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Scanning the CMIP5 database  
We apply search criteria and classification criteria to the multi-model CMIP5 database. In addition 
we add physical explanations for all types of abrupt change identified. Thereby we allow for 
progress beyond previous exercises based on expert elicitation of possible abrupt changes in the 
climate system (1). The AR5 report of the IPCC does discuss this risk of abrupt change, but their 
evaluation is not based on a systematic scan of the CMIP5 multi-model ensemble. They mention a 
few cases in the CMIP5 database that were discovered by single groups occurring in their own 
model. Various papers have been published discussing how to support statistical claims in the 
context of imperfect models of the Earth System (2). In line with the IPCC AR5 guidelines, we do 
not quantify the probability but qualitatively evaluate the plausibility of abrupt events and 
mechanisms behind them. We use a similar logic of confidence evaluation based on consistency of 
evidence (mechanistic understanding) and the degree of agreement between models (whether it 
happens in one model or in several ones). We use statistical tests and criteria only to define 
abruptness, not to give a statistical measure for the frequency or existence of such events. In our 
view, even abrupt changes that only occur in one individual climate model, if associated with a 
plausible scientific explanation, are worthy of further investigation. 
 
Distinction between rapid and gradual change to a new state 
By evoking Category III and IV abrupt shifts we make a distinction between rapid and gradual 
changes to a new state. A gradual change may not seem abrupt, but we use this category for cases 
that still obey our quantitative classification criteria (based on a decadal time scale) of abruptness, 
while the shift from one state to another may take many decades. These transitions display changes 
in each decade that are large compared to the internal variability of the system and are characterised 
by time series possessing a probability density function that is consistent with transitions between 
more than one regime. Such cases may be characterised by a sequence of decades, each displaying 
"abrupt" change, when transitioning from one regime to another. These cases are additional to the 
AR5 definition of abrupt change. The AR5 definition was evoked to exclude transitions that 
completely follow the forcing trend without showing additional intrinsic timescales. Our cases of 
Category IV do show such intrinsic timescales. The transitions lag the forcing and from additional 
simulations continued many centuries ahead, once a threshold is passed, it has been shown that they 
continue after the radiative forcing levels off.  
 
Dip-test  
The Dip test of unimodality measures departure from unimodality, identifying whether a time series 
has a unimodal distribution (null hypothesis) as opposed to a bimodal or multimodal distribution 
(alternative hypothesis). We use a 1% critical level, i.e. we reject the null hypothesis of unimodality 
if the p-value of the Dip test statistic is <0.01. The Dip test is applied to all cases presented in Table 
S3. Among the 41 cases, 19 time series exhibit significant bimodality or multimodality. Fig. S7 
presents two examples of time series and their densities from the first two categories of abrupt 
climate change (i.e. periodic or chaotic switches between two different regimes). The densities 
presented in Fig. S7 are obtained using a Gaussian kernel density estimator with a default 
bandwidth scaled as the standard deviation of the smoothing kernel. Based on the Dip-test the first 
example is multimodal and the second one is unimodal, but skewed. If we would only use the Dip-
test as a second classification criterion we would have to reject the second example.  
 
Symmetry-test  
In the second example, the Dip test does not reject the unimodality hypothesis even though the 
density function exhibits bimodal behaviour, which occurs when one of the two regimes is 
undersampled. Additionally, the second regime might be unstable, resulting in time series that 
feature abrupt excursions towards this unstable regime, but with varying amplitude. This behaviour 
is associated with a probability density function that is not bimodal, but exhibits a very long tail and 



is very skewed. Therefore, an alternative criterion is applied in addition to the Dip-test, based on a 
test for the nonparametric skewness. This Symmetry test detects asymmetry in time series and 
allows testing whether a time series has a symmetric distribution (null hypothesis) as opposed to an 
asymmetric distribution around an unknown median (alternative hypothesis). We use a 1% critical 
level and apply the test to all cases presented in Table 1, see Table S3. The second example in Fig. 
S7 also does not pass the symmetry test and is thus rejected. 

