)
, for every i ∈ [1 : k − 1].

The next statement is similar to the third conclusion of Lemma 8.1, but in contrast lower bounds
the overlapping (in terms of the volume) between any k-way and (k − 1)-way partitions of V .

Lemma 9.3. Suppose (P1, . . . , Pk) and (Z1, . . . , Zk−1) are partitions of V . Then for any index
ℓ ∈ [1 : k] \ {σ(1), . . . , σ(k − 1)} (there is at least one such ℓ) and for every i ∈ [1 : k − 1] it holds

{
µ(Zi ∩ Pσ(i)), µ(Zi ∩ Pℓ)

}
> τi ·min

{
µ(Pℓ), µ(Pσ(i))

}
,

where
∑k−1

i=1 τi = 1 and τi > 0.

Proof. By pigeonhole principle there is an index ℓ ∈ [1 : k] such that ℓ /∈ {σ(1), . . . , σ(k − 1)}.
Thus, for every i ∈ [1 : k − 1] we have σ(i) 6= ℓ and

µ(Zi ∩ Pσ(i))

µ(Pσ(i))
>

µ(Zi ∩ Pℓ)

µ(Pℓ)
, τi,

where
∑k−1

i=1 τi = 1 and τi > 0 for all i. Hence, the statement follows. �

We present now the proof of Lemma 9.2.

Proof of Lemma 9.2. Let (Z1, . . . , Zk−1) be a (k − 1)-way partition of V with centers c′1, . . . , c
′
k−1

that achieves △k−1(XV ), and (P1, . . . , Pk) be a k-way partition of V achieving ρ̂avr(k). Our goal
now is to lower bound the optimal (k − 1)-means cost

△k−1(XV ) =

k−1∑

i=1

k∑

j=1

∑

u∈Zi∩Pj

du
∥∥F (u) − c′i

∥∥2 . (22)
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By Lemma 9.3 there is an index ℓ ∈ [1 : k] \ {σ(1), . . . , σ(k − 1)}. For i ∈ [1 : k − 1] let

pγ(i) =

{
pℓ , if

∥∥pℓ − c′i
∥∥ >

∥∥pσ(i) − c′i
∥∥ ;

pσ(i) , otherwise.

Then by combining Lemma 6.2 and Lemma 9.3, we have

∥∥∥pγ(i) − c′i
∥∥∥
2
>
[
8 ·min

{
µ(Pℓ), µ(Pσ(i))

}]−1
and µ(Zi ∩ Pγ(i)) > τi ·min

{
µ(Pℓ), µ(Pσ(i))

}
, (23)

where
∑k−1

i=1 τi = 1. We now lower bound the expression in (22). Since

∥∥F (u)− c′i
∥∥2 > 1

2

∥∥∥pγ(i) − c′i
∥∥∥
2
−
∥∥∥F (u)− pγ(i)

∥∥∥
2
,

it follows for δ′ = 2δ/204 that

△k−1(XV ) =

k−1∑

i=1

k∑

j=1

∑

u∈Zi∩Pj

du
∥∥F (u)− c′i

∥∥2 >
k−1∑

i=1

∑

u∈Zi∩Pγ(i)

du
∥∥F (u)− c′i

∥∥2

>
1

2

k−1∑

i=1

∑

u∈Zi∩Pγ(i)

du

∥∥∥pγ(i) − c′i
∥∥∥
2
−

k−1∑

i=1

∑

u∈Zi∩Pγ(i)

du

∥∥∥F (u)− pγ(i)
∥∥∥
2

>
1

2

k−1∑

i=1

µ(Zi ∩ Pγ(i))

8 ·min
{
µ(Pγ(i)), µ(Pσ(i))

} −
k∑

i=1

∑

u∈Pi

du
∥∥F (u)− pi

∥∥2

>
1

16
− δ′

k
,

where the last inequality holds due to (23) and Lemma 1.3. �

10 An Efficient Spectral Clustering Algorithm

In this section, we prove Part (b) of Theorem 1.2. We start by stating in Subsection 10.1 the
notations used in our proof. Then we describe the proof-overview of our approach. The proof itself
is divided into three parts, each of which is covered in Subsection 10.2, 10.3 and 10.4, respectively.

