
Supplementary Figures 

  

Supplementary Figure 1. Temperature and intensity dependence of the THz 

emission generated in FeBO3 and TmFeO3. a) The amplitude (open squares) and 

frequency (open circles) of the THz emission arising from the quasi-antiferromagnetic 

oscillations in the z-cut FeBO3 are shown as a function of temperature. b) The amplitude 

(open squares) and frequency (open circles) of the THz emission arising from the quasi-

antiferromagnetic oscillations in the z-cut TmFeO3 vs temperature. The dashed line is a 

guide to the eye. The solid line shows the expected behavior of the quasi-

antiferromagnetic resonance frequency extracted from Ref. 1. Note that the frequencies 

measured in our sample differ by ~ 10 % from those of Ref 1. c) The amplitude of the 

quasi-antiferromagnetic mode in FeBO3 at 15 K is a linear function of the pump intensity. 

d) The amplitude of the quasi-antiferromagnetic mode in TmFeO3 at 35 K scales linearly 

with the pump intensity. 
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Supplementary Figure 2. Temperature and intensity dependence of the THz emission 

generated in YFeO3 a) The amplitude (open squares) and frequency (open circles) of the 

THz emission from the x-cut YFeO3 sample vs temperature is shown. The dashed line is a 

guide to the eye. The solid line shows the quasi-antiferromagnetic resonance frequency as a 

function of temperature taken from Ref. 2 with a correction shift of 60 GHz. b) The 

amplitude of the quasi-antiferromagnetic mode in YFeO3 at 15 K is a linear function of the 

pump intensity.  

  

a) b)

0 50 100 150 200 250 300
0.00

0.05

0.10

0.15

 

 

Temperature (K)

A
m

p
lit

u
d
e

(V
 c

m
-1
)

YFeO
3

0.4

0.6

0.8

1.0

 

 

 

 F
re

q
u
e
n
c
y
 (

T
H

z
)

0 5 10 15 20 25
0.00

0.05

0.10

0.15

A
m

p
lit

u
d
e

 (
V

 c
m

-1
)

Intensity(GW cm
-2
)

YFeO
3

T = 15 K



 

Supplementary Figure 3. THz emission generated in α-Fe2O3. a) Examples of 

waveforms generated in the z-cut α-Fe2O3 sample. b) The spectra of the emission. The 

peak centered at ~ 0.2 THz arising only above the Morin temperature is marked with a 

red oval.   
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Supplementary Figure 4. a) The magnetic configuration of the hematite α-Fe2O3 below 

and above the Morin temperature. b) The amplitude (open squares) and frequency (open 

circles) of the THz emission component marked with red oval in Supplementary Fig. 4 

(b) vs temperature. This component is attributed to the quasi-ferromagnetic mode which 

appears only in the canted antiferromagnetic phase above the Morin temperature TM. 
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Supplementary Figure 5. THz emission generated in FeBO3 and TmFeO3 as a 

function of the pump polarization. a) The THz waveforms generated in the z-cut TmFeO3 

by optical pulses with linear or circular polarizations. b) The THz waveforms generated in 

the z-cut FeBeO3 by circularly-polarized pump with opposite helicities. c) The THz 

waveforms generated in the z-cut FeBeO3 by linearly-polarized pump. The angle in the 

legend of (c) corresponds to the orientation of the linear polarization with respect to the 

direction of the magnetization in the sample. The broadband pulse supposedly generated 

via electro-optical rectification arising from the surface nonlinearity is also seen at the start 

of the waveforms generated in FeBO3. It indicates that the pump pulse arrival time equals 

~ 1.5 ps.    



 

 

Supplementary Figure 6. Comparison of different expressions for the equilibrium 

exchange interaction as a function of 0tU . 

  



 

Supplementary Figure 7. Dependence of the exchange interaction on the applied 

electric field. The figure shows comparison of the amplitude of the modulation of the 

exchange calculated based on the general formulas (blue dots) and the analytical Floquet 

theory (solid line). 



 

Supplementary Figure 8. Determination of the absolute sign of the change of D/J 

in the x-cut ErFeO3. a) Due to the laser-induced reorientation the z-component of the 

magnetization must increase initially. At the same time the z-component of the 

magnetization increases due to the ultrafast change of the ratio D/J. b) The comparative 

analysis of the waveforms generated at the temperatures of the spin reorientation region 

and well above it demonstrates that the initial phases of the quasi-ferromagnetic (q-FM) 

and quasi-antiferromagnetic (q-AFM) modes have the same sign. 
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Supplementary Figure 9. Comparison of the experimental signals with the 

waveforms calculated theoretically. a) The signal generated in TmFeO3 sample at 50 K 

(open circles) shown together with the theoretical waveforms (solid curves) calculated 

assuming different durations of the Gaussian torque b) The signal generated in YFeO3 

sample at 15 K (open circles) shown together with the waveforms calculated theoretically 

assuming different durations of the torque.  
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Supplementary Notes 

