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Supporting Material

Derivation of Eq. 12 of the Main Text

According to Eq. 11

f ′β :=
dfβ
dt

= −fβkβα . (S1)

Thus,

f ′′β :=
d2fβ
dt2

= −f ′βkβα − fβk′βα = fβ
(
k2
βα − k′βα

)
, (S2)

where k′βα := dkβα/dt. According to Eq. 8

f ′′β (tm) = 0 , (S3)

so that

k2
βα(tm)− k′βα(tm) = 0 . (S4)

Using Eqs. 3, 5, 7, and 9, k′βα(tm) is obtained as

k′βα(tm) =
r∆H∗β

kBT
app
m

2kβα(tm) , (S5)

so that Eq. S4 can be rewritten as

r∆H∗β

kBT
app
m

2kβα(tm)− k2
βα(tm) = 0 , (S6)

which further simplifies to
r∆H∗β

kBT
app
m

2 − kβα(tm) = 0 . (S7)

Using Eq. 5 again, we obtain

r∆H∗β

kBT
app
m

2 = k0e
∆S∗

β/kBe−∆H∗
β/kBT

app
m (S8)

S2



and multiplication with ∆H∗β/4kB yields

r∆H∗β
2

4k2
BT

app
m

2 =
k0H

∗
β

4kB
e∆S∗

β/kBe−∆H∗
β/kBT

app
m , (S9)

which can be rewritten as

(
∆H∗β

2kBT
app
m

e∆H∗
β/2kBT

app
m

)2

=
k0∆H∗β
4kBr

e∆S∗
β/kB . (S10)

By introducing

θ = ∆H∗β/kB (S11)

and

r∗ =
k0∆H∗β

4kB
e∆S∗

β/kB (S12)

we obtain (
θ

2T appm
eθ/2T

app
m

)2

= r∗/r , (S13)

which can be solved for T appm using the principal branch of the LambertW function, W (x),

by exploiting its property W (xex) = x:

T appm = θ ·
[
2W

(√
r∗/r

)]−1

. (S14)

Derivation of Eqs. 16 and 19 of the Main Text

In the following we expand the right hand side of Eq. 12 in powers of the natural logarithm

around an arbitrary heating rate r0. We start with the first derivative of T appm with respect

to ln r:
dT appm

d (ln r)
= r

dT appm

dr
= θ ·

[
4W

(√
r∗/r

)(
1 +W

(√
r∗/r

))]−1

, (S15)
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which follows from the property W ′(x) = W (x)/ [x(1 +W (x))] of the LambertW function.

Around r0, T appm can then be approximated as

T appm (r) = T0 + C ln (r/r0) +O([ln (r/r0)]2) , (S16)

with

T0 = T appm (r0) = θ ·
[
2W

(√
r∗/r0

)]−1

(S17)

and

C =

(
dT appm

d (ln r)

)
r0

= θ ·
[
4W

(√
r∗/r0

)(
1 +W

(√
r∗/r0

))]−1

. (S18)

For the particular choice r0 = req we obtain T0 = T eqm and C assumes the form

C =
T eqm

2

θ + 2T em
≈ T eqm

2

θ
, (S19)

where we used W
(√

r∗/req

)
= θ/(2T eqm ) and the last approximation is valid for θ >> T eqm .

Heating-Rate-Dependence of the Transition Path Time

For a harmonic, large-enough barrier height ∆G∗, the transition path time can be expressed

as

τtp(T ) ∝ ln [2eγ∆G∗(T )/(kBT )]

(ω∗)2D(T )/(kBT )
∝ ln [2eγ∆G∗(T )/(kBT )], (S20)

where γ ≈ 0.577 denotes the Euler constant, (ω∗)2 is the curvature of the barrier, and

D(T ) ∝ T is a diffusion coefficientS1. According to Eq. S20 and with ∆G∗β = ∆H∗β − T∆S∗β,

τtp is almost constant in the narrow temperature range 310 K < T < 330 K, corresponding

to the heating rates realized in this study. This is illustrated in Fig. S1, where τtp for

∆H∗β = 318 kJ/mol and ∆S∗β = 0.77 kJ/(mol K) (compare with Table II, parameters for

nw = 31 und Nl = 288) is plotted as a function of the temperature.
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Figure S1: Transition path time τtp for ∆H∗β = 318 kJ/mol and ∆S∗β = 0.77 kJ/(mol K)
according to Eq. S20 as a function of the temperature.

Determination of θ and r∗ via the Kissinger method

Eq. S8 can be rewritten in the Kissinger formS2,

ln

(
r

T appm
2

)
=

A

T appm
+B , (S21)

with

A = −θ (S22)

and

B = ln

(
k0

θ

)
+

∆S∗β
kB
≡ ln r∗ + 2 ln

(
2

θ

)
. (S23)

A linear fit in the Kissinger plot (ln
(
r/T appm

2
)
versus 1/T appm ) then yields A and B. In Fig. S2

this is presented exemplarily for the large system (Nl = 288) at excess hydration (nw = 31),

where we obtain θ = −A = (38.5±3.0) × 103 K and ln r∗ ≡ B − 2 ln 2/θ = 129±11, both

consistent with Table II in the main text.
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Figure S2: Kissinger plot representation of r-dependent apparent melting temperatures T appm

for the large system at excess hydration. The solid straight line is a linear fit to the data
points.

Evolution of membrane area and number of gauche bonds for several

heating runs

Fig. S3 shows the numbers of gauche bonds in both monolayers and the membrane area for

three independent representative heating runs across the chain melting transition. Data are

from large systems (Nl = 288) at excess hydration (Nl = 288) and heating rate r = 0.125 K/ns.

It is seen that the number of gauche bonds increases roughly simultaneously, while the mem-

brane area always responds with a delay of several nanoseconds.
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Figure S3: Numbers of gauche bonds in both monolayers and membrane area for two inde-
pendent representative heating runs across the chain melting transition.
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