10.1 Notations

Let Z ∈ Rn×k be a matrix whose rows represent n vectors that are to be partitioned into k clusters.
For every k-way partition we associate an indicator matrix X ∈ Rn×k that satisfies Xij = 1/

√
|Cj |

if the i-th row Zi,: belongs to the j-th cluster Cj , and Xij = 0 otherwise. We denote the optimal
indicator matrix Xopt by

Xopt = arg min
X∈Rn×k

∥∥Z −XXTZ
∥∥2
F
= arg min

X∈Rn×k

k∑

j=1

∑

u∈Xj

‖Zu,: − cj‖22 , (24)

where cj = (1/|Xj |)
∑

u∈Xj
Zu,: is the center point of cluster Cj .

Let LG = I − AN be the normalized Laplacian matrix of a graph G and AN = D1/2AD−1/2

be the corresponding normalized adjacency matrix. Let matrix Uk be composed of the top k
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orthonormal eigenvectors of AN or equivalently the bottom eigenvectors of LG. We define by
Y , Uk the canonical spectral embedding.

We describe now the “Power Method” that is used to compute an approximate spectral em-
bedding. Let S ∈ Rn×k be a matrix whose entries are i.i.d. samples from the standard Gaussian
distribution N(0, 1) and p be a positive integer. Then the approximate spectral embedding Ỹ is
defined by the following two-step process:

1) B , A2p+1
N · S = Ũ Σ̃Ṽ T; and 2) Ỹ , Ũ ∈ Rn×k. (25)

We proceed by defining the normalized (approximate) spectral embedding. We construct a matrix
Y ′ ∈ Rm×k such that for every vertex u ∈ V we add d(u) many copies of the normalized row

Uk(u, :)/
√

d(u) to Y ′. Formally, the normalized (approximate) spectral embedding Y ′ (Ỹ ′) is
defined by

Y ′ =




1d(1)
Uk(1,:)√

d(1)

· · ·
1d(n)

Uk(n,:)√
d(n)




m×k

and Ỹ ′ =




1d(1)
Ũ(1,:)√

d(1)

· · ·
1d(n)

Ũ(n,:)√
d(n)




m×k

, (26)

where 1d(i) is all-one column vector with dimension d(i).

Similarly to (24) we associate to Y ′ (Ỹ ′) an indicator matrix X ′ (X̃ ′) that satisfies X ′
ij =

1/
√

µ(Cj) if the i-th row Y ′
i,: belongs to the j-th cluster Cj , and X ′

ij = 0 otherwise. We may
assume w.l.o.g. that a k-means algorithm outputs an indicator matrix X ′ such that all copies of
row Uk(v, :)/

√
d(v) belong to the same cluster, for every vertex v ∈ V .

We associate to matrices Y ′ and Ỹ ′ sets of points which we denote by XV and X̃V , respectively.
We present now a key connection between the spectral embedding map F (·), the optimal k-means
cost △k(XV ) and matrices Y ′,X ′

opt:

∥∥∥Y ′ −X ′
opt

(
X ′

opt

)T
Y ′
∥∥∥
2

F
=

k∑

j=1

∑

v∈C⋆
j

d(v)
∥∥F (v)− c⋆j

∥∥2
F
= △k(XV ), (27)

where each center satisfies c⋆j = µ(C⋆
j )

−1 ·∑v∈C⋆
j
d(v)F (v) and F (v) = Yv,:/

√
d(v).

Proof Overview of Theorem 1.2 Building upon the work of Boutsidis et al [1] we prove that
any α-approximate k-means algorithm that runs on an approximate normalized spectral embedding
Ỹ ′ computed by the “power method”, yields an approximate clustering X̃ ′

α of the normalized

spectral embedding Y ′. Under our gap assumption, we prove that Ỹ ′ is ε-separated. This allows us
to apply the variant of Lloyd’s k-means algorithm analyzed by Ostrovsky et al. [4] that efficiently

computes X̃ ′
α. Then we use Part (a) of Theorem 1.2 to establish the desired statement.

10.2 Spectral Embedding Properties

Boutsidis et al [1] showed that running an approximate k-means algorithm on an approximate
spectral embedding Ỹ computed by the “power method”, yields an approximate clustering of the
canonical spectral embedding Y . Here, we extend their result (c.f. [1, Theorem 6]) and prove that

it is applicable to the normalized (approximate) spectral embedding Y ′ (Ỹ ′).
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Theorem 10.1. [1, Theorem 6] Compute matrix Ỹ ′ via the power method with

p >

1
2 · ln

(
4 · n · ε−1 · δ−1

p ·
√
k
)

ln γk
, where γk =

1− λk(LG)

1− λk+1(LG)
.