Supplementary note 1 – Terahertz emission generated in the photo-excited α-

Fe2O3 

Supplementary Fig. 3 (a) shows the examples of the THz electric field generated in the z-

cut α-Fe2O3 sample. It is seen from the Figure that the form of the signal is noticeably different 

from the quasimonochromatic signals generated in orthoferrites and iron borate. However, this is 

not surprising since the hematite crystal is highly absorbing at 800 nm, in contrast to the other 

materials measured in our experiments. The signal is dominated by the broadband THz pulse and 

its multiple Fabry-Perot replicas. This broadband pulse arises from either surface nonlinearity or 

magnetic dipole-electric quadrupole nonlinearity although investigation of its exact origin is 

beyond the scope of the present study. However, one can observe [see Supplementary Fig. 3 (b)] 

that above 250 K a spectral component at ~0.2 THz arises that is not present in the spectrum of 

the THz transient. The frequency of this component matches perfectly the frequency of the 

quasi-antiferromagnetic resonance in the hematite [3]. Moreover, this spectral component does 

not depend on the pump polarization, while the rest of the emission spectrum does depend on the 

polarization of the pump,l which indicates their different origins. Importantly, the α-hematite 

exhibits a first-order phase transition from a purely antiferromagnetic state to the canted state at 

the critical Morin temperature TM = 250 K. Thus, only in the canted state above TM one 

anticipates the excitation of the quasi-antiferromagnetic resonance due to the modification of the 

exchange parameters. Indeed, the quasi-antiferromagnetic mode is observed only above the 

Morin point (Supplementary Fig. 4).  

  



Supplementary note 2 – Microscopic theory of non-equilibrium exchange 

To demonstrate theoretically the feasibility of the modification of the super-exchange 

interaction, we adapt a quantum theory [4] that was recently developed for describing non-

equilibrium magnetic interactions in strongly correlated systems. We specialize the application 

of this framework to a simple cluster model that mimics the experimental system (in particular, 

α-Fe2O3) and we solve this model numerically. Furthermore, to provide additional theoretical 

understanding, we derive analytical results from Floquet theory for the same cluster model. Both 

the numerical and analytical results demonstrate an enhancement of the exchange interaction that 

scales linearly with the intensity of the electric field. 

 

Quantum theory of non-equilibrium magnetic interactions 

Our theory exploits the non-equilibrium Green-function formalism developed by 

Schwinger [5], Keldysh [6], Kadanoff and Baym [7]. The electronic partition function Z is 

written as a path integral over fermionic (Grassmann) fields of the exponential of a non-

equilibrium action   ,S , i.e., 

     ,S,Z iexp D . (1) 

The effective action describes the system in equilibrium for t < 0, going out of equilibrium for 

t > 0. Fermion fields a  are labelled by indices a and     ,↓,↑ , referring 

respectively to site (we are considering the single-band case below) and spin single-particle 

states. The spin quantization axis of the   fermions is along the unit vector zu . To study the 

spin excitations on  top of the equilibrium ground state, we apply time- and site- dependent 

rotations to the local spinors, defined as  T
aaa 

  , , in order to transform the old fermion 

fields a  into new fields  a  having their spins aligned with time-dependent unit vectors 

 tae  , which are interpreted as the directions of (classical) magnetic moments. The deviations 

of the  tae 's from the equilibrium direction zu  are described by auxiliary (Holstein-

Primakoff) boson fields; for low-energy excitations we assume such deviations to be small, 

obtaining an action quadratic in the bosons (this corresponds to small mixing between quantum 

states with different total spin). By integrating out the fermion fields   an effective bosonic 

action is obtained and we finally map the bosons to the  tae  fields to explicitly identify the 



spin-spin interactions. The coefficients describing the magnetic interactions are expressed in 

terms of non-equilibrium electronic Green's functions and related self-energies, which generalize 

the equilibrium formalism [8] to include the effects of an external time-dependent field. 

Assuming that the spin dynamics is slow with respect to electronic hopping processes, we 

obtain the following formula for the non-equilibrium exchange coupling between sites a and b: 

         ttAttAtdtFtj abab

t

ababab ,,Im
4

1
Re

4

1

0

 
 ,  (2) 

where )1(1 ab  if the ground-state spin correlation function of sites a and b is 

antiferromagnetic (ferromagnetic), and the quantities to be computed are the following (see Eqs. 

(107) and (124) in [4]): 

       

  .1'i

,,1i,









































































 

bdbdbd

dacb

c d

acacacab

Ptt
t

ttGttGttP
t

ttA





  (3) 

 ttAab  ,  is obtained from this equation by exchanging > and < in the right-hand side, and for

ba  , 

         tttGttGttF baabbaabbaab



 ,i,i .  (4) 

The above quantities are expressed in terms of the non-equilibrium Green’s functions, 

            ,ˆˆi,,ˆˆi, ttttGttttG abbababa
  

   (5) 

and in terms of the time-dependent Hartree-Fock component of the self-energy  t . 

Furthermore, in Eq. (3) the arrows above the operators define the directions along which the 

operators act, Pab is the operator interchanging indices a and b in the functions it acts upon, and 

tab(t) are hopping matrix elements, which depend on time in the presence of a time-dependent 

external field. 



For the numerical calculations, it is convenient to work out the derivatives analytically, 

which yields the lesser and greater components of 
1
 

             

    .,,

,,,,,,,

ttGttT

ttTttGttSttSttRttRttA
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



  (6) 

Here we have introduced the quantities 

     ,,, ttGttR abab 


  (7a) 

     ,,, ttGttS abab 


  (7b) 

       ,,,, ttGttttT ababab 


  (7c) 

where  ttab  ,  is the self-energy, which accounts for the electron correlations.  