Our identifications of abrupt changes are those first suspected through our initial three search 
criteria, and with verification satisfying first the 4σ criterion and thereafter the rejection of the null 
hypothesis by one of the two classification tests. In each instance, we demand physical 
understanding for their occurrence and reject cases that look suspect or where we cannot interpret 
the physics leading to the abrupt shift. For all cases we retain we supply physical understanding for 
their occurrence and any related feedbacks.  
 
Counting method.  
We count 30 model cases denoted by different letters in Fig. 1 and Tables S2 and S3. To estimate 
the frequency of occurrence, we first consider the number of RCP scenarios simulated by the 37 
models we investigated. The total number of RCP scenarios investigated is 100. Model cases are 
associated with two or three abrupt events if these occur in two or three different RCP scenarios. 
We find 36 events in the 100 RCP time series (Table S1), associated with 25 model cases shown in 
Fig. 1 and Tables S2 and S3. We find 4 model cases of abrupt change already displaying abrupt 
shifts in the pre-industrial run which are counted only once, regardless whether these shifts continue 
to occur in the historical or any RCP simulation, where they gradually weaken and disappear for 
increasing temperature rise. We find 1 abrupt shift occurring in a historical simulation. Thus adding 
the 36 occurrences in forced simulations of future scenarios, 1 occurrence in the historical 
simulation and 4 occurrences in simulations without forcing changes we arrive at a total of 41 
abrupt events. To calculate the frequency of occurrence of an abrupt event we have to consider the 
number of ensemble members each model has run for a given RCP scenario as well. Often models 
are rerun with slightly different initial conditions to separate internal variability from the forced 
response. However, sometimes variables are only uploaded for the first ensemble member, and the 
models featuring higher resolution or running extended scenarios towards year 2300 instead of year 
2100 often only run one ensemble member (Table S3). If the abrupt events only occur in a fraction 
of the model ensemble, this fraction is used to estimate the frequency of occurrence. As a result, the 
36 events occurring in 100 RCP simulations are associated with a frequency of occurrence of 33%. 
The frequency of occurrence for the RCP8.5 scenario is 53%. The frequency of occurrence is larger 
than the chance that a particular model simulates one or more abrupt events, 25% for all RCP 
scenarios and 38% for the RCP8.5 scenario, see Tables S1 and S3 for more details.   

To assess the significance of differences between proportions of abrupt events per RCP scenario 
we use a chi-square test for multiple comparison of proportion. However, it must be noted that this 
test is based on the assumption of independence, which is not strictly fulfilled as different abrupt 
events can be produced by the same model. 
 
SI Text 
 
Scarceness of abrupt changes in terrestrial and atmospheric fields 
No abrupt changes are detected for terrestrial Gross Primary Productivity (GPP) for all CMIP5 
ESMs analysed here. Our analysis suggests that the absence of abrupt change in GPP is largely due 
to the strong response of GPP to atmospheric CO2. That is, even in the event of detrimental 
warming or drying, generally for all RCPs, GPP does increase smoothly as a direct response to the 
offsetting and stronger raised CO2 fertilisation effect.  

In our analysis, we did also investigate whether abrupt changes are present in surface 
atmospheric quantities such as temperature, sea-level pressure and precipitation. Despite multiple 
abrupt changes in features of the Earth system that interface with surface meteorology, we found no 
rapid changes in the annual-mean time series that satisfy our criteria. This includes no abrupt 
change in either monsoon intensity or position, or rapid changes in drought frequency. A more 



targeted search with less stringent criteria focusing on shorter timescales and specific patterns of 
variability, however, might reveal more abrupt changes in atmospheric quantities.  

 
 
 

Internal variability versus abrupt change 
Any unusual or changing sequences of internal variability (e.g. 10 years of mostly positive followed 
by 10 years of mostly negative Arctic or North Atlantic Oscillation, Southern Annular Mode or the 
El Nino Southern Oscillation (ENSO) will not be detected as abrupt changes based on our criteria. 
This is because the magnitude of such atmospheric change does not exceed four standard deviations 
as seen in the control simulations. For example, in the multivariate ENSO index, a late 1970s shift 
is thought to be important, but if we compare the periods 1950-1976 and 1977-1997, the shift 
magnitude is approximately just one standard deviation of variability from earlier times, and so 
would not be adopted as an abrupt change. In fact, no atmospheric variables, which are 
characterised by large decadal internal variability, pass our criteria. This contrasts with the 
reversing switches identified in the pre-industrial runs that are sea-ice switches, as associated with 
convection on- and off-regimes in the ocean.  
 