Run on the rows of Ỹ ′ an α-approximate k-means algorithm with failure probability δα. Let the
outcome be a clustering indicator matrix X̃ ′

α ∈ Rn×k. Then with probability at least 1−e−2n−3δp−δα
it holds ∥∥∥∥Y

′ − X̃ ′
α

(
X̃ ′

α

)T
Y ′
∥∥∥∥
2

F

6 (1 + 4ε) · α ·
∥∥∥Y ′ −X ′

opt

(
X ′

opt

)T
Y ′
∥∥∥
2

F
+ 4ε2.

Our analysis builds upon the following key Lemma proved in [1].

Lemma 10.2. [1, Lemma 5] Construct Ỹ via the power method with

p >

1
2 · ln

(
4 · n · ε−1 · δ−1

p ·
√
k
)

ln γk
, where γk =

1− λk(LG)

1− λk+1(LG)
.

Then with probability at least 1− exp {−2n} − 3δp it holds

∥∥∥Y Y T − Ỹ Ỹ T
∥∥∥
F
6 ε.

The rest of this subsection is devoted to the proof of Theorem 10.1. We start by establishing
several useful Lemmas that allows us to argue in a similar manner as in [1].

Useful Lemmas

Lemma 10.3. X ′X ′T is a projection matrix.

Proof. By construction there are d(v) many copies of row Uk(v, :)/
√

d(v) in Y ′, for every vertex
v ∈ V . We may assume w.l.o.g. that a k-means algorithm outputs an indicator matrix X ′ such
that all copies of row Uk(v, :)/

√
d(v) belong to the same cluster, for every v ∈ V . Moreover, by

definition X ′
ij = 1/

√
µ(Cj) if row Y ′

i,: belongs to the j-th cluster Cj and X ′
ij = 0 otherwise, where

matrix X ′ ∈ Rm×k. Therefore, it follows that X ′TX ′ = Ik×k and thus (X ′X ′T)2 = X ′X ′T. �

Lemma 10.4. It holds that Y ′TY ′ = Ik×k = Ỹ ′TỸ ′.

Proof. We prove now Y ′TY ′ = Ik×k, but the equality Ỹ ′TỸ ′ = Ik×k follows similarly. Since

(
Y ′TY ′)

ij
=

(
Uk(1,i)√

d(1)
1T
d(1) · · · Uk(n,i)√

d(n)
1Td(n)

)



Uk(1,j)√
d(1)

1d(1)

· · ·
Uk(n,j)√

d(n)
1d(n)




=

n∑

ℓ=1

d(ℓ)
Uk(ℓ, i)√

d(ℓ)

Uk(ℓ, j)√
d(ℓ)

= 〈Uk(:, i), Uk(:, j)〉 = δij ,

the statement follows. �

Lemma 10.5. It holds that
∥∥∥Y ′Y ′T − Ỹ ′Ỹ ′T

∥∥∥
F
=
∥∥∥Y Y T − Ỹ Ỹ T

∥∥∥
F
.
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Proof. By definition

Y ′Y ′T =

k∑

ℓ=1

Y ′
:,ℓY

′T
:,ℓ where Y ′

:,ℓ =




Uk(1,ℓ)√
d(1)

1d(1)

· · ·
Uk(n,ℓ)√

d(n)
1d(n)




m×1

and (
Y ′
:,ℓY

′T
:,ℓ

)
d(i)d(j)

=
Uk(i, ℓ)Uk(j, ℓ)√

d(i)d(j)
· 1d(1)1Td(j).