It must be noticed that the effective exchange parameter in Eq. (2) is not the “bare” 

exchange interaction between the quantum spins in sites a and b, since it also incorporates a term 

which describes the variation with time of the magnitudes of the local magnetic moments (non-

Heisenberg effects). The derivation leading to Eq. (2), in fact, allows to map an electronic system 

onto an effective system of time-dependent interacting unit vectors, which can be interpreted as 

the directions of classical local spins (see Ref.[8]). While these directions appear as dynamical 

variables in our formulation, the magnitudes of the respective quantum spins, as well as possible 

other quantum effects, are included in the definition of the parameters of Eq. (2), which measure 

the strengths of the interactions between the unit vectors. In the absence of symmetry breaking 

                                                 
1
 The symbols A  and A  in Eq.(3) are defined according to the conventions used in Ref.[4]; in 

particular, time variables t  and t are defined on the real axis. In Eq.(6) time variables are 

defined on the Keldysh contour. The correspondence between Eqs.(3) and (6) is given by 

   
  ttAt'tA ,,  and    

  ttAt'tA ,, , where ± indicate times on the upper and lower 

branches of the Keldysh contour, respectively. Note that this is different from the conventional 

definition of lesser and greater components of Keldysh functions.   

 



(which is the case that we consider here), we obtain the bare exchange parameters (i.e., the 

strengths of the interacions between the spins) as 

 
 

   tt

tj
tJ

ba

ab
ab

ss 
 ,  (8) 

where    tt ba ss   is the equal-times spin-spin correlation function.  

 

Minimal model for super exchange 

As minimal model for super-exchange we consider a chain of three atoms denoted 0, 1 and 

2 [9, 10]. Atoms 0 and 2 correspond to transition metal sites with one partially filled d-orbital 

and atom 1 contributes one filled (oxygen) p-orbital. The Hamiltonian consists of a local part 

locH  and a time-dependent hopping term )(tH  : 

  



2,0

↓↑120loc

j

jjpd nnUnnnH





  ,  (9a) 
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1,0

1
i

0 ..e)(
j

jj
t chccttH





     .  (9b) 

Here 
jc  creates an electron with spin  ↓,↑  at site j, and  jjj ccn   is the number 

operator. We choose the zero of the energy as 0 pd  , and define pd   ; U is the local 

(Hubbard) interaction energy associated with d-orbitals, that is,

2

,

2

, )()()( rrrVrrdrdU djdj  


 , where )(, rdj


  is the wave function of the 

d-orbital localized on site j and )( rrV 


 is the effective Coulomb interaction energy between 

electrons at positions r


 and r 


. The single-electron Hamiltonian )(tH   accounts for time-

dependent hoppings between p- and d-orbitals. Specifically, the equilibrium hopping parameter  

)()()( ,11
*
,00 rrHrrdt pd


 , with the dimensions of energy, is the matrix element 

between the d- and p-orbitals localized on iron and on oxygen ions, respectively of the 

equilibrium single-electron Hamiltonian )(1 rH


, which includes the kinetic energy of the 

electrons, the interaction with the ions, as well as any other single-electron time-independent 

potential.  



The time-dependent electric field E(t) is included in )(tH   (see Eq. 9b) by means of the 

time-dependent Peierls substitution [11- 13], which is equivalent to multiplying the equilibrium 

hopping by a time-dependent phase factor. In the Coulomb gauge (zero scalar potential) and for 

a spatially uniform vector potential the Peierls phase becomes 

   tA
c

ea
t ||


 ,  (10) 

where  tA||  is the component of the vector potential parallel to the chain and a is the lattice 

spacing. The electric field is then related to the vector potential as    t
tc

t AE





1
. For 

periodic driving field    tEtE cos0||   along the chain we obtain 

   tt  sin ,  (11) 

where the amplitude is given in terms of the dimensionless parameter 





0eaE

 .  (11) 

For the numerical solution of the periodically driven cluster model we slowly switch on the 

Peierls phase using an error function envelope 

       1erfsin
2

1
1  tttt  .  (12) 

where (for a given ω) the parameters α and t1 are chosen such that   00   and the rise time 

takes about 10 oscillation periods. 

 

 

Numerical computation of non-equilibrium exchange parameters 

A numerically exact solution of the 3-site super-exchange model out of equilibrium is 

obtained by solving the time-dependent Schrödinger equation using exact diagonalization. From 

the time evolution of the states we evaluate the following correlation functions using the 

Lehmann representation: 

     tctcTttG baCab  


 ˆi, ,  (13a) 



        abaaCab UtctctnTttR  


 ˆi, ,  (13b) 

        abbaCab UtntctcTttS  


 ˆi, ,  (13c) 

          babbaaCab UUtntctctnTttT  


 ˆi, ,  (13d) 

where CT̂  is the time-ordering operator along the Keldysh contour and Ua is the Coulomb 

interaction at site a. By computing products like    ttRttR baab   ,,   and by combining all terms 

we obtain the quantity  ttAab
, .  