Early warning signals.  
We also scanned for an increase in autocorrelation and variance, which can be indicative of a 
destabilising equilibrium of a dynamical system. This has been suggested as providing ‘early 
warnings’ of potential future shifts in Earth system components (3). In case (w) (Fig. 1), they are 
detected for sea surface temperature (Fig. S4).  

In some cases we calculate the trends in autocorrelation and variance for the combined time 
series of the historical and RCP scenarios, and in the period leading up to each abrupt event. The 
theory of dynamical systems shows that under certain restrictive conditions, these statistical 
properties can be indicators of the system’s state of linear stability around equilibrium. An increase 
in both properties can occur if a current equilibrium destabilises over time, thus providing “early 
warnings” of a potential future collapse (3, 4). We investigate this in the context of sea-ice cover 
(types 4 and 5) without finding significant trends in autocorrelation (compared to a distribution of 
trends from stationary surrogate time series). We find that in the models variance often decreases in 
the winter and spring months and increases in summer. This behaviour reflects the spatial 
distribution and total amount of sea-ice area, which in turn is strongly affected by the geometry of 
coastlines (5). Furthermore, the increased open-water formation efficiency at the point of sea-ice 
disappearance, the more efficient heat conduction of thin ice as well as the destabilising effect of 
summer sea-ice loss (6) impacts these statistical properties. Therefore they seem no reliable 
indicators of an approaching winter sea-ice collapse.  

In the FIO model (type 8) SST shows increases in variance and autocorrelation (Fig. S4). Here, 
the tipping is caused by a sequence of abrupt changes (sea surface temperature, surface air 
temperature, sea-ice cover), which eventually give rise to an accelerated decline in sea-ice cover. 
First-order autocorrelation (ar(1)) of SST clearly shows increasing trends, corroborated by 
Kendall’s τ rank correlation coefficient being larger than zero. If we consider only the years before 
the onset of the abrupt change the first-order autocorrelation also shows increasing trends (Fig. 
S4B). The signals are not due to chance, as demonstrated by a hypothesis test with surrogate time 
series, following the Supplementary Online Material of (7).  