The statement follows by establishing the following chain of equalities

∥∥∥Y ′Y ′T − Ỹ ′Ỹ ′T
∥∥∥
2

F
=

n∑

i=1

n∑

j=1

∥∥∥∥
(
Y ′Y ′T − Ỹ ′Ỹ ′T

)
d(i)d(j)

∥∥∥∥
2

F

=

n∑

i=1

n∑

j=1

∥∥∥∥∥

k∑

ℓ=1

(
Y ′
:,ℓY

′T
:,ℓ − Ỹ ′

:,ℓỸ ′T
:,ℓ

)
d(i)d(j)

∥∥∥∥∥

2

F

=
n∑

i=1

n∑

j=1

∥∥∥∥∥

{
k∑

ℓ=1

(
Uk(i, ℓ)Uk(j, ℓ)√

d(i)d(j)
− Ũ(i, ℓ)Ũ (j, ℓ)√

d(i)d(j)

)}
· 1d(i)1

T
d(j)

∥∥∥∥∥

2

F

=

n∑

i=1

n∑

j=1

d(i)d(j)

[
k∑

ℓ=1

(
Uk(i, ℓ)Uk(j, ℓ)√

d(i)d(j)
− Ũ(i, ℓ)Ũ (j, ℓ)√

d(i)d(j)

)]2

=

n∑

i=1

n∑

j=1

[
k∑

ℓ=1

(
Uk(i, ℓ)Uk(j, ℓ) − Ũ(i, ℓ)Ũ (j, ℓ)

)]2

=
n∑

i=1

n∑

j=1

(
UkU

T
k − Ũ ŨT

)2
ij

=
∥∥∥UkU

T
k − Ũ ŨT

∥∥∥
2

F
=
∥∥∥Y Y T − Ỹ Ỹ T

∥∥∥
2

F
.

�

Lemma 10.6. For any matrix U with orthonormal columns and every matrix A it holds

∥∥UUT −AATUUT
∥∥
F
=
∥∥U −AATU

∥∥
F
. (28)

Proof. The statement follows by the Frobenius norm property ‖B‖2F = Tr[BTB], the cyclic property
of trace Tr[UBTBUT] = Tr[BTB · UTU ] and the orthogonality of matrix U . �

Proof of Theorem 10.1

Using Lemma 10.2 and Lemma 10.5 with probability at least 1− exp {−2n} − 3δp we have

∥∥∥Y ′Y ′T − Ỹ ′Ỹ ′T
∥∥∥
F
=
∥∥∥Y Y T − Ỹ Ỹ T

∥∥∥
F
6 ε.

22



Let Y ′Y ′T = Ỹ ′Ỹ ′T+E such that ‖E‖F 6 ε. Based on Lemma 10.4 and Lemma 10.6 we have that

equation (28) holds for the matrices Y ′ and Ỹ ′. Therefore, by Lemma 10.3 we can apply the proof
in [1, Theorem 6] to obtain

∥∥∥∥Y
′ − X̃ ′

α

(
X̃ ′

α

)T
Y ′
∥∥∥∥
F

6
√
α ·
(∥∥∥Y ′ −X ′

opt

(
X ′

opt

)T
Y ′
∥∥∥
F
+ 2ε

)
. (29)

After a simple manipulation, (29) yields the desired statement.

10.3 Spectral Embeddings, Gap Assumption and ε-separability

In this subsection, we prove under the gap assumption that the approximate normalized spectral
embedding Ỹ ′ is ε-separated, i.e. △k(X̃V ) < 5ε2 ·△k−1(X̃V ). Our analysis builds upon Theorem 9.1,
Theorem 10.1 and the proof techniques in [1].

Theorem 10.7 (Approximate Normalized Spectral Embedding is ε-separated). Suppose the gap
assumption satisfies Ψ = 204 · k3/δ, k/δ > 109 for some δ ∈ (0, 1/2] and the optimum cost∥∥Y ′ −X ′

opt(X
′
opt)

TY ′∥∥
F
> n−O(1). Construct matrix Ỹ ′ via the power method with p > Ω( 1

λk+1
lnn).

Then for ε = 6 · 10−7 with high probability it holds

△k

(
X̃V

)
< 5ε2 · △k−1

(
X̃V

)
.

Before we present the proof of Theorem 10.7 we will establish two technical results.

Lemma 10.8. If Ψ > 204 · k3/δ for δ ∈ (0, 1/2] it holds

ln

(
1− λk

1− λk+1

)
>

(
1− 4δ

204k2

)
λk+1.

Proof. Lee et al. [2] proved that higher order Cheeger’s inequality satisfies

λk/2 6 ρ(k) 6 O(k2) ·
√

λk. (30)

Using the LHS of (30) we have

k3ρ̂avr(k) = k2
k∑

i=1

φ(Pi) > k2 max
i∈[1:k]

φ(Pi) > k2 · ρ(k) > k2λk

2

and thus we can upper bound the k-th smallest eigenvalue of LG by

λk 6 2k · ρ̂avr(k).