In addition, we evaluate the spin-spin correlation function as 

                  
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

 tntntntntctctсtсtt bababbaaba -
4

1
)(

2

1
ss . (14) 

For the cluster model we consider a filling with 4 electrons and total spin Sz = 0, and prepare the 

system at t = 0 in the ground state at low temperature. 

In equilibrium the exchange interactions are extracted at zero electric field by evolving the 

system along the real time axis to extract    '', ttAttA abab   for a, b = 0, 2. The full (static) 

exchange interaction 
0
abj  is obtained from Eq.(2), by taking  *tt   large enough,   

  tjj
abab

0
.  (15) 

We use a Gaussian window of length L to ensure a smooth cutoff of the upper integration 

boundary. Numerically converged results, independent of L and *t , are obtained for 
1

  abjLt . 

The bare exchange interaction, Eq. (8) is then computed as  

   00

0
0

ba

ab
ab

j
J

ss 
 .  (16) 

Out of equilibrium, the hopping matrix elements are modulated by the Peierls phase, and the 

 tjab  and    tt ba ss    oscillate with the electric field. In this case, we compute the effective 

exchange interaction by averaging the bare exchange interaction over the period T of the field  
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
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
tt

tj
dt

T
J

ba

ab

Tt

t

ab
ss

1
.  (17) 

The result is found to be independent on *t  in the quasi-equilibrium state formed after slowly 

ramping up the Peierls phase. 

 

Analytical Floquet theory 

To gain additional understanding on the electrical control of the exchange interaction we 

use an alternative approach based on Floquet theory. For small amplitudes ε, relevant to the 

experimental conditions, this allows us to derive analytical formulae for the non-equilibrium 

exchange interaction under periodic driving of the 3-site cluster model. 

To discuss the superexchange mechanism in the unperturbed system (ε = 0), we consider a 

filling of the cluster with 4 electrons, and apply perturbation theory to describe the low-energy 

states. For large Coulomb interaction (U, U + Δ >> t0) the low-energy sector of the Hilbert space 

includes the states with two electrons occupying the oxygen p-orbital and one electron in each of 

the two transition metal d-orbitals  ↑,2,↑,↓,2,↓,↓,2,↑,↑,2,↓0 H .  The 

symbols in  denote the occupation of the orbitals 0, 1, 2, from left to right, which can be 

either empty (0), singly occupied  ↓,↑ , or doubly occupied (2). Virtual charge-transfer 

excitations due to the hopping t0 to states 2,2,0,0,2,2  etc. lead to a shift of the levels. A 

splitting ET – ES of singlet   2/↓,2,↑-↑,2,↓   and triplet levels occurs in fourth order, 
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11
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UUU
tEE .  (18) 

where UU1 . The low-energy Hamiltonian is thus an antiferromagnetic Heisenberg model 

with exchange interaction   2/ST EEJ  . 

For a periodically driven system, solutions of the time-dependent Schrödinger equation can 

be found in terms of the Floquet modes of the form  

   tt
t



  i-
e ,  (19) 



where    Ttt     is periodic with 2T  [14-15]. To determine  t  and the 

Floquet spectrum ζα, we expand  t  as 

   
n

n

nt tt ,

i-e 


  .  (20) 

The Schrödinger equation ( ) ( ) ( )ttHtt  =∂i  gives  

     ttHtnH n

m

mnmn ,,,loc )(      ,  (21) 

where nH   are the Fourier components of the hopping term )(tH  , 

 
T nt

n tHdt
T

H
0

ie)(
1  .  (22) 

The quasi-energies parametrically evolve with ε from the unperturbed energies    nE 0
  

to the perturbed levels   . As a function of time, the amplitude evolves with the pulse 

envelope, and thus has typically only small variation on the timescale of the period T. Under 

these conditions, the system would adiabatically evolve from the low energy states of  0H  

into the corresponding Floquet modes, and the slow dynamics during the pulse (in particular, 

precessional motion of spins) is governed by an effective Hamiltonian that is determined by the 

level spectrum   . In particular, we can obtain the non-equilibrium exchange interaction 

from the singlet-triplet splitting as        2/ST  J . 

The experiment is performed in the regime of weak perturbation ε << 1 (from the estimates 

in the main text we get ε ~0.04). In this case, the level splitting can be determined analytically by 

standard degenerate perturbation theory for the extended eigenvalue problem, where we keep all 

terms up to fourth order in t0  and second order in ε. For the Fourier transform of the hopping 

term we find  

      ..1-- 01120 chccccJtH
n

nn   


 ,  (23) 

where     










nssx

n dsxJ -sinie
2

1
  is the n-th order Bessel function. The term n = 0 thus describes 

a reduction of the hopping with the factor    22

0 4/1  OJ  . At the extremely large 



amplitude ε ≈ 2.405, the effective hopping vanishes which is known as coherent destruction of 

tunneling [16-17].  The terms nH   with n ≠ 0 couple to higher Floquet sectors, which 

corresponds to a dressing of the levels with virtual absorption/emission of n photons. Because 

  n
nJ  ~  for 0 , we can restrict ourselves to n = ±1 ( 0nH  does not contribute in first 

order perturbation theory). Summing up all hopping processes in 1H  and 0H   of the 

perturbation theory yields the result of the main text, 
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Exchange can be strengthened for low frequencies due to the effective lowering of the 

charge transfer energy by a virtual photon, and weakened for very high frequencies, where the 

coupling to higher Floquet bands is irrelevant and the coherent destruction of tunneling 

dominates. In experiments we typically have 2~ 1U , hence we anticipate a strengthening of 

the exchange interaction by the photon-assisted charge-transfer excitations under experimental 

conditions. We also note that in the strict limit 0  (which is not relevant for experiments 

since it requires very long laser pulses) a small negative change ΔJ appears when 0 . 