Early warning signals could help to identify dynamical mechanisms behind the transitions, for 
instance, do they occur because of a bifurcation, are they noise-induced, etc.? Also they might tell 
us whether there are truly multiple states associated with these shifts in climate models. In our view 
much more work is needed to address such questions in a satisfying way and additional model 
experiments are needed for this. Only in vary rare circumstances one can make such claims based 
on the analysis with simple tools derived from early warning packages. For this reason we refrain 
from answering the questions formulated above, but we do emphasize that our catalogue of abrupt 
events may serve as a guidance for more dedicated analysis that could try to answer the above 
questions.    
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Fig. S1 Evolution of winter sea-ice area (mean over March to May) in the Northern Hemisphere in 
RCP8.5 simulations for the five models discussed under type-4 change. 
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Fig. S2. Convection in the Labrador Sea. A) Analysis of the historical plus RCP2.6 scenario for the 
SST and SSS and sea-ice cover averaged over Labrador Sea and AMOC at 48°N. B) Density profile 
in the RCP2.6 scenario for different 10-year periods before, along (2040-2049) and after the abrupt 
changes. C) Schematic of the mechanism and processes involved in the abrupt changes in Labrador 
Sea convection. 
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Fig. S3. Nordic Sea Anomalies A) Surface air temperature anomaly in the Nordic seas 15°W-25°E, 
65°N-75°N with respect to 1850-2100 for all four RCP scenarios as a function of time. B) Sea 
surface temperature (SST), Atlantic Meridional Overturning Circulation (AMOC), sea surface 
salinity (SSS), sea-ice cover (SIC), and surface air temperature (TAS) anomalies for the same area, 
each normalised with their standard deviation from the 1850-2000 time period. 
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Fig. S4. Early warning signals. Generic early warning signals associated with the time series of 
sea surface temperature in the Greenland Sea in the FIO-ESM RCP2.6 scenario. Panel (A) shows 
the full time series, panel (B) only the first 170 years before the abrupt change sets in. In both cases 
the upper panels show the original data and detrending applied (in red) using a Gaussian kernel 
smoother with a bandwidth size of 10% of the time series length. The lower panels shows the lag-1 
autocorrelation coefficient calculated through a sliding window of 40% of the time series length.  
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Fig. S5. Amazon and Sahel vegetation changes. A) Dynamics of tree cover for the Amazon 
region in the RCP8.5 scenario in HadGEM2-ES. B) Evolution of Leaf area index for the Amazon 
rainforest in the RCP8.5 scenario in IPSL-CM5A-LR. C) Dynamics of fractions of bare soil in the 
Sahel in the RCP8.5 simulation of BNU-ESM. D) Tree cover in the Sahel in the RCP8.5 simulation 
of BNU-ESM. 
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Fig. S6. Test of search criteria. Panel (A) shows an example, consisting of two time series, from a 
large ensemble of artificial time series. Each time series consists of a linear trend, one sudden 
change (in panel a the step size is 3 (exp) and 0 (ctl)), and additive Gaussian white noise of variance 
1. Panels (B-D) show the performance of our search criteria for 9 ensembles with different step 
sizes with B) Mean difference between beginning and end, C) Standard deviation, D) Maximum 
absolute ten year change. Each cross in panels (B-D) indicates the result of one 100-year long 
realisation with the step size indicated on the horizontal axis. “rm” is running mean; “exp” is the 
experiment, “ctl” a reference simulation with mean 0. 
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Fig. S7. Testing for bimodality. We show 2 examples of time series with abrupt changes by the 
eye, but with the first example passing the dip test for bimodality (Methods), while the second 
example fails the test because the two regimes are insufficiently separated. Panel (A) shows time 
series and panel (B) the (smoothed) probability density function showing sea ice bimodal switches 
in the Southern Ocean for the bcc-csm1-1-m model. C) Time series and D) (smoothed) probability 
density function for sea-ice cover in the Southern ocean for the CNRM-CM5 model.  

 

 

 

 
 

 

 

 

 

 

 



Model Pre-
industrial 

Historical 
ΔT at 
abrupt shift 

RCP2.6 
ΔT at abrupt 
shift / Final ΔT 

RCP4.5 
ΔT at abrupt 
shift / Final ΔT 

RCP8.5 
ΔT at abrupt 
shift / Final ΔT 

Character 
of abrupt 
shift 

1. ACCESS1-0    2.77 4.96  
2. ACCESS1-3    2.56 4.80  
3. bcc-csm1-1 (1)  2.14 3.31 9.20* U 
4. bcc-csm1-1-m (1)  2.29 2.78 4.81 U 
5. BNU-ESM   2.1/2.43 (11) 2.8/3.32 (11) 3.5/6.02 (11) D 
6. CanESM2   2.47 3.76 1.7/5.91 (5) C 
7. CCSM4   1.93 3.35 7.4/9.45* (4) T 
8. CESM1-BGC    2.66 5.09  
9.CESM1-CAM5   2.25 3.97 3.8/4.88 (7) B/C 
10. CMCC-CESM     1.5/4.81 (5) B/C/T 
11.CMCC-CM    2.88 5.37  
12. CMCC-CMS    2.97 5.48  
13. CNRM-CM5   1.84 3.13 5.2/10.10* (4) T 
14. CSIRO-Mk3-6-0   1.6/2.09 (7) 4.66 8.2/14.90* (4) T 
15. EC-Earth    2.60 2.90  
16. FGOALS-g2   1.33 2.37 2.9/4.16 (5) B/C/T 
17. FIO-ESM   1.4/1.47 (8) 1.6/1.98 (8) 1.8/4.77 (8) D 
18. GFDL-CM3 (1)  2.49 4.28 5.55 U 
19. GFDL-ESM2G  0.2 (7) 1.26 1.76 3.77  B/C 
20. GFDL-ESM2M   1.55 2.30  6.28  
21. GISS-E2-H   1.77 1.9/2.77 (10) 