Moreover, by the gap assumption it follows that

λk+1 >
204k2

2δ
· 2k · ρ̂avr(k) >

204k2

2δ
· λk.

The statement follows by

1− λk

1− λk+1
>

1− 2δ
204k2

λk+1

1− λk+1
> exp

{(
1− 4δ

204k2

)
λk+1

}
.

�
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To state our next results we need some notations. We use interchangeably X ′
opt with X

′(k)
opt to

denote the optimal indicator matrix for the k-means problem on XV that is induced by the rows

of matrix Y ′. Similarly, we denote by X
′(k−1)
opt the optimal indicator matrix for the (k − 1)-means

problem on XV .

Based on Lemma 1.3 and the definition of Y ′ and X
′(k)
opt we obtain the following statement.

Corollary 10.9. Let G be a graph that satisfies Ψ = 204 · k3/δ, δ ∈ (0, 1/2] and k/δ > 109. Then
it holds ∥∥∥∥Y

′ −X
′(k)
opt

(
X

′(k)
opt

)T
Y ′
∥∥∥∥
2

F

6
1

8 · 1013 .

We are now ready to present to proof of Theorem 10.7.

Proof of Theorem 10.7. By Theorem 9.1 we have

∥∥∥∥Y
′ −X

′(k)
opt

(
X

′(k)
opt

)T
Y ′
∥∥∥∥
F

6 ε

∥∥∥∥Y
′ −X

′(k−1)
opt

(
X

′(k−1)
opt

)T
Y ′
∥∥∥∥
F

. (31)

We set the approximation parameter in Theorem 10.1 to

ε′ ,
1

4

√
△k(XV ) =

1

4

∥∥∥∥Y
′ −X

′(k)
opt

(
X

′(k)
opt

)T
Y ′
∥∥∥∥
F

> n−O(1), (32)

and we note that by Theorem 9.1 it holds

ε′ 6
ε

4

√
△k−1(XV ). (33)

Construct the matrix Ỹ via the power method with p > Ω( 1
λk+1

lnn). By combining Lemma 10.2

and Lemma 10.5 we obtain with high probability

∥∥∥Y ′Y ′T − Ỹ ′Ỹ ′T
∥∥∥
F
=
∥∥∥Y Y T − Ỹ Ỹ T

∥∥∥
F
6 ε′.

Let Y ′Y ′T = Ỹ ′Ỹ ′T+E such that ‖E‖F 6 ε′. By Lemma 10.4 we have Y ′TY ′ = Ik×k = Ỹ ′TỸ ′ and
thus (28) in Lemma 10.6 holds for the orthonormal matrices Y ′ and Ỹ ′. Therefore, by Lemma 10.3
we have

√
△k

(
X̃V

)
=

∥∥∥∥∥Ỹ
′ − ˜

X
′(k)
opt

(
˜
X

′(k)
opt

)T

Ỹ ′

∥∥∥∥∥
F

=

∥∥∥∥∥Ỹ
′Ỹ ′T − ˜

X
′(k)
opt

(
˜
X

′(k)
opt

)T

Ỹ ′Ỹ ′T
∥∥∥∥∥
F

=

∥∥∥∥∥Y
′Y ′T − ˜

X
′(k)
opt

(
˜
X

′(k)
opt

)T

Y ′Y ′T −
(
I − ˜

X
′(k)
opt

(
˜
X

′(k)
opt

)T
)
E

∥∥∥∥∥
F

6 ‖E‖F +

∥∥∥∥∥Y
′ − ˜

X
′(k)
opt

(
˜
X

′(k)
opt

)T

Y ′
∥∥∥∥∥
F

By Lemma 10.8 we can apply Theorem 10.1 which yields

∥∥∥∥∥Y
′ − ˜

X
′(k)
opt

(
˜
X

′(k)
opt

)T

Y ′
∥∥∥∥∥

2

F

6 (1 + 4ε′) ·
∥∥∥∥Y

′ −X
′(k)
opt

(
X

′(k)
opt

)T
Y ′
∥∥∥∥
2

F

+ 4ε′2.
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By Corollary 10.9 we derive an upper bound on the optimal k-means cost of XV