Let us remark that Floquet theory makes predictions that will not be further discussed in 

the current manuscript. For example, the expression Eq. (24) shows that the effect of the electric 

field on the exchange interaction is strongly enhanced close to the resonance (where in a solid, 

however, one has strong absorption). In addition, different effects may occur in the non-

perturbative regime, where the coupling to Floquet higher sectors is not negligible. Finally, the 

current model is clearly just a minimal model for laser-controlled super-exchange. A much richer 

behavior can be expected if more orbitals are included in the description. 

 

Results 

Before analyzing the effect of an electric field out of equilibrium, we study in equilibrium 

the quality of the general formulas Eq. (8) and Eq. (16), as well as the perturbative analytical 

expression Eq. (18) against the exact singlet-triplet splitting of the 3-site cluster. The result is 

shown in Supplementary Fig. 6, where the different calculations of the exchange interaction are 

plotted as functions of 0tU  for 5.00  t  and low temperature 80000 t , TkB1 . 

 



It is observed that the full exchange interaction ( 0

02j , black squares) introduces a systematic 

underestimation compared to the exact singlet-triplet splitting (blue solid lines) for all values of 

U. Instead, the bare exchange interaction ( 0

02J , red discs) shows excellent numerical agreement 

already for relatively small 40 tU . We attribute the deviations at smaller U to the neglect of 

vertex corrections in the general formulas.  The perturbative analytical expression Eq. (24) 

(green dashed line) is quite accurate already at 60 tU . 

Supplementary Fig. 7 shows the relative change of the exchange interaction JJ  in the 

periodically driven cluster model as a function of ε
2
. For the numerical evaluation of the general 

formulas we slowly switched on the electric field using a rise time of 10 oscillation periods of 

the electric field pulse, using the model parameters 60 tU , 5.00  t , 30 t , 

20000 t . The results show an excellent quantitative agreement between the numerical results 

of the general formula, 


abJ  from Eq. (17), and the analytical Floquet theory Eq.(24), 

demonstrating an enhancement of the exchange interaction that scales linearly with the intensity 

of the electric field. The order of magnitude of the effect in absolute numbers is discussed in the 

main text. 

 

The relation between the modification of the exchange interaction in a Fe-O-Fe cluster and of 

the macroscopic exchange in the crystal 

Our model computes the modification of the exchange interaction along one Fe-O-Fe 

bond. Hence the model predicts that bonds with a different projection of the electric field 

experience a different modification of exchange. However, as long as the effect is proportional to 

the intensity of the electric field, this still yields an isotropic effect in the interaction Hamiltonian 

of Eq. (1) of the main text, provided that the crystal symmetry allows this.  

To understand the isotropic nature of Eq. (1), it is instructive to consider a cubic lattice 

with bonds along the crystal axes. Assuming that the exchange interaction Jij is modified by ΔJij, 

the resulting modification of the exchange energy can be written as 

 
z

jizij

y

jiyij

x

jixijjiij JJJJ
bondsbondsbondsbondsall

SSSSSSSS . Using the cubic symmetry we can 

write 
2

xijxij EYJ  , 
2

yijyij EYJ  , and 
2

zijzij EYJ  , where the coefficient Yij is the same 

for all three terms. Hence we have 



   
bondsall

2

bondsall

222

bondsall

ESSSSSS jiijzyxjiijjiij YEEEYJ  in agreement with the 

isotropic Hamiltonian of Eq. (1) of the main text. 

In a more general case, the symmetry of the (inverse) magneto-optical effect is determined by 

the crystal structure, which imposes similar symmetry requirements for both the macroscopic 

theory (Eq. 1 of the main text) and more elaborate microscopic theory of an extended crystal. For 

example, since the model predicts that the strength is proportional to the dimensionless 

amplitude  0eaE , with a being the bond length, we anticipate slight deviation from full 

isotropy when the system is not perfectly cubic (e.g. for the orthorhombic distortions in the 

orthoferrites). Nevertheless, even in such a case the exchange is perturbed for any orientation of 

the light polarization, only the amplitude may be slightly different and such differences will be 

very hard to distinguish experimentally. Indeed, the lattice constants along the x, y and z axes in 

the orthoferrites vary by a few per cent. At the same time the in plane cross-section of the unit-

cell in the z-cut FeBO3 and α-Fe2O3 has a hexagonal shape that also would give rise to a very 

slight if not negligible variation of the exchange perturbation due to the polarization of light.  



Supplementary note 3 – Does light increase or decrease D/J in ErFeO3?  