2.4/2.77 (2) 
2.2/6.31 (10) 
 

T/C 
C 

22. GISS-E2-R   1.4/1.41 (7) 1.6/2.41 (7) 
1.7/2.41 (2) 
1.4/2.41 (10) 

1.6/5.69 (7) 
4.7/5.69 (2) 
1.8/5.69 (10) 

D 
C 
T/C 

23. HadGEM2-AO   1.83 3.11 5.11  
24. HadGEM2-CC    2.58 5.36  
25. HadGEM2-ES   2.10 3.77 2.5/11.40* (13) 

5.6/11.40* (9) 
7.2/11.40* (12) 
4.5/11.40* (4) 

T/B 
T 
T 
T 

26. inmcm4    1.88 3.61  
27. IPSL-CM5A-LR (1)   

2.35 
 
4.09 

 
6.2/12.75* (13) 
10.9/12.75* (3) 

U 
T/B 
B/C 

28. IPSL-CM5A-MR   2.32 3.88 5.87  
29. IPSL-CM5B-LR    2.81 4.88  
30. MIROC5   1.4/1.77 (7) 2.52 4.41  
31. MIROC-ESM   2.46 3.85 6.17  
32. MIROC-ESM-CHEM   2.49 3.30 6.32  
33. MPI-ESM-LR   1.97 3.27 6.2/10.48* (4) T 
34. MPI-ESM-MR   1.78 2.81 5.12  
35. MRI-CGCM3   1.4/1.51 (5) 1.9/2.37 (5) 

1.6/2.37 (6) 
2.3/4.17 (5) D 

B/C 
36. NorESM1-ME   1.63 2.54 4.21  
37. NorESM1-M   1.57 2.73 4.13  
Total 4/37 1/37 6/27 9/36 21/37  

 
Table S1. Occurrence of abrupt changes. An inventory of abrupt shifts by climate model and 
RCP scenario. Red numbers are when an abrupt shift occurs, and its temperature increase above 
pre-industrial during the first 10-year period at which this occurs. Red in brackets is type of abrupt 
change (see Table 1). Black numbers are global temperature increase above pre-industrial at the end 
of the simulation. Stars denote RCP8.5 runs that have been extended for 200 years. In the last 
column (7) U denotes unforced, B depending on background state, C occurring by chance, D 
occurring in more than one scenario, but at increasingly higher temperatures for more strongly 
forced scenarios, T occurring in one or two scenarios after a temperature threshold has been passed 
that is larger than other scenario(s) reach(es).  



 
Letter  
in  
Fig. 1 

Nonlinear 
Event &  
Type 

Region Model Cate
gory 

Scenario Year ΔT Lon Lat 

a Sea ice 
bimodality (1) 

Southern 
Ocean 

bcc-csm1-1 I All n/a n/a -20:30 -70:-60 

b // // bcc-csm1-1-m I All n/a n/a -20:30 -70:-60 
c // // GFDL-CM3 I All n/a n/a -60:0 -80:-60 
d // // IPSL-CM5A-LR I All n/a n/a -120:-80 -85:-60 
e Sea ice 

bimodality (2) 
Southern 
Ocean 

GISS-E2-R II RCP4.5 
RCP8.5 

2090 
2170 

1.7 
4.7 

170:-140 -75:-65 

f // // GISS-E2-H II RCP4.5 2090 2.4 -40:-10 -80:-60 
g Upwelling 

change (3) 
Indian 
Ocean 

IPSL-CM5A-LR II RCP8.5 2220 10.9 45:55 -5:5 

h Arctic sea ice 
collapse (4) 