∥∥∥∥Y
′ −X

′(k)
opt

(
X

′(k)
opt

)T
Y ′
∥∥∥∥
2

F

6
1

8 · 1013 (34)

that combined with the definition of ε′ gives

√
△k

(
X̃V

)
6 ε′ +

√
(1 + 4ε′)

∥∥∥∥Y ′ −X
′(k)
opt

(
X

′(k)
opt

)T
Y ′
∥∥∥∥
2

F

+ 4ε′2

6 2

∥∥∥∥Y
′ −X

′(k)
opt

(
X

′(k)
opt

)T
Y ′
∥∥∥∥
F

= 2
√

△k(XV )

6 2ε ·
√

△k−1(XV ). (35)

Moreover, it holds that

√
△k−1(XV ) =

∥∥∥∥Y
′ −X

′(k−1)
opt

(
X

′(k−1)
opt

)T
Y ′
∥∥∥∥
F

6

∥∥∥∥∥Y
′ − ˜

X
′(k−1)
opt

(
˜
X

′(k−1)
opt

)T

Y ′
∥∥∥∥∥
F

=

∥∥∥∥∥Y
′Y ′T − ˜

X
′(k−1)
opt

(
˜
X

′(k−1)
opt

)T

Y ′Y ′T
∥∥∥∥∥
F

=

∥∥∥∥∥Ỹ
′Ỹ ′T − ˜

X
′(k−1)
opt

(
˜
X

′(k−1)
opt

)T

Ỹ ′Ỹ ′T +

(
I − ˜

X
′(k−1)
opt

(
˜
X

′(k−1)
opt

)T
)
E

∥∥∥∥∥
F

6

∥∥∥∥∥Ỹ
′ − ˜

X
′(k−1)
opt

(
˜
X

′(k−1)
opt

)T

Ỹ ′

∥∥∥∥∥
F

+ ‖E‖F

6

√
△k−1

(
X̃V

)
+

ε

4

√
△k−1(XV )

and thus
√

△k−1(XV ) 6
(
1 +

ε

2

)√
△k−1

(
X̃V

)
. (36)

Therefore, by combining (35) and (36) we obtain the desired statement

√
△k

(
X̃V

)
6 2ε ·

√
△k−1(XV ) 6 (2 + ε) · ε ·

√
△k−1

(
X̃V

)
.

�

10.4 Proof of Part (b) of Theorem 1.2

Our analysis crucially depends on the following variant of Lloyd’s k-means algorithm analyzed by
Ostrovsky et al. [4].

Theorem 10.10. [4, Theorem 4.15] Assuming that △k(X ) 6 ε2△k−1(X ) for ε ∈ (0, 6 ·10−7 ], there
is an algorithm that returns a solution of cost at most

1− ε2

1− 37ε2
· △k(X )

with probability at least 1−O(
√
ε) in time O(nkd+ k3d).
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Proof of Part (b) of Theorem 1.2. Let p = Θ((lnn)/λk+1). We can compute the matrix B =
A2p+1

N S in time O(mkp) and its singular value decomposition Ũ Σ̃Ṽ T in time O(nk2). Based on it

we construct in time O(mk) matrix Ỹ ′ (c.f. (26)).

By Theorem 10.7, X̃V is ε-separated for ε = 6 · 10−7, i.e. △k

(
X̃V

)
< 5ε2 · △k−1

(
X̃V

)
. Hence,

by Theorem 10.10 there is an algorithm that outputs a clustering with indicator matrix X̃ ′
α that

has a cost at most

∥∥∥∥Ỹ ′ − X̃ ′
α

(
X̃ ′

α

)T
Ỹ ′
∥∥∥∥
2

F

6

(
1 +

1

1010

)
·
∥∥∥∥Ỹ ′ − X̃ ′

opt

(
X̃ ′

opt

)T
Ỹ ′
∥∥∥∥
2

F

with constant probability (close to 1) in time O(mk2 + k4), where α = 1 + 10−10.