The magnetocrystalline anisotropy of TmFeO3 and ErFeO3 is characterized by a strong 

temperature dependence in the ~ 80 – 100 K temperature interval [18]. In this temperature range 

the spin configuration of the iron sub-lattices continuously rotates in the (xz)-plane, while 

keeping the weak ferromagnetic moment in the same plane. Thus one might anticipate a strong 

temperature dependence of the THz emission in the vicinity of the spin-reorientation temperature 

interval. Indeed, along with the quasi-antiferromagnetic mode, another  mode at ~ 100 GHz 

appears in the spectra of emission generated in TmFeO3 and ErFeO3 in vicinity of the spin-

reorientation temperature range. We attribute this second mode to the quasi-ferromagnetic 

precession of spins. 

The quasi-ferromagnetic resonance excitation under optical excitation of TmFeO3 and 

ErFeO3 samples near the spin reorientation temperature region has been reported before and 

assigned to the thermally induced change of the anisotropy [19-21]. This picture concurs with the 

fact that in YFeO3 and FeBO3 samples the low frequency mode has not been observed because 

of the absence of a spin reorientation in these materials.  

The analysis of the waveforms generated in TmFeO3 sample at the temperatures of the 

photo-induced spin reorientation allowed us to determine the absolute sign of the change of D/J 

as discussed in the main text of the paper. It is instructive to check whether the sign of the quasi-

antiferromagnetic oscillations generated in another compound exhibiting spin reorientation, 

namely in the erbium orthoferrite ErFeO3, is consistent with the obtained result. We applied the 

same analysis to the signals generated in the x-cut ErFeO3 sample as illustrated in Supplementary 

Fig. 8. Importantly, in the latter sample the direction of the spin reorientation is opposite with 

respect to that in the z-cut crystalline plate of TmFeO3. Thus, the initial phase of the quasi-

antiferromagnetic mode must be the same as the initial phase of the low-frequency quasi-

ferromagnetic mode [Supplementary Fig. 8 (a)]. This prediction has been fully validated by the 

experimental data, as shown in Supplementary Fig. 8 (b).  

  



Supplementary note 4 – Macroscopic theory of the quasi-antiferromagnetic 

mode excitation via optical perturbation of the exchange interaction  

The equilibrium orientation of the iron spins in canted antiferromagnets is given by the 

minimum of the thermodynamic potential
2
: 
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  (25) 

where S1 and S2 are the vectors that characterize the spins of the iron ions in the two magnetic 

sublattices, J is the nearest-neighbor isotropic exchange interaction constant; D is a constant 

vector pointing along the y-axis and describing the Dzyaloshinskii-Moriya antisymmetric 

exchange interaction; Kx, Ky, Kz, K4 are the constants of the effective anisotropy. The Kx, Ky, Kz, 

K4 are purely phenomenological and “effective” parameters, in the sense that they do not 

necessarily have a clear physical meaning, being a combinations of the single ion anisotropy 

terms and “hidden” exchange coupling parameters (see Ref. 22 for a detailed discussion). 

It is instructive to rewrite the potential (25) in terms of the ferromagnetic vector 

(magnetization) M = -γ(S1 + S2) and the antiferromagnetic vector L = -γ(S1 – S2) as follows [1] 

      4

4

2222

Fe 4

1

2

1

2

1

2

1
3 LKLKKLKKLMLMDJMJM zxzyxyxzzx   .     (26) 

Here γ is the absolute value of the gyromagnetic ratio of an electron and 3Fe
M  is the magnetic 

moment of the iron ion. Note that 2

Fe

22
34  MLM . Let us consider the x-cut ErFeO3 or YFeO3 

as an example (the case of other materials is identical after rotation of the coordinate system by 

90
o
). Taking into account that in canted antiferromagnets J>>D>>Kx, Ky, Kz>>K4 [1], the 

equilibrium magnetic configuration reads 

00Fe0 ,2,0 3 L
J

D
MMMLLLLMM zxzyyx   .  (27) 

Here D/J defines the canting angle, which is a small parameter; in the subsequent derivation all 

terms smaller than the canting angle are neglected. 

The spin dynamics is described by the Landau-Lifshitz equations for ferromagnetic and 

antiferromagnetic vectors  

                                                 
2
The formulae in this file are written in the Gaussian system of units, but the final results are converted to SI units.  
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The vectors M and L can be represented as a sum of the equilibrium M0 and L0 and the time-

varying m(t) and l(t) components. In the case of small deviations from equilibrium (m <<M0 and 

l << L0) one can obtain a linearized system of equations describing the quasi-antiferromagnetic 

resonance: 

 

 

 



















.

,

000

0

0

xz

y

yxy

x

yxy
z

lDLmDMJL
dt

dl

lMKK
dt

dl

lLKK
dt

dm







, , (29) 

From the system (29) it follows that ly obeys the harmonic oscillator equation  

02

qAF2

2

 y

y
l

dt

ld
 , (30) 

where AEqAF 2 HH   is the frequency of the quasi-antiferromagnetic mode, 0E
2

1
JLH  is 

the exchange field and   0A LKKH xy   is the anisotropy field.  

Eqs. (29) and (30) describe the free dynamics of the spins without damping. To include the 

light-induced stimulus due to the inverse isotropic magnetic refraction, one has to consider an 

additional contribution, proportional to the envelope of the optical intensity Iopt,

2

optIMR MaI
i,j

 , added to the thermodynamic potential (25). As discussed above this term 

can be considered as a light-induced perturbation of the symmetric exchange energy, i.e.  