Arctic  CCSM4 III RCP8.5 2180 7.4 -180:180 75:90 

i // // CNRM-CM5 III RCP8.5 2110 5.2 -180:180 75:90 
j // // CSIRO-Mk3-6-0 III RCP8.5 2150 8.2 -180:180 75:90 
k // // MPI-ESM-LR III RCP8.5 2125 6.2 -180:180 75:90 
l // // HadGEM2-ES III RCP8.5 2080 4.5 -180:180 75:90 
m Abrupt sea ice 

loss (5) 
Barents 
Sea 

CanESM2 III RCP8.5 2020 1.7 30:50 70:80 

n // // CMCC-CESM III RCP8.5 2035 1.5 20:60 70:80 
o // Southern 

Ocean 
MRI-CGCM3 III RCP2.6  

RCP4.5 
RCP8.5 

2075 
2080 
2085 

1.4 
1.9 
2.3 

-10:10 
 

-65:-60 
 

p // // FGOALS-g2 III RCP8.5 2075 2.9 -180:-130 -80:-65 
q Abrupt sea ice 

increase (6) 
Southern 
Ocean 

MRI-CGCM3 III RCP4.5 
 

2055 1.6 60:90 -70:-55 

r Convection 
collapse (7) 

Labrador 
Sea 

GISS-E2-R III RCP2.6 
RCP4.5 
RCP8.5 

2040 
2050 
2035 

1.4 
1.6 
1.6 

-65:-25 50:65 

s // // CESM-CAM5 III RCP8.5 2075 3.8 -65:-25 50:65 
t // // GFDL-ESM2G III h+rcp4.5 1920 0.2 -65:-25 50:65 
u // // MIROC5 III RCP2.6 2050 1.4 -65:-25 50:65 
v // // CSIRO-Mk3-6-0 III RCP2.6 2040 1.6 -65:-25 50:65 
w AMOC-

induced 
collapse (8) 

North 
Atlantic 

FIO-ESM III RCP2.6 
RCP4.5 
RCP8.5 

2040 
2040 
2040 

1.4 
1.6 
1.9 

-15:25 65:75 

A Permafrost 
collapse (9) 

High 
latitudes 

HadGEM2-ES III RCP8.5 2110 5.6 60:-80 70:80 

B Snow Melt 
(10) 

Tibetan 
Plateau 

GISS-E2-H III RCP4.5 
RCP8.5 

2040 
2040 

1.9 
2.2 

70:100 30:40 

C // // GISS-E2-R III RCP4.5 
RCP8.5 

2030 
2045 

1.4 
1.8 

70:100 30:40 

D Vegetation 
composition 
changes (11) 

Eastern 
Sahel 

BNU-ESM III RCP2.6 
RCP4.5 
RCP8.5 

2085 
2055 
2055 

2.1 
2.8 
3.5 

25:35 5:15 

E Forest 
expansion (12) 

High 
latitudes 

HadGEM2-ES IV RCP8.5 2150 7.2 60:-80 70:80 

F Forest dieback 
(13) 

Amazon HadGEM2-ES IV RCP8.5 2050 2.5 -65:-50 -5:10 

G // // IPSL-CM5A-LR IV RCP8.5 2100 6.2 -75:-60 -10:10 
	
  

Table S2. Identified Abrupt Shifts. Table listing more complete details of the 41 abrupt shifts 
found in the CMIP5 data. Notably, presented are the latitudinal and longitudinal bounds in which 
the model changes are observed, the year the shift starts and the global mean temperature change 
relative to the pre-industrial climate at which the abrupt change occurs.  
	
  
	
  
	
  
	
  



	
  
Letter 
in  
Fig 1 

Abrupt variables involved Number 
of abrupt 
members 
per total 
members 

Scenario 
tested 

Tested 
variable 

Dip-test  
(p-value) 

Symmetry-
test (p-
value) 

Max 10-yr 
change 

a sic, rsds, rsus, fgco2, spco2, ts, zos, 
hfds, bmelt, tmelt (10) 

4/4 piControl sic 0.996 0.000 n/a 

b sic, rsds, rsus, fgco2, spco2 (5) 4/4 piControl sic 0.130 0.000 n/a 
c sic, rsus, rsds, sit, ts, sos, omlmax (7) 6/6 piControl sic 0.004 0.000 n/a 
d sic, omlmax, dpco2, fgco2, intpp (5) 12/13 piControl sic 0.981 0.000 n/a 
e sic, rsus, rsds, sos, ts (5) 14/22 RCP4.5 