We apply now Theorem 10.1 with ε′ =
√
δA
4

∥∥∥Y ′ −X ′
opt

(
X ′

opt

)T
Y ′
∥∥∥
F
, where δA ∈ (0, 1) is to be

determined soon. Moreover, by Corollary 10.9 we have

∥∥∥Y ′ −X ′
opt

(
X ′

opt

)T
Y ′
∥∥∥
F
<

1

106

and thus with constant probability it holds

∥∥∥∥Y
′ − X̃ ′

α

(
X̃ ′

α

)T
Y ′
∥∥∥∥
2

F

6 (1 + 4ε′)α
∥∥∥Y ′ −X ′

opt

(
X ′

opt

)T
Y ′
∥∥∥
2

F
+ 4ε′2

=

[(
1 +

√
δA

∥∥∥Y ′ −X ′
opt

(
X ′

opt

)T
Y ′
∥∥∥
F

)
α+

δA
4

]
·
∥∥∥Y ′ −X ′

opt

(
X ′

opt

)T
Y ′
∥∥∥
2

F

6

[(
1 +

√
δA

106

)
·
(
1 +

1

1010

)
+

δA
4

]
·
∥∥∥Y ′ −X ′

opt

(
X ′

opt

)T
Y ′
∥∥∥
2

F
.

The indicator matrix X̃ ′
α yields a relative approximation of XV that satisfies for δA = 1/106

∥∥∥∥Y
′ − X̃ ′

α

(
X̃ ′

α

)T
Y ′
∥∥∥∥
2

F

6

(
1 +

1

106

)∥∥∥Y ′ −X ′
opt

(
X ′

opt

)T
Y ′
∥∥∥
2

F
. (37)

The statement follows by Part (a) of Theorem 1.2 applied to the partition (A1, . . . , Ak) of V that

is induced by the indicator matrix X̃ ′
α. �

11 Parameterized Upper Bound on ρ̂avr(k)

A k-disjoint tuple Z is a k-tuple (Z1, . . . , Zk) of disjoint subsets of V . A k-way partition (P1, . . . , Pk)
of V is compatible with a k-disjoint tuple Z if Zi ⊆ Pi for all i. We then define Si = Pi\Zi and
use PZ to denote all partitions compatible with Z. We use Zk to denote all k-tuples Z with
ρ(k) = Φ(Z) = Φ(Z1, . . . , Zk). The elements of Zk are called optimal (k-disjoint) tuples. We
denote all partitions compatible with some optimal k-tuple by

Pk = ∪Z∈Zk
PZ . (38)

Oveis Gharan and Trevisan [5, Lemma 2.5] proved that for every k-disjoint tuple Z ∈ Zk there
is a k-way partition (P1, . . . , Pk) ∈ PZ with

Φ(P1, . . . , Pk) 6 kρ(k). (39)
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Remark 11.1. In this section, we assume that every partition (P1, . . . , Pk) ∈ Pk satisfies

Φ(P1, . . . , Pk) > ρ(k), (40)

since otherwise ρ̂(k) = ρ(k).

We refine the analysis in [5] and prove a parameterized upper bound on ρ̂avr(k) that depends
on a natural combinatorial parameter and the average conductance of a k-disjoint tuple Z ∈ Zk.
Before we state our results, we need some notations.

We define the order k inter-connection constant of a graph G by

ρP(k) , min
P1,...,Pk∈Pk

ΦIC (P1, . . . , Pk) (41)

where

ΦIC (P1, . . . , Pk) , max
Si 6=∅

|E(Si, V \Pi)| − |E(Si, Zi)|
|E(Pi, V \Pi)|

. (42)

We will prove in Lemma 11.5 that ρP(k) ∈ (0, 1− 1/(k − 1)]. Furthermore, let OP be the set of all
k-way partitions (P1, . . . , Pk) ∈ Pk with ΦIC(P1, . . . , Pk) = ρP(k), i.e., the set of all partitions that
achieve the order k inter-connection constant. Let

ρ̃avr(k) = min
(P1,...,Pk)∈OP

1

k

k∑

i=1

φ(Pi) (43)

be the minimal average conductance over all k-way partitions in OP . By construction it holds that

ρ̂avr(k) 6 ρ̃avr(k). (44)

We present now our main result of this Section which upper bounds ρ̃avr(k).

Theorem 11.2. For any graph G there exists a k-way partition (P1, . . . , Pk) ∈ OP compatible with
a k-disjoint tuple Z with Φ(Z1, . . . , Zk) = ρ(k) such that for κP , [1−ρP (k)]−1 ∈ (1, k−1] it holds

ρ̃avr(k) 6
κP
k

k∑

i=1

φ(Zi)

and in addition, for every i ∈ [1 : k]

φ(Pi) 6 κP · φ(Zi).