  2
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2

0IMR0exex
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1
MJJMaIMJ  ,  (31) 

where opt2aIJ  , and the coefficient a can be calculated from the microscopic theory of non-

equilibrium exchange presented in the previous section. According to Eq. (24) the perturbation 

of the exchange ΔJ(t) follows the envelope of the optical intensity, i.e.    22

0 /exp tJtJ  , 

where ΔJ0 is the peak change of the exchange parameter, 2ln2/FWHM  , FWHM  being the 



full width at half maximum of the laser pulse intensity envelope. However, it is also possible that 

the antisymmetric Dzyaloshinskii-Moriya energy ФD is also modified such as   

  xzzx LMLMDD  0D ,  (32) 

where D  is proportional to the envelope of the optical intensity, i.e.    22

0 /expD tDt  . 

The light-induced modification of the exchange energy creates the torque 
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L  acting on the antiferromagnetic vector L. It appears on the right-hand 

side of the equation of motion of ly as a driving force: 
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Note, that here we restrict ourselves to the terms of first order in smallness with respect to ΔJ, 

ΔD ,ly, lx and mz. Moreover, since 
2

0

2

0 ML  we can neglect the last term on the right side of Eq. 

(33). Let us also introduce some phenomenological damping into the equation of motion (33) as 
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where ν is the damping parameter.  

Applying the Fourier transformation to Eq. (34) with respect to time t we get 
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where  yl
~

 is a Fourier transform of ly(t)  
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By rearranging Eq. (35) we obtain 
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At the same time, it follows from Eqs. (29) that  
yxyz lKKLm

~~i 0   , where zm~  is a Fourier 

transform of mz. Thus, using Eq. (37) and the relations  
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It is instructive to consider the limit case of the instantaneous torque, i.e. τ ωqAF<< 2π. In this 

case Eq. (38) can be approximated as 
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By calculating the inverse Fourier transform of Eq. (38) we can get an analytical solution for the 

magnetization response (in the case of small damping qAF  ) 

      t

z etmttm   qAF0 sin ,   (40) 

where  t  is Heaviside function and 
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Eq. (41) can be rewritten in the form 
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Eq. (42) shows that the ratio between the magnetization deviation from equilibrium m0 and the 

spontaneous magnetization M0 is directly proportional to the relative change of the ratio 
J

D
. 



It follows from the Eq. (26) that a light-induced change of the out of plane anisotropy 

 
xy KK   cannot trigger the quasi-antiferromagnetic mode since in equilibrium there is no spin 

alignment along the y-axis and Ly = 0. Kz is not involved in the quasi-antiferromagnetic 

excitation at all [e.g. it is absent in Eqs. (29)].  

Generally speaking, the change of anisotropy must trigger the quasi-ferromagnetic mode 

[20]. At the same time, the excitation of this low-frequency mode has been observed only in 

TmFeO3 and ErFeO3 and then only near the temperature region of the phase transition (see 

Supplementary note 2). At these temperatures one indeed expects a significant thermally induced 

change of the anisotropy. This observation unambiguously proves that, with the exception of the 

spin-reorientation temperature interval in TmFeO3 and ErFeO3, the contribution of laser-induced 

anisotropy changes to the observed photo-excited dynamics is negligible. In the case of FeBO3 

and α-Fe2O3 the situation is even more obvious since these materials are easy-plane 

antiferromagnets with negligibly small in-plane anisotropies. 

  



Supplementary note 5 – Electrodynamics of THz generation and 

emission in canted antiferromagnets 

The optical pulse excites the magnetization oscillations in a thin slab of a canted 

antiferromagnet. The lateral dimensions of the sample and the size of the excitation spot (several 

mm) are much larger than the THz wavelength (300 μm). Thus we can restrict ourselves to a 

one-dimensional problem as follows.  

Let us consider an infinite slab of a material of thickness d with the permittivity εs, 

containing an oscillating magnetization M oriented along the z-axis in the form 

          00 zM xdxtmMt,x  , (44) 

where M0 is the equilibrium magnetization, m(t) is the time-dependent deviation from 

equilibrium, and Θ(x) is the Heaviside function. The magnetic permeability in the canted 

antiferromagnets in the vicinity of the magnetic resonance frequency varies from 0.9 to 1.1 [1], 

and thus can be neglected. From the physical point of view, it means that the inverse action of 

the emitted magnetic field on the oscillating magnetization is negligible.  

To find the emission of the magnetization (44) one has to solve the wave equation for the y-

component of the electric field Ey 
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, (45) 

where       xdxtcm
x

M
cj  



 ,  x is a Dirac function and the permittivity ε(x) in the 

THz range is εs in the slab (-d < x <0) and unity outside, respectively. Eq. (45) is derived from 

the Maxwell equations.  

After applying the Fourier transformation with respect to time, Eq. (45) transforms to 
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We solve Eq. (46) in the homogeneous regions x < -d, -d < x <0 and x > 0 and match the 

solutions by the boundary conditions that arise after integrating Eq. (46) across the boundary at 

x = -d and x = 0. These boundary conditions imply the continuity of E
~

, while 
x

E




~

 exhibits a 



finite discontinuity of  


mi
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~4
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
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  at the boundaries x =  -d and x = 0 

respectively. The solution has the form 
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where
c

k


0  is the wavenumber in free space, n
cc

k s





  is the wavenumber in the slab 

with refractive index n. In our experiment we measured the field E(t) emitted into free space 

given by 
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where 
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The function  m~  has been already derived above and is given by Eq. (38).  