RCP8.5 
sic 0.002 

0.000 
0.000 
0.000 

11.4 
10.3 

f sic, ts, sos, sit, sie, rsus (6) 6/16 RCP4.5 sic 0.621 0.000 5.4 
g intpp, omlmax, dpco2, fgco2 (4) 1/1 RCP8.5 intpp 0.982 0.000 40.4 
h sic, clt, ci  (3) 1/1 RCP8.5 sic 0.001 0.001 13.8 
i sic, rsds, rsus (3) 1/1 RCP8.5 sic 0.518 0.000 12.6 
j sic, rsds, rsus, rlds, clt, ts, wfo  (7) 3/3 RCP8.5 sic 0.000 0.023 39.4 
k sic, rsus, dpco2 (3) 1/1 RCP8.5 sic 0.000 0.000 12.0 
l sic (1) 1/1 RCP8.5 sic 0.572 0.000 4.8 
m sic, rsus, fgco2, intpp, epc100 (5) 1/5 RCP8.5 sic 0.980 0.000 4.2 
n rsds, rsus, sos, ts, zos, hfds, pbo (7) 1/1 RCP8.5 rsus 0.000 0.000 6.6 
o sic, rsus, mlotst, omlmax (4) 3/3 RCP2.6 

RCP4.5 
RCP8.5 

sic 0.044 
0.450 
0.125 

0.000 
0.000 
0.000 

8.1 
8.6 
6.9 

p sic, rsus (2) 1/1 RCP8.5 sic 0.990 0.000 7.4 
q sic, rsus, mlotst (3) 1/1 RCP4.5 sic 0.000 0.012 8.1 
r so, thetao (2) 3/3 his+rcp2.6 

his+rcp4.5 
his+rcp8.5 

so 
so 
so 

0.000 
0.000 
0.000 

0.000 
0.000 
0.001 

10.8 
8.0 
8.8 

s so (1) 1/1 his+rcp8.5 so 0.792 0.000 9.5 
t so, thetao (2) 1/1 his+rcp4.5 thetao 0.001 0.000 5.1 
u so (1) 1/1 his+rcp2.6 so 0.128 0.000 5.8 
v so (1) 1/1 his+rcp2.6 so 0.506 0.000 5.1 
w sic, sit, tas, ts, sos (4) 3/3 his+rcp2.6 

his+rcp4.5 
his+rcp8.5 

tos 
 

0.007 
0.065 
0.993 

0.000 
0.000 
0.000 

7.0 
6.6 
8.2 

A mrso (1) 1/1 RCP8.5 mrso 0.000 0.000 38.7 
B snc, rsus, psl, snw (4) 14/21 RCP4.5 

RCP8.5 
snw 0.516 

0.190 
0.000 
0.000 

5.4 
5.9 

C snw (1) 18/21 RCP4.5 
RCP8.5 

snw 0.783 
0.011 

0.000 
0.000 

9.0 
10.1 

D lai, baresoilfrac, treefrac, grassfrac (4) 3/3 RCP2.6 
RCP4.5 
RCP8.5 

baresoilfrac 0.004 
0.000 
0.000 

0.000 
0.189 
0.447 

8.8 
7.7 
10.7 

E grassfrac, treefrac, baresoilfrac (3) 1/1 RCP8.5 treefrac 0.000 0.007 Inf 
F lai, treefrac, baresoilfrac (3) 1/1 RCP8.5 treefrac 0.008 0.002 16.0 
G lai (1) 1/1 RCP8.5 lai 0.846 0.000 6.4 

 

Table S3. Statistical testing of abrupt changes. Variables where we identified abrupt shifts by the 
eye identified by their name in the CMIP5 database (column 2), number of ensemble members in 
which abrupt shifts occurred  (estimated by the eye) per total number of ensemble members of 
scenarios in which abrupt changes occur investigated (column 3). To pass our multimodality 
criterion the p-value of the Dip-test should be less than 0.01, thus rejecting the unimodality 
hypothesis (column 6). To pass the Symmetry test the p-value is also required to be less than 0.01 
(column 7). The maximum 10-year change is normalized with the standard deviation from the pre-
industrial run and should take a value larger than four (column 8). “n/a” stands for not applicable; 
“inf” for infinite, that is, this variable did not show internal variability in the control run. Numbers 
in bold indicate where the abrupt change criteria are fulfilled. 