Our goal now is to prove Theorem 11.2. We establish first a few useful Lemmas that will be
used to prove Lemma 11.5 and Theorem 11.2.

Oveis Gharan and Trevisan [5, Algorithm 2 and Fact 2.4] showed that

Fact 11.3 ([5]). For any k-disjoint tuple Z, there is a k-way partition (P1, . . . , Pk) ∈ PZ such that
1. For every i ∈ [1 : k], Zi ⊆ Pi.
2. For every i ∈ [1 : k], and every subset ∅ 6= S ⊆ Pi\Zi it holds

|E(S,Pi\S)| >
1

k
|E(S, V \S)| .
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Lemma 11.4. For any k-disjoint tuple Z, there exists a k-way partition (P1, . . . , Pk) ∈ PZ that
satisfies

max
Si 6=∅

|E(Si, V \Pi)| − |E(Si, Zi)|
|E(Pi, V \Pi)|

6 1− 1

k − 1
.

Proof. By Fact 11.3 there is a k-way partition (P1, . . . , Pk) ∈ PZ such that for all i it holds

|E(Si, Zi)| = |E(Si, Pi\Si)| >
1

k
|E(Si, V \Si)| =

1

k
(|E(Si, V \Pi)|+ |E(Si, Zi)|)

and hence

|E(Si, Zi)| >
1

k − 1
|E(Si, V \Pi)| .

�

Lemma 11.5. The order k inter-connection constant of a graph G is bounded by

0 < ρP(k) 6 1− 1

k − 1
.

Proof. We prove first the upper bound. By Lemma 11.4 there is a k-way partition (P1, . . . , Pk) ∈ Pk

compatible with a k-disjoint tuple Z such that

max
Si 6=∅

|E(Si, V \Pi)| − |E(Si, Zi)|
|E(Pi, V \Pi)|

6 1− 1

k − 1
.

Therefore,

ρP(k) = min
P ′
1,...,P

′

k∈Pk

ΦIC

(
P ′
1, . . . , P

′
k

)
6 ΦIC (P1, . . . , Pk)

= max
Si 6=∅

|E(Si, V \Pi)| − |E(Si, Zi)|
|E(Pi, V \Pi)|

6 1− 1

k − 1
.

We prove now the lower bound. Suppose for contradiction that ρP(k) 6 0. By definition we have

φ(Pi) =
|E(Pi, V \Pi)|

µ(Pi)
=

|E(Zi, V \Zi)|+ |E(Si, V \Pi)| − |E(Si, Zi)|
µ(Pi)

6 φ(Zi) +
|E(Si, V \Pi)| − |E(Si, Zi)|

µ(Pi)

By (41), it holds for any Si 6= ∅ that

|E(Si, V \Pi)| − |E(Si, Zi)| 6 ρP(k) · |E(Pi, V \Pi)|

and thus

φ(Pi)

{
6 φ(Zi)− |ρP(k)| · φ(Pi) , if Si 6= ∅;
= φ(Zi) , otherwise.

However, this contradicts Φ(P1, . . . , Pk) > ρ(k) and thus the statement follows. �

We are now ready to prove Theorem 11.2.
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Proof of Theorem 11.2. Let (P1, . . . , Pk) ∈ OP be a k-way partition compatible with a k-disjoint
tuple Z ∈ Zk that satisfies Φ(Z1, . . . , Zk) = ρ(k). By Lemma 11.5 there is a real number such that

κP , [1− ρP(k)]
−1 ∈ (1, k − 1]. (45)

We argue in a similar manner as in Lemma 11.5 to obtain

φ(Pi)

{
6 φ(Zi)− ρP(k) · φ(Pi) , if Si 6= ∅;
= φ(Zi) , otherwise.

(46)

By combining (45) and the first conclusion of (46) we have

φ(Pi) 6 [1− ρP(k)]
−1 · φ(Zi) = κP · φ(Zi). (47)

The statement follows by combining (43) and (47), since

ρ̃avr(k) 6
1

k

k∑

i=1

φ(Pi) 6
κP
k

k∑

i=1

φ(Zi).

�
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