 

The refractive index at the quasi-antiferromagnetic frequency equals n = 4.71 and 4.68 for 

TmFeO3 and YFeO3, respectively [1]. The thickness of our samples equals d = 60 μm and 70 μm 

correspondingly. By substituting these parameters into Eqs. (48) and (49) and fitting the 

amplitude, the time delay corresponding to the arrival of the pump pulse and the damping 

constant in Eq. (38), we obtained the waveforms shown in Supplementary Fig. 9 for different 

durations of the excitation torque. It is seen in the figure that the waveforms calculated for the 

excitation torque with a duration of < 0.5 ps agree well with the experimental data. As the 

duration of the torque exceeds 0.5 ps the calculated waveforms become different from the 

experimental signals because the spins start to follow the torque adiabatically, leading to the 

generation of a broadband electric field pulse not observed in the measurements. When the rise-

time becomes longer than 1 ps the excitation of the quasi-antiferromagnetic mode gradually 

vanishes since the spectrum of the torque does not overlap with the resonance frequency 



anymore. Importantly, to keep the excited quasi-antiferromagnetic oscillation of the same 

amplitude one has to increase the peak amplitude of the torque as its duration becomes longer.  

However, even for the case of the shortest torque (100 fs) both calculated and measured 

signals demonstrate a finite rise-time (~ 1 ps). This effect is due to the fact that the samples act as 

Fabry-Perot resonators for the electromagnetic radiation at the frequencies of interest. The 

Fabry-Perot behavior is described by the term 
 
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 in Eq. (49). The 

electric field emitted by the instantaneously commencing magnetization oscillations does not 

follow the magnetization immediately but exhibits a finite rise time determined by the 

characteristic timescale of the resonator 
c

nd
~1 ps. The presence of Fabry-Perot resonances in the 

vicinity of quasi-antiferromagnetic frequency was also experimentally verified in our THz 

absorption measurements. 

In FeBO3 and α-Fe2O3 the period of quasi-antiferromagnetioc oscillation is several times 

smaller than in the orthoferrites. Therefore, excitation is possible for longer torques. However, it 

is natural to assume that the mechanism of excitation and its timescale are the same in these 

materials as in the orthoferrites. 

Using Eq. (49) and measured values of the electric field we estimated the amplitude of the 

oscillating magnetization as ~10
-3

emu/cm
3
in the orthoferrites and the iron borate (~1 A/m in SI 

units), which implies 



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


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
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


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0

0/
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D

A

D
 ≈ 0.01 %. The amplitude of the electric field generated in the 

hematite is smaller, but this material absorbs light at 800 nm, which leads to a different regime of 

the excitation. Thus, the radiated emission might have been generated in a thin surface layer in 

which the optical pulse penetrates, which would lead to a similar efficiency of the perturbation of 

the exchange energy.  

  



Supplementary note 6 – The strength of the optical control of the super-

exchange 

Even a relatively small change of the exchange interaction corresponds to rather large 

effects expressed in absolute units of equivalent field and energy.  

From Eq. (33) one can see that the changing of the ratio D/J is equivalent to the 

application of the short pulsed magnetic field beff along the magnetization direction. The peak 

amplitude of this field is 

 
 qAF

00

00000

mJ
LDMJb  . (50) 

For the parameters of our experiment and the known strength of the exchange field in the 

materials under study (J0L0 ~ 1000 Tesla) we estimate the amplitude of the equivalent field to be 

of the order of ~ 0.01 Tesla per 1 mJ/cm
2
 pump fluence. This value is of the same order of 

magnitude as the maximal strength of the light-induced magnetic field (per the same pump 

fluence) achieved with help of opto-magnetic phenomena such as the inverse Faraday effect 

[23]. However, the inverse Faraday effect and similar phenomena owe their strength to the spin-

orbit coupling and therefore are not strong in all magnetic materials. Therefore the exchange 

driven optical control of spins should be a more versatile tool for the manipulation of magnetic 

states. The short single-cycle THz pulses of magnetic field which are shown to excite spin 

dynamics can achieve a peak amplitude of 0.1 Tesla [24]. Unfortunately, to generate such a pulse 

one needs extremely high pump fluences and dedicated laser systems not widely available. 

Indeed, the pulses of magnetic field used in Ref. 24 were generated using optical pulses with 

energy of 5 mJ, that is larger than the total energy of pulses generated in a conventional 

amplified Ti:sapphire laser used in our measurements.  

The energy of the interaction between light and magnetic system can be estimated as  

00MVbW  , (51) 

where V is the optically excited volume of the material (~100 µm×1 mm×1 mm in our 

measurements). Using Eq. (50) and taking M0 ≈ 10 emu/cm
3
 we estimate the energy ΔW is of the 

order of 1 µJ per excited area of 1 cm
2
.  

Finally we note that the 0.01% change of the ratio of the two exchange parametrs 

represents a difference of the relative changes of each of them. This means that if the changes are 



of the same sign (which is quite likely) then each of them could in fact be much greater than 

0.01% in agreement with the prediction of the microscopic theory. 
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